51
|
Middleton DJ, Riddell S, Klein R, Arkinstall R, Haining J, Frazer L, Mottley C, Evans R, Johnson D, Pallister J. Experimental Hendra virus infection of dogs: virus replication, shedding and potential for transmission. Aust Vet J 2018; 95:10-18. [PMID: 28124415 DOI: 10.1111/avj.12552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Characterisation of experimental Hendra virus (HeV) infection in dogs and assessment of associated transmission risk. METHODS Beagle dogs were exposed oronasally to Hendra virus/Australia/Horse/2008/Redlands or to blood collected from HeV-infected ferrets. Ferrets were exposed to oral fluids collected from dogs after canine exposure to HeV. Observations made and samples tested post-exposure were used to assess the clinical course and replication sites of HeV in dogs, the infectivity for ferrets of canine oral fluids and features of HeV infection in dogs following contact with infective blood. RESULTS Dogs were reliably infected with HeV and were generally asymptomatic. HeV was re-isolated from the oral cavity and virus clearance was associated with development of virus neutralising antibody. Major sites of HeV replication in dogs were the tonsils, lower respiratory tract and associated lymph nodes. Virus replication was documented in canine kidney and spleen, confirming a viraemic phase for canine HeV infection and suggesting that urine may be a source of infectious virus. Infection was transmitted to ferrets via canine oral secretions, with copy numbers for the HeV N gene in canine oral swabs comparable to those reported for nasal swabs of experimentally infected horses. CONCLUSION HeV is not highly pathogenic for dogs, but their oral secretions pose a potential transmission risk to people. The time-window for transmission risk is circumscribed and corresponds to the period of acute infection before establishment of an adaptive immune response. The likelihood of central nervous system involvement in canine HeV infection is unclear, as is any long-term consequence.
Collapse
Affiliation(s)
- D J Middleton
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - S Riddell
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - R Klein
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - R Arkinstall
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - J Haining
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - L Frazer
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - C Mottley
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - R Evans
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - D Johnson
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - J Pallister
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| |
Collapse
|
52
|
Fischer K, Diederich S, Smith G, Reiche S, Pinho dos Reis V, Stroh E, Groschup MH, Weingartl HM, Balkema-Buschmann A. Indirect ELISA based on Hendra and Nipah virus proteins for the detection of henipavirus specific antibodies in pigs. PLoS One 2018; 13:e0194385. [PMID: 29708971 PMCID: PMC5927399 DOI: 10.1371/journal.pone.0194385] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/03/2018] [Indexed: 02/06/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) belong to the genus Henipavirus in the family Paramyxoviridae. Henipavirus infections were first reported in the 1990’s causing severe and often fatal outbreaks in domestic animals and humans in Southeast Asia and Australia. NiV infections were observed in humans in Bangladesh, India and in the first outbreak in Malaysia, where pigs were also infected. HeV infections occurred in horses in the North-Eastern regions of Australia, with singular transmission events to humans. Bats of the genus Pteropus have been identified as the reservoir hosts for henipaviruses. Molecular and serological indications for the presence of henipa-like viruses in African fruit bats, pigs and humans have been published recently. In our study, truncated forms of HeV and NiV attachment (G) proteins as well as the full-length NiV nucleocapsid (N) protein were expressed using different expression systems. Based on these recombinant proteins, Enzyme-linked Immunosorbent Assays (ELISA) were developed for the detection of HeV or NiV specific antibodies in porcine serum samples. We used the NiV N ELISA for initial serum screening considering the general reactivity against henipaviruses. The G protein based ELISAs enabled the differentiation between HeV and NiV infections, since as expected, the sera displayed higher reactivity with the respective homologous antigens. In the future, these assays will present valuable tools for serosurveillance of swine and possibly other livestock or wildlife species in affected areas. Such studies will help assessing the potential risk for human and animal health worldwide by elucidating the distribution of henipaviruses.
Collapse
Affiliation(s)
- Kerstin Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Sandra Diederich
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada
| | - Greg Smith
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada
| | - Sven Reiche
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Department of Experimental Animal Facilities and Biorisk Management, Greifswald-Insel Riems, Germany
| | - Vinicius Pinho dos Reis
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Eileen Stroh
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Hana M. Weingartl
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
53
|
Tan RHH, Hodge A, Klein R, Edwards N, Huang JA, Middleton D, Watts SP. Virus-neutralising antibody responses in horses following vaccination with Equivac® HeV: a field study. Aust Vet J 2018; 96:161-166. [DOI: 10.1111/avj.12694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/23/2017] [Accepted: 08/24/2017] [Indexed: 11/28/2022]
Affiliation(s)
- RHH Tan
- College of Public Health, Medicine and Veterinary Sciences; James Cook University; Townsville Queensland Australia
| | - A Hodge
- Zoetis, Veterinary Medicine Research and Development; Parkville Victoria Australia
| | - R Klein
- CSIRO Australian Animal Health Laboratory; Geelong Victoria Australia
| | - N Edwards
- Wellington Village Veterinary Clinic; Rowville Victoria Australia
| | - JA Huang
- Zoetis, Veterinary Medicine Research and Development; Parkville Victoria Australia
| | - D Middleton
- CSIRO Australian Animal Health Laboratory; Geelong Victoria Australia
| | - SP Watts
- College of Public Health, Medicine and Veterinary Sciences; James Cook University; Townsville Queensland Australia
| |
Collapse
|
54
|
Laing ED, Amaya M, Navaratnarajah CK, Feng YR, Cattaneo R, Wang LF, Broder CC. Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species. Virol J 2018; 15:56. [PMID: 29587789 PMCID: PMC5869790 DOI: 10.1186/s12985-018-0964-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/13/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hendra virus and Nipah virus are zoonotic viruses that have caused severe to fatal disease in livestock and human populations. The isolation of Cedar virus, a non-pathogenic virus species in the genus Henipavirus, closely-related to the highly pathogenic Hendra virus and Nipah virus offers an opportunity to investigate differences in pathogenesis and receptor tropism among these viruses. METHODS We constructed full-length cDNA clones of Cedar virus from synthetic oligonucleotides and rescued two replication-competent, recombinant Cedar virus variants: a recombinant wild-type Cedar virus and a recombinant Cedar virus that expresses a green fluorescent protein from an open reading frame inserted between the phosphoprotein and matrix genes. Replication kinetics of both viruses and stimulation of the interferon pathway were characterized in vitro. Cellular tropism for ephrin-B type ligands was qualitatively investigated by microscopy and quantitatively by a split-luciferase fusion assay. RESULTS Successful rescue of recombinant Cedar virus expressing a green fluorescent protein did not significantly affect virus replication compared to the recombinant wild-type Cedar virus. We demonstrated that recombinant Cedar virus stimulated the interferon pathway and utilized the established Hendra virus and Nipah virus receptor, ephrin-B2, but not ephrin-B3 to mediate virus entry. We further characterized virus-mediated membrane fusion kinetics of Cedar virus with the known henipavirus receptors ephrin-B2 and ephrin-B3. CONCLUSIONS The recombinant Cedar virus platform may be utilized to characterize the determinants of pathogenesis across the henipaviruses, investigate their receptor tropisms, and identify novel pan-henipavirus antivirals. Moreover, these experiments can be conducted safely under BSL-2 conditions.
Collapse
Affiliation(s)
- Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA
| | | | - Yan-Ru Feng
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|
55
|
Leon AJ, Borisevich V, Boroumand N, Seymour R, Nusbaum R, Escaffre O, Xu L, Kelvin DJ, Rockx B. Host gene expression profiles in ferrets infected with genetically distinct henipavirus strains. PLoS Negl Trop Dis 2018; 12:e0006343. [PMID: 29538374 PMCID: PMC5868854 DOI: 10.1371/journal.pntd.0006343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/26/2018] [Accepted: 02/24/2018] [Indexed: 02/05/2023] Open
Abstract
Henipavirus infection causes severe respiratory and neurological disease in humans that can be fatal. To characterize the pathogenic mechanisms of henipavirus infection in vivo, we performed experimental infections in ferrets followed by genome-wide gene expression analysis of lung and brain tissues. The Hendra, Nipah-Bangladesh, and Nipah-Malaysia strains caused severe respiratory and neurological disease with animals succumbing around 7 days post infection. Despite the presence of abundant viral shedding, animal-to-animal transmission did not occur. The host gene expression profiles of the lung tissue showed early activation of interferon responses and subsequent expression of inflammation-related genes that coincided with the clinical deterioration. Additionally, the lung tissue showed unchanged levels of lymphocyte markers and progressive downregulation of cell cycle genes and extracellular matrix components. Infection in the brain resulted in a limited breadth of the host responses, which is in accordance with the immunoprivileged status of this organ. Finally, we propose a model of the pathogenic mechanisms of henipavirus infection that integrates multiple components of the host responses.
Collapse
Affiliation(s)
- Alberto J. Leon
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Viktoriya Borisevich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Nahal Boroumand
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Robert Seymour
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Rebecca Nusbaum
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Luoling Xu
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David J. Kelvin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
- International Institute of Infection and Immunity, Shantou University Medical College, Shantou, PRC
- * E-mail: (DJK); (BR)
| | - Barry Rockx
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States of America
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail: (DJK); (BR)
| |
Collapse
|
56
|
Atkinson SC, Audsley MD, Lieu KG, Marsh GA, Thomas DR, Heaton SM, Paxman JJ, Wagstaff KM, Buckle AM, Moseley GW, Jans DA, Borg NA. Recognition by host nuclear transport proteins drives disorder-to-order transition in Hendra virus V. Sci Rep 2018; 8:358. [PMID: 29321677 PMCID: PMC5762688 DOI: 10.1038/s41598-017-18742-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/15/2017] [Indexed: 01/04/2023] Open
Abstract
Hendra virus (HeV) is a paramyxovirus that causes lethal disease in humans, for which no vaccine or antiviral agent is available. HeV V protein is central to pathogenesis through its ability to interact with cytoplasmic host proteins, playing key antiviral roles. Here we use immunoprecipitation, siRNA knockdown and confocal laser scanning microscopy to show that HeV V shuttles to and from the nucleus through specific host nuclear transporters. Spectroscopic and small angle X-ray scattering studies reveal HeV V undergoes a disorder-to-order transition upon binding to either importin α/β1 or exportin-1/Ran-GTP, dependent on the V N-terminus. Importantly, we show that specific inhibitors of nuclear transport prevent interaction with host transporters, and reduce HeV infection. These findings emphasize the critical role of host-virus interactions in HeV infection, and potential use of compounds targeting nuclear transport, such as the FDA-approved agent ivermectin, as anti-HeV agents.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michelle D Audsley
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Kim G Lieu
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Glenn A Marsh
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Victoria, Australia
| | - David R Thomas
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Steven M Heaton
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Jason J Paxman
- La Trobe Institute for Molecular Sciences and Department of Biochemistry and Genetics, La Trobe University, Melbourne, Victoria, Australia
| | - Kylie M Wagstaff
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Ashley M Buckle
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gregory W Moseley
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - David A Jans
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | - Natalie A Borg
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
57
|
Ewer K, Sebastian S, Spencer AJ, Gilbert S, Hill AVS, Lambe T. Chimpanzee adenoviral vectors as vaccines for outbreak pathogens. Hum Vaccin Immunother 2017; 13:3020-3032. [PMID: 29083948 PMCID: PMC5718829 DOI: 10.1080/21645515.2017.1383575] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
The 2014-15 Ebola outbreak in West Africa highlighted the potential for large disease outbreaks caused by emerging pathogens and has generated considerable focus on preparedness for future epidemics. Here we discuss drivers, strategies and practical considerations for developing vaccines against outbreak pathogens. Chimpanzee adenoviral (ChAd) vectors have been developed as vaccine candidates for multiple infectious diseases and prostate cancer. ChAd vectors are safe and induce antigen-specific cellular and humoral immunity in all age groups, as well as circumventing the problem of pre-existing immunity encountered with human Ad vectors. For these reasons, such viral vectors provide an attractive platform for stockpiling vaccines for emergency deployment in response to a threatened outbreak of an emerging pathogen. Work is already underway to develop vaccines against a number of other outbreak pathogens and we will also review progress on these approaches here, particularly for Lassa fever, Nipah and MERS.
