51
|
Most myopathic lamin variants aggregate: a functional genomics approach for assessing variants of uncertain significance. NPJ Genom Med 2021; 6:103. [PMID: 34862408 PMCID: PMC8642518 DOI: 10.1038/s41525-021-00265-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 10/21/2021] [Indexed: 02/01/2023] Open
Abstract
Hundreds of LMNA variants have been associated with several distinct disease phenotypes. However, genotype-phenotype relationships remain largely undefined and the impact for most variants remains unknown. We performed a functional analysis for 178 variants across five structural domains using two different overexpression models. We found that lamin A aggregation is a major determinant for skeletal and cardiac laminopathies. An in vitro solubility assay shows that aggregation-prone variants in the immunoglobulin-like domain correlate with domain destabilization. Finally, we demonstrate that myopathic-associated LMNA variants show aggregation patterns in induced pluripotent stem cell derived-cardiomyocytes (iPSC-CMs) in contrast to non-myopathic LMNA variants. Our data-driven approach (1) reveals that striated muscle laminopathies are predominantly protein misfolding diseases, (2) demonstrates an iPSC-CM experimental platform for characterizing laminopathic variants in human cardiomyocytes, and (3) supports a functional assay to aid in assessing pathogenicity for myopathic variants of uncertain significance.
Collapse
|
52
|
Baban A, Lodato V, Parlapiano G, di Mambro C, Adorisio R, Bertini ES, Dionisi-Vici C, Drago F, Martinelli D. Myocardial and Arrhythmic Spectrum of Neuromuscular Disorders in Children. Biomolecules 2021; 11:1578. [PMID: 34827576 PMCID: PMC8615674 DOI: 10.3390/biom11111578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/02/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022] Open
Abstract
Neuromuscular disorders (NMDs) are highly heterogenous from both an etiological and clinical point of view. Their signs and symptoms are often multisystemic, with frequent cardiac involvement. In fact, childhood onset forms can predispose a person to various progressive cardiac abnormalities including cardiomyopathies (CMPs), valvulopathies, atrioventricular conduction defects (AVCD), supraventricular tachycardia (SVT) and ventricular arrhythmias (VA). In this review, we selected and described five specific NMDs: Friedreich's Ataxia (FRDA), congenital and childhood forms of Myotonic Dystrophy type 1 (DM1), Kearns Sayre Syndrome (KSS), Ryanodine receptor type 1-related myopathies (RYR1-RM) and Laminopathies. These changes are widely investigated in adults but less researched in children. We focused on these specific topics due their relative frequency and their potential unexpected cardiac manifestations in children. Moreover these conditions present different inheritance patterns and mechanisms of action. We decided not to discuss Duchenne and Becker muscular dystrophies due to extensive work regarding the cardiac aspects in children. For each described NMD, we focused on the possible cardiac manifestations such as different types of CMPs (dilated-DCM, hypertrophic-HCM, restrictive-RCM or left ventricular non compaction-LVNC), structural heart abnormalities (including valvulopathies), and progressive heart rhythm changes (AVCD, SVT, VA). We describe the current management strategies for these conditions. We underline the importance, especially for children, of a serial multidisciplinary personalized approach and the need for periodic surveillance by a dedicated heart team. This is largely due to the fact that in children, the diagnosis of certain NMDs might be overlooked and the cardiac aspect can provide signs of their presence even prior to overt neurological diagnosis.
Collapse
Affiliation(s)
- Anwar Baban
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplantation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (C.d.M.); (R.A.); (F.D.)
| | - Valentina Lodato
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplantation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (C.d.M.); (R.A.); (F.D.)
| | - Giovanni Parlapiano
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Corrado di Mambro
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplantation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (C.d.M.); (R.A.); (F.D.)
| | - Rachele Adorisio
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplantation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (C.d.M.); (R.A.); (F.D.)
| | - Enrico Silvio Bertini
- The European Reference Network for Neuromuscular Disorders (ERN NMD), Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00146 Rome, Italy;
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (C.D.-V.); (D.M.)
| | - Fabrizio Drago
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplantation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (C.d.M.); (R.A.); (F.D.)
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (C.D.-V.); (D.M.)
| |
Collapse
|
53
|
Urciuoli E, D'Oria V, Petrini S, Peruzzi B. Lamin A/C Mechanosensor Drives Tumor Cell Aggressiveness and Adhesion on Substrates With Tissue-Specific Elasticity. Front Cell Dev Biol 2021; 9:712377. [PMID: 34595168 PMCID: PMC8476891 DOI: 10.3389/fcell.2021.712377] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Besides its structural properties in the nucleoskeleton, Lamin A/C is a mechanosensor protein involved in perceiving the elasticity of the extracellular matrix. In this study we provide evidence about Lamin A/C-mediated regulation of osteosarcoma cell adhesion and spreading on substrates with tissue-specific elasticities. Our working hypothesis is based on the observation that low-aggressive and bone-resident SaOS-2 osteosarcoma cells express high level of Lamin A/C in comparison to highly metastatic, preferentially to the lung, osteosarcoma 143B cells, thereby suggesting a role for Lamin A/C in tumor cell tropism. Specifically, LMNA gene over-expression in 143B cells induced a reduction in tumor cell aggressiveness in comparison to parental cells, with decreased proliferation rate and reduced migration capability. Furthermore, LMNA reintegration into 143B cells changed the adhesion properties of tumor cells, from a preferential tropism toward the 1.5 kPa PDMS substrate (resembling normal lung parenchyma) to the 28 kPa (resembling pre-mineralized bone osteoid matrix). Our study suggests that Lamin A/C expression could be involved in the organ tropism of tumor cells, thereby providing a rationale for further studies focused on the definition of cancer mechanism of metastatization.
Collapse
Affiliation(s)
- Enrica Urciuoli
- Multifactorial Disease and Complex Phenotype Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Valentina D'Oria
- Confocal Microscopy Core Facility, Research Center, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Center, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Barbara Peruzzi
- Multifactorial Disease and Complex Phenotype Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
54
|
Jéru I, Nabil A, El-Makkawy G, Lascols O, Vigouroux C, Abdalla E. Two Decades after Mandibuloacral Dysplasia Discovery: Additional Cases and Comprehensive View of Disease Characteristics. Genes (Basel) 2021; 12:genes12101508. [PMID: 34680903 PMCID: PMC8535562 DOI: 10.3390/genes12101508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Pathogenic variants in the LMNA gene cause a group of heterogeneous genetic disorders, called laminopathies. In particular, homozygous or compound heterozygous variants in LMNA have been associated with “mandibuloacral dysplasia type A” (MADA), an autosomal recessive disorder, characterized by mandibular hypoplasia, growth retardation mainly postnatal, pigmentary skin changes, progressive osteolysis of the distal phalanges and/or clavicles, and partial lipodystrophy. The detailed characteristics of this multisystemic disease have yet to be specified due to its rarity and the limited number of cases described. Here, we report three unrelated Egyptian patients with variable severity of MAD features. Next-generation sequencing using a gene panel revealed a homozygous c.1580G>A-p.Arg527His missense variant in LMNA exon 9 in an affected individual with a typical MADA phenotype. Another homozygous c.1580G>T-p.Arg527Leu variant affecting the same amino acid was identified in two additional patients, who both presented with severe manifestations very early in life. We combined our observations together with data from all MADA cases reported in the literature to get a clearer picture of the phenotypic variability in this disease. This work raises the number of reported MADA families, argues for the presence of the founder effect in Egypt, and strengthens genotype–phenotype correlations.
Collapse
Affiliation(s)
- Isabelle Jéru
- Inserm UMR_S938, Saint-Antoine Research Center, Institute of Cardiometabolism and Nutrition, Sorbonne University, 75012 Paris, France; (O.L.); (C.V.)
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, 75012 Paris, France
- Correspondence: (I.J.); (E.A.); Tel.: +203-428-5455 (ext. 2373 & 8233) (E.A.)
| | - Amira Nabil
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (A.N.); (G.E.-M.)
| | - Gehad El-Makkawy
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (A.N.); (G.E.-M.)
| | - Olivier Lascols
- Inserm UMR_S938, Saint-Antoine Research Center, Institute of Cardiometabolism and Nutrition, Sorbonne University, 75012 Paris, France; (O.L.); (C.V.)
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, 75012 Paris, France
| | - Corinne Vigouroux
- Inserm UMR_S938, Saint-Antoine Research Center, Institute of Cardiometabolism and Nutrition, Sorbonne University, 75012 Paris, France; (O.L.); (C.V.)
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, 75012 Paris, France
- National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, 75012 Paris, France
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (A.N.); (G.E.-M.)
- Correspondence: (I.J.); (E.A.); Tel.: +203-428-5455 (ext. 2373 & 8233) (E.A.)
| |
Collapse
|
55
|
Stiekema M, Ramaekers FCS, Kapsokalyvas D, van Zandvoort MAMJ, Veltrop RJA, Broers JLV. Super-Resolution Imaging of the A- and B-Type Lamin Networks: A Comparative Study of Different Fluorescence Labeling Procedures. Int J Mol Sci 2021; 22:ijms221910194. [PMID: 34638534 PMCID: PMC8508656 DOI: 10.3390/ijms221910194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
A- and B-type lamins are type V intermediate filament proteins. Mutations in the genes encoding these lamins cause rare diseases, collectively called laminopathies. A fraction of the cells obtained from laminopathy patients show aberrations in the localization of each lamin subtype, which may represent only the minority of the lamina disorganization. To get a better insight into more delicate and more abundant lamina abnormalities, the lamin network can be studied using super-resolution microscopy. We compared confocal scanning laser microscopy and stimulated emission depletion (STED) microscopy in combination with different fluorescence labeling approaches for the study of the lamin network. We demonstrate the suitability of an immunofluorescence staining approach when using STED microscopy, by determining the lamin layer thickness and the degree of lamin A and B1 colocalization as detected in fixed fibroblasts (co-)stained with lamin antibodies or (co-)transfected with EGFP/YFP lamin constructs. This revealed that immunofluorescence staining of cells does not lead to consequent changes in the detected lamin layer thickness, nor does it influence the degree of colocalization of lamin A and B1, when compared to the transfection approach. Studying laminopathy patient dermal fibroblasts (LMNA c.1130G>T (p.(Arg377Leu)) variant) confirmed the suitability of immunofluorescence protocols in STED microscopy, which circumvents the need for less convenient transfection steps. Furthermore, we found a significant decrease in lamin A/C and B1 colocalization in these patient fibroblasts, compared to normal human dermal fibroblasts. We conclude that super-resolution light microscopy combined with immunofluorescence protocols provides a potential tool to detect structural lamina differences between normal and laminopathy patient fibroblasts.
