51
|
Shoaib M, Banerjee BP, Hayden M, Kant S. Roots' Drought Adaptive Traits in Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2022; 11:2256. [PMID: 36079644 PMCID: PMC9460784 DOI: 10.3390/plants11172256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Drought is one of the biggest concerns in agriculture due to the projected reduction of global freshwater supply with a concurrent increase in global food demand. Roots can significantly contribute to improving drought adaptation and productivity. Plants increase water uptake by adjusting root architecture and cooperating with symbiotic soil microbes. Thus, emphasis has been given to root architectural responses and root-microbe relationships in drought-resilient crop development. However, root responses to drought adaptation are continuous and complex processes and involve additional root traits and interactions among themselves. This review comprehensively compiles and discusses several of these root traits such as structural, physiological, molecular, hydraulic, anatomical, and plasticity, which are important to consider together, with architectural changes, when developing drought resilient crop varieties. In addition, it describes the significance of root contribution in improving soil structure and water holding capacity and its implication on long-term resilience to drought. In addition, various drought adaptive root ideotypes of monocot and dicot crops are compared and proposed for given agroclimatic conditions. Overall, this review provides a broader perspective of understanding root structural, physiological, and molecular regulators, and describes the considerations for simultaneously integrating multiple traits for drought tolerance and crop improvement, under specific growing environments.
Collapse
Affiliation(s)
- Mirza Shoaib
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Road, Horsham, VIC 3400, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Melbourne, VIC 3083, Australia
| | - Bikram P. Banerjee
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Road, Horsham, VIC 3400, Australia
| | - Matthew Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, Melbourne, VIC 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Melbourne, VIC 3083, Australia
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Road, Horsham, VIC 3400, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Melbourne, VIC 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Melbourne, VIC 3083, Australia
| |
Collapse
|
52
|
Ethylene Acts as a Local and Systemic Signal to Mediate UV-B-Induced Nitrate Reallocation to Arabidopsis Leaves and Roots via Regulating the ERFs-NRT1.8 Signaling Module. Int J Mol Sci 2022; 23:ijms23169068. [PMID: 36012333 PMCID: PMC9408821 DOI: 10.3390/ijms23169068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
Nitrate is the preferred nitrogen source for plants and plays an important role in plant growth and development. Under various soil stresses, plants reallocate nitrate to roots to promote stress tolerance through the ethylene-ethylene response factors (ERFs)-nitrate transporter (NRT) signaling module. As a light signal, ultraviolet B (UV-B) also stimulates the production of ethylene. However, whether UV-B regulates nitrate reallocation in plants via ethylene remains unknown. Here, we found that UV-B-induced expression of ERF1B, ORA59, ERF104, and NRT1.8 in both Arabidopsis shoots and roots as well as nitrate reallocation from hypocotyls to leaves and roots were impaired in ethylene signaling mutants for Ethylene Insensitive2 (EIN2) and EIN3. UV-B-induced NRT1.8 expression and nitrate reallocation to leaves and roots were also inhibited in the triple mutants for ERF1B, ORA59, and ERF104. Deletion of NRT1.8 impaired UV-B-induced nitrate reallocation to both leaves and roots. Furthermore, UV-B promoted ethylene release in both shoots and roots by enhancing the gene expression and enzymatic activities of ethylene biosynthetic enzymes only in shoots. These results show that ethylene acts as a local and systemic signal to mediate UV-B-induced nitrate reallocation from Arabidopsis hypocotyls to both leaves and roots via regulating the gene expression of the ERFs-NRT1.8 signaling module.