Collapse
Affiliation(s)
- Katie Ewer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Sarah Sebastian
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Alexandra J. Spencer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Adrian V. S. Hill
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| |
Collapse
|
58
|
Layton DS, Xiao X, Bentley JD, Lu L, Stewart CR, Bean AGD, Adams TE. Development of an anti-ferret CD4 monoclonal antibody for the characterisation of ferret T lymphocytes. J Immunol Methods 2017; 444:29-35. [PMID: 28216237 PMCID: PMC7094458 DOI: 10.1016/j.jim.2017.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/01/2017] [Accepted: 02/14/2017] [Indexed: 12/21/2022]
Abstract
The ferret is an established animal model for a number of human respiratory viral infections, such as influenza virus and more recently, Ebola virus. However, a paucity of immunological reagents has hampered the study of cellular immune responses. Here we describe the development and characterisation of a novel monoclonal antibody (mAb) against the ferret CD4 antigen and the characterisation of ferret CD4 T lymphocytes. Recombinant production and purification of the ferret CD4 ectodomain soluble protein allowed hybridoma generation and the generation of a mAb (FeCD4) showing strong binding to ferret CD4 protein and lymphoid cells by flow cytometry. FeCD4 bound to its cognate antigen post-fixation with paraformaldehyde (PFA) which is routinely used to inactivate highly pathogenic viruses. We have also used FeCD4 in conjunction with other immune cell markers to characterise ferret T cells in both primary and secondary lymphoid organs. In summary, we have developed an important reagent for the study of cellular immunological responses in the ferret model of infectious disease.
Collapse
Affiliation(s)
- Daniel S Layton
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia.
| | - Xiaowen Xiao
- CSIRO Manufacturing, Parkville, Victoria, Australia
| | | | - Louis Lu
- CSIRO Manufacturing, Parkville, Victoria, Australia
| | - Cameron R Stewart
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Andrew G D Bean
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | | |
Collapse
|
59
|
Jeong H, Seong BL. Exploiting virus-like particles as innovative vaccines against emerging viral infections. J Microbiol 2017; 55:220-230. [PMID: 28243941 PMCID: PMC7090582 DOI: 10.1007/s12275-017-7058-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 01/20/2023]
Abstract
Emerging viruses pose a major threat to humans and livestock with global public health and economic burdens. Vaccination remains an effective tool to reduce this threat, and yet, the conventional cell culture often fails to produce sufficient vaccine dose. As an alternative to cell-culture based vaccine, virus-like particles (VLPs) are considered as a highpriority vaccine strategy against emerging viruses. VLPs represent highly ordered repetitive structures via macromolecular assemblies of viral proteins. The particulate nature allows efficient uptake into antigen presenting cells stimulating both innate and adaptive immune responses towards enhanced vaccine efficacy. Increasing research activity and translation opportunity necessitate the advances in the design of VLPs and new bioprocessing modalities for efficient and cost-effective production. Herein, we describe major achievements and challenges in this endeavor, with respect to designing strategies to harnessing the immunogenic potential, production platforms, downstream processes, and some exemplary cases in developing VLP-based vaccines.
Collapse
Affiliation(s)
- Hotcherl Jeong
- Department of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Baik Lin Seong
- Department of Biotechnology & Vaccine Translational Research Center, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
60
|
Thibault PA, Watkinson RE, Moreira-Soto A, Drexler JF, Lee B. Zoonotic Potential of Emerging Paramyxoviruses: Knowns and Unknowns. Adv Virus Res 2017; 98:1-55. [PMID: 28433050 PMCID: PMC5894875 DOI: 10.1016/bs.aivir.2016.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The risk of spillover of enzootic paramyxoviruses and the susceptibility of recipient human and domestic animal populations are defined by a broad collection of ecological and molecular factors that interact in ways that are not yet fully understood. Nipah and Hendra viruses were the first highly lethal zoonotic paramyxoviruses discovered in modern times, but other paramyxoviruses from multiple genera are present in bats and other reservoirs that have unknown potential to spillover into humans. We outline our current understanding of paramyxovirus reservoir hosts and the ecological factors that may drive spillover, and we explore the molecular barriers to spillover that emergent paramyxoviruses may encounter. By outlining what is known about enzootic paramyxovirus receptor usage, mechanisms of innate immune evasion, and other host-specific interactions, we highlight the breadth of unexplored avenues that may be important in understanding paramyxovirus emergence.
Collapse
Affiliation(s)
| | - Ruth E Watkinson
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Jan F Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
61
|
Petkovic K, Metcalfe G, Chen H, Gao Y, Best M, Lester D, Zhu Y. Rapid detection of Hendra virus antibodies: an integrated device with nanoparticle assay and chaotic micromixing. LAB ON A CHIP 2016; 17:169-177. [PMID: 27921111 DOI: 10.1039/c6lc01263a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Current diagnosis of infectious diseases such as Hendra virus (HeV) relies mostly on laboratory-based tests. There is an urgent demand for rapid diagnosis technology to detect and identify these diseases in humans and animals so that disease spread can be controlled. In this study, an integrated lab-on-a-chip device using a magnetic nanoparticle immunoassay is developed. The key features of the device are the chaotic fluid mixing, achieved by magnetically driven motion of nanoparticles with the optimal mixing protocol developed using chaotic transport theory, and the automatic liquid handling system for loading reagents and samples. The device has been demonstrated to detect Hendra virus antibodies in dilute horse serum samples within a short time of 15 minutes and the limit of detection is about 0.48 ng ml-1. The device platform can potentially be used for field detection of viruses and other biological and chemical substances.
Collapse
Affiliation(s)
- K Petkovic
- CSIRO Manufacturing, Private Bag 10, Clayton, Melbourne, VIC 3169, Australia.
| | - G Metcalfe
- CSIRO Manufacturing, Private Bag 10, Clayton, Melbourne, VIC 3169, Australia. and Swinburne University of Technology, Hawthorn, VIC 3122, Australia and Monash University, Clayton, VIC 3800, Australia
| | - H Chen
- CSIRO Manufacturing, Private Bag 10, Clayton, Melbourne, VIC 3169, Australia. and Harbin Institute of technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Y Gao
- CSIRO Manufacturing, Private Bag 10, Clayton, Melbourne, VIC 3169, Australia.
| | - M Best
- CSIRO Manufacturing, Private Bag 10, Clayton, Melbourne, VIC 3169, Australia.
| | - D Lester
- RMIT University, Melbourne, VIC 3001, Australia
| | - Y Zhu
- CSIRO Manufacturing, Private Bag 10, Clayton, Melbourne, VIC 3169, Australia. and Harbin Institute of technology (Shenzhen), Shenzhen, Guangdong 518055, China and RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
62
|
Foo CH, Rootes CL, Cowley K, Marsh GA, Gould CM, Deffrasnes C, Cowled CJ, Klein R, Riddell SJ, Middleton D, Simpson KJ, Wang LF, Bean AGD, Stewart CR. Dual microRNA Screens Reveal That the Immune-Responsive miR-181 Promotes Henipavirus Entry and Cell-Cell Fusion. PLoS Pathog 2016; 12:e1005974. [PMID: 27783670 PMCID: PMC5082662 DOI: 10.1371/journal.ppat.1005974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/03/2016] [Indexed: 12/24/2022] Open
Abstract
Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are bat-borne viruses that cause fatal disease in humans and a range of other mammalian species. Gaining a deeper understanding of host pathways exploited by henipaviruses for infection may identify targets for new anti-viral therapies. Here we have performed genome-wide high-throughput agonist and antagonist screens at biosafety level 4 to identify host-encoded microRNAs (miRNAs) impacting henipavirus infection in human cells. Members of the miR-181 and miR-17~93 families strongly promoted Hendra virus infection. miR-181 also promoted Nipah virus infection, but did not affect infection by paramyxoviruses from other genera, indicating specificity in the virus-host interaction. Infection promotion was primarily mediated via the ability of miR-181 to significantly enhance henipavirus-induced membrane fusion. Cell signalling receptors of ephrins, namely EphA5 and EphA7, were identified as novel negative regulators of henipavirus fusion. The expression of these receptors, as well as EphB4, were suppressed by miR-181 overexpression, suggesting that simultaneous inhibition of several Ephs by the miRNA contributes to enhanced infection and fusion. Immune-responsive miR-181 levels was also up-regulated in the biofluids of ferrets and horses infected with Hendra virus, suggesting that the host innate immune response may promote henipavirus spread and exacerbate disease severity. This study is the first genome-wide screen of miRNAs influencing infection by a clinically significant mononegavirus and nominates select miRNAs as targets for future anti-viral therapy development.