Collapse
Affiliation(s)
- Merel Stiekema
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Frans C. S. Ramaekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Dimitrios Kapsokalyvas
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- Interdisciplinary Center for Clinical Research, IZKF, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc A. M. J. van Zandvoort
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, 52074 Aachen, Germany
| | - Rogier J. A. Veltrop
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, 52074 Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Jos L. V. Broers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-433881366
| |
Collapse
|
56
|
Turgut GT, Güleç Ç, Sarac Sivrikoz T, Kale H, Karaman B, Nishimura G, Altunoglu U. Antenatal diagnostic dilemma in a pseudodominant pedigree with lamin-B receptor (LBR)-related regressive spondylometaphyseal dysplasia. Am J Med Genet A 2021; 188:253-258. [PMID: 34467646 DOI: 10.1002/ajmg.a.62479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/07/2022]
Abstract
The lamin-B receptor (LBR) encodes a dual-functioning inner nuclear membrane protein essential for cholesterol biosynthesis and chromatin organization. LBR pathogenic variants cause distinct phenotypes due to the dual function of LBR, including Pelger-Huët anomaly (PHA), PHA with mild skeletal anomalies (PHASK; MIM# 618019), LBR-related regressive type of spondylometaphyseal dysplasia (LBR-R-SMD), Greenberg dysplasia (MIM# 215140). We here report the first case with radiological manifestations of LBR-R-SMD in the fetal period, and milder skeletal findings in the similarly affected father. Direct sequencing of LBR revealed homozygous c.1534C>T (p.Arg512Trp) in exon 12 in both affected individuals. Our report further refines the early phenotype in LBR-R-SMD, and demonstrates that the p.Arg512Trp mutation is associated with PHA. We propose that LBR-R-SMD should be considered as a differential diagnosis in pregnancies with sonographic evidence of short and bowed tubular bones with narrow thorax. Evaluating peripheral blood smears of expectant parents for the presence of PHA may lead to a clinical diagnosis, allowing for comprehensive prenatal genetic counseling.
Collapse
Affiliation(s)
- Gozde Tutku Turgut
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Çağrı Güleç
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Tugba Sarac Sivrikoz
- Department of Obstetrics and Gynecology, Division of Perinatology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Hamdi Kale
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Birsen Karaman
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.,Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Umut Altunoglu
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.,Department of Medical Genetics, Koc University School of Medicine (KUSOM), Istanbul, Turkey
| |
Collapse
|
57
|
Chu CT, Chen YH, Chiu WT, Chen HC. Tyrosine phosphorylation of lamin A by Src promotes disassembly of nuclear lamina in interphase. Life Sci Alliance 2021; 4:4/10/e202101120. [PMID: 34385357 PMCID: PMC8362257 DOI: 10.26508/lsa.202101120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Lamins form the nuclear lamina, which is important for nuclear structure and activity. Although posttranslational modifications, in particular serine phosphorylation, have been shown to be important for structural properties and functions of lamins, little is known about the role of tyrosine phosphorylation in this regard. In this study, we found that the constitutively active Src Y527F mutant caused the disassembly of lamin A/C. We demonstrate that Src directly phosphorylates lamin A mainly at Tyr45 both in vitro and in intact cells. The phosphomimetic Y45D mutant was diffusively distributed in the nucleoplasm and failed to assemble into the nuclear lamina. Depletion of lamin A/C in HeLa cells induced nuclear dysmorphia and genomic instability as well as increased nuclear plasticity for cell migration, all of which were partially restored by re-expression of lamin A, but further promoted by the Y45D mutant. Together, our results reveal a novel mechanism for regulating the assembly of nuclear lamina through Src and suggest that aberrant phosphorylation of lamin A by Src may contribute to nuclear dysmorphia, genomic instability, and nuclear plasticity.
Collapse
Affiliation(s)
- Ching-Tung Chu
- Institue of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsuan Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Chen Chen
- Institue of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan .,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institue of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
58
|
Charar C, Metsuyanim-Cohen S, Bar DZ. Lamin regulates the dietary restriction response via the mTOR pathway in Caenorhabditis elegans. J Cell Sci 2021; 134:272061. [PMID: 34383046 PMCID: PMC8445603 DOI: 10.1242/jcs.258428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022] Open
Abstract
Animals subjected to dietary restriction (DR) have reduced body size, low fecundity, slower development, lower fat content and longer life span. We identified lamin as a regulator of multiple dietary restriction phenotypes. Downregulation of lmn-1, the single Caenorhabditis elegans lamin gene, increased animal size and fat content specifically in DR animals. The LMN-1 protein acts in the mTOR pathway, upstream of RAPTOR and S6 kinase β1 (S6K), a key component of and target of the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1), respectively. DR excludes the mTORC1 activator RAGC-1 from the nucleus. Downregulation of lmn-1 restores RAGC-1 to the nucleus, a necessary step for the activation of the mTOR pathway. These findings further link lamin to metabolic regulation. Summary: Downregulation of the single C. elegans lamin gene increases animal size and fat content specifically in dietary restricted animals. The lamin protein acts in the mTOR pathway to regulate these phenotypes.
Collapse
Affiliation(s)
- Chayki Charar
- The School of Dental Medicine, The Faculty of Medicine, Tel Aviv University, Israel.,The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | | - Daniel Z Bar
- The School of Dental Medicine, The Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
59
|
Boltsis I, Grosveld F, Giraud G, Kolovos P. Chromatin Conformation in Development and Disease. Front Cell Dev Biol 2021; 9:723859. [PMID: 34422840 PMCID: PMC8371409 DOI: 10.3389/fcell.2021.723859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Chromatin domains and loops are important elements of chromatin structure and dynamics, but much remains to be learned about their exact biological role and nature. Topological associated domains and functional loops are key to gene expression and hold the answer to many questions regarding developmental decisions and diseases. Here, we discuss new findings, which have linked chromatin conformation with development, differentiation and diseases and hypothesized on various models while integrating all recent findings on how chromatin architecture affects gene expression during development, evolution and disease.
Collapse
Affiliation(s)
- Ilias Boltsis
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Guillaume Giraud
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
- Cancer Research Center of Lyon – INSERM U1052, Lyon, France
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
60
|
Gauthier BR, Comaills V. Nuclear Envelope Integrity in Health and Disease: Consequences on Genome Instability and Inflammation. Int J Mol Sci 2021; 22:ijms22147281. [PMID: 34298904 PMCID: PMC8307504 DOI: 10.3390/ijms22147281] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/11/2022] Open
Abstract
The dynamic nature of the nuclear envelope (NE) is often underestimated. The NE protects, regulates, and organizes the eukaryote genome and adapts to epigenetic changes and to its environment. The NE morphology is characterized by a wide range of diversity and abnormality such as invagination and blebbing, and it is a diagnostic factor for pathologies such as cancer. Recently, the micronuclei, a small nucleus that contains a full chromosome or a fragment thereof, has gained much attention. The NE of micronuclei is prone to collapse, leading to DNA release into the cytoplasm with consequences ranging from the activation of the cGAS/STING pathway, an innate immune response, to the creation of chromosomal instability. The discovery of those mechanisms has revolutionized the understanding of some inflammation-related diseases and the origin of complex chromosomal rearrangements, as observed during the initiation of tumorigenesis. Herein, we will highlight the complexity of the NE biology and discuss the clinical symptoms observed in NE-related diseases. The interplay between innate immunity, genomic instability, and nuclear envelope leakage could be a major focus in future years to explain a wide range of diseases and could lead to new classes of therapeutics.
Collapse
Affiliation(s)
- Benoit R. Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (B.R.G.); (V.C.)
| | - Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain
- Correspondence: (B.R.G.); (V.C.)
| |
Collapse
|
61
|
Macicior J, Marcos-Ramiro B, Ortega-Gutiérrez S. Small-Molecule Therapeutic Perspectives for the Treatment of Progeria. Int J Mol Sci 2021; 22:7190. [PMID: 34281245 PMCID: PMC8267806 DOI: 10.3390/ijms22137190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), or progeria, is an extremely rare disorder that belongs to the class of laminopathies, diseases characterized by alterations in the genes that encode for the lamin proteins or for their associated interacting proteins. In particular, progeria is caused by a point mutation in the gene that codifies for the lamin A gene. This mutation ultimately leads to the biosynthesis of a mutated version of lamin A called progerin, which accumulates abnormally in the nuclear lamina. This accumulation elicits several alterations at the nuclear, cellular, and tissue levels that are phenotypically reflected in a systemic disorder with important alterations, mainly in the cardiovascular system, bones, skin, and overall growth, which results in premature death at an average age of 14.5 years. In 2020, lonafarnib became the first (and only) FDA approved drug for treating progeria. In this context, the present review focuses on the different therapeutic strategies currently under development, with special attention to the new small molecules described in recent years, which may represent the upcoming first-in-class drugs with new mechanisms of action endowed with effectiveness not only to treat but also to cure progeria.
Collapse
Affiliation(s)
| | | | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (J.M.); (B.M.-R.)
| |
Collapse
|
62
|
Liu SY, Ikegami K. Nuclear lamin phosphorylation: an emerging role in gene regulation and pathogenesis of laminopathies. Nucleus 2021; 11:299-314. [PMID: 33030403 PMCID: PMC7588210 DOI: 10.1080/19491034.2020.1832734] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Decades of studies have established that nuclear lamin polymers form the nuclear lamina, a protein meshwork that supports the nuclear envelope structure and tethers heterochromatin to the nuclear periphery. Much less is known about unpolymerized nuclear lamins in the nuclear interior, some of which are now known to undergo specific phosphorylation. A recent finding that phosphorylated lamins bind gene enhancer regions offers a new hypothesis that lamin phosphorylation may influence transcriptional regulation in the nuclear interior. In this review, we discuss the regulation, localization, and functions of phosphorylated lamins. We summarize kinases that phosphorylate lamins in a variety of biological contexts. Our discussion extends to laminopathies, a spectrum of degenerative disorders caused by lamin gene mutations, such as cardiomyopathies and progeria. We compare the prevailing hypothesis for laminopathy pathogenesis based on lamins’ function at the nuclear lamina with an emerging hypothesis based on phosphorylated lamins’ function in the nuclear interior.
