51
|
Martins-Noguerol R, Matías L, Pérez-Ramos IM, Moreira X, Francisco M, Pedroche J, DeAndrés-Gil C, Gutiérrez E, Salas JJ, Moreno-Pérez AJ, Davy AJ, Muñoz-Vallés S, Figueroa ME, Cambrollé J. Soil physicochemical properties associated with the yield and phytochemical composition of the edible halophyte Crithmum maritimum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161806. [PMID: 36707001 DOI: 10.1016/j.scitotenv.2023.161806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
There is growing interest in the consumption of halophytes due to their excellent nutritional profile and antioxidant properties, and their cultivation offers viable alternatives in the face of irreversible global salinization of soils. Nevertheless, abiotic factors strongly influence their phytochemical composition, and little is known about how growing conditions can produce plants with the best nutritional and functional properties. Crithmum maritimum is an edible halophyte with antioxidant properties and considerable potential for sustainable agriculture in marginal environments. However, it is found naturally in contrasting habitats with variable soil physicochemical properties and the extent to which edaphic factors can influence plant performance, accumulation of phytochemicals and their quality remains unknown. We investigated the influence of soil physicochemical properties (texture, pH, electrical conductivity, organic matter content and mineral element concentrations) on growth and reproductive performance, nutritional traits, and the accumulation of specific metabolites in C. maritimum. Soil, leaf and seed samples were taken from eight C. maritimum populations located on the southern coasts of Spain and Portugal. We found greater vegetative growth and seed production in coarser, sandier soils with lower microelement concentrations. The nutritional traits of leaves varied, with soil organic matter and macronutrient content associated with reduced leaf Na, protein and phenolic (mainly flavonoid) concentrations, whereas soils with lower pH and Fe concentrations, and higher clay content yielded plants with lower leaf Zn concentration and greater accumulation of hydroxycinnamic acids. The nutritional value of the seed oil composition appeared to be enhanced in soils with coarser texture and lower microelement concentrations. The accumulation of specific phenolic compounds in the seed was influenced by a wide range of soil properties including texture, pH and some microelements. These findings will inform the commercial cultivation of C. maritimum, particularly in the economic exploitation of poorly utilized, saline soils.
Collapse
Affiliation(s)
- Raquel Martins-Noguerol
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, E-41012 Sevilla, Spain; Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), P.O. Box 1052, 41080 Sevilla, Andalucía, Spain.
| | - Luis Matías
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, E-41012 Sevilla, Spain
| | - Ignacio M Pérez-Ramos
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), P.O. Box 1052, 41080 Sevilla, Andalucía, Spain
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080 Pontevedra, Galicia, Spain
| | - Marta Francisco
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080 Pontevedra, Galicia, Spain
| | - Justo Pedroche
- Instituto de la Grasa (IG-CSIC), Building 46, UPO Campus, Ctra. de Utrera km 1, 41013 Sevilla, Spain
| | - Cristina DeAndrés-Gil
- Instituto de la Grasa (IG-CSIC), Building 46, UPO Campus, Ctra. de Utrera km 1, 41013 Sevilla, Spain
| | - Eduardo Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), P.O. Box 1052, 41080 Sevilla, Andalucía, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (IG-CSIC), Building 46, UPO Campus, Ctra. de Utrera km 1, 41013 Sevilla, Spain
| | - Antonio J Moreno-Pérez
- Instituto de la Grasa (IG-CSIC), Building 46, UPO Campus, Ctra. de Utrera km 1, 41013 Sevilla, Spain
| | - Anthony J Davy
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Sara Muñoz-Vallés
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Seville 41013, Spain
| | - Manuel Enrique Figueroa
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, E-41012 Sevilla, Spain
| | - Jesús Cambrollé
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, E-41012 Sevilla, Spain
| |
Collapse
|
52
|
Prathap V, Kumar S, Tyagi A. Comparative proteome analysis of phosphorus-responsive genotypes reveals the proteins differentially expressed under phosphorous starvation stress in rice. Int J Biol Macromol 2023; 234:123760. [PMID: 36812961 DOI: 10.1016/j.ijbiomac.2023.123760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Abstract
Phosphorus (P)-deficiency is one of the major nutrient constraints for global rice production. P-deficiency tolerance in rice involves complex regulatory mechanisms. To gain insights into the proteins involved in phosphorus acquisition and use efficiency in rice, proteome analysis of a high-yielding rice cultivar Pusa-44 and its near-isogenic line (NIL)-23 harboring a major phosphorous uptake (Pup1) QTL, grown under control and P-starvation stress, was performed. Comparative proteome profiling of shoot and root tissues from the plants grown hydroponically with P (16 ppm, +P) or without P (0 ppm, -P) resulted in the identification of 681 and 567 differentially expressed proteins (DEPs) in shoot of Pusa-44 and NIL-23, respectively. Similarly, 66 and 93 DEPs were identified in root of Pusa-44 and NIL-23, respectively. These P-starvation responsive DEPs were annotated to be involved in metabolic processes like photosynthesis, starch-, sucrose-, energy-metabolism, transcription factors (mainly ARF, ZFP, HD-ZIP, MYB), and phytohormone signaling. Comparative analysis of the expression patterns observed by proteome analysis with that reported at the transcriptome level indicated the Pup1 QTL-mediated post-transcriptional regulation plays an important role under -P stress. Thus, the present study describes the molecular aspect of the regulatory functions of Pup1 QTL under P-starvation stress in rice, which might help develop an efficient rice cultivar with enhanced P acquisition and assimilation for better performance in P-deficient soil.
Collapse
Affiliation(s)
- V Prathap
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Aruna Tyagi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
53
|
Madani I, Peltier JB, Boeglin M, Sentenac H, Véry AA. Plasticity of wheat seedling responses to K + deficiency highlighted by integrated phenotyping of roots and root hairs over the whole root system. STRESS BIOLOGY 2023; 3:5. [PMID: 37676444 PMCID: PMC10441938 DOI: 10.1007/s44154-023-00083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/22/2023] [Indexed: 09/08/2023]
Abstract
The availability in the soil of potassium (K+), a poorly mobile macronutrient required in large quantities for plant growth, is generally suboptimal for crop production in the absence of fertilization, making improvement of the ability of crops to adapt to K+ deficiency stress a major issue. Increasing the uptake capacity of the root system is among the main strategies to achieve this goal. Here, we report an integrative approach to examine the effect of K+ deficiency on the development of young plant entire root system, including root hairs which are known to provide a significant contribution to the uptake of poorly mobile nutrients such as K+, in two genetically distant wheat varieties. A rhizobox-type methodology was developed to obtain highly-resolved images of root and root hairs, allowing to describe global root and root hair traits over the whole root system via image analysis procedures. The two wheat varieties responded differently to the K+ shortage: Escandia, a wheat ancestor, reduced shoot biomass in condition of K+ shortage and substantially increased the surface area of its root system, specifically by increasing the total root hair area. Oued Zenati, a landrace, conversely appeared unresponsive to the K+ shortage but was shown to constitutively express, independently of the external K+ availability, favorable traits to cope with reduced K+ availability, among which a high total root hair area. Thus, valuable information on root system adaptation to K+ deficiency was provided by global analyses including root hairs, which should also be relevant for other nutrient stresses.
Collapse
Affiliation(s)
- Ikram Madani
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France
| | - Jean-Benoît Peltier
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France
| | - Martin Boeglin
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France
| | - Hervé Sentenac
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France
| | - Anne-Aliénor Véry
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France.
| |
Collapse
|
54
|
Mumivand H, Izadi Z, Amirizadeh F, Maggi F, Morshedloo MR. Biochar amendment improves growth and the essential oil quality and quantity of peppermint (Mentha × piperita L.) grown under waste water and reduces environmental contamination from waste water disposal. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130674. [PMID: 36603422 DOI: 10.1016/j.jhazmat.2022.130674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The reuse of waste water (WW) in agriculture is challenging as a potential strategy for sustainable agriculture development. However, its high content of heavy metals may cause damage to ecosystems. The property of biochar (BC) to minimize heavy metals accumulation into the soil was studied taking as a case study peppermint (Mentha x piperita L., Lamiaceae) irrigated with WW. Application of BC and WW, separately, promoted height, shoot number, crown diameter, internode length, leaf number, leaf length, leaf width, fresh (FW) and dry aerial parts weights (DW), root FW and root DW of peppermint. Also an increment in canopy diameter was observed. BC application considerably increased N, Mg, Mn, Fe and Zn, while WW increased N, P, K and Fe levels. Irrigation of peppermint with WW led to an increase of chlorophyll (Chl) a, Chl b, Chl a+b, carotenoids, anthocyanins, photosynthetic rate, transpiration, stomatal conductance, relative water content (RWC), and crop yield. On the other hand, BC application led to a decrease of Cd and Pb accumulation in plants. BC and WW application, separately, increased the essential oil content, the total phenol content, and the antioxidant capacity. Regardless of BC levels, irrigation of plants with WW decreased the percentage of menthone, menthofuran, isomenthone and pulegone in the essential oil, and increased the percentage of menthol and carvone. Similarly, BC application raised the percentage of menthol, and decreased that of pulegone. Overall, the application of BC in the culture medium is able to decrease the heavy metal concentration and improves the essential oil quality and quantity of peppermint under WW irrigation.
Collapse
Affiliation(s)
- Hasan Mumivand
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran.
| | - Zeinab Izadi
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Fatemeh Amirizadeh
- Department of Water Engineering, Faculty of Agriculture, Lorestan University, Lorestan, Iran
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Camerino, Italy.
| | - Mohamad Reza Morshedloo
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
55
|
Root exudate-derived compounds stimulate the phosphorus solubilizing ability of bacteria. Sci Rep 2023; 13:4050. [PMID: 36899103 PMCID: PMC10006420 DOI: 10.1038/s41598-023-30915-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Low phosphorus (P) availability in soils is a major challenge for sustainable food production, as most soil P is often unavailable for plant uptake and effective strategies to access this P are limited. Certain soil occurring bacteria and root exudate-derived compounds that release P are in combination promising tools to develop applications that increase phosphorus use efficiency in crops. Here, we studied the ability of root exudate compounds (galactinol, threonine, and 4-hydroxybutyric acid) induced under low P conditions to stimulate the ability of bacteria to solubilize P. Galactinol, threonine, and 4-hydroxybutyric acid were incubated with the P solubilizing bacterial strains Enterobacter cloacae, Pseudomonas pseudoalcaligenes, and Bacillus thuringiensis under either inorganic (calcium phosphate) or organic (phytin) forms of plant-unavailable P. Overall, we found that the addition of individual root exudate compounds did not support bacterial growth rates. However, root exudates supplemented to the different bacterial appeared to enhance P solubilizing activity and overall P availability. Threonine and 4-hydroxybutyric acid induced P solubilization in all three bacterial strains. Subsequent exogenous application of threonine to soils improved the root growth of corn, enhanced nitrogen and P concentrations in roots and increased available levels of potassium, calcium and magnesium in soils. Thus, it appears that threonine might promote the bacterial solubilization and plant-uptake of a variety of nutrients. Altogether, these findings expand on the function of exuded specialized compounds and propose alternative approaches to unlock existing phosphorus reservoirs of P in crop lands.