Collapse
|
53
|
Jinu J, Visarada KBRS, Kanti M, Malathi VM. Dehydration stress influences the expression of brevis radix gene family members in sorghum (Sorghum bicolor). PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
54
|
Huntenburg K, Puértolas J, de Ollas C, Dodd IC. Bi-directional, long-distance hormonal signalling between roots and shoots of soil water availability. PHYSIOLOGIA PLANTARUM 2022; 174:e13697. [PMID: 35526211 PMCID: PMC9320954 DOI: 10.1111/ppl.13697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 05/28/2023]
Abstract
While the importance of plant water relations in determining crop response to soil water availability is difficult to over-emphasise, under many circumstances, plants maintain their leaf water status as the soil dries yet shoot gas exchange and growth is restricted. Such observations lead to development of a paradigm that root-to-shoot signals regulate shoot physiology, and a conceptual framework to test the importance of different signals such as plant hormones in these physiological processes. Nevertheless, shoot-to-root (hormonal) signalling also plays an important role in regulating root growth and function and may dominate when larger quantities of a hormone are produced in the shoots than the roots. Here, we review the evidence for acropetal and basipetal transport of three different plant hormones (abscisic acid, jasmonates, strigolactones) that have antitranspirant effects, to indicate the origin and action of these signalling systems. The physiological importance of each transport pathway likely depends on the specific environmental conditions the plant is exposed to, specifically whether the roots or shoots are the first to lose turgor when exposed to drying soil or elevated atmospheric demand, respectively. All three hormones can interact to influence each other's synthesis, degradation and intracellular signalling to augment or attenuate their physiological impacts, highlighting the complexity of unravelling these signalling systems. Nevertheless, such complexity suggests crop improvement opportunities to select for allelic variation in the genes affecting hormonal regulation, and (in selected crops) to augment root-shoot communication by judicious selection of rootstock-scion combinations to ameliorate abiotic stresses.
Collapse
Affiliation(s)
- Katharina Huntenburg
- Lancaster Environment CentreLancaster UniversityLancasterUK
- NIAB AgronomyNIABCambridgeUK
| | - Jaime Puértolas
- Lancaster Environment CentreLancaster UniversityLancasterUK
- Department of Botany and Plant Ecology and PhysiologyUniversity of La LagunaSan Cristóbal de La LagunaSpain
| | - Carlos de Ollas
- Departamento de Ciencias Agrarias del Medio NaturalUniversitat Jaume ICastellonSpain
| | - Ian C. Dodd
- Lancaster Environment CentreLancaster UniversityLancasterUK
| |
Collapse
|
55
|
Valenzuela FJ, Reineke D, Leventini D, Chen CCL, Barrett-Lennard EG, Colmer TD, Dodd IC, Shabala S, Brown P, Bazihizina N. Plant responses to heterogeneous salinity: agronomic relevance and research priorities. ANNALS OF BOTANY 2022; 129:499-518. [PMID: 35171228 PMCID: PMC9007098 DOI: 10.1093/aob/mcac022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/14/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Soil salinity, in both natural and managed environments, is highly heterogeneous, and understanding how plants respond to this spatiotemporal heterogeneity is increasingly important for sustainable agriculture in the era of global climate change. While the vast majority of research on crop response to salinity utilizes homogeneous saline conditions, a much smaller, but important, effort has been made in the past decade to understand plant molecular and physiological responses to heterogeneous salinity mainly by using split-root studies. These studies have begun to unravel how plants compensate for water/nutrient deprivation and limit salt stress by optimizing root-foraging in the most favourable parts of the soil. SCOPE This paper provides an overview of the patterns of salinity heterogeneity in rain-fed and irrigated systems. We then discuss results from split-root studies and the recent progress in understanding the physiological and molecular mechanisms regulating plant responses to heterogeneous root-zone salinity and nutrient conditions. We focus on mechanisms by which plants (salt/nutrient sensing, root-shoot signalling and water uptake) could optimize the use of less-saline patches within the root-zone, thereby enhancing growth under heterogeneous soil salinity conditions. Finally, we place these findings in the context of defining future research priorities, possible irrigation management and crop breeding opportunities to improve productivity from salt-affected lands.
Collapse
Affiliation(s)
| | - Daniela Reineke
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Dante Leventini
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | - Edward G Barrett-Lennard
- Land Management Group, Agriculture Discipline, College of Science, Health, Engineering and Education, Murdoch University, WA, Australia
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Patrick Brown
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Nadia Bazihizina
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| |
Collapse
|
56
|
Zou Y, Zhang Y, Testerink C. Root dynamic growth strategies in response to salinity. PLANT, CELL & ENVIRONMENT 2022; 45:695-704. [PMID: 34716934 PMCID: PMC9298695 DOI: 10.1111/pce.14205] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 05/25/2023]
Abstract
Increasing soil salinization largely impacts crop yield worldwide. To deal with salinity stress, plants exhibit an array of responses, including root system architecture remodelling. Here, we review recent progress in physiological, developmental and cellular mechanisms of root growth responses to salinity. Most recent research in modulation of root branching, root tropisms, as well as in root cell wall modifications under salinity stress, is discussed in the context of the contribution of these responses to overall plant performance. We highlight the power of natural variation approaches revealing novel potential pathways responsible for differences in root salt stress responses. Together, these new findings promote our understanding of how salt shapes the root phenotype, which may provide potential avenues for engineering crops with better yield and survival in saline soils.