Collapse
Affiliation(s)
- Sunny Yang Liu
- Department of Pediatrics, The University of Chicago , Chicago, Illinois, USA
| | - Kohta Ikegami
- Department of Pediatrics, The University of Chicago , Chicago, Illinois, USA.,Division of Molecular and Cardiovascular Biology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio, USA
| |
Collapse
|
63
|
Shah PP, Lv W, Rhoades JH, Poleshko A, Abbey D, Caporizzo MA, Linares-Saldana R, Heffler JG, Sayed N, Thomas D, Wang Q, Stanton LJ, Bedi K, Morley MP, Cappola TP, Owens AT, Margulies KB, Frank DB, Wu JC, Rader DJ, Yang W, Prosser BL, Musunuru K, Jain R. Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell 2021; 28:938-954.e9. [PMID: 33529599 PMCID: PMC8106635 DOI: 10.1016/j.stem.2020.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023]
Abstract
Pathogenic mutations in LAMIN A/C (LMNA) cause abnormal nuclear structure and laminopathies. These diseases have myriad tissue-specific phenotypes, including dilated cardiomyopathy (DCM), but how LMNA mutations result in tissue-restricted disease phenotypes remains unclear. We introduced LMNA mutations from individuals with DCM into human induced pluripotent stem cells (hiPSCs) and found that hiPSC-derived cardiomyocytes, in contrast to hepatocytes or adipocytes, exhibit aberrant nuclear morphology and specific disruptions in peripheral chromatin. Disrupted regions were enriched for transcriptionally active genes and regions with lower LAMIN B1 contact frequency. The lamina-chromatin interactions disrupted in mutant cardiomyocytes were enriched for genes associated with non-myocyte lineages and correlated with higher expression of those genes. Myocardium from individuals with LMNA variants similarly showed aberrant expression of non-myocyte pathways. We propose that the lamina network safeguards cellular identity and that pathogenic LMNA variants disrupt peripheral chromatin with specific epigenetic and molecular characteristics, causing misexpression of genes normally expressed in other cell types.
Collapse
Affiliation(s)
- Parisha P Shah
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Wenjian Lv
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Joshua H Rhoades
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Deepti Abbey
- Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Matthew A Caporizzo
- Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Pennsylvania Muscle Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Ricardo Linares-Saldana
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Julie G Heffler
- Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Pennsylvania Muscle Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Department of Surgery, Division of Vascular Surgery, Stanford University, Stanford, CA 94305, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Qiaohong Wang
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Liam J Stanton
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Kenneth Bedi
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Michael P Morley
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Lung Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Thomas P Cappola
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Anjali T Owens
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Kenneth B Margulies
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - David B Frank
- Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Daniel J Rader
- Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Wenli Yang
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Benjamin L Prosser
- Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Pennsylvania Muscle Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Kiran Musunuru
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA.
| | - Rajan Jain
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA.
| |
Collapse
|
64
|
Jędrzejowska M, Potulska-Chromik A, Gos M, Gambin T, Dębek E, Rosiak E, Stępień A, Szymańczak R, Wojtaś B, Gielniewski B, Ciara E, Sobczyńska A, Chrzanowska K, Kostera-Pruszczyk A, Madej-Pilarczyk A. Floppy infant syndrome as a first manifestation of LMNA-related congenital muscular dystrophy. Eur J Paediatr Neurol 2021; 32:115-121. [PMID: 33940562 DOI: 10.1016/j.ejpn.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
LMNA-related congenital muscular dystrophy (L-CMD) is the most severe phenotypic form of skeletal muscle laminopathies. This paper reports clinical presentation of the disease in 15 Polish patients from 13 families with genetically confirmed skeletal muscle laminopathy. In all these patients floppy infant syndrome was the first manifestation of the disease. The genetic diagnosis was established by next generation sequencing (targeted panel or exome; 11 patients) or classic Sanger sequencing (4 patients). In addition to known pathogenic LMNA variants: c.116A > G (p.Asn39Ser), c.745C > T (p.Arg249Trp), c.746G > A (p.Arg249Gln), c.1072G > A (p.Glu358Lys), c.1147G > A (p.Glu383Lys), c.1163G > C (p.Arg388Pro), c.1357C > T (p.Arg453Trp), c.1583C > G (p.Thr528Arg), we have identified three novel ones: c.121C > G (p.Arg41Gly), c.1127A > G (p.Tyr376Cys) and c.1160T > C (p.Leu387Pro). Eleven patients had de novo mutations, 4 - familial. In one family we observed intrafamilial variability of clinical course: severe L-CMD in the male proband, intermediate form in his sister and asymptomatic in their mother. One asymptomatic father had somatic mosaicism. L-CMD should be suspected in children with hypotonia in infancy and delayed motor development, who have poor head control, severe hyperlordosis and unstable and awkward gait. Serum creatine kinase may be high (~1000IU/l). Progression of muscle weakness is fast, leading to early immobilization. In some patients with L-CMD joint contractures can develop with time. MRI shows that the most frequently affected muscles are the serratus anterior, lumbar paraspinal, gluteus, vastus, adductor magnus, hamstrings, medial head of gastrocnemius and soleus. Ultra-rare laminopathies can be a relatively common cause of generalized hypotonia in children. Introduction of wide genome sequencing methods was a breakthrough in diagnostics of diseases with great clinical and genetic variability and allowed approach "from genotype do phenotype". However target sequencing of LMNA gene could be considered in selected patients with clinical picture suggestive for laminopathy.
Collapse
Affiliation(s)
- Maria Jędrzejowska
- Rare Diseases Research Platform, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland; Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland.
| | | | - Monika Gos
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Tomasz Gambin
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Emilia Dębek
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Edyta Rosiak
- 2nd Department of Radiology, Medical University of Warsaw, Poland
| | - Agnieszka Stępień
- Faculty of Rehabilitation, Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | | - Bartosz Wojtaś
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartłomiej Gielniewski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Krystyna Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | | | | |
Collapse
|
65
|
Cecchetti C, D’Apice MR, Morini E, Novelli G, Pizzi C, Pagotto U, Gambineri A. Case Report: An Atypical Form of Familial Partial Lipodystrophy Type 2 Due to Mutation in the Rod Domain of Lamin A/C. Front Endocrinol (Lausanne) 2021; 12:675096. [PMID: 33953703 PMCID: PMC8092436 DOI: 10.3389/fendo.2021.675096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose Familial partial lipodystrophy type 2 (FPLD2) patients generally develop a wide variety of severe metabolic complications. However, they are not usually affected by primary cardiomyopathy and conduction system disturbances, although a few cases of FPLD2 and cardiomyopathy have been reported in the literature. These were all due to amino-terminal heterozygous lamin A/C mutations, which are considered as new forms of overlapping syndromes. Methods and Results Here we report the identification of a female patient with FPLD2 due to a heterozygous missense variant c.604G>A in the exon 3 of the LMNA gene, leading to amino acid substitution (p.Glu202Lys) in the central alpha-helical rod domain of lamin A/C with a high propensity to form coiled-coil dimers. The patient's cardiac evaluations that followed the genetic diagnosis revealed cardiac rhythm disturbances which were promptly treated pharmacologically. Conclusions This report supports the idea that there are "atypical forms" of FPLD2 with cardiomyopathy, especially when a pathogenic variant affects the lamin A/C head or alpha-helical rod domain. It also highlights how increased understanding of the genotype-phenotype correlation could help clinicians to schedule personalized monitoring of the lipodystrophic patient, in order to prevent uncommon but possible devastating manifestations, including arrhythmias and sudden death.
Collapse
Affiliation(s)
- Carolina Cecchetti
- Division of Endocrinology and Diabetes Prevention and Care, Department of Medical and Surgical Sciences (DIMEC), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Elena Morini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Giuseppe Novelli
- Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Carmine Pizzi
- Unit of Cardiology, Department of Specialistic, Diagnostic and Experimental Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Uberto Pagotto
- Division of Endocrinology and Diabetes Prevention and Care, Department of Medical and Surgical Sciences (DIMEC), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandra Gambineri
- Division of Endocrinology and Diabetes Prevention and Care, Department of Medical and Surgical Sciences (DIMEC), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
66
|
Multinucleation associated DNA damage blocks proliferation in p53-compromised cells. Commun Biol 2021; 4:451. [PMID: 33837239 PMCID: PMC8035210 DOI: 10.1038/s42003-021-01979-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Nuclear atypia is one of the hallmarks of cancers. Here, we perform single-cell tracking studies to determine the immediate and long-term impact of nuclear atypia. Tracking the fate of newborn cells exhibiting nuclear atypia shows that multinucleation, unlike other forms of nuclear atypia, blocks proliferation in p53-compromised cells. Because ~50% of cancers display compromised p53, we explored how multinucleation blocks proliferation. Multinucleation increases 53BP1-decorated nuclear bodies (DNA damage repair platforms), along with a heterogeneous reduction in transcription and protein accumulation across the multi-nucleated compartments. Multinucleation Associated DNA Damage associated with 53BP1-bodies remains unresolved for days, despite an intact NHEJ machinery that repairs laser-induced DNA damage within minutes. Persistent DNA damage, a DNA replication block, and reduced phospho-Rb, reveal a novel replication stress independent cell cycle arrest caused by mitotic lesions. These findings call for segregating protective and prohibitive nuclear atypia to inform therapeutic approaches aimed at limiting tumour heterogeneity. Hart et al. track newborn single cells by live microscopy after inducing a variety of nuclear atypia by CENP-E inhibitor treatment. They find that that multinucleation, unlike other forms of nuclear atypia, blocks proliferation independently of p53 and is associated with persistent 53BP1 DNA damage foci, thus providing insights into the consequences of multinucleation, often observed in disease states.
Collapse
|
67
|
Milone R, Scalise R, Pasquariello R, Berloffa S, Ricca I, Battini R. De Novo 1q21.3q22 Duplication Revaluation in a "Cold" Complex Neuropsychiatric Case with Syndromic Intellectual Disability. Genes (Basel) 2021; 12:genes12040511. [PMID: 33807234 PMCID: PMC8066010 DOI: 10.3390/genes12040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/26/2022] Open
Abstract
Syndromic intellectual disability often obtains a genetic diagnosis due to the combination of first and next generation sequencing techniques, although their interpretation may require revaluation over the years. Here we report on a composite neuropsychiatric case whose phenotype includes moderate intellectual disability, spastic paraparesis, movement disorder, and bipolar disorder, harboring a 1.802 Mb de novo 1q21.3q22 duplication. The role of this duplication has been reconsidered in the light of negativity of many other genetic exams, and of the possible pathogenic role of many genes included in this duplication, potentially configuring a contiguous gene-duplication syndrome.
Collapse
Affiliation(s)
- Roberta Milone
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; (R.M.); (R.S.); (R.P.); (S.B.)
| | - Roberta Scalise
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; (R.M.); (R.S.); (R.P.); (S.B.)
- Tuscan PhD Program of Neuroscience, University of Florence, Pisa and Siena, 50139 Florence, Italy
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; (R.M.); (R.S.); (R.P.); (S.B.)
| | - Stefano Berloffa
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; (R.M.); (R.S.); (R.P.); (S.B.)
| | - Ivana Ricca
- Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; (R.M.); (R.S.); (R.P.); (S.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56125 Pisa, Italy
- Correspondence: ; Tel.: +39-050886229; Fax: +39-050886247
| |
Collapse
|
68
|
Kronenberg-Tenga R, Tatli M, Eibauer M, Wu W, Shin JY, Bonne G, Worman HJ, Medalia O. A lamin A/C variant causing striated muscle disease provides insights into filament organization. J Cell Sci 2021; 134:jcs.256156. [PMID: 33536248 DOI: 10.1242/jcs.256156] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
The LMNA gene encodes the A-type lamins, which polymerize into ∼3.5-nm-thick filaments and, together with B-type lamins and associated proteins, form the nuclear lamina. Mutations in LMNA cause a wide variety of pathologies. In this study, we analyzed the nuclear lamina of embryonic fibroblasts from Lmna H222P/H222P mice, which develop cardiomyopathy and muscular dystrophy. Although the organization of the lamina appeared unaltered, there were changes in chromatin and B-type lamin expression. An increase in nuclear size and consequently a relative reduction in heterochromatin near the lamina allowed for a higher resolution structural analysis of lamin filaments using cryo-electron tomography. This was most apparent when visualizing lamin filaments in situ and using a nuclear extraction protocol. Averaging of individual segments of filaments in Lmna H222P/H222P mouse fibroblasts resolved two polymers that constitute the mature filaments. Our findings provide better views of the organization of lamin filaments and the effect of a striated muscle disease-causing mutation on nuclear structure.