Collapse
|
56
|
Zhao J, Huang R, Wang X, Ma C, Li M, Zhang Q. Effects of combined nitrogen and phosphorus application on protein fractions and nonstructural carbohydrate of alfalfa. FRONTIERS IN PLANT SCIENCE 2023; 14:1124664. [PMID: 36968423 PMCID: PMC10032370 DOI: 10.3389/fpls.2023.1124664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) and phosphorus (P) fertilization significantly affect alfalfa production and chemical composition; however, the effect of combined N and P application on protein fractions and the nonstructural carbohydrate content of alfalfa is not fully understood. This two-year study investigated the effects of N and P fertilization on the protein fractions, nonstructural carbohydrates (NSC), and alfalfa hay yield. Field experiments were carried out using two nitrogen application rates (N60, 60 and N120, 120 kg N ha - 1) and four phosphorus application rates (P0, 0; P50, 50; P100, 100; and P150, 150 kg P ha - 1), total 8 treatment (N60P0, N60P50, N60P100, N60P150, N120P0, N120P50, N120P100 and N120P150). Alfalfa seeds were sown in the spring of 2019, uniformly managed for alfalfa establishment, and tested in the spring of 2021-2022. Results indicated that P fertilization significantly increased the hay yield (3.07-13.43% ranges), crude protein (6.79-9.54%), non-protein nitrogen of crude protein (fraction A) (4.09-6.40%), and NSC content (11.00-19.40%) of alfalfa under the same treatment of N application (p < 0.05), whereas non-degradable protein (fraction C) decreased significantly (6.85-13.30%, p < 0.05). Moreover, increasing N application resulted in a linear increase the content of non-protein N (NPN) (4.56-14.09%), soluble protein (SOLP) (3.48-9.70%), and neutral detergent-insoluble protein (NDIP) (2.75-5.89%) (p < 0.05), whereas acid detergent-insoluble protein (ADIP) content was significantly decreased (0.56-5.06%, p < 0.05). The regression equations for nitrogen and phosphorus application indicated a quadratic relationship between yield and forage nutritive values. Meanwhile, the comprehensive evaluation scores of NSC, nitrogen distribution, protein fractions, and hay yield by principal component analysis (PCA) revealed that the N120P100 treatment had the highest score. Overall, 120 kg N ha - 1 coupled with 100 kg P ha - 1 (N120P100) promoted the growth and development of perennial alfalfa, increased soluble nitrogen compounds and total carbohydrate content, and reduced protein degradation, thus improving the alfalfa hay yield and nutritional quality.
Collapse
Affiliation(s)
- Jiantao Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Rongzheng Huang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xuzhe Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chunhui Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Man Li
- College of Medicine, Shihezi University, Shihezi, China
| | - Qianbing Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
57
|
Transcriptomics Insights into Phosphorus Stress Response of Myriophyllum aquaticum. Int J Mol Sci 2023; 24:ijms24054874. [PMID: 36902302 PMCID: PMC10003231 DOI: 10.3390/ijms24054874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Through excellent absorption and transformation, the macrophyte Myriophyllum (M.) aquaticum can considerably remove phosphorus from wastewater. The results of changes in growth rate, chlorophyll content, and roots number and length showed that M. aquaticum could cope better with high phosphorus stress compared with low phosphorus stress. Transcriptome and differentially expressed genes (DEGs) analyses revealed that, when exposed to phosphorus stresses at various concentrations, the roots were more active than the leaves, with more DEGs regulated. M. aquaticum also showed different gene expression and pathway regulatory patterns when exposed to low phosphorus and high phosphorus stresses. M. aquaticum's capacity to cope with phosphorus stress was maybe due to its improved ability to regulate metabolic pathways such as photosynthesis, oxidative stress reduction, phosphorus metabolism, signal transduction, secondary metabolites biosynthesis, and energy metabolism. In general, M. aquaticum has a complex and interconnected regulatory network that deals efficiently with phosphorus stress to varying degrees. This is the first time that the mechanisms of M. aquaticum in sustaining phosphorus stress have been fully examined at the transcriptome level using high-throughput sequencing analysis, which may indicate the direction of follow-up research and have some guiding value for its future applications.
Collapse
|
58
|
Yang H, Peng L, Chen L, Zhang L, Kan L, Shi Y, Mei X, Malladi A, Xu Y, Dong C. Efficient potassium (K) recycling and root carbon (C) metabolism improve K use efficiency in pear rootstock genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:43-54. [PMID: 36693285 DOI: 10.1016/j.plaphy.2023.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
To investigate K absorption and transport mechanisms by which pear rootstock genotypes respond to low-K stress, seedlings of a potassium-efficient pear rootstock, Pyrus ussuriensis, and a potassium-sensitive rootstock, Pyrus betulifolia, were supplied with different K concentrations in solution culture. Significant differences in the absorption rate, Vmax and Km between the genotypes indicate that P. ussuriensis acclimatizes more readily to low-K stress by regulating its absorption and internal cycling. We also found that the K content in the leaves of P. betulifolia was significantly lower than that of P. ussuriensis, and the proportion of K that was returned to root from shoot, relative to K that was transported from root to shoot, was greater in P. ussuriensis, which suggests that P. ussuriensis more efficiently recycles and reuses K. When the transcriptomes of the two genotypes were compared, we found that photosynthetic genes such as CABs (Chlorophyll a/b-binding proteins), Lhcbs (Photosystem II-related proteins), and Psas (Photosystem Ⅰ associated proteins) displayed lower expression in leaves of P. betulifolia under no-K conditions, but not in P. ussuriensis. However, in the root of P. ussuriensis, carbon metabolism-related genes SS (Sucrose Synthase), HK (HexoKinase) and SDH (Sorbitol Dehydrogenase) and components of the TCA cycle (Tricarboxylic Acid cycle) were differentially expressed, indicating that changes in C metabolism may provide energy for increased K+ cycling in these plants, thereby allowing it to better adapt to the low-K environment. In addition, exogenous supply of various sugars to the roots influenced K+ influx, supporting the conclusion that sugar metabolism in roots significantly affects K+ absorption in pear.
Collapse
Affiliation(s)
- Han Yang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Lirun Peng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Liyan Chen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Lijuan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Liping Kan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yujie Shi
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xinlan Mei
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Anish Malladi
- Horticulture Department, University of Georgia, Athens, GA, 30602, United States.
| | - Yangchun Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Caixia Dong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
59
|
Transcriptome and Metabolome Reveal the Molecular Mechanism of Barley Genotypes Underlying the Response to Low Nitrogen and Resupply. Int J Mol Sci 2023; 24:ijms24054706. [PMID: 36902137 PMCID: PMC10003240 DOI: 10.3390/ijms24054706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Nitrogen is one of the most important mineral elements for plant growth and development. Excessive nitrogen application not only pollutes the environment, but also reduces the quality of crops. However, are few studies on the mechanism of barley tolerance to low nitrogen at both the transcriptome and metabolomics levels. In this study, the nitrogen-efficient genotype (W26) and the nitrogen-sensitive genotype (W20) of barley were treated with low nitrogen (LN) for 3 days and 18 days, then treated with resupplied nitrogen (RN) from 18 to 21 days. Later, the biomass and the nitrogen content were measured, and RNA-seq and metabolites were analyzed. The nitrogen use efficiency (NUE) of W26 and W20 treated with LN for 21 days was estimated by nitrogen content and dry weight, and the values were 87.54% and 61.74%, respectively. It turned out to have a significant difference in the two genotypes under the LN condition. According to the transcriptome analysis, 7926 differentially expressed genes (DEGs) and 7537 DEGs were identified in the leaves of W26 and W20, respectively, and 6579 DEGs and 7128 DEGs were found in the roots of W26 and W20, respectively. After analysis of the metabolites, 458 differentially expressed metabolites (DAMs) and 425 DAMs were found in the leaves of W26 and W20, respectively, and 486 DAMs and 368 DAMs were found in the roots of W26 and W20, respectively. According to the KEGG joint analysis of DEGs and DAMs, it was discovered that glutathione (GSH) metabolism was the pathway of significant enrichment in the leaves of both W26 and W20. In this study, the metabolic pathways of nitrogen metabolism and GSH metabolism of barley under nitrogen were constructed based on the related DAMs and DEGs. In leaves, GSH, amino acids, and amides were the main identified DAMs, while in roots, GSH, amino acids, and phenylpropanes were mainly found DAMs. Finally, some nitrogen-efficient candidate genes and metabolites were selected based on the results of this study. The responses of W26 and W20 to low nitrogen stress were significantly different at the transcriptional and metabolic levels. The candidate genes that have been screened will be verified in future. These data not only provide new insights into how barley responds to LN, but also provide new directions for studying the molecular mechanisms of barley under abiotic stress.
Collapse
|
60
|
Chen W, Mou X, Meng P, Chen J, Tang X, Meng G, Xin K, Zhang Y, Wang C. Effects of arbuscular mycorrhizal fungus inoculation on the growth and nitrogen metabolism of Catalpa bungei C.A.Mey. under different nitrogen levels. FRONTIERS IN PLANT SCIENCE 2023; 14:1138184. [PMID: 36909441 PMCID: PMC9996104 DOI: 10.3389/fpls.2023.1138184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Evidence suggests that arbuscular mycorrhizal fungi (AMF) may promote the growth of woody plants. However, the effects of AMF on nitrogen (N) metabolism in plants, especially trees, and its regulatory mechanism are rarely reported. Here, the effects of AMF inoculation on the growth and N nutrition status of Catalpa bungei under different N levels were reported. Three N levels (low, medium, high) and two mycorrhizal inoculation treatments (inoculation with Rhizophagus intraradices or not) were used with factorial design. The results showed that medium N could significantly improve the physiological metabolism and growth of C. bungei seedlings. However, when N was excessive, growth was significantly inhibited whether inoculated AMF or not. Compared with non-inoculated treatments, AMF inoculation could promote the absorption of N and P, improve photosynthesis under low to medium N levels, thus promoting the growth of seedlings. AMF changed the biomass allocation in seedlings by reducing the stem mass ratio and root/shoot ratio, and increasing the leaf mass ratio. At medium N levels, compared with non-inoculated treatment, AMF inoculation could significantly promote root growth by changing root hormone levels and improving root architecture and root activity. Under N addition, AMF inoculation could improve the absorption and assimilation of N by regulating the expression of key enzyme genes of N metabolism and nitrate transporter genes (NRT2.4, NRT2.5, NRT2.7) in roots, and enhancing the activities of the key enzyme of N metabolism. This study may provide a reference for the application of AMF in the cultivation and afforestation technology of C. bungei in Northwest China.
Collapse
|
61
|
Ranjan R, Yadav R, Gaikwad KB, Bainsla NK, Kumar M, Babu P, Dharmateja P. Spring Wheat's Ability to Utilize Nitrogen More Effectively Is Influenced by Root Phene Variation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1010. [PMID: 36903871 PMCID: PMC10005382 DOI: 10.3390/plants12051010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/18/2023]
Abstract
Genetic improvement for nitrogen use efficiency (NUE) can play a very crucial role in sustainable agriculture. Root traits have hardly been explored in major wheat breeding programs, more so in spring germplasm, largely because of the difficulty in their scoring. A total of 175 advanced/improved Indian spring wheat genotypes were screened for root traits and nitrogen uptake and nitrogen utilization at varying nitrogen levels in hydroponic conditions to dissect the complex NUE trait into its component traits and to study the extent of variability that exists for those traits in Indian germplasm. Analysis of genetic variance showed a considerable amount of genetic variability for nitrogen uptake efficiency (NUpE), nitrogen utilization efficiency (NUtE), and most of the root and shoot traits. Improved spring wheat breeding lines were found to have very large variability for maximum root length (MRL) and root dry weights (RDW) with strong genetic advance. In contrast to high nitrogen (HN), a low nitrogen (LN) environment was more effective in differentiating wheat genotypes for NUE and its component traits. Shoot dry weight (SDW), RDW, MRL, and NUpE were found to have a strong association with NUE. Further study revealed the role of root surface area (RSA) and total root length (TRL) in RDW formation as well as in nitrogen uptake and therefore can be targeted for selection to further the genetic gain for grain yield under high input or sustainable agriculture under limited inputs.
Collapse
Affiliation(s)
- Rumesh Ranjan
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Rajbir Yadav
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | - Kiran B. Gaikwad
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | - Naresh Kumar Bainsla
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | - Manjeet Kumar
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | - Prashanth Babu
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | - Palaparthi Dharmateja
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
62
|
Iqbal A, Qiang D, Xiangru W, Huiping G, Hengheng Z, Xiling Z, Meizhen S. Phosphorus and carbohydrate metabolism contributes to low phosphorus tolerance in cotton. BMC PLANT BIOLOGY 2023; 23:97. [PMID: 36792994 PMCID: PMC9933316 DOI: 10.1186/s12870-023-04100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Low phosphorus (P) is one of the limiting factors in sustainable cotton production. However, little is known about the performance of contrasting low P tolerant cotton genotypes that might be a possible option to grow in low P condition. In the current study, we characterized the response of two cotton genotypes, Jimian169 a strong low P tolerant, and DES926 a weak low P tolerant genotypes under low and normal P conditions. The results showed that low P greatly inhibited growth, dry matter production, photosynthesis, and enzymatic activities related to antioxidant system and carbohydrate metabolism and the inhibition was more in DES926 as compared to Jimian169. In contrast, low P improved root morphology, carbohydrate accumulation, and P metabolism, especially in Jimian169, whereas the opposite responses were observed for DES926. The strong low P tolerance in Jimian169 is linked with a better root system and enhanced P and carbohydrate metabolism, suggesting that Jimian169 is a model genotype for cotton breeding. Results thus indicate that the Jimian169, compared with DES926, tolerates low P by enhancing carbohydrate metabolism and by inducing the activity of several enzymes related to P metabolism. This apparently causes rapid P turnover and enables the Jimian169 to use P more efficiently. Moreover, the transcript level of the key genes could provide useful information to study the molecular mechanism of low P tolerance in cotton.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
- Department of Agriculture, Hazara University, Khyber Pakhtunkhwa, 21120, Mansehra, Pakistan
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China.