Collapse
Affiliation(s)
- Yutao Zou
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| |
Collapse
|
57
|
Soonthornkalump S, Ow YX, Saewong C, Buapet P. Comparative study on anatomical traits and gas exchange responses due to belowground hypoxic stress and thermal stress in three tropical seagrasses. PeerJ 2022; 10:e12899. [PMID: 35186485 PMCID: PMC8840093 DOI: 10.7717/peerj.12899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The ability to maintain sufficient oxygen levels in the belowground tissues and the rhizosphere is crucial for the growth and survival of seagrasses in habitats with highly reduced sediment. Such ability varies depending on plant anatomical features and environmental conditions. METHODS In the present study, we compared anatomical structures of roots, rhizomes and leaves of the tropical intertidal seagrasses, Cymodocea rotundata, Thalassia hemprichii and Halophila ovalis, followed by an investigation of their gas exchange both in the belowground and aboveground tissues and photosynthetic electron transport rates (ETR) in response to experimental manipulations of O2 level (normoxia and root hypoxia) and temperature (30 °C and 40 °C). RESULTS We found that C. rotundata and T. hemprichii displayed mostly comparable anatomical structures, whereas H. ovalis displayed various distinctive features, including leaf porosity, number and size of lacunae in roots and rhizomes and structure of radial O2 loss (ROL) barrier. H. ovalis also showed unique responses to root hypoxia and heat stress. Root hypoxia increased O2 release from belowground tissues and overall photosynthetic activity of H. ovalis but did not affect the other two seagrasses. More pronounced warming effects were detected in H. ovalis, measured as lower O2 release in the belowground tissues and overall photosynthetic capacity (O2 release and dissolved inorganic carbon uptake in the light and ETR). High temperature inhibited photosynthesis of C. rotundata and T. hemprichii but did not affect their O2 release in belowground tissues. Our data show that seagrasses inhabiting the same area respond differently to root hypoxia and temperature, possibly due to their differences in anatomical and physiological attributes. Halophila ovalis is highly dependent on photosynthesis and appears to be the most sensitive species with the highest tendency of O2 loss in hypoxic sediment. At the same time, its root oxidation capacity may be compromised under warming scenarios.
Collapse
Affiliation(s)
- Sutthinut Soonthornkalump
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand,Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Yan Xiang Ow
- St John’s Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Chanida Saewong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand,Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pimchanok Buapet
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand,Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
58
|
He W, Xie R, Wang Y, Chen Q, Wang H, Yang S, Luo Y, Zhang Y, Tang H, Gmitter FG, Wang X. Comparative transcriptomic analysis on compatible/incompatible grafts in citrus. HORTICULTURE RESEARCH 2022; 9:uhab072. [PMID: 35043167 PMCID: PMC8931943 DOI: 10.1093/hr/uhab072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Grafting is a useful cultivation technology to resist abiotic and biotic stresses and is an integral part of citrus production. However, some widely utilized rootstocks may still exhibit graft incompatibility in the orchard. "Hongmian miyou" (Citrus maxima (Burm.) Merrill) is mutated from "Guanxi miyou", but these two scions showed different compatibility with available Poncirus trifoliata rootstock. Foliage etiolation is an observed symptom of graft incompatibility, but its mechanism remains poorly understood. This study is the first to investigate the morphological, physiological, and anatomical differences between the compatible/incompatible grafts, and perform transcriptome profiling at crucial stages of the foliage etiolation process. Based on the comprehensive analyses, hormonal balance was disordered, and two rate-limiting genes, NCED3 (9-cis-epoxycarotenoid dioxygenases 3) and NCED5, being responsible for ABA (abscisic acid) accumulation, were highlighted. Further correlation analysis indicated that IAA (indole-3-acetic acid) and ABA were the most likely inducers of the expression of stresses-related genes. In addition, excessive starch accumulation was observed in lamina and midribs of incompatible grafts leaves. These results provided a new insight into the role of the hormonal balance and abscisic acid biosynthesis genes in regulation and contribution to the graft incompatibility, and will further define and deploy candidate genes to explore the mechanisms underlying citrus rootstock- scion interactions.