Collapse
Affiliation(s)
- Rafael Kronenberg-Tenga
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Meltem Tatli
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Wei Wu
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ji-Yeon Shin
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Centre de Recherche en Myologie, Institut de Myologie, F-75651 Paris CEDEX 13, France
| | - Howard J Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
69
|
Muscle Enriched Lamin Interacting Protein ( Mlip) Binds Chromatin and Is Required for Myoblast Differentiation. Cells 2021; 10:cells10030615. [PMID: 33802236 PMCID: PMC7998221 DOI: 10.3390/cells10030615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
Muscle-enriched A-type lamin-interacting protein (Mlip) is a recently discovered Amniota gene that encodes proteins of unknown biological function. Here we report Mlip’s direct interaction with chromatin, and it may function as a transcriptional co-factor. Chromatin immunoprecipitations with microarray analysis demonstrated a propensity for Mlip to associate with genomic regions in close proximity to genes that control tissue-specific differentiation. Gel mobility shift assays confirmed that Mlip protein complexes with genomic DNA. Blocking Mlip expression in C2C12 myoblasts down-regulates myogenic regulatory factors (MyoD and MyoG) and subsequently significantly inhibits myogenic differentiation and the formation of myotubes. Collectively our data demonstrate that Mlip is required for C2C12 myoblast differentiation into myotubes. Mlip may exert this role as a transcriptional regulator of a myogenic program that is unique to amniotes.
Collapse
|
70
|
Dridi H, Wu W, Reiken SR, Ofer RM, Liu Y, Yuan Q, Sittenfeld L, Kushner J, Muchir A, Worman HJ, Marks AR. Ryanodine receptor remodeling in cardiomyopathy and muscular dystrophy caused by lamin A/C gene mutation. Hum Mol Genet 2021; 29:3919-3934. [PMID: 33388782 PMCID: PMC7906753 DOI: 10.1093/hmg/ddaa278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 01/06/2023] Open
Abstract
Mutations in the lamin A/C gene (LMNA), which encodes A-type lamins, cause several diseases called laminopathies, the most common of which is dilated cardiomyopathy with muscular dystrophy. The role of Ca2+ regulation in these diseases remain poorly understood. We now show biochemical remodeling of the ryanodine receptor (RyR)/intracellular Ca2+ release channel in heart samples from human subjects with LMNA mutations, including protein kinase A-catalyzed phosphorylation, oxidation and depletion of the stabilizing subunit calstabin. In the LmnaH222P/H222P murine model of Emery-Dreifuss muscular dystrophy caused by LMNA mutation, we demonstrate an age-dependent biochemical remodeling of RyR2 in the heart and RyR1 in skeletal muscle. This RyR remodeling is associated with heart and skeletal muscle dysfunction. Defective heart and muscle function are ameliorated by treatment with a novel Rycal small molecule drug (S107) that fixes 'leaky' RyRs. SMAD3 phosphorylation is increased in hearts and diaphragms of LmnaH222P/H222P mice, which enhances NADPH oxidase binding to RyR channels, contributing to their oxidation. There is also increased generalized protein oxidation, increased calcium/calmodulin-dependent protein kinase II-catalyzed phosphorylation of RyRs and increased protein kinase A activity in these tissues. Our data show that RyR remodeling plays a role in cardiomyopathy and skeletal muscle dysfunction caused by LMNA mutation and identify these Ca2+ channels as a potential therapeutic target.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Wei Wu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Steven R Reiken
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Rachel M Ofer
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Leah Sittenfeld
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Jared Kushner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Antoine Muchir
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, 75013 Paris, France
| | - Howard J Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| |
Collapse
|
71
|
Tuescher JM, Beck CR, Spencer L, Yeremy B, Shi Y, Andersen RJ, Golsteyn RM. Extracts Prepared from a Canadian Toxic Plant Induce Light-Dependent Perinuclear Vacuoles in Human Cells. Toxins (Basel) 2021; 13:toxins13020138. [PMID: 33673235 PMCID: PMC7917763 DOI: 10.3390/toxins13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Abstract We are investigating plant species from the Canadian prairie ecological zone by phenotypic cell assays to discover toxins of biological interest. We provide the first report of the effects of extracts prepared from the shrub Symphoricarpos occidentalis in several human cell lines. S. occidentalis (Caprifoliaceae) extracts are cytotoxic, and, strikingly, treated cells undergo light-dependent vacuolation near the nucleus. The range of irradiation is present in standard ambient light and lies in the visible range (400-700 nm). Vacuolization in treated cells can be induced with specific wavelengths of 408 or 660 nm at 1 J/cm2 energies. Vacuolated cells show a striking phenotype of a large perinuclear vacuole (nuclear associated vacuole, NAV) that is distinct from vesicles observed by treatment with an autophagy-inducing agent. Treatment with S. occidentalis extracts and light induces an intense lamin A/C signal at the junction of a nuclear vacuole and the nucleus. Further study of S. occidentalis extracts and vacuolation provide chemical tools that may contribute to the understanding of nuclear envelope organization and human cell biology. Key Contribution We provide the first description of the biological effects upon human cells of extracts from the toxic plant, Symphoricarpos occidentalis. Treated cells acquire striking nuclear associated vacuoles (NAVs), rarely observed in animal cell biology.
Collapse
Affiliation(s)
- Jan M. Tuescher
- Natural Product and Cancer Cell Laboratories, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (J.M.T); (C.R.B)
| | - Chad R. Beck
- Natural Product and Cancer Cell Laboratories, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (J.M.T); (C.R.B)
| | - Locke Spencer
- Department of Physics and Astronomy, University of Lethbridge, Lethbridge AB T1K 3M4, Canada;
| | - Benjamin Yeremy
- Department of Earth, Ocean, Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (B.Y.); (Y.S.); (R.J.A.)
| | - Yutong Shi
- Department of Earth, Ocean, Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (B.Y.); (Y.S.); (R.J.A.)
| | - Raymond J. Andersen
- Department of Earth, Ocean, Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (B.Y.); (Y.S.); (R.J.A.)
| | - Roy M. Golsteyn
- Natural Product and Cancer Cell Laboratories, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (J.M.T); (C.R.B)
- Correspondence:
| |
Collapse
|
72
|
LINC complex regulation of genome organization and function. Curr Opin Genet Dev 2021; 67:130-141. [PMID: 33524904 DOI: 10.1016/j.gde.2020.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022]
Abstract
The regulation of genomic function is in part mediated through the physical organization and architecture of the nucleus. Disruption to nuclear organization and architecture is increasingly being recognized by its contribution to many diseases. The LINC complexes - protein structures traversing the nuclear envelope, that physically connect the nuclear interior, and hence the genome, to cytoplasmic cytoskeletal networks are an important component in the physical organization of the genome and its function. This connection, potentially allows for the constant detection of environmental mechanical stimuli, resulting in altered regulation of nuclear architecture and genome function, either directly or via the process of mechanotransduction. Here, we review the influences LINC complexes exert on genome functions and their impact on cellular/organismal health.
Collapse
|
73
|
Garg S, Huifu H, Kumari A, Sundar D, Kaul SC, Wadhwa R. Induction of Senescence in Cancer Cells by a Novel Combination of Cucurbitacin B and Withanone: Molecular Mechanism and Therapeutic Potential. J Gerontol A Biol Sci Med Sci 2021; 75:1031-1041. [PMID: 31112603 DOI: 10.1093/gerona/glz077] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Indexed: 01/08/2023] Open
Abstract
Cancer, an uncontrolled proliferation syndrome, is treated with synthetic chemotherapeutic drugs that are associated with severe adverse effects. Development and application of new natural compounds is warranted to deal with the exponentially increasing incidence of cancer worldwide. Keeping selective toxicity to cancer cells as a priority criterion, we developed a combination of Cucurbitacin B and Withanone, and analyzed its anticancer potential using non-small cell lung cancer cells. We demonstrate that the selective cytotoxicity of the combination, called CucWi-N, to cancer cells is mediated by induction of cellular senescence that was characterized by decrease in Lamin A/C, CDK2, CDK4, Cyclin D, Cyclin E, phosphorylated RB, mortalin and increase in p53 and CARF proteins. It compromised cancer cell migration that was mediated by decrease in mortalin, hnRNP-K, vascular endothelial growth factor, matrix metalloproteinase 2, and fibronectin. We provide in silico, molecular dynamics and experimental data to support that CucWi-N (i) possesses high capability to target mortalin-p53 interaction and hnRNP-K proteins, (ii) triggers replicative senescence and inhibits metastatic potential of the cancer cells, and (iii) inhibits tumor progression and metastasis in vivo. We propose that CucWi-N is a potential natural anticancer drug that warrants further mechanistic and clinical studies.
Collapse
Affiliation(s)
- Sukant Garg
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba.,Tsukuba Life Science Innovation, School of Integrative and Global Majors, University of Tsukuba, Japan
| | - He Huifu
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Anjani Kumari
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology (IIT)-Delhi, Delhi, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology (IIT)-Delhi, Delhi, India
| | - Sunil C Kaul
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba
| | - Renu Wadhwa
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba.,Tsukuba Life Science Innovation, School of Integrative and Global Majors, University of Tsukuba, Japan
| |
Collapse
|
74
|
Pennacchio FA, Nastały P, Poli A, Maiuri P. Tailoring Cellular Function: The Contribution of the Nucleus in Mechanotransduction. Front Bioeng Biotechnol 2021; 8:596746. [PMID: 33490050 PMCID: PMC7820809 DOI: 10.3389/fbioe.2020.596746] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cells sense a variety of different mechanochemical stimuli and promptly react to such signals by reshaping their morphology and adapting their structural organization and tensional state. Cell reactions to mechanical stimuli arising from the local microenvironment, mechanotransduction, play a crucial role in many cellular functions in both physiological and pathological conditions. To decipher this complex process, several studies have been undertaken to develop engineered materials and devices as tools to properly control cell mechanical state and evaluate cellular responses. Recent reports highlight how the nucleus serves as an important mechanosensor organelle and governs cell mechanoresponse. In this review, we will introduce the basic mechanisms linking cytoskeleton organization to the nucleus and how this reacts to mechanical properties of the cell microenvironment. We will also discuss how perturbations of nucleus-cytoskeleton connections, affecting mechanotransduction, influence health and disease. Moreover, we will present some of the main technological tools used to characterize and perturb the nuclear mechanical state.