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
| |
Collapse
|
63
|
Li M, Zhou J, Liu Q, Mao L, Li H, Li S, Guo R. Dynamic variation of nutrient absorption, metabolomic and transcriptomic indexes of soybean ( Glycine max) seedlings under phosphorus deficiency. AOB PLANTS 2023; 15:plad014. [PMID: 37124081 PMCID: PMC10132309 DOI: 10.1093/aobpla/plad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
The dynamic trajectory of metabolites and gene expression related to phosphorus absorption and utilization in soybean seedling roots were determined under short- and long-term phosphorus deficiency stress. The metabolome results showed that TCA and GS/GOGAT cycles were enhanced after 2 days of phosphorus deficiency stress; however, they were inhibited after 15 days. GC-TOF-MS showed that phosphorus deficiency increased the accumulation of amino acids significantly after 2 days, whereas organic acids and lipid substances increased significantly after 15 days. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) showed that transcriptional levels of five key genes related to phosphorus activation and phosphorus starvation signal transduction increased continuously with phosphorus deficiency. The expression of GmPHT1 and GmSPX triggered the phosphorus starvation signal pathway and induced the expression of the GmPS and GmPAP genes to enhance the synthesis and secretion of organophosphorus hydrolase and organic acid in soybean roots under phosphorus deficiency. The phospholipid metabolism was enhanced significantly after 15 days of stress and when GmSQD, a crucial enzyme in lipid biosynthesis, was up-regulated. Thus, we propose that future investigations on stress caused by phosphorus deficiency should include more organs obtained at different developmental stages.
Collapse
Affiliation(s)
- Mingxia Li
- School of Life Sciences, ChangChun Normal University, Changchun 130024, China
| | - Ji Zhou
- Land Consolidation and Rehabilitation Centre, The Ministry of Land and Resources, Beijing 100035, China
| | - Qi Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lili Mao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haoru Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuying Li
- Forestry and Grassland Bureau of Aohan Banner, Chifeng City 024000, InnerMongolia
| | - Rui Guo
- Corresponding author’s e-mail address:
| |
Collapse
|
64
|
Villamil Carvajal JE, Garnica Montaña JP, Pinzón Sandoval EH, Almanza Merchán PJ, Atencio Solano LM. Macronutrient omission influences morphological parameters, growth, and yield in Arracacia xanthorrhiza Bancroft. Heliyon 2023; 9:e13062. [PMID: 36785829 PMCID: PMC9918744 DOI: 10.1016/j.heliyon.2023.e13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Mineral nutrition in arracacha is a critical production factor that conditions harvest yield. Few studies have been developed in nutrition and physiology, this does not allow to the design of ideal fertilization programs; consequences are increased production costs, soil degradation, and low-quality storage roots. Therefore, this study aimed to characterize the symptoms associated with macronutrient deficiency in arracacha plants and its effect on morphological parameters, the accumulation of fresh and dry biomass, and the distribution of dry matter in the different organs. Under greenhouse conditions, the experiment was conducted in Cajamarca, Tolima, Colombia. A completely randomized design was implemented, with seven treatments and six replicates (6 solutions lacking N, P, K, Ca, Mg, and S and Hoagland complete solution). Forty-two seedlings were transplanted, to which the complete solution was applied for 75 days, increasing the concentrations from 0.25 M to 1 M, and then nutritional deficiencies were induced. Deficiencies caused by macronutrients in arracacha plants exhibited visual symptoms and changes in their morphology. The omission of N, Ca, and S generated the most severe symptoms, drastically affecting plant height, leaf width, number of leaves, and plant mass accumulation. In the case of P, leaves became small and intense green with a violet margin. The Mg and K generated leaves with interveinal and margin chlorosis. Plants with the omission of macronutrients allocated dry mass in the following order: stem, storage roots, propagules, and leaves.
Collapse
Affiliation(s)
- Jorge Enrique Villamil Carvajal
- Facultad de Ciencias Agropecuarias, Programa Maestría Ciencias Agrarias. Universidad Pedagógica y Tecnológica de Colombia, Colombia,Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Centro de Investigación Nataima, Tolima, Colombia,Corresponding author. Facultad de Ciencias Agropecuarias, Programa Maestría Ciencias Agrarias, Universidad Pedagógica y Tecnológica de Colombia, Colombia.
| | | | - Elberth Hernando Pinzón Sandoval
- Facultad de Ciencias Agropecuarias, Grupo de Investigación en Desarrollo y Producción Agraria Sostenible-GIPSO Universidad Pedagógica y Tecnológica de Colombia, Colombia
| | - Pedro José Almanza Merchán
- Facultad de Ciencias Agropecuarias, Grupo de Investigación en Desarrollo y Producción Agraria Sostenible-GIPSO Universidad Pedagógica y Tecnológica de Colombia, Colombia
| | | |
Collapse
|
65
|
Godói CTD, Campos SO, Monteiro SH, Ronchi CP, Silva AA, Guedes RNC. Thiamethoxam in soybean seed treatment: Plant bioactivation and hormesis, besides whitefly control? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159443. [PMID: 36252665 DOI: 10.1016/j.scitotenv.2022.159443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Amid concerns on the myriad of existing chemical stressors in agroecosystems, pesticides and particularly neonicotinoid insecticides are in the forefront. Despite that, these neurotoxic compounds remain the dominant group of insecticides in worldwide use with the added versatility of use in seed coatings. Such use sparks environmental concerns counterbalanced by their reported insecticidal efficacy and potential plant bioactivation. Nonetheless, this alleged double benefit and interconnection expected with neonicotinoids has been little explored particularly when the whole plant phenology is considered. Regardless of the expected efficacy against targeted insect pest species, like whiteflies, neonicotinoids may spark dual effect on plants - negative at higher concentrations, positive at low concentrations, which is consistent with the hormesis phenomenon that may be expressed as a plant bioactivation. This effect may also cascade to the targeted insect species, what deserves attention. Therefore, soybean seeds treated with increasing concentrations of the neonicotinoid thiamethoxam were followed throughout their development in greenhouse, recording the plant response and yield, besides their effect in whiteflies (Bemisia tabaci MEAM1). Thiamethoxam application was correlated to leaf contents of thiamethoxam and its metabolite clothianidin. Plant hormesis was found for leaf area and root growth, but not for other plant morphological or physiological parameters, nor plant yield. The insecticide concentration-dependency compromised whitefly population growth without evidence of cascading any plant-mediated hormesis to the insects. Thus, although plant hormesis was recognized with thiamethoxam in treated soybean seeds in relevant parameters, no evidence of plant bioactivation was observed to justify its use with such a secondary objective, nor did this hormesis impair whitefly control.
Collapse
Affiliation(s)
- C T D Godói
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - S O Campos
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - S H Monteiro
- Unidade de Referência Laboratorial em Análise e Pesquisa de Contaminantes em Alimentos e Ambiente, Instituto Biológico, Av. Conselheiro Rodrigues Alves, 1252, São Paulo, SP 04014-900, Brazil
| | - C P Ronchi
- Instituto de Agronomia, Universidade Federal de Viçosa - Campus Florestal, Florestal, MG 35690-000, Brazil
| | - A A Silva
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - R N C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
66
|
Lu K, Wang X, Gong H, Yang D, Ye M, Fang Q, Zhang XY, Wu R. The genetic architecture of trait covariation in Populus euphratica, a desert tree. FRONTIERS IN PLANT SCIENCE 2023; 14:1149879. [PMID: 37089657 PMCID: PMC10113509 DOI: 10.3389/fpls.2023.1149879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Introduction The cooperative strategy of phenotypic traits during the growth of plants reflects how plants allocate photosynthesis products, which is the most favorable decision for them to optimize growth, survival, and reproduction response to changing environment. Up to now, we still know little about why plants make such decision from the perspective of biological genetic mechanisms. Methods In this study, we construct an analytical mapping framework to explore the genetic mechanism regulating the interaction of two complex traits. The framework describes the dynamic growth of two traits and their interaction as Differential Interaction Regulatory Equations (DIRE), then DIRE is embedded into QTL mapping model to identify the key quantitative trait loci (QTLs) that regulate this interaction and clarify the genetic effect, genetic contribution and genetic network structure of these key QTLs. Computer simulation experiment proves the reliability and practicability of our framework. Results In order to verify that our framework is universal and flexible, we applied it to two sets of data from Populus euphratica, namely, aboveground stem length - underground taproot length, underground root number - underground root length, which represent relationships of phenotypic traits in two spatial dimensions of plant architecture. The analytical result shows that our model is well applicable to datasets of two dimensions. Discussion Our model helps to better illustrate the cooperation-competition patterns between phenotypic traits, and understand the decisions that plants make in a specific environment that are most conducive to their growth from the genetic perspective.
Collapse
Affiliation(s)
- Kaiyan Lu
- College of Science, Beijing Forestry University, Beijing, China
| | - Xueshun Wang
- Department of Artificial Intelligence and Data Science, Guangzhou Xinhua University, Guangzhou, China
| | - Huiying Gong
- College of Biological Sciences and Technology, Center for Computational Biology, Beijing Forestry University, Beijing, China
| | - Dengcheng Yang
- College of Biological Sciences and Technology, Center for Computational Biology, Beijing Forestry University, Beijing, China
| | - Meixia Ye
- College of Biological Sciences and Technology, Center for Computational Biology, Beijing Forestry University, Beijing, China
| | - Qing Fang
- Faculty of Science, Yamagata University, Yamagata, Japan
| | - Xiao-Yu Zhang
- College of Science, Beijing Forestry University, Beijing, China
- *Correspondence: Xiao-Yu Zhang, ; Rongling Wu,
| | - Rongling Wu
- College of Biological Sciences and Technology, Center for Computational Biology, Beijing Forestry University, Beijing, China
- Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
- *Correspondence: Xiao-Yu Zhang, ; Rongling Wu,
| |
Collapse
|
67
|
Effects of magnesium application on the arbuscular mycorrhizal symbiosis in tomato. Symbiosis 2023. [DOI: 10.1007/s13199-022-00862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
68
|
Caporale AG, Amato M, Duri LG, Bochicchio R, De Pascale S, Simeone GDR, Palladino M, Pannico A, Rao MA, Rouphael Y, Adamo P. Can Lunar and Martian Soils Support Food Plant Production? Effects of Horse/Swine Monogastric Manure Fertilisation on Regolith Simulants Enzymatic Activity, Nutrient Bioavailability, and Lettuce Growth. PLANTS (BASEL, SWITZERLAND) 2022; 11:3345. [PMID: 36501382 PMCID: PMC9740528 DOI: 10.3390/plants11233345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
To make feasible the crewed missions to the Moon or Mars, space research is focusing on the development of bioregenerative life support systems (BLSS) designed to produce food crops based on in situ resource utilisation (ISRU), allowing to reduce terrestrial input and to recycle organic wastes. In this regard, a major question concerns the suitability of native regoliths for plant growth and how their agronomic performance is affected by additions of organic matter from crew waste. We tested plant growth substrates consisting of MMS-1 (Mars) or LHS-1 (Lunar) simulants mixed with a commercial horse/swine monogastric manure (i.e., an analogue of crew excreta and crop residues) at varying rates (100:0, 90:10, 70:30, 50:50, w/w). Specifically, we measured: (i) lettuce (Lactuca sativa L. cultivar 'Grand Rapids') growth (at 30 days in open gas exchange climate chamber with no fertilisation), plant physiology, and nutrient uptake; as well as (ii) microbial biomass C and N, enzymatic activity, and nutrient bioavailability in the simulant/manure mixtures after plant growth. We discussed mechanisms of different plant yield, architecture, and physiology as a function of chemical, physico-hydraulic, and biological properties of different substrates. A better agronomic performance, in terms of plant growth and optically measured chlorophyll content, nutrient availability, and enzymatic activity, was provided by substrates containing MMS-1, in comparison to LHS-1-based ones, despite a lower volume of readily available water (likely due to the high-frequency low-volume irrigation strategy applied in our experiment and foreseen in space settings). Other physical and chemical properties, along with a different bioavailability of essential nutrients for plants and rhizosphere biota, alkalinity, and release of promptly bioavailable Na from substrates, were identified as the factors leading to the better ranking of MMS-1 in plant above and below-ground mass and physiology. Pure Mars (MMS-1) and Lunar (LHS-1) simulants were able to sustain plant growth even in absence of fertilisation, but the amendment with the monogastric manure significantly improved above- and below-ground plant biomass; moreover, the maximum lettuce leaf production, across combinations of simulants and amendment rates, was obtained in treatments resulting in a finer root system. Increasing rates of monogastric manure stimulated the growth of microbial biomass and enzymatic activities, such as dehydrogenase and alkaline phosphomonoesterase, which, in turn, fostered nutrient bioavailability. Consequently, nutrient uptake and translocation into lettuce leaves were enhanced with manure supply, with positive outcomes in the nutritional value of edible biomass for space crews. The best crop growth response was achieved with the 70:30 simulant/manure mixture due to good availability of nutrients and water compared to low amendment rates, and better-saturated hydraulic conductivity compared to high organic matter application. A 70:30 simulant/manure mixture is also a more sustainable option than a 50:50 mixture for a BLSS developed on ISRU strategy. Matching crop growth performance and (bio)chemical, mineralogical, and physico-hydraulic characteristics of possible plant growth media for space farming allows a better understanding of the processes and dynamics occurring in the experimental substrate/plant system, potentially suitable for an extra-terrestrial BLSS.