Collapse
Affiliation(s)
- Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Rui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shaofeng Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Frederick G Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred 33850, FL, USA
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
59
|
Kuromori T, Fujita M, Takahashi F, Yamaguchi‐Shinozaki K, Shinozaki K. Inter-tissue and inter-organ signaling in drought stress response and phenotyping of drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:342-358. [PMID: 34863007 PMCID: PMC9300012 DOI: 10.1111/tpj.15619] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Plant response to drought stress includes systems for intracellular regulation of gene expression and signaling, as well as inter-tissue and inter-organ signaling, which helps entire plants acquire stress resistance. Plants sense water-deficit conditions both via the stomata of leaves and roots, and transfer water-deficit signals from roots to shoots via inter-organ signaling. Abscisic acid is an important phytohormone involved in the drought stress response and adaptation, and is synthesized mainly in vascular tissues and guard cells of leaves. In leaves, stress-induced abscisic acid is distributed to various tissues by transporters, which activates stomatal closure and expression of stress-related genes to acquire drought stress resistance. Moreover, the stepwise stress response at the whole-plant level is important for proper understanding of the physiological response to drought conditions. Drought stress is sensed by multiple types of sensors as molecular patterns of abiotic stress signals, which are transmitted via separate parallel signaling networks to induce downstream responses, including stomatal closure and synthesis of stress-related proteins and metabolites. Peptide molecules play important roles in the inter-organ signaling of dehydration from roots to shoots, as well as signaling of osmotic changes and reactive oxygen species/Ca2+ . In this review, we have summarized recent advances in research on complex plant drought stress responses, focusing on inter-tissue signaling in leaves and inter-organ signaling from roots to shoots. We have discussed the mechanisms via which drought stress adaptations and resistance are acquired at the whole-plant level, and have proposed the importance of quantitative phenotyping for measuring plant growth under drought conditions.
Collapse
Affiliation(s)
- Takashi Kuromori
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Miki Fujita
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
| | - Fuminori Takahashi
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
- Department of Biological Science and TechnologyGraduate School of Advanced EngineeringTokyo University of Science6‐3‐1 Niijyuku, Katsushika‐kuTokyo125‐8585Japan
| | - Kazuko Yamaguchi‐Shinozaki
- Laboratory of Plant Molecular PhysiologyGraduate School of Agricultural and Life SciencesThe University of Tokyo1‐1‐1 Yayoi, Bunkyo‐kuTokyo113‐8657Japan
- Research Institute for Agricultural and Life SciencesTokyo University of Agriculture1‐1‐1 Sakuragaoka, Setagaya‐kuTokyo156‐8502Japan
| | - Kazuo Shinozaki
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
- Biotechonology CenterNational Chung Hsing University (NCHU)Taichung402Taiwan
| |
Collapse
|
60
|
Lacek J, García-González J, Weckwerth W, Retzer K. Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination. Int J Mol Sci 2021; 22:12784. [PMID: 34884591 PMCID: PMC8657594 DOI: 10.3390/ijms222312784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The root is the below-ground organ of a plant, and it has evolved multiple signaling pathways that allow adaptation of architecture, growth rate, and direction to an ever-changing environment. Roots grow along the gravitropic vector towards beneficial areas in the soil to provide the plant with proper nutrients to ensure its survival and productivity. In addition, roots have developed escape mechanisms to avoid adverse environments, which include direct illumination. Standard laboratory growth conditions for basic research of plant development and stress adaptation include growing seedlings in Petri dishes on medium with roots exposed to light. Several studies have shown that direct illumination of roots alters their morphology, cellular and biochemical responses, which results in reduced nutrient uptake and adaptability upon additive stress stimuli. In this review, we summarize recent methods that allow the study of shaded roots under controlled laboratory conditions and discuss the observed changes in the results depending on the root illumination status.