Collapse
Affiliation(s)
- Chwan Hong Foo
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Christina L. Rootes
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Karla Cowley
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Glenn A. Marsh
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Cathryn M. Gould
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Celine Deffrasnes
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Christopher J. Cowled
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Reuben Klein
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Sarah J. Riddell
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Deborah Middleton
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Kaylene J. Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Lin-Fa Wang
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Andrew G. D. Bean
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Cameron R. Stewart
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- * E-mail:
| |
Collapse
|
63
|
Pickering BS, Hardham JM, Smith G, Weingartl ET, Dominowski PJ, Foss DL, Mwangi D, Broder CC, Roth JA, Weingartl HM. Protection against henipaviruses in swine requires both, cell-mediated and humoral immune response. Vaccine 2016; 34:4777-86. [PMID: 27544586 DOI: 10.1016/j.vaccine.2016.08.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are members of the genus Henipavirus, within the family Paramyxoviridae. Nipah virus has caused outbreaks of human disease in Bangladesh, Malaysia, Singapore, India and Philippines, in addition to a large outbreak in swine in Malaysia in 1998/1999. Recently, NiV was suspected to be a causative agent of an outbreak in horses in 2014 in the Philippines, while HeV has caused multiple human and equine outbreaks in Australia since 1994. A swine vaccine able to prevent shedding of infectious virus is of veterinary and human health importance, and correlates of protection against henipavirus infection in swine need to be better understood. In the present study, three groups of animals were employed. Pigs vaccinated with adjuvanted recombinant soluble HeV G protein (sGHEV) and challenged with HeV, developed antibody levels considered to be protective prior to the challenge (titers of 320). However, activation of the cell-mediated immune response was not detected, and the animals were only partially protected against challenge with 5×10(5) PFU of HeV per animal. In the second group, cross-neutralizing antibody levels against NiV in the sGHEV vaccinated animals did not reach protective levels, and with no activation of cellular immune memory, these animals were not protected against NiV. Only pigs orally infected with 5×10(4) PFU of NiV per animal were protected against nasal challenge with 5×10(5) PFU of NiV per animal. This group of pigs developed protective antibody levels, as well as cell-mediated immune memory. Peripheral blood mononuclear cells restimulated with UV-inactivated NiV upregulated IFN-gamma, IL-10 and the CD25 activation marker on CD4(+)CD8(+) T memory helper cells and to lesser extent on CD4(-)CD8(+) T cells. In conclusion, both humoral and cellular immune responses were required for protection of swine against henipaviruses.
Collapse
Affiliation(s)
- Brad S Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - John M Hardham
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Greg Smith
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Eva T Weingartl
- School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul J Dominowski
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Dennis L Foss
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Duncan Mwangi
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - James A Roth
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA; Transboundary Animal Biologics, Inc, Ames, IA 50010, USA
| | - Hana M Weingartl
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
64
|
DeBuysscher BL, Scott D, Thomas T, Feldmann H, Prescott J. Peri-exposure protection against Nipah virus disease using a single-dose recombinant vesicular stomatitis virus-based vaccine. NPJ Vaccines 2016; 1:16002. [PMID: 28706736 PMCID: PMC5505655 DOI: 10.1038/npjvaccines.2016.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/26/2016] [Accepted: 05/08/2016] [Indexed: 11/08/2022] Open
Abstract
Nipah virus is a zoonotic paramyxovirus that causes severe disease in humans and animals. Due to almost yearly outbreaks in Bangladesh, and a large outbreak in Malaysia that lead to the shutdown of swine export, Nipah virus is both a threat to public health and the economy. Infection is associated with respiratory distress, encephalitis and human-to-human transmission, resulting in high case fatality rates during outbreaks. This study aims to address the amount of time needed until protection from a recombinant vesicular stomatitis virus-based vaccine candidate expressing the Nipah virus glycoprotein (G), which we have previously shown to protect hamsters and non-human primates when administered 28 days before challenge. We found that a single-dose vaccination, when administered 1 day before challenge, reduced viral load, limited pathology and fully protected hamsters from Nipah virus infection. The vaccine was even partially protective when administered at early time points following challenge with Nipah virus. These data indicate that a single administration of this vaccine to high-risk individuals, such as family members and health-care workers of infected patients, could be protective and useful for reducing human-to-human transmission and curbing an outbreak.
Collapse
Affiliation(s)
- Blair L DeBuysscher
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Tina Thomas
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Joseph Prescott
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| |
Collapse
|
65
|
Guillaume-Vasselin V, Lemaitre L, Dhondt KP, Tedeschi L, Poulard A, Charreyre C, Horvat B. Protection from Hendra virus infection with Canarypox recombinant vaccine. NPJ Vaccines 2016; 1:16003. [PMID: 29263849 PMCID: PMC5707888 DOI: 10.1038/npjvaccines.2016.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 04/14/2016] [Accepted: 05/25/2016] [Indexed: 11/18/2022] Open
Abstract
Hendra virus (HeV) is an emerging zoonotic pathogen, which causes severe respiratory illness and encephalitis in humans and horses. Since its first appearance in 1994, spillovers of HeV from its natural reservoir fruit bats occur on almost an annual basis. The high mortality rate in both humans and horses and the wide-ranging reservoir distribution are making HeV a serious public health problem, especially for people exposed to sick horses. This study has aimed to develop an efficient low-cost HeV vaccine for horses based on Canarypox recombinant vector expressing HeV glycoproteins, attachment glycoprotein (G) and fusion protein (F). This vaccine was used to immunise hamsters and then challenged intraperitoneally with HeV 3 weeks later. The higher tested dose of the vaccine efficiently prevented oropharyngeal virus shedding and protected animals from clinical disease and virus-induced mortality. Vaccine induced generation of seroneutralising antibodies and prevented virus-induced histopathological changes and a production of viral RNA and antigens in animal tissues. Interestingly, some vaccinated animals, including those immunised at a lower dose, were protected in the absence of detectable specific antibodies, suggesting the induction of an efficient virus-specific cellular immunity. Finally, ponies immunised using the same vaccination protocol as hamsters developed strong seroneutralising titres against both HeV and closely related Nipah virus, indicating that this vaccine may have the ability to induce cross-protection against Henipavirus infection. These data suggest that Canarypox-based vectors encoding for HeV glycoproteins present very promising new vaccine candidate to prevent infection and shedding of the highly lethal HeV.
Collapse
Affiliation(s)
- Vanessa Guillaume-Vasselin
- CIRI, International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,CNRS, UMR5308, Lyon, France.,Université Lyon 1, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| | | | - Kévin P Dhondt
- CIRI, International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,CNRS, UMR5308, Lyon, France.,Université Lyon 1, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | - Branka Horvat
- CIRI, International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,CNRS, UMR5308, Lyon, France.,Université Lyon 1, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
66
|
Clayton BA, Middleton D, Arkinstall R, Frazer L, Wang LF, Marsh GA. The Nature of Exposure Drives Transmission of Nipah Viruses from Malaysia and Bangladesh in Ferrets. PLoS Negl Trop Dis 2016; 10:e0004775. [PMID: 27341030 PMCID: PMC4920392 DOI: 10.1371/journal.pntd.0004775] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/24/2016] [Indexed: 12/27/2022] Open
Abstract
Person-to-person transmission is a key feature of human Nipah virus outbreaks in Bangladesh. In contrast, in an outbreak of Nipah virus in Malaysia, people acquired infections from pigs. It is not known whether this important epidemiological difference is driven primarily by differences between NiV Bangladesh (NiV-BD) and Malaysia (NiV-MY) at a virus level, or by environmental or host factors. In a time course study, ferrets were oronasally exposed to equivalent doses of NiV-BD or NiV-MY. More rapid onset of productive infection and higher levels of virus replication in respiratory tract tissues were seen for NiV-BD compared to NiV-MY, corroborating our previous report of increased oral shedding of NiV-BD in ferrets and suggesting a contributory mechanism for increased NiV-BD transmission between people compared to NiV-MY. However, we recognize that transmission occurs within a social and environmental framework that may have an important and differentiating role in NiV transmission rates. With this in mind, ferret-to-ferret transmission of NiV-BD and NiV-MY was assessed under differing viral exposure conditions. Transmission was not identified for either virus when naïve ferrets were cohoused with experimentally-infected animals. In contrast, all naïve ferrets developed acute infection following assisted and direct exposure to oronasal fluid from animals that were shedding either NiV-BD or NiV-MY. Our findings for ferrets indicate that, although NiV-BD may be shed at higher levels than NiV-MY, transmission risk may be equivalently low under exposure conditions provided by cohabitation alone. In contrast, active transfer of infected bodily fluids consistently results in transmission, regardless of the virus strain. These observations suggest that the risk of NiV transmission is underpinned by social and environmental factors, and will have practical implications for managing transmission risk during outbreaks of human disease.
Collapse
Affiliation(s)
- Bronwyn A. Clayton
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Deborah Middleton
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Rachel Arkinstall
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Leah Frazer
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Lin-Fa Wang
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
- Program in Emerging Infectious Disease, Duke–National University of Singapore Graduate Medical School, Singapore
| | - Glenn A. Marsh
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
- * E-mail:
| |
Collapse
|
67
|
Zahoor B. Rebuttal to Peel et al. Re: 'The imperative to develop a human vaccine for the Hendra virus in Australia'. Infect Ecol Epidemiol 2016; 6:31659. [PMID: 27151274 PMCID: PMC4858497 DOI: 10.3402/iee.v6.31659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bilal Zahoor
- University of Queensland, Brisbane, QLD, AU 4005;
| |
Collapse
|
68
|
Broder CC, Weir DL, Reid PA. Hendra virus and Nipah virus animal vaccines. Vaccine 2016; 34:3525-34. [PMID: 27154393 DOI: 10.1016/j.vaccine.2016.03.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/30/2015] [Accepted: 03/11/2016] [Indexed: 01/07/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are zoonotic viruses that emerged in the mid to late 1990s causing disease outbreaks in livestock and people. HeV appeared in Queensland, Australia in 1994 causing a severe respiratory disease in horses along with a human case fatality. NiV emerged a few years later in Malaysia and Singapore in 1998-1999 causing a large outbreak of encephalitis with high mortality in people and also respiratory disease in pigs which served as amplifying hosts. The key pathological elements of HeV and NiV infection in several species of mammals, and also in people, are a severe systemic and often fatal neurologic and/or respiratory disease. In people, both HeV and NiV are also capable of causing relapsed encephalitis following recovery from an acute infection. The known reservoir hosts of HeV and NiV are several species of pteropid fruit bats. Spillovers of HeV into horses continue to occur in Australia and NiV has caused outbreaks in people in Bangladesh and India nearly annually since 2001, making HeV and NiV important transboundary biological threats. NiV in particular possesses several features that underscore its potential as a pandemic threat, including its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals, along with a capacity of limited human-to-human transmission. Several HeV and NiV animal challenge models have been developed which have facilitated an understanding of pathogenesis and allowed for the successful development of both active and passive immunization countermeasures.
