51
|
Xu X, Gu T, Shen Q. Different effects of bisphenol-A on memory behavior and synaptic modification in intact and estrogen-deprived female mice. J Neurochem 2015; 132:572-82. [DOI: 10.1111/jnc.12998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaohong Xu
- Chemistry and Life Sciences College; Zhejiang Normal University; Jinhua China
| | - Ting Gu
- Chemistry and Life Sciences College; Zhejiang Normal University; Jinhua China
| | - Qiaoqiao Shen
- Chemistry and Life Sciences College; Zhejiang Normal University; Jinhua China
| |
Collapse
|
52
|
Yegambaram M, Manivannan B, Beach TG, Halden RU. Role of environmental contaminants in the etiology of Alzheimer's disease: a review. Curr Alzheimer Res 2015; 12:116-46. [PMID: 25654508 PMCID: PMC4428475 DOI: 10.2174/1567205012666150204121719] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/10/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Alzheimer's dis ease (AD) is a leading cause of mortality in the developed world with 70% risk attributable to genetics. The remaining 30% of AD risk is hypothesized to include environmental factors and human lifestyle patterns. Environmental factors possibly include inorganic and organic hazards, exposure to toxic metals (aluminium, copper), pesticides (organochlorine and organophosphate insecticides), industrial chemicals (flame retardants) and air pollutants (particulate matter). Long term exposures to these environmental contaminants together with bioaccumulation over an individual's life-time are speculated to induce neuroinflammation and neuropathology paving the way for developing AD. Epidemiologic associations between environmental contaminant exposures and AD are still limited. However, many in vitro and animal studies have identified toxic effects of environmental contaminants at the cellular level, revealing alterations of pathways and metabolisms associated with AD that warrant further investigations. This review provides an overview of in vitro, animal and epidemiological studies on the etiology of AD, highlighting available data supportive of the long hypothesized link between toxic environmental exposures and development of AD pathology.
Collapse
Affiliation(s)
| | | | | | - Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Arizona State University, PO Box 875904 Tempe, AZ 85287, USA.
| |
Collapse
|
53
|
Kelly EA, Opanashuk LA, Majewska AK. The effects of postnatal exposure to low-dose bisphenol-A on activity-dependent plasticity in the mouse sensory cortex. Front Neuroanat 2014; 8:117. [PMID: 25374513 PMCID: PMC4205826 DOI: 10.3389/fnana.2014.00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/02/2014] [Indexed: 01/03/2023] Open
Abstract
Bisphenol-A (BPA) is a monomer used in the production of polycarbonate plastics, epoxies and resins and is present in many common household objects ranging from water bottles, can linings, baby bottles, and dental resins. BPA exposure has been linked to numerous negative health effects throughout the body, although the mechanisms of BPA action on the developing brain are still poorly understood. In this study, we sought to investigate whether low dose BPA exposure during a developmental phase when brain connectivity is being organized can cause long-term deleterious effects on brain function and plasticity that outlast the BPA exposure. Lactating dams were orally exposed to 25 μg/kg/day of BPA (one half the U.S. Environmental Protection Agency's 50 μg/kg/day rodent dose reference) or vehicle alone from postnatal day (P)5 to P21. Pups exposed to BPA in their mother's milk exhibited deficits in activity-dependent plasticity in the visual cortex during the visual critical period (P28). To determine the possible mechanisms underlying BPA action, we used immunohistochemistry to examine histological markers known to impact cortical maturity and developmental plasticity and quantified cortical dendritic spine density, morphology, and dynamics. While we saw no changes in parvalbumin neuron density, myelin basic protein expression or microglial density in BPA-exposed animals, we observed increases in spine density on apical dendrites in cortical layer five neurons but no significant alterations in other morphological parameters. Taken together our results suggest that exposure to very low levels of BPA during a critical period of brain development can have profound consequences for the normal wiring of sensory circuits and their plasticity later in life.