Collapse
Affiliation(s)
- Fabrizio A. Pennacchio
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paulina Nastały
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Alessandro Poli
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paolo Maiuri
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
75
|
Atalaia A, Ben Yaou R, Wahbi K, De Sandre-Giovannoli A, Vigouroux C, Bonne G. Laminopathies' Treatments Systematic Review: A Contribution Towards a 'Treatabolome'. J Neuromuscul Dis 2021; 8:419-439. [PMID: 33682723 PMCID: PMC8203247 DOI: 10.3233/jnd-200596] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Variants in the LMNA gene, encoding lamins A/C, are responsible for a growing number of diseases, all of which complying with the definition of rare diseases. LMNA-related disorders have a varied phenotypic expression with more than 15 syndromes described, belonging to five phenotypic groups: Muscular Dystrophies, Neuropathies, Cardiomyopathies, Lipodystrophies and Progeroid Syndromes. Overlapping phenotypes are also reported. Linking gene and variants with phenotypic expression, disease mechanisms, and corresponding treatments is particularly challenging in laminopathies. Treatment recommendations are limited, and very few are variant-based. OBJECTIVE The Treatabolome initiative aims to provide a shareable dataset of existing variant-specific treatment for rare diseases within the Solve-RD EU project. As part of this project, we gathered evidence of specific treatments for laminopathies via a systematic literature review adopting the FAIR (Findable, Accessible, Interoperable, and Reusable) guidelines for scientific data production. METHODS Treatments for LMNA-related conditions were systematically collected from MEDLINE and Embase bibliographic databases and clinical trial registries (Cochrane Central Registry of Controlled Trials, clinicaltrial.gov and EudraCT). Two investigators extracted and analyzed the literature data independently. The included papers were assessed using the Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence. RESULTS From the 4783 selected articles by a systematic approach, we identified 78 papers for our final analysis that corresponded to the profile of data defined in the inclusion and exclusion criteria. These papers include 2 guidelines/consensus papers, 4 meta-analyses, 14 single-arm trials, 15 case series, 13 cohort studies, 21 case reports, 8 expert reviews and 1 expert opinion. The treatments were summarized electronically according to significant phenome-genome associations. The specificity of treatments according to the different laminopathic phenotypical presentations is variable. CONCLUSIONS We have extracted Treatabolome-worthy treatment recommendations for patients with different forms of laminopathies based on significant phenome-genome parings. This dataset will be available on the Treatabolome website and, through interoperability, on genetic diagnosis and treatment support tools like the RD-Connect's Genome Phenome Analysis Platform.
Collapse
Affiliation(s)
- Antonio Atalaia
- Sorbonne Université, Inserm, Center of Research in Myology, G.H. Pitié-Salpêtrière, Paris, France
| | - Rabah Ben Yaou
- Sorbonne Université, Inserm, Center of Research in Myology, G.H. Pitié-Salpêtrière, Paris, France
- AP-HP Sorbonne Université, Neuromyology Department, Centre de référence maladies neuromusculaires Nord/Est/Ile-de-France (FILNEMUS network), Institut de Myologie, G.H. Pitié-Salpêtrière, Paris, France
| | - Karim Wahbi
- APHP, Cochin Hospital, Cardiology Department, FILNEMUS, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile de France, Université de Paris, Paris, France
| | - Annachiara De Sandre-Giovannoli
- AP-HM, Department of Medical Genetics, and CRB-TAC (CRB AP-HM), Children’s Hospital La Timone, Marseille, France
- Aix Marseille University, Inserm, Marseille Medical Genetics Marseille, France
| | - Corinne Vigouroux
- AP-HP Saint-Antoine Hospital, Reference Centre of Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Departments of Molecular Biology and Genetics and of Endocrinology, 75012 Paris, France
- Sorbonne Université, Inserm, Saint-Antoine Research Center, Paris, France
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Center of Research in Myology, G.H. Pitié-Salpêtrière, Paris, France
| |
Collapse
|
76
|
Abstract
Nuclear lamins form an elastic meshwork underlying the inner nuclear membrane and provide mechanical rigidity to the nucleus and maintain shape. Lamins also maintain chromosome positioning and play important roles in several nuclear processes like replication, DNA damage repair, transcription, and epigenetic modifications. LMNA mutations affect cardiac tissue, muscle tissues, adipose tissues to precipitate several diseases collectively termed as laminopathies. However, the rationale behind LMNA mutations and laminopathies continues to elude scientists. During interphase, several chromosomes form inter/intrachromosomal contacts inside nucleoplasm and several chromosomal loops also stretch out to make a ‘loop-cluster’ which are key players to regulate gene expressions. In this perspective, we have proposed that the lamin network in tandem with nuclear actin and myosin provide mechanical rigidity to the chromosomal contacts and facilitate loop-clusters movements. LMNA mutations thus might perturb the landscape of chromosomal contacts or loop-clusters positioning which can impair gene expression profile.
Collapse
Affiliation(s)
- Manindra Bera
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics , Kolkata, India.,Department of Cell Biology, Yale University School of Medicine , Connecticut, New Haven, USA
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics , Kolkata, India.,Homi Bhabha National Institute , Mumbai, India
| |
Collapse
|
77
|
Owens DJ, Messéant J, Moog S, Viggars M, Ferry A, Mamchaoui K, Lacène E, Roméro N, Brull A, Bonne G, Butler-Browne G, Coirault C. Lamin-Related Congenital Muscular Dystrophy Alters Mechanical Signaling and Skeletal Muscle Growth. Int J Mol Sci 2020; 22:ijms22010306. [PMID: 33396724 PMCID: PMC7795708 DOI: 10.3390/ijms22010306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022] Open
Abstract
Laminopathies are a clinically heterogeneous group of disorders caused by mutations in the LMNA gene, which encodes the nuclear envelope proteins lamins A and C. The most frequent diseases associated with LMNA mutations are characterized by skeletal and cardiac involvement, and include autosomal dominant Emery–Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B, and LMNA-related congenital muscular dystrophy (LMNA-CMD). Although the exact pathophysiological mechanisms responsible for LMNA-CMD are not yet understood, severe contracture and muscle atrophy suggest that mutations may impair skeletal muscle growth. Using human muscle stem cells (MuSCs) carrying LMNA-CMD mutations, we observe impaired myogenic fusion with disorganized cadherin/β catenin adhesion complexes. We show that skeletal muscle from Lmna-CMD mice is unable to hypertrophy in response to functional overload, due to defective fusion of activated MuSCs, defective protein synthesis and defective remodeling of the neuromuscular junction. Moreover, stretched myotubes and overloaded muscle fibers with LMNA-CMD mutations display aberrant mechanical regulation of the yes-associated protein (YAP). We also observe defects in MuSC activation and YAP signaling in muscle biopsies from LMNA-CMD patients. These phenotypes are not recapitulated in closely related but less severe EDMD models. In conclusion, combining studies in vitro, in vivo, and patient samples, we find that LMNA-CMD mutations interfere with mechanosignaling pathways in skeletal muscle, implicating A-type lamins in the regulation of skeletal muscle growth.
Collapse
Affiliation(s)
- Daniel J. Owens
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Julien Messéant
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | | | - Mark Viggars
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Arnaud Ferry
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Université de Paris, 75006 Paris, France
| | - Kamel Mamchaoui
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
| | - Emmanuelle Lacène
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
| | - Norma Roméro
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
- APHP, Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Institute of Myology, 75013 Paris, France
| | - Astrid Brull
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Gisèle Bonne
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Gillian Butler-Browne
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Catherine Coirault
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Correspondence: ; Tel.: +33-1-1-4216-5708
| |
Collapse
|
78
|
Rocha ML, Dittmayer C, Uruha A, Korinth D, Chaoui R, Schlembach D, Rossi R, Pelin K, Suk EK, Schmid S, Goebel HH, Schuelke M, Stenzel W, Englert B. A novel mutation in NEB causing foetal nemaline myopathy with arthrogryposis during early gestation. Neuromuscul Disord 2020; 31:239-245. [PMID: 33376055 DOI: 10.1016/j.nmd.2020.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Nemaline myopathies are a clinically and genetically heterogeneous group of congenital myopathies, mainly characterized by muscle weakness, hypotonia and respiratory insufficiency. Here, we report a male foetus of consanguineous parents with a severe congenital syndrome characterized by arthrogryposis detected at 13 weeks of gestation. We describe severe complex dysmorphic facial and musculoskeletal features by post mortem fetal examination confirming the prenatal diagnosis. Histomorphological and ultrastructural studies of skeletal muscle reveal mini-rods in myotubes caused by a novel homozygous splice-site mutation in NEB (NM_001164508, chr2:g.152,417,623C>A GRCh37.p11 | c.19,102-1G>T ENST00000397345.3). No rods were seen in the myocardium. We discuss the relevance of this mutation in the context of nemaline myopathies associated with early developmental musculoskeletal disorders.
Collapse
Affiliation(s)
- Maria L Rocha
- Department of Pathology, Vivantes Friedrichshain Hospital, Vivantes Hospital Group, Charité Academic Teaching Hospital, Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Akinori Uruha
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Dirk Korinth
- Private practice of Human Genetics, Berlin, Germany and Private practice of Human Genetics and Molecular Pathology, Rostock, Germany
| | - Rabih Chaoui
- Center for Prenatal Diagnosis-Friedrichstrasse, Berlin, Germany
| | - Dietmar Schlembach
- Clinic for Obstetric Medicine and Center for Prenatal Medicine, Vivantes Neukölln Hospital, Vivantes Hospital Group, Charité Academic Teaching Hospital, Berlin, Germany
| | - Rainer Rossi
- Department of Paediatrics, Vivantes Neukölln Hospital, Vivantes Hospital Group, Charité Academic Teaching Hospital, Berlin, Germany
| | - Katarina Pelin
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Biomedicum, Helsinki, Finland; Department of Medical and Clinical Genetics, Biomedicum, University of Helsinki, Helsinki, Finland; Faculty of Biological and EnviroNEMental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Eun Kyung Suk
- Private practice of Human Genetics, Berlin, Germany and Private practice of Human Genetics and Molecular Pathology, Rostock, Germany
| | - Simone Schmid
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Hans H Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Department of Neuropathology, Universitätsmedizin Mainz, Germany
| | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Benjamin Englert
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
79
|
Cell-ECM contact-guided intracellular polarization is mediated via lamin A/C dependent nucleus-cytoskeletal connection. Biomaterials 2020; 268:120548. [PMID: 33260092 DOI: 10.1016/j.biomaterials.2020.120548] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Cell polarization plays a crucial role in dynamic cellular events, such as cell proliferation, differentiation, and directional migration in response to diverse extracellular and intracellular signals. Although it is well known that cell polarization entails highly orchestrated intracellular molecular reorganization, the underlying mechanism of repositioning by intracellular organelles in the presence of multiple stimuli is still unclear. Here, we show that front-rear cell polarization based on the relative positions of nucleus and microtubule organizing center is precisely controlled by mechanical interactions including cellular adhesion to extracellular matrix and nucleus-cytoskeletal connections. By modulating the size and distribution of fibronectin-coated adhesive spots located in the polarized cell shape mimicking micropatterns, we monitored the alterations in cell polarity. We found that the localization of individual adhesive spots is more dominant than the cell shape itself to induce intracellular polarization. Further, the degree of cell polarization was diminished significantly by disrupting nuclear lamin A/C. We further confirm that geometrical cue-guided intracellular polarization determines directional cell migration via local activation of Cdc42. These findings provide novel insights into the role of nucleus-cytoskeletal connections in single cell polarization under a combination of physical, molecular, and genetic cues, where lamin A/C acts as a critical molecular mediator in ECM sensing and signal transduction via nucleus-cytoskeletal connection.