Collapse
Affiliation(s)
- Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, United States.
| | - Dawn L Weir
- Navy Environmental and Preventive Medicine Unit Six, Joint Base Pearl Harbor Hickam, HI, 96860, United States
| | - Peter A Reid
- Equine Veterinary Surgeon, Brisbane, Queensland, 4034, Australia
| |
Collapse
|
69
|
Wynne JW, Woon AP, Dudek NL, Croft NP, Ng JHJ, Baker ML, Wang LF, Purcell AW. Characterization of the Antigen Processing Machinery and Endogenous Peptide Presentation of a Bat MHC Class I Molecule. THE JOURNAL OF IMMUNOLOGY 2016; 196:4468-76. [PMID: 27183594 DOI: 10.4049/jimmunol.1502062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/23/2016] [Indexed: 11/19/2022]
Abstract
Bats are a major reservoir of emerging and re-emerging infectious diseases, including severe acute respiratory syndrome-like coronaviruses, henipaviruses, and Ebola virus. Although highly pathogenic to their spillover hosts, bats harbor these viruses, and a large number of other viruses, with little or no clinical signs of disease. How bats asymptomatically coexist with these viruses is unknown. In particular, little is known about bat adaptive immunity, and the presence of functional MHC molecules is mostly inferred from recently described genomes. In this study, we used an affinity purification/mass spectrometry approach to demonstrate that a bat MHC class I molecule, Ptal-N*01:01, binds antigenic peptides and associates with peptide-loading complex components. We identified several bat MHC class I-binding partners, including calnexin, calreticulin, protein disulfide isomerase A3, tapasin, TAP1, and TAP2. Additionally, endogenous peptide ligands isolated from Ptal-N*01:01 displayed a relatively broad length distribution and an unusual preference for a C-terminal proline residue. Finally, we demonstrate that this preference for C-terminal proline residues was observed in Hendra virus-derived peptides presented by Ptal-N*01:01 on the surface of infected cells. To our knowledge, this is the first study to identify endogenous and viral MHC class I ligands for any bat species and, as such, provides an important avenue for monitoring and development of vaccines against major bat-borne viruses both in the reservoir and spillover hosts. Additionally, it will provide a foundation to understand the role of adaptive immunity in bat antiviral responses.
Collapse
Affiliation(s)
- James W Wynne
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Amanda P Woon
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Nadine L Dudek
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Nathan P Croft
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Justin H J Ng
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, Singapore 169857, Republic of Singapore
| | - Michelle L Baker
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Lin-Fa Wang
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, Singapore 169857, Republic of Singapore
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| |
Collapse
|
70
|
Ren B, McKinstry WJ, Pham T, Newman J, Layton DS, Bean AG, Chen Z, Laurie KL, Borg K, Barr IG, Adams TE. Structural and functional characterisation of ferret interleukin-2. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:32-38. [PMID: 26472619 PMCID: PMC7102629 DOI: 10.1016/j.dci.2015.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
While the ferret is a valuable animal model for a number of human viral infections, such as influenza, Hendra and Nipah, evaluating the cellular immune response following infection has been hampered by the lack of a number of species-specific immunological reagents. Interleukin 2 (IL-2) is one such key cytokine. Ferret recombinant IL-2 incorporating a C-terminal histidine tag was expressed and purified and the three-dimensional structure solved and refined at 1.89 Å by X-ray crystallography, which represents the highest resolution and first non-human IL-2 structure. While ferret IL-2 displays the classic cytokine fold of the four-helix bundle structure, conformational flexibility was observed at the second helix and its neighbouring region in the bundle, which may result in the disruption of the spatial arrangement of residues involved in receptor binding interactions, implicating subtle differences between ferret and human IL-2 when initiating biological functions. Ferret recombinant IL-2 stimulated the proliferation of ferret lymph node cells and induced the expression of mRNA for IFN-γ and Granzyme A.
Collapse
Affiliation(s)
- Bin Ren
- CSIRO Manufacturing, Parkville, VIC 3052, Australia
| | | | - Tam Pham
- CSIRO Manufacturing, Parkville, VIC 3052, Australia
| | - Janet Newman
- CSIRO Manufacturing, Parkville, VIC 3052, Australia
| | | | - Andrew G Bean
- CSIRO Health and Biosecurity, Geelong, VIC 3219, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute, Melbourne, VIC 3000, Australia
| | - Karen L Laurie
- WHO Collaborating Centre for Reference and Research on Influenza (VIDRL), Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Kathryn Borg
- WHO Collaborating Centre for Reference and Research on Influenza (VIDRL), Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza (VIDRL), Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | | |
Collapse
|
71
|
Henipaviruses. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153454 DOI: 10.1007/978-3-319-33133-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The first henipaviruses, Hendra virus (HeV), and Nipah virus (NiV) were pathogenic zoonoses that emerged in the mid to late 1990s causing serious disease outbreaks in livestock and humans. HeV was recognized in Australia 1994 in horses exhibiting respiratory disease along with a human case fatality, and then NiV was identified during a large outbreak of human cases of encephalitis with high mortality in Malaysia and Singapore in 1998–1999 along with respiratory disease in pigs which served as amplifying hosts. The recently identified third henipavirus isolate, Cedar virus (CedPV), is not pathogenic in animals susceptible to HeV and NiV disease. Molecular detection of additional henipavirus species has been reported but no additional isolates of virus have been reported. Central pathological features of both HeV and NiV infection in humans and several susceptible animal species is a severe systemic and often fatal neurologic and/or respiratory disease. In people, both viruses can also manifest relapsed encephalitis following recovery from an acute infection, particularly NiV. The recognized natural reservoir hosts of HeV, NiV, and CedPV are pteropid bats, which do not show clinical illness when infected. With spillovers of HeV continuing to occur in Australia and NiV in Bangladesh and India, these henipaviruses continue to be important transboundary biological threats. NiV in particular possesses several features that highlight a pandemic potential, such as its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals along with a capacity of limited human-to-human transmission. Several henipavirus animal challenge models have been developed which has aided in understanding HeV and NiV pathogenesis as well as how they invade the central nervous system, and successful active and passive immunization strategies against HeV and NiV have been reported which target the viral envelope glycoproteins.
Collapse
|
72
|
Fischer K, dos Reis VP, Finke S, Sauerhering L, Stroh E, Karger A, Maisner A, Groschup MH, Diederich S, Balkema-Buschmann A. Expression, characterisation and antigenicity of a truncated Hendra virus attachment protein expressed in the protozoan host Leishmania tarentolae. J Virol Methods 2015; 228:48-54. [PMID: 26585033 DOI: 10.1016/j.jviromet.2015.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
Hendra virus (HeV) is an emerging zoonotic paramyxovirus within the genus Henipavirus that has caused severe morbidity and mortality in humans and horses in Australia since 1994. HeV infection of host cells is mediated by the membrane bound attachment (G) and fusion (F) glycoproteins, that are essential for receptor binding and fusion of viral and cellular membranes. The eukaryotic unicellular parasite Leishmania tarentolae has recently been established as a powerful tool to express recombinant proteins with mammalian-like glycosylation patterns, but only few viral proteins have been expressed in this system so far. Here, we describe the purification of a truncated, Strep-tag labelled and soluble version of the HeV attachment protein (sHeV G) expressed in stably transfected L. tarentolae cells. After Strep-tag purification the identity of sHeV G was confirmed by immunoblotting and mass spectrometry. The functional binding of sHeV G to the HeV cell entry receptor ephrin-B2 was confirmed in several binding assays. Generated polyclonal rabbit antiserum against sHeV G reacted with both HeV and Nipah virus (NiV) G proteins in immunofluorescence assay and efficiently neutralised NiV infection, thus further supporting the preserved antigenicity of the purified protein.
Collapse
Affiliation(s)
- Kerstin Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Vinicius Pinho dos Reis
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Eileen Stroh
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Sandra Diederich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany.
| |
Collapse
|
73
|
Zahoor BA, Mudie LI. The imperative to develop a human vaccine for the Hendra virus in Australia. Infect Ecol Epidemiol 2015; 5:29619. [PMID: 26519254 PMCID: PMC4627939 DOI: 10.3402/iee.v5.29619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 11/14/2022] Open
Abstract
The Hendra virus (HeV) poses a significant challenge to public health in Australia. Expanding migratory patterns observed among bats and the mutation of the virus to seek and successfully infect new hosts is a significant departure from the generalized epidemiological trend. The recent discovery of equine-related infections and deaths in addition to a canine infection demonstrates the inadequacy of the current equine vaccine developed in 2012. Traditional models for controlling the spread of the vector are futile given the rapid pace at which bats' habitats are eroded. Recent ongoing zoonotic epidemics, for example, Ebola and Middle East respiratory syndrome coronavirus, demonstrate that human-to-human transmission is a distinct reality rather than an obscure possibility. The development of a human HeV vaccine is essential for the biosecurity of Australia, as part of a multipronged strategy to control HeV in Australia.
Collapse
Affiliation(s)
- Bilal A Zahoor
- Department of Infectious Disease Epidemiology, School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Surgery, School of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Department of Trauma, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia;
| | - Lucy I Mudie
- Department of Infectious Disease Epidemiology, School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
74
|
Ong KC, Wong KT. Henipavirus Encephalitis: Recent Developments and Advances. Brain Pathol 2015; 25:605-13. [PMID: 26276024 PMCID: PMC7161744 DOI: 10.1111/bpa.12278] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 06/18/2015] [Indexed: 01/27/2023] Open
Abstract
The genus Henipavirus within the family Paramyxoviridae includes the Hendra virus (HeV) and Nipah virus (NiV) which were discovered in the 1990s in Australia and Malaysia, respectively, after emerging to cause severe and often fatal outbreaks in humans and animals. While HeV is confined to Australia, more recent NiV outbreaks have been reported in Bangladesh, India and the Philippines. The clinical manifestations of both henipaviruses in humans appear similar, with a predominance of an acute encephalitic syndrome. Likewise, the pathological features are similar and characterized by disseminated, multi-organ vasculopathy comprising endothelial infection/ulceration, vasculitis, vasculitis-induced thrombosis/occlusion, parenchymal ischemia/microinfarction, and parenchymal cell infection in the central nervous system (CNS), lung, kidney and other major organs. This unique dual pathogenetic mechanism of vasculitis-induced microinfarction and neuronal infection causes severe tissue damage in the CNS. Both viruses can also cause relapsing encephalitis months and years after the acute infection. Many animal models studied to date have largely confirmed the pathology of henipavirus infection, and provided the means to test new therapeutic agents and vaccines. As the bat is the natural host of henipaviruses and has worldwide distribution, spillover events into human populations are expected to occur in the future.