Collapse
Affiliation(s)
- Emily A Kelly
- Department of Neurobiology and Anatomy, Center for Visual Science, School of Medicine and Dentistry, University of Rochester Rochester, NY, USA
| | - Lisa A Opanashuk
- Department of Environmental Medicine, University of Rochester Rochester, NY, USA
| | - Ania K Majewska
- Department of Neurobiology and Anatomy, Center for Visual Science, School of Medicine and Dentistry, University of Rochester Rochester, NY, USA
| |
Collapse
|
54
|
Vandenberg LN, Ehrlich S, Belcher SM, Ben-Jonathan N, Dolinoy DC, Hugo ER, Hunt PA, Newbold RR, Rubin BS, Saili KS, Soto AM, Wang HS, vom Saal FS. Low dose effects of bisphenol A. ACTA ACUST UNITED AC 2014. [DOI: 10.4161/endo.26490] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
55
|
Luine VN. Estradiol and cognitive function: past, present and future. Horm Behav 2014; 66:602-18. [PMID: 25205317 PMCID: PMC4318702 DOI: 10.1016/j.yhbeh.2014.08.011] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Abstract
A historical perspective on estradiol's enhancement of cognitive function is presented, and research, primarily in animals, but also in humans, is reviewed. Data regarding the mechanisms underlying the enhancements are discussed. Newer studies showing rapid effects of estradiol on consolidation of memory through membrane interactions and activation of inter-cellular signaling pathways are reviewed as well as studies focused on traditional genomic mechanisms. Recent demonstrations of intra-neuronal estradiol synthesis and possible actions as a neurosteroid to promote memory are discussed. This information is applied to the critical issue of the current lack of effective hormonal (or other) treatments for cognitive decline associated with menopause and aging. Finally, the critical period hypothesis for estradiol effects is discussed along with novel strategies for hormone/drug development. Overall, the historical record documents that estradiol positively impacts some aspects of cognitive function, but effective therapeutic interventions using this hormone have yet to be realized.
Collapse
Affiliation(s)
- Victoria N Luine
- Department of Psychology, Hunter College of CUNY, New York, NY, USA.
| |
Collapse
|
56
|
Tiwari SK, Agarwal S, Chauhan LKS, Mishra VN, Chaturvedi RK. Bisphenol-A impairs myelination potential during development in the hippocampus of the rat brain. Mol Neurobiol 2014; 51:1395-416. [PMID: 25084756 DOI: 10.1007/s12035-014-8817-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/11/2014] [Indexed: 12/01/2022]
Abstract
Myelin is the functional implication of oligodendrocytes (OLs), which is involved in insulation of axons and promoting rapid propagation of action potential in the brain. OLs are derived from oligodendrocyte progenitor cells (OPCs), which proliferate, differentiate, and migrate throughout the central nervous system. Defects in myelination process lead to the onset of several neurological and neurodegenerative disorders. Exposure to synthetic xenoestrogen bisphenol-A (BPA) causes cognitive dysfunction, impairs hippocampal neurogenesis, and causes onset of neurodevelopmental disorders. However, the effects of BPA on OPC proliferation, differentiation and myelination, and associated cellular and molecular mechanism(s) in the hippocampus of the rat brain are still largely unknown. We found that BPA significantly decreased bromodeoxyuridine (BrdU)-positive cell proliferation and number and size of oligospheres. We observed reduced co-localization of BrdU with myelination markers CNPase and platelet-derived growth factor receptor-α (PDGFR-α), suggesting impaired proliferation and differentiation of OPCs by BPA in culture. We studied the effects of BPA exposure during prenatal and postnatal periods on cellular and molecular alteration(s) in the myelination process in the hippocampus region of the rat brain at postnatal day 21 and 90. BPA exposure both in vitro and in vivo altered proliferation and differentiation potential of OPCs and decreased the expression of genes and levels of proteins that are involved in myelination. Ultrastructural electron microscopy analysis revealed that BPA exposure caused decompaction of myelinated axons and altered g-ratio at both the developmental periods as compared to control. These results suggest that BPA exposure both during prenatal and postnatal periods alters myelination in the hippocampus of the rat brain leading to cognitive deficits.