Collapse
Affiliation(s)
- Antonio G. Caporale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Mariana Amato
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Luigi G. Duri
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Rocco Bochicchio
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | | | - Mario Palladino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Maria A. Rao
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Paola Adamo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
69
|
Wang Y, Kong L, Wang K, Tao Y, Qi H, Wan Y, Wang Q, Li H. The combined impacts of selenium and phosphorus on the fate of arsenic in rice seedlings (Oryza sativa L.). CHEMOSPHERE 2022; 308:136590. [PMID: 36167200 DOI: 10.1016/j.chemosphere.2022.136590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Although the single role of selenium (Se) or phosphorus (P) in regulating the As contamination of rice plants has been reported in some studies, the combined impacts of Se and P on the fate of As and the underlying mechanisms are poorly understood. To address this knowledge gap, the uptake, translocation, and biotransformation of As mediated by Se were investigated in rice (Oryza sativa L.) seedlings hydroponically cultured with P-normal and P-deficient conditions. The results showed Se addition stimulated the uptake of arsenite and arsenate by 15.6% and 30.7%, respectively in P-normal condition, and such effect was more profound in P-deficient condition with the value of 43.8% and 70.8%. However, regardless of Se addition, P-deficiency elevated the As uptake by 47.0%-92.1% for arsenate but had no obvious effects for arsenite. Accompanying with the As transfer factorShoot/Root reduced by 74.5%-80.2% and 71.1%-85.7%, Se addition decreased the shoot As content by 65.8%-69.7% and 59.6%-73.1%, respectively, in the arsenite- and arsenate-treated rice plants. Relative to the corresponding treatments of P-normal condition, P-deficiency reduced the As transfer factorShoot/Root by 38.9%-52.5% and thus decreasing the shoot As content by 35.2%-42.5% in the arsenite-treated plants; while the opposite impacts were observed in the arsenate-treated plants, in which the shoot As content was increased by 22.4%-83.7%. The analysis results of As species showed As(III) was dominant in both shoots (68.9%-75.1%) and roots (94.9%-97.2%), and neither Se addition nor P-deficiency had obvious impacts on the interconversion between As(III) and As(V). Our results demonstrate the regulating roles of Se in As accumulation mainly depend on P regimes and the specific rice tissues, but the effects of P-deficiency on the fate of As were influenced by the form of As added to the culture.
Collapse
Affiliation(s)
- Yaqi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lingxuan Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Kang Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yanjin Tao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Hao Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
70
|
Tang G, Zhang X, Qi L, Li L, Guo J, Zhong H, Liu J, Huang J. Nitrogen and Phosphorus Fertilizer Increases the Uptake of Soil Heavy Metal Pollutants by Plant Community. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1059-1066. [PMID: 36287236 DOI: 10.1007/s00128-022-03628-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Soil heavy metal pollution is widespread around the world. Compared with hyperaccumulation plants, non-hyperaccumulator plant communities have many advantages in the remediation of heavy metals pollution in soil. The application of nitrogen (N) and phosphorus (P) is inexpensive and convenient, which can promote the growth of plant. N and P fertilizer might increase plant community remediation of heavy metal polluted soils. In our study, the effects of N and P fertilizer on remediation of soil Cd, Cu, Pb pollution by plant community were studied through a greenhouse experiment. Our results indicated that addition of N, P and N + P fertilizer increased plant community aboveground biomass. Simultaneously, addition of N and P fertilizer increased the accumulation of heavy metals in aboveground of the plant community and accelerated plants absorption soil heavy metals. Among them, N fertilizer had the best effect. Our results provide an inexpensive method for remediation heavy metal pollution of contaminated farmland, abandoned land and mine tailings, etc.
Collapse
Affiliation(s)
- Guangmei Tang
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, 650500, Kunming, Yunnan, PR China
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, 650091, Kunming, P.R. China
| | - Xiaole Zhang
- Public Basic Teaching Department, Yunnan Open University, 318 Qixiu Rd, 650500, Kunming, PR China
| | - Lanlan Qi
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, 650500, Kunming, Yunnan, PR China
| | - Lei Li
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, 650500, Kunming, Yunnan, PR China
| | - Jiahang Guo
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, 650500, Kunming, Yunnan, PR China
| | - Hao Zhong
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, 650500, Kunming, Yunnan, PR China
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, 650091, Kunming, P.R. China
| | - Jianhong Liu
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, 650500, Kunming, Yunnan, PR China
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, 650091, Kunming, P.R. China
| | - Jingxin Huang
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, 650500, Kunming, Yunnan, PR China.
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, 650091, Kunming, P.R. China.
| |
Collapse
|
71
|
Aluko OO, Li C, Yuan G, Nong T, Xiang H, Wang Q, Li X, Liu H. Differential Effects of Ammonium (NH 4+) and Potassium (K +) Nutrition on Photoassimilate Partitioning and Growth of Tobacco Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:3295. [PMID: 36501338 PMCID: PMC9736971 DOI: 10.3390/plants11233295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Plants utilize carbohydrates as the main energy source, but much focus has been on the impact of N and K on plant growth. Less is known about the combined impact of NH4+ and K+ nutrition on photoassimilate distribution among plant organs, and the resultant effect of such distribution on growth of tobacco seedlings, hence this study. Here, we investigated the synergetic effect of NH4+ and K+ nutrition on photoassimilate distribution, and their resultant effect on growth of tobacco seedlings. Soluble sugar and starch content peaks under moderate NH4+ and moderate K+ (2-2 mM), leading to improved plant growth, as evidenced by the increase in tobacco weight and root activity. Whereas, a drastic reduction in the above indicators was observed in plants under high NH4+ and low K+ (20-0.2 mM), due to low carbohydrate synthesis and poor photoassimilate distribution. A strong positive linear relationship also exists between carbohydrate (soluble sugar and starch) and the activities of these enzymes but not for invertase. Our findings demonstrated that NH4+ and K+-induced ion imbalance influences plant growth and is critical for photoassimilate distribution among organs of tobacco seedlings.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chuanzong Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Guang Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Tongjia Nong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haiying Xiang
- Yunnan Academy of Tobacco Science, Kunming 650106, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xuemei Li
- Yunnan Academy of Tobacco Science, Kunming 650106, China
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
72
|
Wang H, Hu Y, Qin J, Guo C, Wu D, Xing Q, Pan L, Xia K, Shen Y, Guo J, Jiang R. Interactive responses of root and shoot of camphor tree ( Cinnamomum camphora L.) to asymmetric disturbance treatments. FRONTIERS IN PLANT SCIENCE 2022; 13:993319. [PMID: 36523620 PMCID: PMC9744769 DOI: 10.3389/fpls.2022.993319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Plant root and shoot growth are closely interrelated, though the connotation of root-shoot balance should not be limited to their connectivity in biomass and physiological indicators. Their directional distribution of mass in architecture and the resulting root-shoot interactions are the keys to understanding the dynamic balance of the below- and above-ground organs related to tree anchorage. This study focuses on the 4-year-old camphor tree (Cinnamomum camphora L.) as a system to observe the biomass distribution in response to the asymmetric disturbance treatments of biased root (BRT), inclined trunk (ITT), and half-crown (HCT) in a controlled cultivation experiment using the minirhizotron technique. We found an inverse relationship of biomass distribution of crowns to roots in BRT and opposite asymmetries of roots with crowns in response to the ITT and HCT treatments. We also observed higher net photosynthesis rate (Pn ), water use efficiency, and chlorophyll content in the leaves on the side opposite the lean in ITT, and higher Pn , transpiration rate, and chlorophyll content on the root-bias side in BRT, which is consistent with the nutrient allocation strategies of allocating nutrients across plant organs in an optimal way to obtain 'functional equilibrium' and adapt to the stressed environment. Furthermore, the asymmetrical growth transformation of first-level branch length from the root-bias side to the opposite side in BRT, and a similar transformation of root length from the crown-bias side to the opposite side in HCT, imbues further theoretical support of the nutrient allocation strategy and the biomechanical stability principle, respectively. In summary, this study is the first to identify opposite interaction between below- and above-ground biomass distributions of the camphor tree. The findings enrich the connotation of root-shoot interactions and help to realize root design for the silviculture management of urban forests.
Collapse
Affiliation(s)
- Hongbing Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Engineering Research Center of Plant Germplasm Resources, Shanghai, China
| | - Yonghong Hu
- Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Jun Qin
- Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Chenbing Guo
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Duorun Wu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qiang Xing
- Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Lianlian Pan
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Kangsheng Xia
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yajun Shen
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jingjing Guo
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ran Jiang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
73
|
Khatri K, Negi B, Bargali K, Bargali SS. Phenotypic variation in morphology and associated functional traits in Ageratina adenophora along an altitudinal gradient in Kumaun Himalaya, India. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
74
|
March-Salas M, Scheepens JF, van Kleunen M, Fitze PS. Precipitation predictability affects intra- and trans-generational plasticity and causes differential selection on root traits of Papaver rhoeas. FRONTIERS IN PLANT SCIENCE 2022; 13:998169. [PMID: 36452110 PMCID: PMC9703072 DOI: 10.3389/fpls.2022.998169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Climate forecasts show that in many regions the temporal distribution of precipitation events will become less predictable. Root traits may play key roles in dealing with changes in precipitation predictability, but their functional plastic responses, including transgenerational processes, are scarcely known. We investigated root trait plasticity of Papaver rhoeas with respect to higher versus lower intra-seasonal and inter-seasonal precipitation predictability (i.e., the degree of temporal autocorrelation among precipitation events) during a four-year outdoor multi-generation experiment. We first tested how the simulated predictability regimes affected intra-generational plasticity of root traits and allocation strategies of the ancestors, and investigated the selective forces acting on them. Second, we exposed three descendant generations to the same predictability regime experienced by their mothers or to a different one. We then investigated whether high inter-generational predictability causes root trait differentiation, whether transgenerational root plasticity existed and whether it was affected by the different predictability treatments. We found that the number of secondary roots, root biomass and root allocation strategies of ancestors were affected by changes in precipitation predictability, in line with intra-generational plasticity. Lower predictability induced a root response, possibly reflecting a fast-acquisitive strategy that increases water absorbance from shallow soil layers. Ancestors' root traits were generally under selection, and the predictability treatments did neither affect the strength nor the direction of selection. Transgenerational effects were detected in root biomass and root weight ratio (RWR). In presence of lower predictability, descendants significantly reduced RWR compared to ancestors, leading to an increase in performance. This points to a change in root allocation in order to maintain or increase the descendants' fitness. Moreover, transgenerational plasticity existed in maximum rooting depth and root biomass, and the less predictable treatment promoted the lowest coefficient of variation among descendants' treatments in five out of six root traits. This shows that the level of maternal predictability determines the variation in the descendants' responses, and suggests that lower phenotypic plasticity evolves in less predictable environments. Overall, our findings show that roots are functional plastic traits that rapidly respond to differences in precipitation predictability, and that the plasticity and adaptation of root traits may crucially determine how climate change will affect plants.