Collapse
|
80
|
Cardoso D, Muchir A. Need for NAD +: Focus on Striated Muscle Laminopathies. Cells 2020; 9:cells9102248. [PMID: 33036437 PMCID: PMC7599962 DOI: 10.3390/cells9102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022] Open
Abstract
Laminopathies are a heterogeneous group of rare diseases caused by genetic mutations in the LMNA gene, encoding A-type lamins. A-type lamins are nuclear envelope proteins which associate with B-type lamins to form the nuclear lamina, a meshwork underlying the inner nuclear envelope of differentiated cells. The laminopathies include lipodystrophies, progeroid phenotypes and striated muscle diseases. Research on striated muscle laminopathies in the recent years has provided novel perspectives on the role of the nuclear lamina and has shed light on the pathological consequences of altered nuclear lamina. The role of altered nicotinamide adenine dinucleotide (NAD+) in the physiopathology of striated muscle laminopathies has been recently highlighted. Here, we have summarized these findings and reviewed the current knowledge about NAD+ alteration in striated muscle laminopathies, providing potential therapeutic approaches.
Collapse
|
81
|
Abstract
LMNA mutations cause a variety of inherited diseases referred to as laminopathies which are associated with a wide spectrum of disease phenotypes, ranging from skeletal muscle disease, pre-mature ageing, metabolic disorders, and cardiac abnormalities. We present a case of a 14-year-old boy with dilated cardiomyopathy induced by the LMNA mutation (p. R429C) and described its electrocardiogram and imaging features.
Collapse
|
82
|
Coste Pradas J, Auguste G, Matkovich SJ, Lombardi R, Chen SN, Garnett T, Chamberlain K, Riyad JM, Weber T, Singh SK, Robertson MJ, Coarfa C, Marian AJ, Gurha P. Identification of Genes and Pathways Regulated by Lamin A in Heart. J Am Heart Assoc 2020; 9:e015690. [PMID: 32805188 PMCID: PMC7660829 DOI: 10.1161/jaha.119.015690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
Background Mutations in the LMNA gene, encoding LMNA (lamin A/C), causes distinct disorders, including dilated cardiomyopathies, collectively referred to as laminopathies. The genes (coding and noncoding) and regulatory pathways controlled by LMNA in the heart are not completely defined. Methods and Results We analyzed cardiac transcriptome from wild-type, loss-of-function (Lmna-/-), and gain-of-function (Lmna-/- injected with adeno-associated virus serotype 9 expressing LMNA) mice with normal cardiac function. Deletion of Lmna (Lmna-/-) led to differential expression of 2193 coding and 629 long noncoding RNA genes in the heart (q<0.05). Re-expression of LMNA in the Lmna-/- mouse heart, completely rescued 501 coding and 208 non-coding and partially rescued 1862 coding and 607 lncRNA genes. Pathway analysis of differentially expressed genes predicted activation of transcriptional regulators lysine-specific demethylase 5A, lysine-specific demethylase 5B, tumor protein 53, and suppression of retinoblastoma 1, paired-like homeodomain 2, and melanocyte-inducing transcription factor, which were completely or partially rescued upon reexpression of LMNA. Furthermore, lysine-specific demethylase 5A and 5B protein levels were increased in the Lmna-/- hearts and were partially rescued upon LMNA reexpression. Analysis of biological function for rescued genes identified activation of tumor necrosis factor-α, epithelial to mesenchymal transition, and suppression of the oxidative phosphorylation pathway upon Lmna deletion and their restoration upon LMNA reintroduction in the heart. Restoration of the gene expression and transcriptional regulators in the heart was associated with improved cardiac function and increased survival of the Lmna-/- mice. Conclusions The findings identify LMNA-regulated cardiac genes and their upstream transcriptional regulators in the heart and implicate lysine-specific demethylase 5A and B as epigenetic regulators of a subset of the dysregulated genes in laminopathies.
Collapse
Affiliation(s)
- Jordi Coste Pradas
- Center for Cardiovascular GeneticsInstitute of Molecular MedicineUniversity of Texas Health Sciences Center at HoustonTX
| | - Gaelle Auguste
- Center for Cardiovascular GeneticsInstitute of Molecular MedicineUniversity of Texas Health Sciences Center at HoustonTX
| | | | - Raffaella Lombardi
- Center for Cardiovascular GeneticsInstitute of Molecular MedicineUniversity of Texas Health Sciences Center at HoustonTX
| | - Suet Nee Chen
- Center for Cardiovascular GeneticsInstitute of Molecular MedicineUniversity of Texas Health Sciences Center at HoustonTX
| | - Tyrone Garnett
- Center for Cardiovascular GeneticsInstitute of Molecular MedicineUniversity of Texas Health Sciences Center at HoustonTX
| | - Kyle Chamberlain
- Cardiovascular InstituteIcahn School of Medicine at Mount SinaiNew YorkNY
| | | | - Thomas Weber
- Cardiovascular InstituteIcahn School of Medicine at Mount SinaiNew YorkNY
| | | | | | | | - Ali J. Marian
- Center for Cardiovascular GeneticsInstitute of Molecular MedicineUniversity of Texas Health Sciences Center at HoustonTX
| | - Priyatansh Gurha
- Center for Cardiovascular GeneticsInstitute of Molecular MedicineUniversity of Texas Health Sciences Center at HoustonTX
| |
Collapse
|
83
|
Structural and Mechanical Aberrations of the Nuclear Lamina in Disease. Cells 2020; 9:cells9081884. [PMID: 32796718 PMCID: PMC7464082 DOI: 10.3390/cells9081884] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear lamins are the major components of the nuclear lamina in the nuclear envelope. Lamins are involved in numerous functions, including a role in providing structural support to the cell and the mechanosensing of the cell. Mutations in the genes encoding for lamins lead to the rare diseases termed laminopathies. However, not only laminopathies show alterations in the nuclear lamina. Deregulation of lamin expression is reported in multiple cancers and several viral infections lead to a disrupted nuclear lamina. The structural and mechanical effects of alterations in the nuclear lamina can partly explain the phenotypes seen in disease, such as muscular weakness in certain laminopathies and transmigration of cancer cells. However, a lot of answers to questions about the relation between changes in the nuclear lamina and disease development remain elusive. Here, we review the current understandings of the contribution of the nuclear lamina in the structural support and mechanosensing of healthy and diseased cells.
Collapse
|
84
|
Piccus R, Brayson D. The nuclear envelope: LINCing tissue mechanics to genome regulation in cardiac and skeletal muscle. Biol Lett 2020; 16:20200302. [PMID: 32634376 DOI: 10.1098/rsbl.2020.0302] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Regulation of the genome is viewed through the prism of gene expression, DNA replication and DNA repair as controlled through transcription, chromatin compartmentalisation and recruitment of repair factors by enzymes such as DNA polymerases, ligases, acetylases, methylases and cyclin-dependent kinases. However, recent advances in the field of muscle cell physiology have also shown a compelling role for 'outside-in' biophysical control of genomic material through mechanotransduction. The crucial hub that transduces these biophysical signals is called the Linker of Nucleoskeleton and Cytoskeleton (LINC). This complex is embedded across the nuclear envelope, which separates the nucleus from the cytoplasm. How the LINC complex operates to mechanically regulate the many functions of DNA is becoming increasingly clear, and recent advances have provided exciting insight into how this occurs in cells from mechanically activated tissues such as skeletal and cardiac muscle. Nevertheless, there are still some notable shortcomings in our understanding of these processes and resolving these will likely help us understand how muscle diseases manifest at the level of the genome.
Collapse
Affiliation(s)
- Rachel Piccus
- Centre for Human and Applied Physiological Sciences, King's College London, London SE1 1UL, UK
| | - Daniel Brayson
- School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK.,Molecular Neurosciences, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
85
|
Crasto S, My I, Di Pasquale E. The Broad Spectrum of LMNA Cardiac Diseases: From Molecular Mechanisms to Clinical Phenotype. Front Physiol 2020; 11:761. [PMID: 32719615 PMCID: PMC7349320 DOI: 10.3389/fphys.2020.00761] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations of Lamin A/C gene (LMNA) cause laminopathies, a group of disorders associated with a wide spectrum of clinically distinct phenotypes, affecting different tissues and organs. Heart involvement is frequent and leads to cardiolaminopathy LMNA-dependent cardiomyopathy (LMNA-CMP), a form of dilated cardiomyopathy (DCM) typically associated with conduction disorders and arrhythmias, that can manifest either as an isolated event or as part of a multisystem phenotype. Despite the recent clinical and molecular developments in the field, there is still lack of knowledge linking specific LMNA gene mutations to the distinct clinical manifestations. Indeed, the severity and progression of the disease have marked interindividual variability, even amongst members of the same family. Studies conducted so far have described Lamin A/C proteins involved in diverse biological processes, that span from a structural role in the nucleus to the regulation of response to mechanical stress and gene expression, proposing various mechanistic hypotheses. However, none of those is per se able to fully justify functional and clinical phenotypes of LMNA-CMP; therefore, the role of Lamin A/C in cardiac pathophysiology still represents an open question. In this review we provide an update on the state-of-the-art studies on cardiolaminopathy, in the attempt to draw a line connecting molecular mechanisms to clinical manifestations. While investigators in this field still wonder about a clear genotype/phenotype correlation in LMNA-CMP, our intent here is to recapitulate common mechanistic hypotheses that link different mutations to similar clinical presentations.