Collapse
Affiliation(s)
- Kien Chai Ong
- Department of Biomedical ScienceFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Kum Thong Wong
- Department ofPathologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| |
Collapse
|
75
|
Gao Y, Pallister J, Lapierre F, Crameri G, Wang LF, Zhu Y. A rapid assay for Hendra virus IgG antibody detection and its titre estimation using magnetic nanoparticles and phycoerythrin. J Virol Methods 2015; 222:170-7. [DOI: 10.1016/j.jviromet.2015.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 01/21/2023]
|
76
|
Pearce LA, Yu M, Waddington LJ, Barr JA, Scoble JA, Crameri GS, McKinstry WJ. Structural characterization by transmission electron microscopy and immunoreactivity of recombinant Hendra virus nucleocapsid protein expressed and purified from Escherichia coli. Protein Expr Purif 2015. [PMID: 26196500 PMCID: PMC7129954 DOI: 10.1016/j.pep.2015.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recombinant HeV N was expressed in a soluble from in E. coli. HeV N purified by IMAC and SEC formed higher order oligomers. Negative-stain EM images of recombinant HeV N indicated self-assembly to form helical chains of nucleocapsids. Recombinant forms of HeV N were immuno-reactive with sera from infected animals and humans.
Hendra virus (family Paramyxoviridae) is a negative sense single-stranded RNA virus (NSRV) which has been found to cause disease in humans, horses, and experimentally in other animals, e.g. pigs and cats. Pteropid bats commonly known as flying foxes have been identified as the natural host reservoir. The Hendra virus nucleocapsid protein (HeV N) represents the most abundant viral protein produced by the host cell, and is highly immunogenic with naturally infected humans and horses producing specific antibodies towards this protein. The purpose of this study was to express and purify soluble, functionally active recombinant HeV N, suitable for use as an immunodiagnostic reagent to detect antibodies against HeV. We expressed both full-length HeV N, (HeV NFL), and a C-terminal truncated form, (HeV NCORE), using a bacterial heterologous expression system. Both HeV N constructs were engineered with an N-terminal Hisx6 tag, and purified using a combination of immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC). Purified recombinant HeV N proteins self-assembled into soluble higher order oligomers as determined by SEC and negative-stain transmission electron microscopy. Both HeV N proteins were highly immuno-reactive with sera from animals and humans infected with either HeV or the closely related Nipah virus (NiV), but displayed no immuno-reactivity towards sera from animals infected with a non-pathogenic paramyxovirus (CedPV), or animals receiving Equivac® (HeV G glycoprotein subunit vaccine), using a Luminex-based multiplexed microsphere assay.
Collapse
Affiliation(s)
- Lesley A Pearce
- CSIRO Manufacturing Flagship, Parkville, Victoria, Australia.
| | - Meng Yu
- CSIRO Australian Animal Health Laboratory and Biosecurity Flagship, Geelong, Victoria, Australia
| | | | - Jennifer A Barr
- CSIRO Australian Animal Health Laboratory and Biosecurity Flagship, Geelong, Victoria, Australia
| | - Judith A Scoble
- CSIRO Manufacturing Flagship, Parkville, Victoria, Australia
| | - Gary S Crameri
- CSIRO Australian Animal Health Laboratory and Biosecurity Flagship, Geelong, Victoria, Australia
| | | |
Collapse
|
77
|
Gilkerson JR, Bailey KE, Diaz-Méndez A, Hartley CA. Update on Viral Diseases of the Equine Respiratory Tract. Vet Clin North Am Equine Pract 2015; 31:91-104. [DOI: 10.1016/j.cveq.2014.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
78
|
Enkirch T, von Messling V. Ferret models of viral pathogenesis. Virology 2015; 479-480:259-70. [PMID: 25816764 PMCID: PMC7111696 DOI: 10.1016/j.virol.2015.03.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 01/28/2015] [Accepted: 03/02/2015] [Indexed: 11/26/2022]
Abstract
Emerging and well-known viral diseases remain one the most important global public health threats. A better understanding of their pathogenesis and mechanisms of transmission requires animal models that accurately reproduce these aspects of the disease. Here we review the role of ferrets as an animal model for the pathogenesis of different respiratory viruses with an emphasis on influenza and paramyxoviruses. We will describe the anatomic and physiologic characteristics that contribute to the natural susceptibility of ferrets to these viruses, and provide an overview of the approaches available to analyze their immune responses. Recent insights gained using this model will be highlighted, including the development of new prophylactic and therapeutic approaches. To provide decision criteria for the use of this animal model, its strengths and limitations will be discussed. Ferrets as models for respiratory virus pathogenesis. Ferrets as models for vaccine and drug efficacy assessment. Immunological tools for ferrets. Housing and handling of ferrets.
Collapse
Affiliation(s)
- T Enkirch
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - V von Messling
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany.
| |
Collapse
|
79
|
Oh DY, Barr IG, Hurt AC. A novel video tracking method to evaluate the effect of influenza infection and antiviral treatment on ferret activity. PLoS One 2015; 10:e0118780. [PMID: 25738900 PMCID: PMC4349809 DOI: 10.1371/journal.pone.0118780] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/21/2015] [Indexed: 11/21/2022] Open
Abstract
Ferrets are the preferred animal model to assess influenza virus infection, virulence and transmission as they display similar clinical symptoms and pathogenesis to those of humans. Measures of disease severity in the ferret include weight loss, temperature rise, sneezing, viral shedding and reduced activity. To date, the only available method for activity measurement has been the assignment of an arbitrary score by a ‘blind’ observer based on pre-defined responsiveness scale. This manual scoring method is subjective and can be prone to bias. In this study, we described a novel video-tracking methodology for determining activity changes in a ferret model of influenza infection. This method eliminates the various limitations of manual scoring, which include the need for a sole ‘blind’ observer and the requirement to recognise the ‘normal’ activity of ferrets in order to assign relative activity scores. In ferrets infected with an A(H1N1)pdm09 virus, video-tracking was more sensitive than manual scoring in detecting ferret activity changes. Using this video-tracking method, oseltamivir treatment was found to ameliorate the effect of influenza infection on activity in ferret. Oseltamivir treatment of animals was associated with an improvement in clinical symptoms, including reduced inflammatory responses in the upper respiratory tract, lower body weight loss and a smaller rise in body temperature, despite there being no significant reduction in viral shedding. In summary, this novel video-tracking is an easy-to-use, objective and sensitive methodology for measuring ferret activity.
Collapse
Affiliation(s)
- Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- School of Applied and Biomedical Sciences, Federation University, Churchill, Victoria, 3842, Australia
- * E-mail:
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- School of Applied and Biomedical Sciences, Federation University, Churchill, Victoria, 3842, Australia
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
80
|
Oyarzun P, Ellis JJ, Gonzalez-Galarza FF, Jones AR, Middleton D, Boden M, Kobe B. A bioinformatics tool for epitope-based vaccine design that accounts for human ethnic diversity: application to emerging infectious diseases. Vaccine 2015; 33:1267-73. [PMID: 25629524 DOI: 10.1016/j.vaccine.2015.01.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/11/2014] [Accepted: 01/14/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Peptide vaccination based on multiple T-cell epitopes can be used to target well-defined ethnic populations. Because the response to T-cell epitopes is restricted by HLA proteins, the HLA specificity of T-cell epitopes becomes a major consideration for epitope-based vaccine design. We have previously shown that CD4+ T-cell epitopes restricted by 95% of human MHC class II proteins can be predicted with high-specificity. METHODS We describe here the integration of epitope prediction with population coverage and epitope selection algorithms. The population coverage assessment makes use of the Allele Frequency Net Database. We present the computational platform Predivac-2.0 for HLA class II-restricted epitope-based vaccine design, which accounts comprehensively for human genetic diversity. RESULTS We validated the performance of the tool on the identification of promiscuous and immunodominant CD4+ T-cell epitopes from the human immunodeficiency virus (HIV) protein Gag. We further describe an application for epitope-based vaccine design in the context of emerging infectious diseases associated with Lassa, Nipah and Hendra viruses. Putative CD4+ T-cell epitopes were mapped on the surface glycoproteins of these pathogens and are good candidates to be experimentally tested, as they hold potential to provide cognate help in vaccination settings in their respective target populations. CONCLUSION Predivac-2.0 is a novel approach in epitope-based vaccine design, particularly suited to be applied to virus-related emerging infectious diseases, because the geographic distributions of the viruses are well defined and ethnic populations in need of vaccination can be determined ("ethnicity-oriented approach"). Predivac-2.0 is accessible through the website http://predivac.biosci.uq.edu.au/.
Collapse
Affiliation(s)
- Patricio Oyarzun
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Australia; Biotechnology Centre, Universidad San Sebastián, Concepción, Chile.
| | - Jonathan J Ellis
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Australia
| | | | - Andrew R Jones
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Derek Middleton
- Transplant Immunology Laboratory, Royal Liverpool University Hospital & School of Infection and Host Defence University of Liverpool, United Kingdom
| | - Mikael Boden
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Australia; School of Information Technology and Electrical Engineering, University of Queensland, Queensland 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Australia.
| |
Collapse
|
81
|
Monaghan P, Green D, Pallister J, Klein R, White J, Williams C, McMillan P, Tilley L, Lampe M, Hawes P, Wang LF. Detailed morphological characterisation of Hendra virus infection of different cell types using super-resolution and conventional imaging. Virol J 2014; 11:200. [PMID: 25428656 PMCID: PMC4254186 DOI: 10.1186/s12985-014-0200-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/07/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hendra virus (HeV) is a pleomorphic virus belonging to the Paramyxovirus family. Our long-term aim is to understand the process of assembly of HeV virions. As a first step, we sought to determine the most appropriate cell culture system with which to study this process, and then to use this model to define the morphology of the virus and identify the site of assembly by imaging key virus encoded proteins in infected cells. METHODS A range of primary cells and immortalised cell lines were infected with HeV, fixed at various time points post-infection, labelled for HeV proteins and imaged by confocal, super-resolution and transmission electron microscopy. RESULTS Significant differences were noted in viral protein distribution depending on the infected cell type. At 8 hpi HeV G protein was detected in the endoplasmic reticulum and M protein was seen predominantly in the nucleus in all cells tested. At 18 hpi, HeV-infected Vero cells showed M and G proteins throughout the cell and in transmission electron microscope (TEM) sections, in pleomorphic virus-like structures. In HeV infected MDBK, A549 and HeLa cells, HeV M protein was seen predominantly in the nucleus with G protein at the membrane. In HeV-infected primary bovine and porcine aortic endothelial cells and two bat-derived cell lines, HeV M protein was not seen at such high levels in the nucleus at any time point tested (8,12, 18, 24, 48 hpi) but was observed predominantly at the cell surface in a punctate pattern co-localised with G protein. These HeV M and G positive structures were confirmed as round HeV virions by TEM and super-resolution (SR) microscopy. SR imaging demonstrated for the first time sub-virion imaging of paramyxovirus proteins and the respective localisation of HeV G, M and N proteins within virions. CONCLUSION These findings provide novel insights into the structure of HeV and show that for HeV imaging studies the choice of tissue culture cells may affect the experimental results. The results also indicate that HeV should be considered a predominantly round virus with a mean diameter of approximately 280 nm by TEM and 310 nm by SR imaging.