Collapse
Affiliation(s)
- Martí March-Salas
- Plant Evolutionary Ecology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Biodiversity and Ecologic Restoration, Instituto Pirenaico de Ecología (IPE-CSIC), Jaca, Spain
| | - J. F. Scheepens
- Plant Evolutionary Ecology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Patrick S. Fitze
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Biodiversity and Ecologic Restoration, Instituto Pirenaico de Ecología (IPE-CSIC), Jaca, Spain
| |
Collapse
|
75
|
Loudari A, Mayane A, Zeroual Y, Colinet G, Oukarroum A. Photosynthetic performance and nutrient uptake under salt stress: Differential responses of wheat plants to contrasting phosphorus forms and rates. FRONTIERS IN PLANT SCIENCE 2022; 13:1038672. [PMID: 36438086 PMCID: PMC9684725 DOI: 10.3389/fpls.2022.1038672] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Salt stress impacts phosphorus (P) bioavailability, mobility, and its uptake by plants. Since P is involved in many key processes in plants, salinity and P deficiency could significantly cause serious damage to photosynthesis, the most essential physiological process for the growth and development of all green plants. Different approaches have been proposed and adopted to minimize the harmful effects of their combined effect. Optimising phosphorus nutrition seems to bring positive results to improve photosynthetic efficiency and nutrient uptake. The present work posed the question if soluble fertilizers allow wheat plants to counter the adverse effect of salt stress. A pot experiment was performed using a Moroccan cultivar of durum wheat: Karim. This study focused on different growth and physiological responses of wheat plants grown under the combined effect of salinity and P-availability. Two Orthophosphates (Ortho-A & Ortho-B) and one polyphosphate (Poly-B) were applied at different P levels (0, 30 and 45 ppm). Plant growth was analysed on some physiological parameters (stomatal conductance (SC), chlorophyll content index (CCI), chlorophyll a fluorescence, shoot and root biomass, and mineral uptake). Fertilized wheat plants showed a significant increase in photosynthetic performance and nutrient uptake. Compared to salt-stressed and unfertilized plants (C+), CCI increased by 93%, 81% and 71% at 30 ppm of P in plants fertilized by Poly-B, Ortho-B and Ortho-A, respectively. The highest significant SC was obtained at 45 ppm using Ortho-B fertilizer with an increase of 232% followed by 217% and 157% for both Poly-B and Ortho-A, respectively. The Photosynthetic performance index (PItot) was also increased by 128.5%, 90.2% and 38.8% for Ortho-B, Ortho-A and Poly B, respectively. In addition, Poly-B showed a significant enhancement in roots and shoots biomass (49.4% and 156.8%, respectively) compared to C+. Fertilized and salt-stressed plants absorbed more phosphorus. The P content significantly increased mainly at 45 ppm of P. Positive correlations were found between phosphorus uptake, biomass, and photosynthetic yield. The increased photochemical activity could be due to a significant enhancement in light energy absorbed by the enhanced Chl antenna. The positive effect of adequate P fertilization under salt stress was therefore evident in durum wheat plants.
Collapse
Affiliation(s)
- Aicha Loudari
- Plant Stress Physiology Laboratory–AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
- Terra Research Center, Gembloux Agro Bio Tech Faculty, Liege University (ULIEGE), Gembloux, Belgium
| | - Asmae Mayane
- Plant Stress Physiology Laboratory–AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Youssef Zeroual
- Plant Stress Physiology Laboratory–AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Gilles Colinet
- Terra Research Center, Gembloux Agro Bio Tech Faculty, Liege University (ULIEGE), Gembloux, Belgium
| | - Abdallah Oukarroum
- Plant Stress Physiology Laboratory–AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
- High Throughput Multidisciplinary Research Laboratory, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| |
Collapse
|
76
|
Corrêa V, Gonçalves J, Costa K, Oliveira I, Santos J, Oliveira S, Ferreira M, Lima R, Araújo W, Nunes-Nesi A. The Role of Phosphate Fertilization on Physiological Responses of the Young Bertholletia excelsa Plants Grown in a P-Deficient Amazon Ferralsol. PLANTS (BASEL, SWITZERLAND) 2022; 11:2955. [PMID: 36365407 PMCID: PMC9657814 DOI: 10.3390/plants11212955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) reacts with soil minerals, which makes it less available to plants. Considering that Amazonian soils have a low pH and nutrient availability, both of these properties contribute to an increase in P limitation. Here, we investigate how the addition of P to the substrate affects morpho-physiological traits of Brazil nut trees (Bertholletia excelsa Bonpl.). The experiment was carried out in a greenhouse with 24-month-old saplings, and the P treatments consisted of a control (Ferrasol without P addition) and 100, 200, 400, and 500 mg P kg-1 of added to the soil. When B. excelsa saplings were fertilized with phosphate, the N:P leaf ratio reduced from 50 to 26. Addition of P favored the photochemical efficiency of PSII (FV/FM), and the application of 200 mg kg-1 increased photosynthesis (PN) by 50%. Furthermore, phosphorus enhanced light and nutrient use efficiency. An increase in B. excelsa dry biomass was observed when 200 mg P kg-1 was added, with maximum yield occurring at 306.2 mg P kg-1. Physiological parameters suggest robust responses by B. excelsa to P fertilization. In addition, our findings reveal the critical role of P on B. excelsa growth in Ferralsol, as well as the potential of P fertilization to improve functional traits of this important Amazonian tree.
Collapse
Affiliation(s)
- Viviane Corrêa
- Federal Institute of Education, Science and Technology (IFRO), Rua Rio Amazonas, 151, Jardim dos Migrantes, Ji-Paraná 76900-310, RO, Brazil
| | - José Gonçalves
- Laboratory of Plant Physiology and Biochemistry, National Institute for Amazonian Research (MCTI-INPA), Avenida André Araújo, 2936, Aleixo, Manaus 69011-970, AM, Brazil
| | - Karen Costa
- Faculty of Agricultural Sciences, Institute of Studies in Agrarian and Regional Development (IEDAR), Federal University of South and Southeast of Pará (UNIFESSPA), Rodovia BR-230 (Transamazônica), Cidade Jardim, Marabá 68500-000, PA, Brazil
| | - Igor Oliveira
- Bionorte Graduate Program (BIONORTE), Amazonas State University, Rua Carvalho Leal A, 1777, Bairro Cachoeirinha, Manaus 69065-001, AM, Brazil
| | - José Santos
- Faculty of Agricultural Sciences, Federal University of Amazonas (UFAM), Avenida General Rodrigo Octavio Jordão Ramos, 1200, Coroado I, Manaus 69067-005, AM, Brazil
| | - Sabrina Oliveira
- Laboratory of Plant Physiology and Biochemistry, National Institute for Amazonian Research (MCTI-INPA), Avenida André Araújo, 2936, Aleixo, Manaus 69011-970, AM, Brazil
| | - Marciel Ferreira
- Faculty of Agricultural Sciences, Federal University of Amazonas (UFAM), Avenida General Rodrigo Octavio Jordão Ramos, 1200, Coroado I, Manaus 69067-005, AM, Brazil
| | - Roberval Lima
- Embrapa Western Amazon, Research and Development, Rodovia AM 010, km 29, Manaus 69010-970, AM, Brazil
| | - Wagner Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Avenida PH Rolfs, s/n, Viçosa 36570-900, MG, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Avenida PH Rolfs, s/n, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
77
|
Zhang X, Li C, Lu W, Wang X, Ma B, Fu K, Li C, Li C. Comparative analysis of combined phosphorus and drought stress-responses in two winter wheat. PeerJ 2022; 10:e13887. [PMID: 36168435 PMCID: PMC9509674 DOI: 10.7717/peerj.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/21/2022] [Indexed: 01/19/2023] Open
Abstract
Phosphorus stress and drought stress are common abiotic stresses for wheat. In this study, two winter wheat varieties "Xindong20" and "Xindong23" were cultured in a hydroponic system using Hoagland nutrient solution and treated with drought stress under conventional (CP: 1.0 mmol/L) and low (LP: 0.05 mmol/L) phosphorus levels. Under drought stress, the root growth was better under LP than under CP. Under LP, root phosphorus content was increased by 94.2% in Xindong20 and decreased by 48.9% in Xindong23 at 3 d after re-watering, compared with those at 0 d under drought stress. However, the potassium (K) content was the highest among the four elements studied and the phosphorus (P) and calcium (Ca) content were reduced in the root of the two varieties. Under CP, the zinc (Zn) content was higher than that under LP in Xindong23. The GeneChip analysis showed that a total of 4,577 and 202 differentially expressed genes (DEGs) were detected from the roots of Xindong20 and Xindong23, respectively. Among them, 89.9% of DEGs were involved in organelles and vesicles in Xindong20, and 69.8% were involved in root anatomical structure, respiratory chain, electron transport chain, ion transport, and enzyme activity in Xindong23. Overall, LP was superior to CP in mitigating drought stress on wheat, and the regulatory genes were also different in the two varieties. Xindong20 had higher drought tolerance for more up-regulated genes involved in the responses compared to Xindong23.
Collapse
|
78
|
Silva FMDO, Bulgarelli RG, Mubeen U, Caldana C, Andrade SAL, Mazzafera P. Low phosphorus induces differential metabolic responses in eucalyptus species improving nutrient use efficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:989827. [PMID: 36186027 PMCID: PMC9520260 DOI: 10.3389/fpls.2022.989827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is a vital nutrient for plant growth. P availability is generally low in soils, and plant responses to low P availability need to be better understood. In a previous study, we studied the growth and physiological responses of 24 species to low P availability in the soil and verified of eucalypts, five (Eucalyptus acmenoides, E. grandis, E. globulus, E. tereticornis, and Corymbia maculata) contrasted regarding their efficiency and responsiveness to soil P availability. Here, we obtained the metabolomic and lipidomic profile of leaves, stems, and roots from these species growing under low (4.5 mg dm-3) and sufficient (10.8 mg dm-3) P in the soil. Disregarding the level of P in the soils, P allocation was always higher in the stems. However, when grown in the P-sufficient soil, the stems steadily were the largest compartment of the total plant P. Under low P, the relative contents of primary metabolites, such as amino acids, TCA cycle intermediates, organic acids and carbohydrates, changed differently depending on the species. Additionally, phosphorylated metabolites showed enhanced turnover or reductions. While photosynthetic efficiencies were not related to higher biomass production, A/Ci curves showed that reduced P availability increased the eucalypt species' Vcmax, Jmax and photosynthetic P-use efficiency. Plants of E. acmenoides increased galactolipids and sulfolipids in leaves more than other eucalypt species, suggesting that lipid remodelling can be a strategy to cope with the P shortage in this species. Our findings offer insights to understand genotypic efficiency among eucalypt species to accommodate primary metabolism under low soil P availability and eventually be used as biochemical markers for breeding programs.