Collapse
Affiliation(s)
- Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Judith García-González
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria;
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
| |
Collapse
|
61
|
Karlova R, Boer D, Hayes S, Testerink C. Root plasticity under abiotic stress. PLANT PHYSIOLOGY 2021; 187:1057-1070. [PMID: 34734279 PMCID: PMC8566202 DOI: 10.1093/plphys/kiab392] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Abiotic stresses increasingly threaten existing ecological and agricultural systems across the globe. Plant roots perceive these stresses in the soil and adapt their architecture accordingly. This review provides insights into recent discoveries showing the importance of root system architecture (RSA) and plasticity for the survival and development of plants under heat, cold, drought, salt, and flooding stress. In addition, we review the molecular regulation and hormonal pathways involved in controlling RSA plasticity, main root growth, branching and lateral root growth, root hair development, and formation of adventitious roots. Several stresses affect root anatomy by causing aerenchyma formation, lignin and suberin deposition, and Casparian strip modulation. Roots can also actively grow toward favorable soil conditions and avoid environments detrimental to their development. Recent advances in understanding the cellular mechanisms behind these different root tropisms are discussed. Understanding root plasticity will be instrumental for the development of crops that are resilient in the face of abiotic stress.
Collapse
Affiliation(s)
- Rumyana Karlova
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Damian Boer
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Scott Hayes
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Author for communication:
| |
Collapse
|
62
|
Electrical Signaling of Plants under Abiotic Stressors: Transmission of Stimulus-Specific Information. Int J Mol Sci 2021; 22:ijms221910715. [PMID: 34639056 PMCID: PMC8509212 DOI: 10.3390/ijms221910715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Plants have developed complex systems of perception and signaling to adapt to changing environmental conditions. Electrical signaling is one of the most promising candidates for the regulatory mechanisms of the systemic functional response under the local action of various stimuli. Long-distance electrical signals of plants, such as action potential (AP), variation potential (VP), and systemic potential (SP), show specificities to types of inducing stimuli. The systemic response induced by a long-distance electrical signal, representing a change in the activity of a complex of molecular-physiological processes, includes a nonspecific component and a stimulus-specific component. This review discusses possible mechanisms for transmitting information about the nature of the stimulus and the formation of a specific systemic response with the participation of electrical signals induced by various abiotic factors.
Collapse
|
63
|
Miotto YE, da Costa CT, Offringa R, Kleine-Vehn J, Maraschin FDS. Effects of Light Intensity on Root Development in a D-Root Growth System. FRONTIERS IN PLANT SCIENCE 2021; 12:778382. [PMID: 34975962 PMCID: PMC8715079 DOI: 10.3389/fpls.2021.778382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 05/10/2023]
Abstract
Plant development is highly affected by light quality, direction, and intensity. Under natural growth conditions, shoots are directly exposed to light whereas roots develop underground shielded from direct illumination. The photomorphogenic development strongly represses shoot elongation whereas promotes root growth. Over the years, several studies helped the elucidation of signaling elements that coordinate light perception and underlying developmental outputs. Light exposure of the shoots has diverse effects on main root growth and lateral root (LR) formation. In this study, we evaluated the phenotypic root responses of wild-type Arabidopsis plants, as well as several mutants, grown in a D-Root system. We observed that sucrose and light act synergistically to promote root growth and that sucrose alone cannot overcome the light requirement for root growth. We also have shown that roots respond to the light intensity applied to the shoot by changes in primary and LR development. Loss-of-function mutants for several root light-response genes display varying phenotypes according to the light intensity to which shoots are exposed. Low light intensity strongly impaired LR development for most genotypes. Only vid-27 and pils4 mutants showed higher LR density at 40 μmol m-2 s-1 than at 80 μmol m-2 s-1 whereas yuc3 and shy2-2 presented no LR development in any light condition, reinforcing the importance of auxin signaling in light-dependent root development. Our results support the use of D-Root systems to avoid the effects of direct root illumination that might lead to artifacts and unnatural phenotypic outputs.
Collapse
Affiliation(s)
- Yohanna Evelyn Miotto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cibele Tesser da Costa
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Molecular Plant Physiology, Institute of Biology, University of Freiburg, Freiburg, Germany
- Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Felipe dos Santos Maraschin
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Felipe dos Santos Maraschin,
| |
Collapse
|