Collapse
Affiliation(s)
- Paul Monaghan
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| | - Diane Green
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| | - Jackie Pallister
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| | - Reuben Klein
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| | - John White
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| | - Catherine Williams
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| | - Paul McMillan
- Department of Biochemistry and Molecular Biology, Melbourne, Australia.
- ARC Centre of Excellence for Coherent X-ray Science, Melbourne, Australia.
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3010, Australia.
- Current Address: Biological Optical Microscopy Platform, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Melbourne, Australia.
- ARC Centre of Excellence for Coherent X-ray Science, Melbourne, Australia.
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3010, Australia.
- Current Address: Biological Optical Microscopy Platform, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Marko Lampe
- Leica Microsystems, CMS GmbH, Ernst-Leitz Strasse 17-37, Wetzlar, Germany.
- Current Address: European Molecular Biology Laboratory, Meyerhofstr 1, D-69117, Heidelberg, Germany.
- Current Address: Translational Lung Research Center (TLRC), Department Translational Pulmonology, University of Heidelberg, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - Pippa Hawes
- Pirbright Institute, Pirbright, Woking, Surrey, GU240NF, UK.
| | - Lin-Fa Wang
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
- Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
82
|
Abstract
Hendra virus infection of horses occurred sporadically between 1994 and 2010 as a result of spill-over from the viral reservoir in Australian mainland flying-foxes, and occasional onward transmission to people also followed from exposure to affected horses. An unprecedented number of outbreaks were recorded in 2011 leading to heightened community concern. Release of an inactivated subunit vaccine for horses against Hendra virus represents the first commercially available product that is focused on mitigating the impact of a Biosafety Level 4 pathogen. Through preventing the development of acute Hendra virus disease in horses, vaccine use is also expected to reduce the risk of transmission of infection to people.
Collapse
Affiliation(s)
- Deborah Middleton
- Australian Animal Health Laboratory, CSIRO, PB 24, Geelong, Victoria 3220, Australia.
| |
Collapse
|
83
|
Mendez DH, Kelly J, Buttner P, Nowak M, Speare R. Management of the slowly emerging zoonosis, Hendra virus, by private veterinarians in Queensland, Australia: a qualitative study. BMC Vet Res 2014; 10:215. [PMID: 25224910 PMCID: PMC4173005 DOI: 10.1186/s12917-014-0215-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 09/04/2014] [Indexed: 11/17/2022] Open
Abstract
Background Veterinary infection control for the management of Hendra virus (HeV), an emerging zoonosis in Australia, remained suboptimal until 2010 despite 71.4% (5/7) of humans infected with HeV being veterinary personnel or assisting a veterinarian, three of whom died before 2009. The aim of this study was to identify the perceived barriers to veterinary infection control and HeV management in private veterinary practice in Queensland, where the majority of HeV outbreaks have occurred in Australia. Results Most participants agreed that a number of key factors had contributed to the slow uptake of adequate infection control measures for the management of HeV amongst private veterinarians: a work culture characterised by suboptimal infection control standards and misconceptions about zoonotic risks; a lack of leadership and support from government authorities; the difficulties of managing biosecurity and public health issues from a private workforce perspective; and the slow pattern of emergence of HeV. By 2010, some infection control and HeV management changes had been implemented. Participants interviewed agreed that further improvements remained necessary; but also cautioned that this was a complex process which would require time. Conclusion Private veterinarians and government authorities prior to 2009 were unprepared to handle new slowly emerging zoonoses, which may explain their mismanagement of HeV. Slowly emerging zoonoses may be of low public health significance but of high significance for specialised groups such as veterinarians. Private veterinarians, who are expected to fulfil an active biosecurity and public health role in the frontline management of such emerging zoonoses, need government agencies to better recognise their contribution, to consult with the veterinary profession when devising guidelines for the management of zoonoses and to provide them with greater leadership and support. We propose that specific infection control guidelines for the management of slowly emerging zoonoses in private veterinary settings need to be developed.
Collapse
|
84
|
Hendra virus in Queensland, Australia, during the winter of 2011: veterinarians on the path to better management strategies. Prev Vet Med 2014; 117:40-51. [PMID: 25175674 PMCID: PMC7132398 DOI: 10.1016/j.prevetmed.2014.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 11/13/2022]
Abstract
We surveyed private equine veterinarians about their use of personal protective equipment when examining healthy, sick and dead horses. Practices had official Hendra virus management guidelines and a dedicated field kit available but no standardised management protocols. Not all participants used all possible personal protective equipment when attending horses, regardless of health status. Personal protective equipment usage increased when the likelihood of a horse being infected with the zoonosis Hendra virus increased. Those who had dealt with horses suspected of or were trained in Hendra virus management were more likely to use appropriate protective equipment.
Following the emergence of Hendra virus (HeV), private veterinarians have had to adopt additional infection control strategies to manage this zoonosis. Between 1994 and 2010, seven people became infected with HeV, four fatally. All infected people were at a higher risk of exposure from contact with horses as they were either veterinary personnel, assisting veterinarians, or working in the horse industry. The management of emerging zoonoses is best approached from a One Health perspective as it benefits biosecurity as well as a public health, including the health of those most at risk, in this case private veterinarians. In 2011 we conducted a cross-sectional study of private veterinarians registered in Queensland and providing veterinary services to horses. The aim of this study was to gauge if participants had adopted recommendations for improved infection control, including the use of personal protective equipment (PPE), and the development of HeV specific management strategies during the winter of 2011. A majority of participants worked in practices that had a formal HeV management plan, mostly based on the perusal of official guidelines and an HeV field kit. The use of PPE increased as the health status of an equine patient decreased, demonstrating that many participants evaluated the risk of exposure to HeV appropriately; while others remained at risk of HeV infection by not using the appropriate PPE even when attending a sick horse. This study took place after Biosecurity Queensland had sent a comprehensive package about HeV management to all private veterinarians working in Queensland. However, those who had previous HeV experience through the management of suspected cases or had attended a HeV specific professional education programme in the previous 12 months were more likely to use PPE than those who had not. This may indicate that for private veterinarians in Queensland personal experience and face-to-face professional education sessions may be more effective in the improvement of HeV management than passive education via information packages. The role of different education pathways in the sustainable adoption of veterinary infection control measures should be further investigated.
Collapse
|
85
|
Quinnan GV, Onabajo O, Zhang P, Yan L, Mattapallil JJ, Zhang Z, Dong M, Lu M, Montefiori D, LaBranche C, Broder CC. Immunization of rabbits with highly purified, soluble, trimeric human immunodeficiency virus type 1 envelope glycoprotein induces a vigorous B cell response and broadly cross-reactive neutralization. PLoS One 2014; 9:e98060. [PMID: 24846288 PMCID: PMC4028264 DOI: 10.1371/journal.pone.0098060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 04/19/2014] [Indexed: 11/24/2022] Open
Abstract
Previously we described induction of cross-reactive HIV-1 neutralizing antibody responses in rabbits using a soluble HIV-1 gp140 envelope glycoprotein (Env) in an adjuvant containing monophosphoryl lipid A (MPL) and QS21 (AS02A). Here, we compared different forms of the same HIV-1 strain R2 Env for antigenic and biophysical characteristics, and in rabbits characterized the extent of B cell induction for specific antibody expression and secretion and neutralizing responses. The forms of this Env that were produced in and purified from stably transformed 293T cells included a primarily dimeric gp140, a trimeric gp140 appended to a GCN4 trimerization domain (gp140-GCN4), gp140-GCN4 with a 15 amino acid flexible linker between the gp120 and gp41 ectodomain (gp140-GCN4-L), also trimeric, and a gp140 with the flexible linker purified from cell culture supernatants as either dimer (gp140-L(D)) or monomer (gp140-L(M)). Multimeric states of the Env proteins were assessed by native gel electrophoresis and analytical ultracentrifugation. The different forms of gp140 bound broadly cross-reactive neutralizing (BCN) human monoclonal antibodies (mAbs) similarly in ELISA and immunoprecipitation assays. All Envs bound CD4i mAbs in the presence and absence of sCD4, as reported for the R2 Env. Weak neutralization of some strains of HIV-1 was seen after two additional doses in AS02A. Rabbits that were given a seventh dose of gp140-GCN4-L developed BCN responses that were weak to moderate, similar to our previous report. The specificity of these responses did not appear similar to that of any of the known BCN human mAbs. Induction of spleen B cell and plasma cells producing immunoglobulins that bound trimeric gp140-GCN4-L was vigorous, based on ELISpot and flow cytometry analyses. The results demonstrate that highly purified gp140-GCN4-L trimer in adjuvant elicits BCN responses in rabbits accompanied by vigorous B cell induction.
Collapse
Affiliation(s)
- Gerald V. Quinnan
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| | - Olusegun Onabajo
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Pengfei Zhang
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Joseph J. Mattapallil
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Zhiqiang Zhang
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Ming Dong
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Min Lu
- Department of Microbiology and Molecular Genetics, Public Health Research Institute, New Jersey Medical School, Newark, New Jersey, United States of America
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
86
|
Carolan LA, Butler J, Rockman S, Guarnaccia T, Hurt AC, Reading P, Kelso A, Barr I, Laurie KL. TaqMan real time RT-PCR assays for detecting ferret innate and adaptive immune responses. J Virol Methods 2014; 205:38-52. [PMID: 24797460 PMCID: PMC7113642 DOI: 10.1016/j.jviromet.2014.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 11/16/2022]
Abstract
The ferret model is used to study human disease and physiology. TaqMan realtime RT-PCR assays for ferret cytokine and chemokine mRNA were developed. Cytokine and chemokine patterns in ferret cells were similar to other mammals. A comprehensive panel of mRNAs can be measured in samples of limited quantity.
The ferret is an excellent model for many human infectious diseases including influenza, SARS-CoV, henipavirus and pneumococcal infections. The ferret is also used to study cystic fibrosis and various cancers, as well as reproductive biology and physiology. However, the range of reagents available to measure the ferret immune response is very limited. To address this deficiency, high-throughput real time RT-PCR TaqMan assays were developed to measure the expression of fifteen immune mediators associated with the innate and adaptive immune responses (IFNα, IFNβ, IFNγ, IL1α, IL1β, IL2, IL4, IL6, IL8, IL10, IL12p40, IL17, Granzyme A, MCP1, TNFα), as well as four endogenous housekeeping genes (ATF4, HPRT, GAPDH, L32). These assays have been optimized to maximize reaction efficiency, reduce the amount of sample required (down to 1 ng RNA per real time RT-PCR reaction) and to select the most appropriate housekeeping genes. Using these assays, the expression of each of the tested genes could be detected in ferret lymph node cells stimulated with mitogens or infected with influenza virus in vitro. These new tools will allow a more comprehensive analysis of the ferret immune responses following infection or in other disease states.