Collapse
Affiliation(s)
| | | | - Umarah Mubeen
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Camila Caldana
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sara Adrian L. Andrade
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
- Department of Crop Production, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
79
|
Li H, Xu L, Li J, Lyu X, Li S, Wang C, Wang X, Ma C, Yan C. Multi-omics analysis of the regulatory effects of low-phosphorus stress on phosphorus transport in soybean roots. FRONTIERS IN PLANT SCIENCE 2022; 13:992036. [PMID: 36119614 PMCID: PMC9478169 DOI: 10.3389/fpls.2022.992036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The regulatory effects of uneven phosphorus supplies on phosphorus transport in soybean roots are still unclear. To further analyze the regulatory effects of low-phosphorus stress on phosphorus transport in soybean roots and the effects of uneven phosphorus application on the physiological mechanism of phosphorus transport in soybean roots, dual-root soybean plants were prepared via grafting, and a sand culture experiment was performed. From the unfolded cotyledon stage to the initial flowering stage, one side of each dual-root soybean system was irrigated with a low-phosphorus-concentration solution (phosphorus-application [P+] side), and the other side was irrigated with a phosphorus-free nutrient solution (phosphorus-free [P-] side); this setup allowed the study of the effects of different phosphorus supply levels on the expression of genes and proteins and the accumulation of metabolites in soybean roots on the P- side to clarify the method through which phosphorus transport is regulated in soybean roots and to provide a theoretical basis for improving the use rate of phosphorus fertilizer. The results revealed that the unilateral supply of low-concentration phosphorus promoted the uptake of phosphorus by soybean roots and the transport of phosphorus from the P+ side to the P- side. Compared with the normal concentration of phosphorus supply and the phosphorus-free supply, the low concentration phosphorus supply affected the regulation of the metabolic pathways involved in starch and sucrose metabolism, glycolysis, fructose, and mannose metabolism, etc., thereby affecting soybean root phosphorus transport. The low-phosphorus stress inhibited fructose synthesis and sucrose synthase synthesis in the soybean roots and the synthesis of hexokinase (HK) and fructose kinase, which catalyzes the conversion of fructose to fructose-6-phosphate. Low-phosphorus stress promoted the synthesis of sucrose invertase and the conversion of sucrose into maltose by the activity of starch synthase (StS) and stimulated the synthesis of UDPG pyrophosphorylase (UGP) and phosphoglucose isomerase (GP1), which is involved in the conversion of UDP-glucose to glucose-6-phosphate. The phosphorus transport pathway of soybean roots was then affected, which promoted phosphorus allocation to UTP and glucose-6-phosphate. Additionally, low-phosphorus stress hastened glycolysis in the soybean roots and inhibited the synthesis of malic acid, thereby promoting the transport of phosphorus in the roots. In addition, low-phosphorus stress inhibited the synthesis of fructose, mannose, and mannose-1-phosphate and the synthesis of other enzymes involved in phosphorus transport as well as invertase, thereby inhibiting the transport and synthesis of several organic phosphorus-containing compounds.
Collapse
Affiliation(s)
- Hongyu Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Letian Xu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jiaxin Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaochen Lyu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Sha Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Chang Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xuelai Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chao Yan
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
80
|
Wang H, Wu Y, An T, Chen Y. Lateral root elongation enhances nitrogen-use efficiency in maize genotypes at the seedling stage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5389-5398. [PMID: 35332536 PMCID: PMC9545651 DOI: 10.1002/jsfa.11892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Maize plants show great variation in root morphological response to nitrogen (N) deficit, and such alterations often determine N-use efficiency (NUE) plants. This study assessed genotypic variation in root morphology and NUE in selected 20 maize genotypes with contrasting root system size grown in a semi-hydroponic phenotyping system for 38 days under control (4 mmol L-1 NO3 - ) and low N (LN) (40 μmol L-1 ) for 38 days after transplanting. RESULTS Maize genotypes exhibited different responses to LN stress in each of the 28 measured shoot and root traits. The 20 genotypes were assigned into one of the three groups: N-efficient (eight genotypes), medium (four genotypes), and N-inefficient (eight genotypes), based on shoot dry weight ratio (the ratio of shoot dry weight at LN and control) ± one standard error. In response to LN stress, the N-inefficient genotypes had significant reduction in biomass production by ~58% in shoots and ~64% in roots, while the N-efficient genotypes maintained their biomass. Under LN supply N-efficient genotypes showed a plasticity response that would result in both sparse lateral branching and increased root elongation as a whole or at each growth strata, and N efficiency positively correlated with lateral or axial root elongation and root elongation at different depths. CONCLUTSION The total lateral root length was the main contributor to the improved N foraging and utilization in maize under LN conditions, followed by axial root length. Total lateral root length can be considered in breeding programs for producing maize cultivars with high NUE at the early seedling stage. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water ConservationNorthwest A&F University, and Chinese Academy of SciencesYangling, ShaanxiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yujie Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water ConservationNorthwest A&F University, and Chinese Academy of SciencesYangling, ShaanxiChina
| | - Tingting An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water ConservationNorthwest A&F University, and Chinese Academy of SciencesYangling, ShaanxiChina
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water ConservationNorthwest A&F University, and Chinese Academy of SciencesYangling, ShaanxiChina
- The UWA Institute of Agriculture, School of Agriculture and EnvironmentThe University of Western AustraliaPerthAustralia
| |
Collapse
|
81
|
Xiao X, Zhang J, Satheesh V, Meng F, Gao W, Dong J, Zheng Z, An GY, Nussaume L, Liu D, Lei M. SHORT-ROOT stabilizes PHOSPHATE1 to regulate phosphate allocation in Arabidopsis. NATURE PLANTS 2022; 8:1074-1081. [PMID: 36050464 DOI: 10.1038/s41477-022-01231-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The coordinated distribution of inorganic phosphate (Pi) between roots and shoots is an important process that plants use to maintain Pi homeostasis. SHORT-ROOT (SHR) is well characterized for its function in root radial patterning. Here we demonstrate a role of SHR in controlling Pi allocation from root to shoot by regulating PHOSPHATE1 in the root differentiation zone. We recovered a weak mutant allele of SHR in Arabidopsis that accumulates much less Pi in the shoot and shows a constitutive Pi starvation response under Pi-sufficient conditions. In addition, Pi starvation suppresses SHR protein accumulation and releases its inhibition on the HD-ZIP III transcription factor PHB. PHB accumulates and directly binds the promoter of PHOSPHATE2 to upregulate its transcription, resulting in PHOSPHATE1 degradation in the xylem-pole pericycle cells. Our findings reveal a previously unrecognized mechanism of how plants regulate Pi translocation from roots to shoots.
Collapse
Affiliation(s)
- Xinlong Xiao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jieqiong Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fanxiao Meng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenlan Gao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinsong Dong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zai Zheng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guo-Yong An
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Laurent Nussaume
- Aix Marseille University, CEA, CNRS, BIAM, UMR7265, EBM (Bioénergies et microalgues), Saint-Paul lez Durance, France
| | - Dong Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
82
|
Valle SF, Giroto AS, Dombinov V, Robles-Aguilar AA, Jablonowski ND, Ribeiro C. Struvite-based composites for slow-release fertilization: a case study in sand. Sci Rep 2022; 12:14176. [PMID: 35986201 PMCID: PMC9391495 DOI: 10.1038/s41598-022-18214-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Struvite (St) recovered from wastewaters is a sustainable option for phosphorus (P) recovery and fertilization, whose solubility is low in water and high in environments characterized by a low pH, such as acidic soils. To broaden the use of struvite in the field, its application as granules is recommended, and thus the way of application should be optimized to control the solubility. In this study struvite slow-release fertilizers were designed by dispersing St particles (25, 50, and 75 wt%) in a biodegradable and hydrophilic matrix of thermoplastic starch (TPS). It was shown that, in citric acid solution (pH = 2), TPS promoted a steadier P-release from St compared to the pure St pattern. In a pH neutral sand, P-diffusion from St-TPS fertilizers was slower than from the positive control of triple superphosphate (TSP). Nevertheless, St-TPS featured comparable maize growth (i.e. plant height, leaf area, and biomass) and similar available P as TSP in sand after 42 days of cultivation. These results indicated that St-TPS slow P release could provide enough P for maize in sand, achieving a desirable agronomic efficiency while also reducing P runoff losses in highly permeable soils.
Collapse
|
83
|
Dissection of Crop Metabolome Responses to Nitrogen, Phosphorus, Potassium, and Other Nutrient Deficiencies. Int J Mol Sci 2022; 23:ijms23169079. [PMID: 36012343 PMCID: PMC9409218 DOI: 10.3390/ijms23169079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Crop growth and yield often face sophisticated environmental stresses, especially the low availability of mineral nutrients in soils, such as deficiencies of nitrogen, phosphorus, potassium, and others. Thus, it is of great importance to understand the mechanisms of crop response to mineral nutrient deficiencies, as a basis to contribute to genetic improvement and breeding of crop varieties with high nutrient efficiency for sustainable agriculture. With the advent of large-scale omics approaches, the metabolome based on mass spectrometry has been employed as a powerful and useful technique to dissect the biochemical, molecular, and genetic bases of metabolisms in many crops. Numerous metabolites have been demonstrated to play essential roles in plant growth and cellular stress response to nutrient limitations. Therefore, the purpose of this review was to summarize the recent advances in the dissection of crop metabolism responses to deficiencies of mineral nutrients, as well as the underlying adaptive mechanisms. This review is intended to provide insights into and perspectives on developing crop varieties with high nutrient efficiency through metabolite-based crop improvement.
Collapse
|
84
|
Li Y, Yang X, Liu H, Wang W, Wang C, Ding G, Xu F, Wang S, Cai H, Hammond JP, White PJ, Shabala S, Yu M, Shi L. Local and systemic responses conferring acclimation of Brassica napus roots to low phosphorus conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4753-4777. [PMID: 35511123 DOI: 10.1093/jxb/erac177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Due to the non-uniform distribution of inorganic phosphate (Pi) in the soil, plants modify their root architecture to improve acquisition of this nutrient. In this study, a split-root system was employed to assess the nature of local and systemic signals that modulate root architecture of Brassica napus grown with non-uniform Pi availability. Lateral root (LR) growth was regulated systemically by non-uniform Pi distribution, by increasing the second-order LR (2°LR) density in compartments with high Pi supply but decreasing it in compartments with low Pi availability. Transcriptomic profiling identified groups of genes regulated, both locally and systemically, by Pi starvation. The number of systemically induced genes was greater than the number of genes locally induced, and included genes related to abscisic acid (ABA) and jasmonic acid (JA) signalling pathways, reactive oxygen species (ROS) metabolism, sucrose, and starch metabolism. Physiological studies confirmed the involvement of ABA, JA, sugars, and ROS in the systemic Pi starvation response. Our results reveal the mechanistic basis of local and systemic responses of B. napus to Pi starvation and provide new insights into the molecular and physiological basis of root plasticity.
Collapse
Affiliation(s)
- Yalin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - HaiJiang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - John P Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Philip J White
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- The James Hutton Institute, Invergowrie, Dundee, UK
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas, Australia
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
85
|
Guo L, Meng H, Teng K, Fan X, Zhang H, Teng W, Yue Y, Wu J. Effects of Nitrogen Forms on the Growth and Nitrogen Accumulation in Buchloe dactyloides Seedlings. PLANTS 2022; 11:plants11162086. [PMID: 36015389 PMCID: PMC9416445 DOI: 10.3390/plants11162086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022]
Abstract
Buffalograss [Buchloe dactyloides (Nutt.) Engelm.] has become the most widely cultivated warm-season turfgrass in northern China because of its low-maintenance requirements. Nitrogen (N) can be applied to plants in a range of formulations. However, preference of nitrogen uptake and the effects of N form on plant growth and nitrogen accumulation has not been established in buffalograss. In this study, we evaluated the effects of different inorganic nitrogen forms (NO3−-N, NH4+-N, and NO3−-N: NH4+-N = 1:1) on growth and nitrogen accumulation in buffalograss seedlings. Results showed that supply of three N forms significantly increased buffalograss seedlings growth, biomass, and N contents of all plant organs compared with the seedlings receiving free nitrogen. Plants achieved better growth performance when they received nitrate as the sole N source, which stimulated stolon growth and increased the biomass of ramets, spacers, and aboveground and total plant biomass, and also allocated more biomass to ramets and more N to spacers. Meanwhile, those plants supplied with the treatment +NH4NO3 displayed a significantly greater N content in the ramet, 15N abundance, and 15N accumulation amount in all organs. These data suggest NO3−-N supplied either singly or in mixture increased vegetative propagation and thus facilitates buffalograss establishment. However, applications of ammonium caused detrimental effects on buffalograss seedlings growth, but +NO3− could alleviate NH4+-induced morphological disorders. Thus, recommendations to increase vegetative propagation and biomass accumulation in buffalograss seedlings should consider increasing NO3−-N in a fertility program and avoiding applications of nitrogen as NH4+-N.
Collapse
Affiliation(s)
- Lizhu Guo
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Huizhen Meng
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Ke Teng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xifeng Fan
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hui Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wenjun Teng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuesen Yue
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Juying Wu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence:
| |
Collapse
|
86
|
Okamoto S, Kawasaki A, Makino Y, Ishida T, Sawa S. Long-distance translocation of CLAVATA3/ESR-related 2 peptide and its positive effect on roots sucrose status. PLANT PHYSIOLOGY 2022; 189:2357-2367. [PMID: 35567530 PMCID: PMC9342984 DOI: 10.1093/plphys/kiac227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/25/2022] [Indexed: 06/01/2023]
Abstract
In vascular plants, roots anchor themselves into the soil and take up water and nutrients to provide them to the shoots. Therefore, continuous growth and development of the roots are important for plant life. To achieve this, photosynthesizing leaves must be able to supply sufficient photoassimilates to the roots. However, the mechanisms by which plants maintain carbon levels in roots remain elusive. Here, we focused on the Arabidopsis (Arabidopsis thaliana) CLAVATA3/ESR-related 2 (CLE2) peptide, which was detected in Arabidopsis xylem exudate, and its homologs. CLE2 and CLE3 genes responded to carbon-deficient conditions. Loss- and gain-of-function mutant analyses showed that CLE genes positively affected root sucrose level. Mutations in the CLE genes resulted in a high shoot/root ratio under sucrose-free conditions. Grafting experiments demonstrated the systemic effect of CLE peptide genes. These findings provide insights into the molecular basis for the relationship between roots and leaves in maintenance of the root sucrose levels and growth.