Collapse
Affiliation(s)
- Silvia Crasto
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB) - UOS of Milan, National Research Council (CNR), Milan, Italy
| | - Ilaria My
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Elisa Di Pasquale
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB) - UOS of Milan, National Research Council (CNR), Milan, Italy
| |
Collapse
|
86
|
Kandhaya-Pillai R, Hisama FM, Bucks SA, Yarzar S, Korovou H, Martin GM, Oshima J. Novel LMNA mutations in Greek and Myanmar Patients with Progeroid Features and Cardiac Manifestations. ACTA ACUST UNITED AC 2020; 2:101-105. [PMID: 32954377 PMCID: PMC7500617 DOI: 10.31491/apt.2020.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Segmental progeroid syndromes are groups of genetic disorders with multiple features resembling accelerated aging. The International Registry of Werner Syndrome (Seattle, WA) recruits pedigrees of progeroid syndromes from all over the world. We identified two novel LMNA mutations, p.Asp300Gly in a patient from Myanmar, and p.Asn466Lys, in a patient from Greece. Both were referred to our Registry for the genetic diagnosis because of the accelerated aged-appearance and cardiac complications. LMNA mutations are the second most common genetic cause of progeroid syndromes after WRN mutations in our Registry. As the next generation sequencing becomes readily available, we expect to identify more cases of rare genetic diseases in the developing countries.
Collapse
Affiliation(s)
| | - Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stephanie A Bucks
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Soe Yarzar
- Department of Medicine, University of Medicine 2, Yangon, Myanmar
| | | | - George M Martin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Junko Oshima
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
87
|
Keeling MC, Gavara N. Withaferin-A Can Be Used to Modulate the Keratin Network of Intermediate Filaments in Human Epidermal Keratinocytes. Int J Mol Sci 2020; 21:ijms21124450. [PMID: 32585813 PMCID: PMC7352337 DOI: 10.3390/ijms21124450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
The mechanical state of cells is a critical part of their healthy functioning and it is controlled primarily by cytoskeletal networks (actin, microtubules and intermediate filaments). Drug-based strategies targeting the assembly of a given cytoskeletal network are often used to pinpoint their role in cellular function. Unlike actin and microtubules, there has been limited interest in the role of intermediate filaments, and fewer drugs have thus been identified and characterised as modulators of its assembly. Here, we evaluate whether Withaferin-A (WFA), an established disruptor of vimentin filaments, can also be used to modulate keratin filament assembly. Our results show that in keratinocytes, which are keratin-rich but vimentin-absent, Withaferin-A disrupts keratin filaments. Importantly, the dosages required are similar to those previously reported to disrupt vimentin in other cell types. Furthermore, Withaferin-A-induced keratin disassembly is accompanied by changes in cell stiffness and migration. Therefore, we propose that WFA can be repurposed as a useful drug to disrupt the keratin cytoskeleton in epithelial cells.
Collapse
|
88
|
An Omics View of Emery-Dreifuss Muscular Dystrophy. J Pers Med 2020; 10:jpm10020050. [PMID: 32549253 PMCID: PMC7354601 DOI: 10.3390/jpm10020050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Recent progress in Omics technologies has started to empower personalized healthcare development at a thorough biomolecular level. Omics have subsidized medical breakthroughs that have started to enter clinical proceedings. The use of this scientific know-how has surfaced as a way to provide a more far-reaching view of the biological mechanisms behind diseases. This review will focus on the discoveries made using Omics and the utility of these approaches for Emery–Dreifuss muscular dystrophy.
Collapse
|
89
|
Mutated lamin A modulates stiffness in muscle cells. Biochem Biophys Res Commun 2020; 529:861-867. [PMID: 32540097 DOI: 10.1016/j.bbrc.2020.05.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
The cytoskeleton is a complex network interlinking filaments that extend throughout the cytoplasm from the nucleus to the plasma membrane. Three major types of filaments are found in the cytoskeleton: actin filaments, microtubules, and intermediate filaments. They play a key role in the ability of cells to both resist mechanical stress and generate force. However, the precise involvement of intermediate filament proteins in these processes remains unclear. Here, we focused on nuclear A-type lamins, which are connected to the cytoskeleton via the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Using micro-constriction rheology, we investigated the impact of A-type lamins (p.H222P) mutation on the mechanical properties of muscle cells. We demonstrate that the expression of point mutation of lamin A in muscle cells increases cellular stiffness compared with cells expressing wild type lamin A and that the chemical agent selumetinib, an inhibitor of the ERK1/2 signaling, reversed the mechanical alterations in mutated cells. These results highlight the interplay between A-type lamins and mechano-signaling, which are supported by cell biology measurements.
Collapse
|
90
|
Muscle cell differentiation and development pathway defects in Emery-Dreifuss muscular dystrophy. Neuromuscul Disord 2020; 30:443-456. [DOI: 10.1016/j.nmd.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/20/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
|
91
|
Hennen J, Kohler J, Karuka SR, Saunders CA, Luxton GWG, Mueller JD. Differentiating Luminal and Membrane-Associated Nuclear Envelope Proteins. Biophys J 2020; 118:2385-2399. [PMID: 32304637 DOI: 10.1016/j.bpj.2020.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/09/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022] Open
Abstract
The nuclear envelope (NE) consists of two concentric nuclear membranes separated by the lumen, an ∼40-nm-wide fluid layer. NE proteins are implicated in important cellular processes ranging from gene expression to nuclear positioning. Although recent progress has been achieved in quantifying the assembly states of NE proteins in their native environment with fluorescence fluctuation spectroscopy, these studies raised questions regarding the association of NE proteins with nuclear membranes during the assembly process. Monitoring the interaction of proteins with membranes is important because the binding event is often associated with conformational changes that are critical to cellular signaling pathways. Unfortunately, the close physical proximity of both membranes poses a severe experimental challenge in distinguishing luminal and membrane-associated NE proteins. This study seeks to address this problem by introducing new, to our knowledge, fluorescence-based assays that overcome the restrictions imposed by the NE environment. We found that luminal proteins violate the Stokes-Einstein relation, which eliminates a straightforward use of protein mobility as a marker of membrane association within the NE. However, a surprising anomaly in the temperature-dependent mobility of luminal proteins was observed, which was developed into an assay for distinguishing between soluble and membrane-bound NE proteins. We further introduced a second independent tool for distinguishing both protein populations by harnessing the previously reported undulations of the nuclear membranes. These membrane undulations introduce local volume changes that produce an additional fluorescence fluctuation signal for luminal, but not for membrane-bound, proteins. After testing both methods using simple model systems, we apply the two assays to investigate a previously proposed model of membrane association for the luminal domain of SUN2, a constituent protein of the linker of nucleoskeleton and cytoskeleton complex. Finally, we investigate the effect of C- and N-terminal tagging of the luminal ATPase torsinA on its ability to associate with nuclear membranes.
Collapse
Affiliation(s)
- Jared Hennen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - John Kohler
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | | | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
92
|
Wong X, Stewart CL. The Laminopathies and the Insights They Provide into the Structural and Functional Organization of the Nucleus. Annu Rev Genomics Hum Genet 2020; 21:263-288. [PMID: 32428417 DOI: 10.1146/annurev-genom-121219-083616] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, our perspective on the cell nucleus has evolved from the view that it is a passive but permeable storage organelle housing the cell's genetic material to an understanding that it is in fact a highly organized, integrative, and dynamic regulatory hub. In particular, the subcompartment at the nuclear periphery, comprising the nuclear envelope and the underlying lamina, is now known to be a critical nexus in the regulation of chromatin organization, transcriptional output, biochemical and mechanosignaling pathways, and, more recently, cytoskeletal organization. We review the various functional roles of the nuclear periphery and their deregulation in diseases of the nuclear envelope, specifically the laminopathies, which, despite their rarity, provide insights into contemporary health-care issues.
Collapse
Affiliation(s)
- Xianrong Wong
- Regenerative and Developmental Biology Group, Institute of Medical Biology, Singapore 138648; ,
| | - Colin L Stewart
- Regenerative and Developmental Biology Group, Institute of Medical Biology, Singapore 138648; ,
| |
Collapse
|
93
|
K6-linked SUMOylation of BAF regulates nuclear integrity and DNA replication in mammalian cells. Proc Natl Acad Sci U S A 2020; 117:10378-10387. [PMID: 32332162 PMCID: PMC7229763 DOI: 10.1073/pnas.1912984117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Barrier-to-autointegration factor (BAF) is a highly conserved protein in metazoans that has multiple functions during the cell cycle. We found that BAF is SUMOylated at K6, and that this modification is essential for its nuclear localization and function, including nuclear integrity maintenance and DNA replication. K6-linked SUMOylation of BAF promotes binding and interaction with lamin A/C to regulate nuclear integrity. K6-linked SUMOylation of BAF also supports BAF binding to DNA and proliferating cell nuclear antigen and regulates DNA replication. SENP1 and SENP2 catalyze the de-SUMOylation of BAF at K6. Disrupting the SUMOylation and de-SUMOylation cycle of BAF at K6 not only disturbs nuclear integrity, but also induces DNA replication failure. Taken together, our findings demonstrate that SUMOylation at K6 is an important regulatory mechanism that governs the nuclear functions of BAF in mammalian cells.
Collapse
|
94
|
Owens DJ, Fischer M, Jabre S, Moog S, Mamchaoui K, Butler-Browne G, Coirault C. Lamin Mutations Cause Increased YAP Nuclear Entry in Muscle Stem Cells. Cells 2020; 9:cells9040816. [PMID: 32231000 PMCID: PMC7226749 DOI: 10.3390/cells9040816] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 01/17/2023] Open
Abstract
Mutations in the LMNA gene, encoding the nuclear envelope A-type lamins, are responsible for muscular dystrophies, the most severe form being the LMNA-related congenital muscular dystrophy (L-CMD), with severe defects in myonucleus integrity. We previously reported that L-CMD mutations compromise the ability of muscle stem cells to modulate the yes-associated protein (YAP), a pivotal factor in mechanotransduction and myogenesis. Here, we investigated the intrinsic mechanisms by which lamins influence YAP subcellular distribution, by analyzing different conditions affecting the balance between nuclear import and export of YAP. In contrast to wild type (WT) cells, LMNADK32 mutations failed to exclude YAP from the nucleus and to inactivate its transcriptional activity at high cell density, despite activation of the Hippo pathway. Inhibiting nuclear pore import abolished YAP nuclear accumulation in confluent mutant cells, thus showing persistent nuclear import of YAP at cell confluence. YAP deregulation was also present in congenital myopathy related to nesprin-1 KASH mutation, but not in cells expressing the LMNAH222P mutation, the adult form of lamin-related muscle dystrophy with reduced nuclear deformability. In conclusion, our data showed that L-CMD mutations increased YAP nuclear localization via an increased nuclear import and implicated YAP as a pathogenic contributor in muscle dystrophies caused by nuclear envelop defects.