Collapse
Affiliation(s)
- Louise A Carolan
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Jeff Butler
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia; CSIRO Australian Animal Health Laboratory, East Geelong, 3219, Australia
| | - Steve Rockman
- bioCSL Limited, Parkville, 3052, Australia; Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3010, Australia
| | - Teagan Guarnaccia
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia; Monash University Gippsland, Churchill, 3842, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Patrick Reading
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Anne Kelso
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Karen L Laurie
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
87
|
Mendez D, Büttner P, Speare R. Response of Australian veterinarians to the announcement of a Hendra virus vaccine becoming available. Aust Vet J 2014; 91:328-31. [PMID: 23889099 DOI: 10.1111/avj.12092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DESIGN A cross-sectional study of private veterinarians providing equine services in Queensland. RESULTS The study revealed that a majority of veterinarians would support the introduction of a Hendra virus (HeV) vaccine. Moreover, almost half of the respondents intended to make vaccination a prerequisite to horse patient presentation. However, participants also responded that a vaccine would not reduce the risk sufficiently to cease or downgrade their HeV management plan and infection control measures. CONCLUSION When devising promoting and marketing campaigns, government agencies and manufacturers should consider private veterinarians' intentions as a significant driver for the uptake of the HeV vaccine.
Collapse
Affiliation(s)
- D Mendez
- Anton Breinl Centre for Public Health and Tropical Medicine, James Cook University, Townsville, 4810, Queensland, Australia.
| | | | | |
Collapse
|
88
|
Middleton D, Pallister J, Klein R, Feng YR, Haining J, Arkinstall R, Frazer L, Huang JA, Edwards N, Wareing M, Elhay M, Hashmi Z, Bingham J, Yamada M, Johnson D, White J, Foord A, Heine HG, Marsh GA, Broder CC, Wang LF. Hendra virus vaccine, a one health approach to protecting horse, human, and environmental health. Emerg Infect Dis 2014; 20:372-9. [PMID: 24572697 PMCID: PMC3944873 DOI: 10.3201/eid2003.131159] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In recent years, the emergence of several highly pathogenic zoonotic diseases in humans has led to a renewed emphasis on the interconnectedness of human, animal, and environmental health, otherwise known as One Health. For example, Hendra virus (HeV), a zoonotic paramyxovirus, was discovered in 1994, and since then, infections have occurred in 7 humans, each of whom had a strong epidemiologic link to similarly affected horses. As a consequence of these outbreaks, eradication of bat populations was discussed, despite their crucial environmental roles in pollination and reduction of the insect population. We describe the development and evaluation of a vaccine for horses with the potential for breaking the chain of HeV transmission from bats to horses to humans, thereby protecting horse, human, and environmental health. The HeV vaccine for horses is a key example of a One Health approach to the control of human disease.
Collapse
Affiliation(s)
| | | | - Reuben Klein
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Yan-Ru Feng
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Jessica Haining
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Rachel Arkinstall
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Leah Frazer
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Jin-An Huang
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Nigel Edwards
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Mark Wareing
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Martin Elhay
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Zia Hashmi
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - John Bingham
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Manabu Yamada
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Dayna Johnson
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - John White
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Adam Foord
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Hans G. Heine
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Glenn A. Marsh
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Christopher C. Broder
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Lin-Fa Wang
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| |
Collapse
|
89
|
Rockx B. Recent developments in experimental animal models of Henipavirus infection. Pathog Dis 2014; 71:199-206. [PMID: 24488776 DOI: 10.1111/2049-632x.12149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/13/2014] [Accepted: 01/23/2014] [Indexed: 11/27/2022] Open
Abstract
Hendra (HeV) and Nipah (NiV) viruses (genus Henipavirus (HNV; family Paramyxoviridae) are emerging zoonotic agents that can cause severe respiratory distress and acute encephalitis in humans. Given the lack of effective therapeutics and vaccines for human use, these viruses are considered as public health concerns. Several experimental animal models of HNV infection have been developed in recent years. Here, we review the current status of four of the most promising experimental animal models (mice, hamsters, ferrets, and African green monkeys) and their suitability for modeling the clinical disease, transmission, pathogenesis, prevention, and treatment for HNV infection in humans.
Collapse
Affiliation(s)
- Barry Rockx
- Galveston National Laboratory, Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
90
|
A recombinant Hendra virus G glycoprotein subunit vaccine protects nonhuman primates against Hendra virus challenge. J Virol 2014; 88:4624-31. [PMID: 24522928 DOI: 10.1128/jvi.00005-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Hendra virus (HeV) is a zoonotic emerging virus belonging to the family Paramyxoviridae. HeV causes severe and often fatal respiratory and/or neurologic disease in both animals and humans. Currently, there are no licensed vaccines or antiviral drugs approved for human use. A number of animal models have been developed for studying HeV infection, with the African green monkey (AGM) appearing to most faithfully reproduce the human disease. Here, we assessed the utility of a newly developed recombinant subunit vaccine based on the HeV attachment (G) glycoprotein in the AGM model. Four AGMs were vaccinated with two doses of the HeV vaccine (sGHeV) containing Alhydrogel, four AGMs received the sGHeV with Alhydrogel and CpG, and four control animals did not receive the sGHeV vaccine. Animals were challenged with a high dose of infectious HeV 21 days after the boost vaccination. None of the eight specifically vaccinated animals showed any evidence of clinical illness and survived the challenge. All four controls became severely ill with symptoms consistent with HeV infection, and three of the four animals succumbed 8 days after exposure. Success of the recombinant subunit vaccine in AGMs provides pivotal data in supporting its further preclinical development for potential human use. IMPORTANCE A Hendra virus attachment (G) glycoprotein subunit vaccine was tested in nonhuman primates to assess its ability to protect them from a lethal infection with Hendra virus. It was found that all vaccinated African green monkeys were completely protected against subsequent Hendra virus infection and disease. The success of this new subunit vaccine in nonhuman primates provides critical data in support of its further development for future human use.
Collapse
|
91
|
Nieto K, Salvetti A. AAV Vectors Vaccines Against Infectious Diseases. Front Immunol 2014; 5:5. [PMID: 24478774 PMCID: PMC3896988 DOI: 10.3389/fimmu.2014.00005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
Since their discovery as a tool for gene transfer, vectors derived from the adeno-associated virus (AAV) have been used for gene therapy applications and attracted scientist to this field for their exceptional properties of efficiency of in vivo gene transfer and the level and duration of transgene expression. For many years, AAVs have been considered as low immunogenic vectors due to their ability to induce long-term expression of non-self-proteins in contrast to what has been observed with other viral vectors, such as adenovirus, for which strong immune responses against the same transgene products were documented. The perceived low immunogenicity likely explains why the use of AAV vectors for vaccination was not seriously considered before the early 2000s. Indeed, while analyses conducted using a variety of transgenes and animal species slowly changed the vision of immunological properties of AAVs, an increasing number of studies were also performed in the field of vaccination. Even if the comparison with other modes of vaccination was not systemically performed, the analyses conducted so far in the field of active immunotherapy strongly suggest that AAVs possess some interesting features to be used as tools to produce an efficient and sustained antibody response. In addition, recent studies also highlighted the potential of AAVs for passive immunotherapy. This review summarizes the main studies conducted to evaluate the potential of AAV vectors for vaccination against infectious agents and discusses their advantages and drawbacks. Altogether, the variety of studies conducted in this field contributes to the understanding of the immunological properties of this versatile virus and to the definition of its possible future applications.
Collapse
Affiliation(s)
- Karen Nieto
- Tumor Immunology Program (D030), German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Anna Salvetti
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon , Lyon , France ; LabEx Ecofect, Université de Lyon , Lyon , France
| |
Collapse
|
92
|
Mire CE, Versteeg KM, Cross RW, Agans KN, Fenton KA, Whitt MA, Geisbert TW. Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah virus disease. Virol J 2013; 10:353. [PMID: 24330654 PMCID: PMC3878732 DOI: 10.1186/1743-422x-10-353] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022] Open
Abstract
Background Nipah virus (NiV) is a highly pathogenic zoonotic agent in the family Paramyxoviridae that is maintained in nature by bats. Outbreaks have occurred in Malaysia, Singapore, India, and Bangladesh and have been associated with 40 to 75% case fatality rates. There are currently no vaccines or postexposure treatments licensed for combating human NiV infection. Methods and results Four groups of ferrets received a single vaccination with different recombinant vesicular stomatitis virus vectors expressing: Group 1, control with no glycoprotein; Group 2, the NiV fusion protein (F); Group 3, the NiV attachment protein (G); and Group 4, a combination of the NiV F and G proteins. Animals were challenged intranasally with NiV 28 days after vaccination. Control ferrets in Group 1 showed characteristic clinical signs of NiV disease including respiratory distress, neurological disorders, viral load in blood and tissues, and gross lesions and antigen in target tissues; all animals in this group succumbed to infection by day 8. Importantly, all specifically vaccinated ferrets in Groups 2-4 showed no evidence of clinical illness and survived challenged. All animals in these groups developed anti-NiV F and/or G IgG and neutralizing antibody titers. While NiV RNA was detected in blood at day 6 post challenge in animals from Groups 2-4, the levels were orders of magnitude lower than animals from control Group 1. Conclusions These data show protective efficacy against NiV in a relevant model of human infection. Further development of this technology has the potential to yield effective single injection vaccines for NiV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd,, Galveston, TX, USA.
| |
Collapse
|
93
|
Monath TP. Vaccines against diseases transmitted from animals to humans: a one health paradigm. Vaccine 2013; 31:5321-38. [PMID: 24060567 PMCID: PMC7130581 DOI: 10.1016/j.vaccine.2013.09.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/08/2013] [Accepted: 09/16/2013] [Indexed: 10/28/2022]
Abstract
This review focuses on the immunization of animals as a means of preventing human diseases (zoonoses). Three frameworks for the use of vaccines in this context are described, and examples are provided of successes and failures. Framework I vaccines are used for protection of humans and economically valuable animals, where neither plays a role in the transmission cycle. The benefit of collaborations between animal health and human health industries and regulators in developing such products is discussed, and one example (West Nile vaccine) of a single product developed for use in animals and humans is described. Framework II vaccines are indicated for domesticated animals as a means of preventing disease in both animals and humans. The agents of concern are transmitted directly or indirectly (e.g. via arthropod vectors) from animals to humans. A number of examples of the use of Framework II vaccines are provided, e.g. against brucellosis, Escherichia coli O157, rabies, Rift Valley fever, Venezuelan equine encephalitis, and Hendra virus. Framework III vaccines are used to immunize wild animals as a means of preventing transmission of disease agents to humans and domesticated animals. Examples are reservoir-targeted, oral bait rabies, Mycobacterium bovis and Lyme disease vaccines. Given the speed and lost cost of veterinary vaccine development, some interventions based on the immunization of animals could lead to rapid and relatively inexpensive advances in public health. Opportunities for vaccine-based approaches to preventing zoonotic and emerging diseases that integrate veterinary and human medicine (the One Health paradigm) are emphasized.