Collapse
Affiliation(s)
| | - Azusa Kawasaki
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Yumiko Makino
- National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | | |
Collapse
|
87
|
Chandregowda MH, Tjoelker MG, Power SA, Pendall E. Drought and warming alter gross primary production allocation and reduce productivity in a widespread pasture grass. PLANT, CELL & ENVIRONMENT 2022; 45:2271-2291. [PMID: 35419849 DOI: 10.1111/pce.14334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/26/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Carbon allocation determines plant growth, fitness and reproductive success. However, climate warming and drought impacts on carbon allocation patterns in grasses are not well known, particularly following grazing or clipping. A widespread C3 pasture grass, Festuca arundinacea, was grown at 26 and 30°C in controlled environment chambers and subjected to drought (65% reduction relative to well-watered controls). Leaf, root and whole-plant carbon fluxes were measured and linked to growth before and after clipping. Both drought and warming reduced gross primary production and plant biomass. Drought reduced net leaf photosynthesis but increased the leaf respiratory fraction of assimilated carbon. Warming increased root respiration but did not affect either net leaf photosynthesis or leaf respiration. There was no evidence of thermal acclimation. Moreover, root respiratory carbon loss was amplified in the combined drought and warming treatment and, in addition to a negative carbon balance aboveground, explained an enhanced reduction in plant biomass. Plant regrowth following clipping was strongly suppressed by drought, reflecting increased tiller mortality and exacerbated respiratory carbon loss. These findings emphasize the importance of considering carbon allocation patterns in response to grazing or clipping and interactions with climatic factors for sustainable pasture production in a future climate.
Collapse
Affiliation(s)
- Manjunatha H Chandregowda
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
88
|
Huang WT, Zheng ZC, Hua D, Chen XF, Zhang J, Chen HH, Ye X, Guo JX, Yang LT, Chen LS. Adaptive responses of carbon and nitrogen metabolisms to nitrogen-deficiency in Citrus sinensis seedlings. BMC PLANT BIOLOGY 2022; 22:370. [PMID: 35879653 PMCID: PMC9316421 DOI: 10.1186/s12870-022-03759-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In China, nitrogen (N)-deficiency often occurs in Citrus orchards, which is one of the main causes of yield loss and fruit quality decline. Little information is known about the adaptive responses of Citrus carbon (C) and N metabolisms to N-deficiency. Seedlings of 'Xuegan' (Citrus sinensis (L.) Osbeck) were supplied with nutrient solution at an N concentration of 0 (N-deficiency), 5, 10, 15 or 20 mM for 10 weeks. Thereafter, we examined the effects of N supply on the levels of C and N in roots, stems and leaves, and the levels of organic acids, nonstructural carbohydrates, NH4+-N, NO3--N, total soluble proteins, free amino acids (FAAs) and derivatives (FAADs), and the activities of key enzymes related to N assimilation and organic acid metabolism in roots and leaves. RESULTS N-deficiency elevated sucrose export from leaves to roots, C and N distributions in roots and C/N ratio in roots, stems and leaves, thus enhancing root dry weight/shoot dry weight ratio and N use efficiency. N-deficient leaves displayed decreased accumulation of starch and total nonstructural carbohydrates (TNC) and increased sucrose/starch ratio as well as a partitioning trend of assimilated C toward to sucrose, but N-deficient roots displayed elevated accumulation of starch and TNC and reduced sucrose/starch ratio as well as a partitioning trend of assimilated C toward to starch. N-deficiency reduced the concentrations of most FAADs and the ratios of total FAADs (TFAADs)/N in leaves and roots. N-deficiency reduced the demand for C skeleton precursors for amino acid biosynthesis, thus lowering TFAADs/C ratio in leaves and roots. N-deficiency increased (decreased) the relative amounts of C-rich (N-rich) FAADs, thus increasing the molar ratio of C/N in TFAADs in leaves and roots. CONCLUSIONS Our findings corroborated our hypothesis that C and N metabolisms displayed adaptive responses to N-deficiency in C. sinensis seedlings, and that some differences existed between roots and leaves in N-deficiency-induced alterations of and C and N metabolisms.
Collapse
Affiliation(s)
- Wei-Tao Huang
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Zhi-Chao Zheng
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Dan Hua
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Xu-Feng Chen
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Jiang Zhang
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Huan-Huan Chen
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Xin Ye
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Jiu-Xin Guo
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Lin-Tong Yang
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Li-Song Chen
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| |
Collapse
|
89
|
Differential root response of maize inbred seedlings to root growth restriction and phosphorus availability. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
90
|
Yang F, Shi Y, Zhao M, Cheng B, Li X. ZmIAA5 regulates maize root growth and development by interacting with ZmARF5 under the specific binding of ZmTCP15/16/17. PeerJ 2022; 10:e13710. [PMID: 35855434 PMCID: PMC9288822 DOI: 10.7717/peerj.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/19/2022] [Indexed: 01/17/2023] Open
Abstract
Background The auxin indole-3-acetic acid (IAA) is a type of endogenous plant hormone with a low concentration in plants, but it plays an important role in their growth and development. The AUX/IAA gene family was found to be an early sensitive auxin gene with a complicated way of regulating growth and development in plants. The regulation of root growth and development by AUX/IAA family genes has been reported in Arabidopsis, rice and maize. Results In this study, subcellular localization indicated that ZmIAA1-ZmIAA6 primarily played a role in the nucleus. A thermogram analysis showed that AUX/IAA genes were highly expressed in the roots, which was also confirmed by the maize tissue expression patterns. In maize overexpressing ZmIAA5, the length of the main root, the number of lateral roots, and the stalk height at the seedling stage were significantly increased compared with those of the wild type, while the EMS mutant zmiaa5 was significantly reduced. The total number of roots and the dry weight of maize overexpressing ZmIAA5 at the mature stage were also significantly increased compared with those of the wild type, while those of the mutant zmiaa5 was significantly reduced. Yeast one-hybrid experiments showed that ZmTCP15/16/17 could specifically bind to the ZmIAA5 promoter region. Bimolecular fluorescence complementation and yeast two-hybridization indicated an interaction between ZmIAA5 and ZmARF5. Conclusions Taken together, the results of this study indicate that ZmIAA5 regulates maize root growth and development by interacting with ZmARF5 under the specific binding of ZmTCP15/16/17.
Collapse
Affiliation(s)
- Feiyang Yang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Yutian Shi
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Manli Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Beijiu Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
91
|
Yan M, Chen SQ, Deng TY, Cheng YC, Lin HH, Yang J. Combined metabolomic and transcriptomic analysis evidences the interaction between sugars and phosphate in rice. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153713. [PMID: 35605383 DOI: 10.1016/j.jplph.2022.153713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus is one of the macro-elements required by plants, but phosphate (Pi), the only form that can be absorbed by plants, is always limited for plant growth and development. To adapt to Pi deficiency, plants have evolved a complex regulatory system to improve Pi acquisition and utilization efficiency. In this study, metabolomic and transcriptomic analyses were performed to exam the global metabolites and gene expressions profiles responding to Pi deficiency in rice. A total of 23 metabolites were co-changed in leaves and roots after Pi deficiency, with sucrose, trehalose and melibiose significant accumulated. A total of 779 genes were co-changed in these leaves and roots. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that differentially expressed genes and differentially accumulated metabolites were co-enriched in galactose metabolism. Further exogenous sugars supply with rice roots could induce Pi starvation responsiveness and the expression of OsPHR2, which codes the central regulator for Pi starvation responsiveness in rice. This work revealed the interaction between sugars and phosphate in rice, and the importance of OsPHR2 in this interaction.
Collapse
Affiliation(s)
- Meng Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Si-Qi Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ting-Yue Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yong-Chao Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
92
|
Zhang Q, Hao G, Li M, Li L, Kang B, Yang N, Li H. Transformation of Plant to Resource Acquisition Under High Nitrogen Addition Will Reduce Green Roof Ecosystem Functioning. FRONTIERS IN PLANT SCIENCE 2022; 13:894782. [PMID: 35665150 PMCID: PMC9157423 DOI: 10.3389/fpls.2022.894782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Ecosystem engineering, such as green roof, provides numerous key ecosystem functions dependent on both plants and environmental changes. In the recent years, global nitrogen (N) deposition has become a hot topic with the intensification of anthropogenic disturbance. However, the response of green roof ecosystems to N deposition is still not clear. To explore the effects of N addition on plant ecological strategy and ecosystem functioning (biomass), we conducted a 3-month N addition simulation experiment using 12 common green roof species from different growth forms on an extensive green roof in Tianjin, China. The experiment included three different N addition treatments (0, 3.5, and 10.5 gN m-2 year-1). We found that plants with the resource-acquisitive strategy were more suitable to survive in a high N environment, since both aboveground and belowground traits exhibited synergistic effects. Moreover, N addition indirectly decreased plant biomass, indicating that ecosystem functioning was impaired. We highlight that there is a trade-off between the survival of green roof species and keeping the ecosystem functioning well in the future N deposition. Meanwhile, these findings also provide insights into how green roof species respond to global climate change and offer important information for better managing and protecting similar ecosystem engineering in the background of high N deposition.
Collapse
Affiliation(s)
- Qinze Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Guang Hao
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Meiyang Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Longqin Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Binyue Kang
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Nan Yang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Hongyuan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
93
|
Ramaiah M, Jain A, Yugandhar P, Raghothama KG. ATL8, a RING E3 ligase, modulates root growth and phosphate homeostasis in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:90-99. [PMID: 35325659 DOI: 10.1016/j.plaphy.2022.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 05/17/2023]
Abstract
Ubiquitination-mediated post-translational modification of proteins is a pivotal regulatory mechanism involved in the growth and development of the plant. The Arabidopsis Tóxicos en Levadura (ATL) family is a group of RING-type ubiquitin ligases (E3) and ATL8 is a membrane-localized protein. Here, a reverse genetics approach was used to elucidate the role of ATL8 in phosphate (Pi) homeostasis. Deficiencies of Pi and sucrose (Suc) enhanced the relative expression level of ATL8 in different tissues of the wild-type (Wt). The relative expression level of ATL8 was attenuated and augmented in the mutant (atl8) and overexpression lines (Oe1 and Oe2), respectively. There were significant reductions in different root traits, root hairs, root to shoot ratio, and total Pi content in atl8 compared with the Wt under different Pi regimes. On the contrary, Oe1 and Oe2 lines exhibited enhancement in some of these traits. Noticeably, anthocyanin content was significantly reduced in Oe1 and Oe2 compared with the Wt and atl8 under P- condition. Abscisic acid (ABA) treatment led to an increase in the primary root length of atl8 compared with the Wt, suggesting a cross-talk between ABA and ATL8 on root growth. Furthermore, the relative expression levels of the genes involved in the maintenance of Pi homeostasis (WRKY75, RNS1, E3L, and ACP5) were differentially modulated in atl8, Oe1, and Oe2 compared with the Wt under different Pi regimes. The results revealed the pivotal role of ATL8 in mediating morphophysiological and molecular adaptive responses to Pi deficiency.