Collapse
Affiliation(s)
- Daniel J. Owens
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Martina Fischer
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
| | - Saline Jabre
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
| | | | | | - Gillian Butler-Browne
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
| | - Catherine Coirault
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
- Correspondence: ; Tel.: +33-142-16-57-08
| |
Collapse
|
95
|
Cavaliere V, Lattanzi G, Andrenacci D. Silencing of Euchromatic Transposable Elements as a Consequence of Nuclear Lamina Dysfunction. Cells 2020; 9:cells9030625. [PMID: 32151001 PMCID: PMC7140440 DOI: 10.3390/cells9030625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) are mobile genomic sequences that are normally repressed to avoid proliferation and genome instability. Gene silencing mechanisms repress TEs by RNA degradation or heterochromatin formation. Heterochromatin maintenance is therefore important to keep TEs silent. Loss of heterochromatic domains has been linked to lamin mutations, which have also been associated with derepression of TEs. In fact, lamins are structural components of the nuclear lamina (NL), which is considered a pivotal structure in the maintenance of heterochromatin domains at the nuclear periphery in a silent state. Here, we show that a lethal phenotype associated with Lamin loss-of-function mutations is influenced by Drosophila gypsy retrotransposons located in euchromatic regions, suggesting that NL dysfunction has also effects on active TEs located in euchromatic loci. In fact, expression analysis of different long terminal repeat (LTR) retrotransposons and of one non-LTR retrotransposon located near active genes shows that Lamin inactivation determines the silencing of euchromatic TEs. Furthermore, we show that the silencing effect on euchromatic TEs spreads to the neighboring genomic regions, with a repressive effect on nearby genes. We propose that NL dysfunction may have opposed regulatory effects on TEs that depend on their localization in active or repressed regions of the genome.
Collapse
Affiliation(s)
- Valeria Cavaliere
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, 40126 Bologna, Italy;
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi-Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Davide Andrenacci
- CNR Institute of Molecular Genetics “Luigi-Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence:
| |
Collapse
|
96
|
Loss of an H3K9me anchor rescues laminopathy-linked changes in nuclear organization and muscle function in an Emery-Dreifuss muscular dystrophy model. Genes Dev 2020; 34:560-579. [PMID: 32139421 PMCID: PMC7111258 DOI: 10.1101/gad.332213.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/14/2020] [Indexed: 12/30/2022]
Abstract
In this study, Harr et al. use C. elegans to investigate the consequences of a missense mutation (Y45C) in lamin A (encoded by LMNA) found in the human Emery-Dreifuss muscular dystrophy (EDMD) syndrome. Using muscle-specific emerin Dam-ID and other in vivo approaches, the authors report that they were able to counteract the dominant muscle-specific defects provoked by LMNA mutation by the ablation of a lamin-associated H3K9me anchor, suggesting a novel therapeutic pathway for treating EDMD. Mutations in the nuclear structural protein lamin A produce rare, tissue-specific diseases called laminopathies. The introduction of a human Emery-Dreifuss muscular dystrophy (EDMD)-inducing mutation into the C. elegans lamin (LMN-Y59C), recapitulates many muscular dystrophy phenotypes, and correlates with hyper-sequestration of a heterochromatic array at the nuclear periphery in muscle cells. Using muscle-specific emerin Dam-ID in worms, we monitored the effects of the mutation on endogenous chromatin. An increased contact with the nuclear periphery along chromosome arms, and an enhanced release of chromosomal centers, coincided with the disease phenotypes of reduced locomotion and compromised sarcomere integrity. The coupling of the LMN-Y59C mutation with the ablation of CEC-4, a chromodomain protein that anchors H3K9-methylated chromatin at the nuclear envelope (NE), suppressed the muscle-associated disease phenotypes. Deletion of cec-4 also rescued LMN-Y59C-linked alterations in chromatin organization and some changes in transcription. Sequences that changed position in the LMN-Y59C mutant, are enriched for E2F (EFL-2)-binding sites, consistent with previous studies suggesting that altered Rb-E2F interaction with lamin A may contribute to muscle dysfunction. In summary, we were able to counteract the dominant muscle-specific defects provoked by LMNA mutation by the ablation of a lamin-associated H3K9me anchor, suggesting a novel therapeutic pathway for EDMD.
Collapse
|
97
|
Yattah C, Hernandez M, Huang D, Park H, Liao W, Casaccia P. Dynamic Lamin B1-Gene Association During Oligodendrocyte Progenitor Differentiation. Neurochem Res 2020; 45:606-619. [PMID: 32020491 PMCID: PMC7060805 DOI: 10.1007/s11064-019-02941-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022]
Abstract
Differentiation of oligodendrocytes (OL) from progenitor cells (OPC) is the result of a unique program of gene expression, which is further regulated by the formation of topological domains of association with the nuclear lamina. In this study, we show that cultured OPC were characterized by progressively declining levels of endogenous Lamin B1 (LMNB1) during differentiation into OL. We then identify the genes dynamically associated to the nuclear lamina component LMNB1 during this transition, using a well established technique called DamID, which is based on the ability of a bacterially-derived deoxyadenosine methylase (Dam), to modify genomic regions in close proximity. We expressed a fusion protein containing Dam and LMNB1 in OPC (OPCLMNB1-Dam) and either kept them proliferating or differentiated them into OL (OLLMNB1-Dam) and identified genes that were dynamically associated to LMNB1 with differentiation. Importantly, we identified Lss, the gene encoding for lanosterol synthase, a key enzyme in cholesterol synthesis, as associated to the nuclear lamina in OLLMNB1-Dam. This finding could at least in part explain the lipid dysregulation previously reported for mouse models of ADLD characterized by persistent LMNB1 expression in oligodendrocytes.
Collapse
Affiliation(s)
- Camila Yattah
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Marylens Hernandez
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dennis Huang
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - HyeJin Park
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Will Liao
- New York Genome Center, New York, NY, 10013, USA
| | - Patrizia Casaccia
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate Program in Biochemistry and in Biology, The Graduate Center of The City University of New York, 365 5th Avenue, New York, NY, 10016, USA.
| |
Collapse
|
98
|
Baban A, Cicenia M, Magliozzi M, Gnazzo M, Cantarutti N, Silvetti MS, Adorisio R, Dallapiccola B, Bertini E, Novelli A, Drago F. Cardiovascular Involvement in Pediatric Laminopathies. Report of Six Patients and Literature Revision. Front Pediatr 2020; 8:374. [PMID: 32793522 PMCID: PMC7393225 DOI: 10.3389/fped.2020.00374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022] Open
Abstract
Lamin A/C (LMNA) encodes for two nuclear intermediate filament proteins. Mutations in LMNA cause a highly heterogeneous group of diseases predominantly leading to muscular or cardiac disease, lipodystrophy syndromes, peripheral neuropathy, and accelerated aging disorders. Cardiac involvement includes progressive arrhythmias (brady/tachyarrhythmias, sudden cardiac death). Furthermore, cardiomyocyte damage often progresses into dilated cardiomyopathy (DCM), rarely described in the pediatric age group. Neuromuscular manifestations are even rarer in children. We report on six pediatric patients with LMNA mutations: patient 1 was operated on for aortic coarctation, non-compact left ventricle, atrial fibrillation (AF) preceding the diagnosis of DCM; patient 2 was operated on for ventricular septal defect (VSD), developed after years malignant arrhythmias preceding the progression to DCM (left ventricular non-compaction with LV dysfunction); patient 3 had ectopic atrial tachycardia as first manifestation of a DCM; patients 4 and 5 had no major arrhythmic events but only dilated ascending aorta, mildly dilated LV with mild hypertrabeculation of the lateral wall and a normally functioning but dilated left ventricle, respectively; patient 6 showed aortic coarctation, supraventricular tachycardia. Paroxysmal AF occurred in patients 1, 2, and 3 (50% of cases). Our series highlight the coexistence of congenital heart defects (CHDs) and aortic involvement with laminopathies in four of our patients: consisting of aortic coarctation (two patients), aortic root dilatation (one patient), and VSD (one patient). Aortic changes in laminopathies have been reported only once in an adult patient. This is the first report in the pediatric setting, and no associations with CHD have been previously described.
Collapse
Affiliation(s)
- Anwar Baban
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Marianna Cicenia
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Monia Magliozzi
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Maria Gnazzo
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Nicoletta Cantarutti
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Massimo Stefano Silvetti
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Rachele Adorisio
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Bruno Dallapiccola
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Enrico Bertini
- The European Reference Network for Neuromuscular Disorders (ERN NMD), Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Fabrizio Drago
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| |
Collapse
|
99
|
The role of transposable elements activity in aging and their possible involvement in laminopathic diseases. Ageing Res Rev 2020; 57:100995. [PMID: 31786372 DOI: 10.1016/j.arr.2019.100995] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/17/2019] [Accepted: 11/25/2019] [Indexed: 01/17/2023]
Abstract
Eukaryotic genomes contain a large number of transposable elements, part of which are still active and able to transpose in the host genome. Mobile element activation is repressed to avoid deleterious effects, such as gene mutations or chromosome rearrangements. Control of transposable elements includes a variety of mechanisms comprising silencing pathways, which are based on the production of small non-coding RNAs. Silencing can occur either through transposable element RNA degradation or through the targeting of DNA sequences by heterochromatin formation and consequent transcriptional inhibition. Since the important role of the heterochromatin silencing, the gradual loss of heterochromatin marks in constitutive heterochromatin regions during the aging process promotes derepression of transposable elements, which is considered a cause of the progressive increase in genomic instability and of the activation of inflammatory responses. This review provides an overview of the effects of heterochromatin loss on the activity of transposable elements during the aging process and the possible impact on genome function. In this context, we discuss the possible role of the nuclear lamina, a major player in heterochromatin dynamics, in the regulation of transposable element activity and potential implications in laminopathic diseases.
Collapse
|
100
|
Urbanczyk M, Layland SL, Schenke-Layland K. The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues. Matrix Biol 2019; 85-86:1-14. [PMID: 31805360 DOI: 10.1016/j.matbio.2019.11.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/24/2019] [Accepted: 11/24/2019] [Indexed: 12/20/2022]
Abstract
The cells and tissues of the human body are constantly exposed to exogenous and endogenous forces that are referred to as biomechanical cues. They guide and impact cellular processes and cell fate decisions on the nano-, micro- and macro-scale, and are therefore critical for normal tissue development and maintaining tissue homeostasis. Alterations in the extracellular matrix composition of a tissue combined with abnormal mechanosensing and mechanotransduction can aberrantly activate signaling pathways that promote disease development. Such processes are therefore highly relevant for disease modelling or when aiming for the development of novel therapies. In this mini review, we describe the main biomechanical cues that impact cellular fates. We highlight their role during development, homeostasis and in disease. We also discuss current techniques and tools that allow us to study the impact of biomechanical cues on cell and tissue development under physiological conditions, and we point out directions, in which in vitro biomechanics can be of use in the future.
Collapse
Affiliation(s)
- Max Urbanczyk
- Department of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany
| | - Shannon L Layland
- Department of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany; Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence IFIT (EXC 2180), "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Germany; Dept. of Medicine/Cardiology, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|