Collapse
Affiliation(s)
- Thomas P Monath
- One Health Initiative Pro Bono Team, United States(1); Austria; PaxVax Inc., United States.
| |
Collapse
|
94
|
Lo MK, Bird BH, Chattopadhyay A, Drew CP, Martin BE, Coleman JD, Rose JK, Nichol ST, Spiropoulou CF. Single-dose replication-defective VSV-based Nipah virus vaccines provide protection from lethal challenge in Syrian hamsters. Antiviral Res 2013; 101:26-9. [PMID: 24184127 DOI: 10.1016/j.antiviral.2013.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 01/02/2023]
Abstract
Nipah virus (NiV) continues to cause outbreaks of fatal human encephalitis due to spillover from its bat reservoir. We determined that a single dose of replication-defective vesicular stomatitis virus (VSV)-based vaccine vectors expressing either the NiV fusion (F) or attachment (G) glycoproteins protected hamsters from over 1000 times LD50 NiV challenge. This highly effective single-dose protection coupled with an enhanced safety profile makes these candidates ideal for potential use in livestock and humans.
Collapse
Affiliation(s)
- Michael K Lo
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Brian H Bird
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Anasuya Chattopadhyay
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Clifton P Drew
- Infectious Disease Pathology Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Brock E Martin
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Joann D Coleman
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - John K Rose
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| |
Collapse
|
95
|
Hazelton B, Ba Alawi F, Kok J, Dwyer DE. Hendra virus: a one health tale of flying foxes, horses and humans. Future Microbiol 2013; 8:461-74. [PMID: 23534359 DOI: 10.2217/fmb.13.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hendra virus, a member of the family Paramyxoviridae, was first recognized following a devastating outbreak in Queensland, Australia, in 1994. The naturally acquired symptomatic infection, characterized by a rapidly progressive illness involving the respiratory system and/or CNS, has so far only been recognized in horses and humans. However, there is potential for other species to be infected, with significant consequences for animal and human health. Prevention of infection involves efforts to interrupt the bat-to-horse and horse-to-human transmission interfaces. Education and infection-control efforts remain the key to reducing risk of transmission, particularly as no effective antiviral treatment is currently available. The recent release of an equine Hendra G glycoprotein subunit vaccine is an exciting advance that offers the opportunity to curb the recent increase in equine transmission events occurring in endemic coastal regions of Australia and thereby reduce the risk of infection in humans.
Collapse
Affiliation(s)
- Briony Hazelton
- Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, New South Wales 2145, Australia.
| | | | | | | |
Collapse
|
96
|
Croser EL, Marsh GA. The changing face of the henipaviruses. Vet Microbiol 2013; 167:151-8. [PMID: 23993256 DOI: 10.1016/j.vetmic.2013.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/12/2013] [Accepted: 08/05/2013] [Indexed: 01/11/2023]
Abstract
The Henipavirus genus represents a group of paramyxoviruses that are some of the deadliest of known human and veterinary pathogens. Hendra and Nipah viruses are zoonotic pathogens that can cause respiratory and encephalitic illness in humans with mortality rates that exceed 70%. Over the past several years, we have seen an increase in the number of cases and an altered clinical presentation of Hendra virus in naturally infected horses. Recent increase in the number of cases has also been reported with human Nipah virus infections in Bangladesh. These factors, along with the recent discovery of henipa and henipa-like viruses in Africa, Asia and South and Central America adds, a truly global perspective to this group of emerging viruses.
Collapse
Affiliation(s)
- Emma L Croser
- CSIRO Animal, Food and Health Sciences, Australian Animal Health Laboratory, Private Bag 24, Geelong 3220, Australia.
| | | |
Collapse
|
97
|
Luby SP. The pandemic potential of Nipah virus. Antiviral Res 2013; 100:38-43. [PMID: 23911335 DOI: 10.1016/j.antiviral.2013.07.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/09/2013] [Accepted: 07/19/2013] [Indexed: 11/30/2022]
Abstract
Nipah virus, a paramyxovirus whose wildlife reservoir is Pteropus bats, was first discovered in a large outbreak of acute encephalitis in Malaysia in 1998 among persons who had contact with sick pigs. Apparently, one or more pigs was infected from bats, and the virus then spread efficiently from pig to pig, then from pigs to people. Nipah virus outbreaks have been recognized nearly every year in Bangladesh since 2001 and occasionally in neighboring India. Outbreaks in Bangladesh and India have been characterized by frequent person-to-person transmission and the death of over 70% of infected people. Characteristics of Nipah virus that increase its risk of becoming a global pandemic include: humans are already susceptible; many strains are capable of limited person-to-person transmission; as an RNA virus, it has an exceptionally high rate of mutation: and that if a human-adapted strain were to infect communities in South Asia, high population densities and global interconnectedness would rapidly spread the infection. Appropriate steps to estimate and manage this risk include studies to explore the molecular and genetic basis of respiratory transmission of henipaviruses, improved surveillance for human infections, support from high-income countries to reduce the risk of person-to-person transmission of infectious agents in low-income health care settings, and consideration of vaccination in communities at ongoing risk of exposure to the secretions and excretions of Pteropus bats.
Collapse
Affiliation(s)
- Stephen P Luby
- Woods Institute of the Environment, Stanford University, Yang and Yamazaki Environment and Energy Building, Room 231, 473 Via Ortega, Stanford, CA 94305, United States.
| |
Collapse
|
98
|
Pallister JA, Klein R, Arkinstall R, Haining J, Long F, White JR, Payne J, Feng YR, Wang LF, Broder CC, Middleton D. Vaccination of ferrets with a recombinant G glycoprotein subunit vaccine provides protection against Nipah virus disease for over 12 months. Virol J 2013; 10:237. [PMID: 23867060 PMCID: PMC3718761 DOI: 10.1186/1743-422x-10-237] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/11/2013] [Indexed: 11/17/2022] Open
Abstract
Background Nipah virus (NiV) is a zoonotic virus belonging to the henipavirus genus in the family Paramyxoviridae. Since NiV was first identified in 1999, outbreaks have continued to occur in humans in Bangladesh and India on an almost annual basis with case fatality rates reported between 40% and 100%. Methods Ferrets were vaccinated with 4, 20 or 100 μg HeVsG formulated with the human use approved adjuvant, CpG, in a prime-boost regime. One half of the ferrets were exposed to NiV at 20 days post boost vaccination and the other at 434 days post vaccination. The presence of virus or viral genome was assessed in ferret fluids and tissues using real-time PCR, virus isolation, histopathology, and immunohistochemistry; serology was also carried out. Non-immunised ferrets were also exposed to virus to confirm the pathogenicity of the inoculum. Results Ferrets exposed to Nipah virus 20 days post vaccination remained clinically healthy. Virus or viral genome was not detected in any tissues or fluids of the vaccinated ferrets; lesions and antigen were not identified on immunohistological examination of tissues; and there was no increase in antibody titre during the observation period, consistent with failure of virus replication. Of the ferrets challenged 434 days post vaccination, all five remained well throughout the study period; viral genome – but not virus - was recovered from nasal secretions of one ferret given 20 μg HeVsG and bronchial lymph nodes of the other. There was no increase in antibody titre during the observation period, consistent with lack of stimulation of a humoral memory response. Conclusions We have previously shown that ferrets vaccinated with 4, 20 or 100 μg HeVsG formulated with CpG adjuvant, which is currently in several human clinical trials, were protected from HeV disease. Here we show, under similar conditions of use, that the vaccine also provides protection against NiV-induced disease. Such protection persists for at least 12 months post-vaccination, with data supporting only localised and self-limiting virus replication in 2 of 5 animals. These results augur well for acceptability of the vaccine to industry.
Collapse
Affiliation(s)
- Jackie A Pallister
- CSIRO Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC 3220, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Broder CC, Xu K, Nikolov DB, Zhu Z, Dimitrov DS, Middleton D, Pallister J, Geisbert TW, Bossart KN, Wang LF. A treatment for and vaccine against the deadly Hendra and Nipah viruses. Antiviral Res 2013; 100:8-13. [PMID: 23838047 DOI: 10.1016/j.antiviral.2013.06.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/29/2022]
Abstract
Hendra virus and Nipah virus are bat-borne paramyxoviruses that are the prototypic members of the genus Henipavirus. The henipaviruses emerged in the 1990s, spilling over from their natural bat hosts and causing serious disease outbreaks in humans and livestock. Hendra virus emerged in Australia and since 1994 there have been 7 human infections with 4 case fatalities. Nipah virus first appeared in Malaysia and subsequent outbreaks have occurred in Bangladesh and India. In total, there have been an estimated 582 human cases of Nipah virus and of these, 54% were fatal. Their broad species tropism and ability to cause fatal respiratory and/or neurologic disease in humans and animals make them important transboundary biological threats. Recent experimental findings in animals have demonstrated that a human monoclonal antibody targeting the viral G glycoprotein is an effective post-exposure treatment against Hendra and Nipah virus infection. In addition, a subunit vaccine based on the G glycoprotein of Hendra virus affords protection against Hendra and Nipah virus challenge. The vaccine has been developed for use in horses in Australia and is the first vaccine against a Biosafety Level-4 (BSL-4) agent to be licensed and commercially deployed. Together, these advances offer viable approaches to address Hendra and Nipah virus infection of livestock and people.
Collapse
Affiliation(s)
- Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Dhondt KP, Horvat B. Henipavirus infections: lessons from animal models. Pathogens 2013; 2:264-87. [PMID: 25437037 PMCID: PMC4235719 DOI: 10.3390/pathogens2020264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 11/16/2022] Open
Abstract
The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed.
Collapse
Affiliation(s)
- Kévin P Dhondt
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon 1, 21 Avenue T. Garnier, Lyon 69007, France.
| | - Branka Horvat
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon 1, 21 Avenue T. Garnier, Lyon 69007, France.
| |
Collapse
|