Collapse
Affiliation(s)
- Madhuvanthi Ramaiah
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| | - Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Kashchandra G Raghothama
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
94
|
Afrida E, Tampubolon K. Limiting Factors of Agronomic Characteristics for Maize Through Nutrient Omission Techniques. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2022. [DOI: 10.11118/actaun.2022.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
95
|
Kaur S, Grewal SK, Singh S, Virk HK. Impact of phosphorous-deficit conditions on morpho-physiological traits and phosphorous metabolism in chickpea genotypes. PROTOPLASMA 2022; 259:775-788. [PMID: 34463826 DOI: 10.1007/s00709-021-01700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Chickpea, an important food legume, is primarily grown on marginal soils with low soil fertility. Although chickpea can fix N, soil phosphorus (P) deficiency in crop growing areas is a major limiting factor for chickpea production. This study was undertaken to evaluate twenty-five chickpea cultivars for morpho-physiological traits and yield under low and normal phosphorous conditions. Based on morpho-physiological traits such as length and area of roots and shoots, root length density, root and shoot biomass, chlorophyll content, number of nodules and root tips, tolerance indices and yield, these cultivars were characterised into susceptible (ICC67, ICC1915, ICC2593, ICC5337, ICC5879, ICC8950, ICC13441, ICC1483, ICC15606 and ICC15888), tolerant (ICC10755, IG72070, ICCV97105, ICCV2, ICCV92809, ICCV92337 and ICCV95423) and the remaining cultivars were moderately tolerant to phosphorous-deficit conditions. Higher activities of enzymes of phosphorous metabolism such as acid phosphatase and phytase in roots and nodules of tolerant chickpea cultivars (ICCV97105, ICCV92337, ICCV95423) as compared to susceptible cultivars (ICC67, ICC15606, ICC15888) at different developmental stages might be attributing to their better performance for growth parameters and productivity traits under phosphorous-deficit conditions.
Collapse
Affiliation(s)
- Suchint Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India
| | - Satvir Kaur Grewal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Harpreet Kaur Virk
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
96
|
Ishfaq M, Wang Y, Yan M, Wang Z, Wu L, Li C, Li X. Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China. FRONTIERS IN PLANT SCIENCE 2022; 13:802274. [PMID: 35548291 PMCID: PMC9085447 DOI: 10.3389/fpls.2022.802274] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 05/14/2023]
Abstract
Magnesium (Mg) is an essential nutrient for a wide array of fundamental physiological and biochemical processes in plants. It largely involves chlorophyll synthesis, production, transportation, and utilization of photoassimilates, enzyme activation, and protein synthesis. As a multifaceted result of the introduction of high-yielding fertilizer-responsive cultivars, intensive cropping without replenishment of Mg, soil acidification, and exchangeable Mg (Ex-Mg) leaching, Mg has become a limiting nutrient for optimum crop production. However, little literature is available to better understand distinct responses of plants to Mg deficiency, the geographical distribution of soil Ex-Mg, and the degree of Mg deficiency. Here, we summarize the current state of knowledge of key plant responses to Mg availability and, as far as possible, highlight spatial Mg distribution and the magnitude of Mg deficiency in different cultivated regions of the world with a special focus on China. In particular, ~55% of arable lands in China are revealed Mg-deficient (< 120 mg kg-1 soil Ex-Mg), and Mg deficiency literally becomes increasingly severe from northern (227-488 mg kg-1) to southern (32-89 mg kg-1) China. Mg deficiency primarily traced back to higher depletion of soil Ex-Mg by fruits, vegetables, sugarcane, tubers, tea, and tobacco cultivated in tropical and subtropical climate zones. Further, each unit decline in soil pH from neutral reduced ~2-fold soil Ex-Mg. This article underscores the physiological importance of Mg, potential risks associated with Mg deficiency, and accordingly, to optimize fertilization strategies for higher crop productivity and better quality.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, China
| | - Yongqi Wang
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, China
| | - Minwen Yan
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, China
| | | | - Liangquan Wu
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunjian Li
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuexian Li
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
97
|
Interactive effect of soil moisture content and phosphorus fertilizer form on chickpea growth, photosynthesis, and nutrient uptake. Sci Rep 2022; 12:6671. [PMID: 35461340 PMCID: PMC9035189 DOI: 10.1038/s41598-022-10703-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 11/14/2022] Open
Abstract
Water shortage and soil nutrient depletion are considered the main factors limiting crops productivity in the Mediterranean region characterized by longer and frequent drought episodes. In this study, we investigated the interactive effects of P fertilizer form and soil moisture conditions on chickpea photosynthetic activity, water and nutrient uptake, and their consequent effects on biomass accumulation and nutrient use efficiency. Two P fertilizer formulas based on orthophosphates (Ortho-P) and polyphosphates (Poly-P) were evaluated under three irrigation regimes (I1: 75% of field capacity, I2: 50% FC and I3: 25% FC), simulating three probable scenarios of soil water content in the Mediterranean climate (adequate water supply, medium, and severe drought stress), and compared to an unfertilized treatment. The experiment was conducted in a spilt-plot design under a drip fertigation system. The results showed significant changes in chickpea phenotypic and physiological traits in response to different P and water supply regimes. Compared with the unfertilized treatment, the stomata density and conductance, chlorophyll content, photosynthesis efficiency, biomass accumulation, and plant nutrient uptake were significantly improved under P drip fertigation. The obtained results suggested that the P fertilizer form and irrigation regime providing chickpea plants with enough P and water, at the early growth stage, increased the stomatal density and conductance, which significantly improved the photosynthetic performance index (PIABS) and P use efficiency (PUE), and consequently biomass accumulation and nutrient uptake. The significant correlations established between leaf stomatal density, PIABS, and PUE supported the above hypothesis. We concluded that the Poly-P fertilizers applied in well-watered conditions (I1) performed the best in terms of chickpea growth improvement, nutrient uptake and use efficiency. However, their effectiveness was greatly reduced under water stress conditions, unlike the Ortho-P form which kept stable positive effects on the studied parameters.
Collapse
|
98
|
Characterization of Stem Nodes Associated with Carbon Partitioning in Maize in Response to Nitrogen Availability. Int J Mol Sci 2022; 23:ijms23084389. [PMID: 35457213 PMCID: PMC9024680 DOI: 10.3390/ijms23084389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Stem node has been found to be a hub for controlling mineral nutrient distribution in gramineous plants. However, the characteristics of stem nodes associated with whole-plant carbon partitioning in maize (Zea mays L.) and their responses to nitrogen (N) availability remains elusive. Maize plants were grown in greenhouse under low to high N supply. Plant growth, sugar accumulation, and sugar transporters in nodes and leaves, as well as the anatomical structure of nodes, were investigated at vegetative phase. When compared to N-sufficient plants, low-N availability stunted growth and resulted in 49–64% less sugars in leaves, which was attributed to low photosynthesis or the accelerated carbon export, as evidenced by more 13C detected further below leaf tips. Invariably higher sugar concentrations were found in the stem nodes, rather than in the leaves across N treatments, indicating a crucial role of nodes in facilitating whole-plant carbon partitioning. More and smaller vascular bundles and phloem were observed in stem nodes of N-deficient plants, while higher sugar levels were found in the bottom nodes than in the upper ones. Low-N availability upregulated the gene expressions of sugar transporters, which putatively function in nodes such as ZmSWEETs and ZmSUTs at the bottom stem, but suppressed them in the upper ones, showing a developmental impact on node function. Further, greater activity of sugar transporters in the bottom nodes was associated with less sugars in leaves. Overall, these results highlighted that stem nodes may play an important role in facilitating long-distance sugar transport in maize.
Collapse
|
99
|
Xu H, Luo Z, Hu W, Jia Y, Wang Y, Ye X, Li Y, Chen LS, Guo J. Magnesium absorption, translocation, subcellular distribution and chemical forms in citrus seedlings. TREE PHYSIOLOGY 2022; 42:862-876. [PMID: 34791459 DOI: 10.1093/treephys/tpab148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/02/2021] [Indexed: 05/27/2023]
Abstract
Magnesium (Mg) is an essential macronutrient for plant growth and development; however, the adaptive mechanisms of Mg deficiency to underlying changes in Mg translocation, subcellular distribution and chemical forms in citrus plants are unknown. In this study, we conducted a sand culture experiment with 0 (Mg-deficiency) or 2 (Mg-sufficiency) mmol l-1 Mg2+ treatments to investigate the responses underlying Mg adaptability, as well as the resulting growth and Mg transport features in citrus seedlings [Citrus sinensis (L.) Osbeck cv. 'Xuegan']. We found that Mg-deficiency significantly depressed biomass by 39% in the whole plant and by 66% in branch organs compared with Mg-sufficient conditions, which further resulted in a subsequent decrease in Mg concentration and accumulation with changes in its distribution in different organs and a reduction in root growth. Under Mg-sufficiency, >50% of Mg was sequestered in the soluble fraction and this was reduced by 30% under Mg-deficiency. Furthermore, >70% of Mg existed as inorganic (42%) and water-soluble (31%) forms with high mobility across treatments and organs. Under Mg-deficiency, the proportion of water-soluble Mg was reduced in leaf and increased in root, whereas the proportion of inorganic Mg increased in main stem leaves and decreased in branch leaves and root. However, under Mg-deficiency, the proportion of Mg forms with low mobility, including pectates and proteins, phosphates, oxalates and residues, was increased in leaf and root organs, with the exception of pectate and protein Mg, which was decreased in root. The Mg transfer factor showed that Mg-deficiency improved Mg transport from parent to branch organs, which was related to Mg subcellular distribution and chemical forms. Taken together, our study establishes a defined process to clarify the mechanisms of Mg absorption and translocation and reveals a possible strategy to effectively improve Mg mobility and availability in citrus plants.
Collapse
Affiliation(s)
- Hao Xu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Ziwei Luo
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Wenlang Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yamin Jia
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
- College of Forestry, Guangxi University, No. 100 Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Yuwen Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Xin Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yan Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Li-Song Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Jiuxin Guo
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
100
|
Todeschini V, Anastasia F, Massa N, Marsano F, Cesaro P, Bona E, Gamalero E, Oddi L, Lingua G. Impact of Phosphatic Nutrition on Growth Parameters and Artemisinin Production in Artemisia annua Plants Inoculated or Not with Funneliformis mosseae. Life (Basel) 2022; 12:life12040497. [PMID: 35454988 PMCID: PMC9025405 DOI: 10.3390/life12040497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/20/2022] [Accepted: 03/27/2022] [Indexed: 12/31/2022] Open
Abstract
Artemisia annua L. is a medicinal plant appreciated for the production of artemisinin, a molecule used for malaria treatment. However, the natural concentration of artemisinin in planta is low. Plant nutrition, in particular phosphorus, and arbuscular mycorrhizal (AM) fungi can affect both plant biomass and secondary metabolite production. In this work, A. annua plants were ino- culated or not with the AM fungus Funneliformis mosseae BEG12 and cultivated for 2 months in controlled conditions at three different phosphatic (P) concentrations (32, 96, and 288 µM). Plant growth parameters, leaf photosynthetic pigment concentrations, artemisinin production, and mineral uptake were evaluated. The different P levels significantly affected the plant shoot growth, AM fungal colonization, and mineral acquisition. High P levels negatively influenced mycorrhizal colonization. The artemisinin concentration was inversely correlated to the P level in the substrate. The fungus mainly affected root growth and nutrient uptake and significantly lowered leaf artemisinin concentration. In conclusion, P nutrition can influence plant biomass production and the lowest phosphate level led to the highest artemisinin concentration, irrespective of the plant mineral uptake. Plant responses to AM fungi can be modulated by cost–benefit ratios of the mutualistic exchange between the partners and soil nutrient availability.
Collapse
Affiliation(s)
- Valeria Todeschini
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, 15121 Alessandria, Italy; (F.A.); (N.M.); (F.M.); (P.C.); (E.G.); (G.L.)
- Correspondence: ; Tel.: +39-0131-360210
| | - Flavio Anastasia
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, 15121 Alessandria, Italy; (F.A.); (N.M.); (F.M.); (P.C.); (E.G.); (G.L.)
| | - Nadia Massa
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, 15121 Alessandria, Italy; (F.A.); (N.M.); (F.M.); (P.C.); (E.G.); (G.L.)
| | - Francesco Marsano
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, 15121 Alessandria, Italy; (F.A.); (N.M.); (F.M.); (P.C.); (E.G.); (G.L.)
| | - Patrizia Cesaro
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, 15121 Alessandria, Italy; (F.A.); (N.M.); (F.M.); (P.C.); (E.G.); (G.L.)
| | - Elisa Bona
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, 13100 Vercelli, Italy;
| | - Elisa Gamalero
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, 15121 Alessandria, Italy; (F.A.); (N.M.); (F.M.); (P.C.); (E.G.); (G.L.)
| | - Ludovica Oddi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10123 Torino, Italy;
| | - Guido Lingua
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, 15121 Alessandria, Italy; (F.A.); (N.M.); (F.M.); (P.C.); (E.G.); (G.L.)
| |
Collapse
|