Collapse
Affiliation(s)
- Shashi Kant Tiwari
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow, UP, 226001, India
| | | | | | | | | |
Collapse
|
57
|
Changes in memory and synaptic plasticity induced in male rats after maternal exposure to bisphenol A. Toxicology 2014; 322:51-60. [DOI: 10.1016/j.tox.2014.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 11/17/2022]
|
58
|
Mileva G, Baker SL, Konkle ATM, Bielajew C. Bisphenol-A: epigenetic reprogramming and effects on reproduction and behavior. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7537-61. [PMID: 25054232 PMCID: PMC4113893 DOI: 10.3390/ijerph110707537] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
Abstract
Bisphenol A (BPA) is a synthetic compound used in the production of many polycarbonate plastics and epoxy resins. It is one of the most widely produced chemicals in the world today and is found in most canned goods, plastics, and even household dust. Exposure to BPA is almost universal: most people have measurable amounts of BPA in both urine and serum. BPA is similar in structure to estradiol and can bind to multiple targets both inside and outside the nucleus, in effect acting as an endocrine disruptor. Research on BPA exposure has accelerated in the past decade with findings suggesting that perinatal exposure to BPA can negatively impact both male and female reproduction, create alterations in behavior, and act as a carcinogen. BPA can have both short term and long term effects with the latter typically occurring through epigenetic mechanisms such as DNA methylation. This review will draw on both human and animal studies in an attempt to synthesize the literature and examine the effects of BPA exposure on reproduction, behavior, and carcinogenesis with a focus on the potential epigenetic mechanisms by which it acts.
Collapse
Affiliation(s)
- Guergana Mileva
- School of Psychology, University of Ottawa, 136 Jean Jacques Lussier, Vanier Hall, Ottawa, ON K1N 6N5, Canada.
| | - Stephanie L Baker
- School of Psychology, University of Ottawa, 136 Jean Jacques Lussier, Vanier Hall, Ottawa, ON K1N 6N5, Canada.
| | - Anne T M Konkle
- School of Psychology, University of Ottawa, 136 Jean Jacques Lussier, Vanier Hall, Ottawa, ON K1N 6N5, Canada.
| | - Catherine Bielajew
- School of Psychology, University of Ottawa, 136 Jean Jacques Lussier, Vanier Hall, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
59
|
Bowman RE, Luine V, Khandaker H, Villafane JJ, Frankfurt M. Adolescent bisphenol-A exposure decreases dendritic spine density: role of sex and age. Synapse 2014; 68:498-507. [PMID: 24975924 DOI: 10.1002/syn.21758] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 11/10/2022]
Abstract
Bisphenol-A (BPA), a common environmental endocrine disruptor, modulates estrogenic, androgenic, and antiandrogenic effects throughout the lifespan. We recently showed that low dose BPA exposure during adolescence increases anxiety and impairs spatial memory independent of sex. In this study, six week old Sprague Dawley rats (n=24 males, n=24 females) received daily subcutaneous injections (40 µg/kg bodyweight) of BPA or vehicle for one week. Serum corticosterone levels in response to a 1 h restraint stress and spine density were examined at age 7 (cohort 1) and 11 (cohort 2) weeks. Adolescent BPA exposure did not alter stress dependent corticosterone responses but decreased spine density on apical and basal dendrites of pyramidal cells in the medial prefrontal cortex (mPFC) and hippocampal CA1 region (CA1). Sex differences in spine density were observed on basal dendrites of the mPFC and CA1 with females having greater spine density than males. This sex difference was further augmented by both age and treatment, with results indicating that BPA-dependent decreases in spine density were more pronounced in males than females on mPFC basal dendrites. Importantly, the robust neuronal alterations were observed in animals exposed to BPA levels below the current U.S.E.P.A. recommended safe daily limit. These results are the first demonstrating that BPA given during adolescence leads to enduring effects on neural morphology at adulthood. Given that humans are routinely exposed to low levels of BPA through a variety of sources, the decreased spine density reported in both male and female rats after BPA exposure warrants further investigation.
Collapse
Affiliation(s)
- Rachel E Bowman
- Department of Psychology, Sacred Heart University, Fairfield, Connecticut, 06825
| | | | | | | | | |
Collapse
|
60
|
García-Arevalo M, Alonso-Magdalena P, Rebelo Dos Santos J, Quesada I, Carneiro EM, Nadal A. Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice. PLoS One 2014; 9:e100214. [PMID: 24959901 PMCID: PMC4069068 DOI: 10.1371/journal.pone.0100214] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/22/2014] [Indexed: 12/17/2022] Open
Abstract
Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.
Collapse
Affiliation(s)
- Marta García-Arevalo
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Paloma Alonso-Magdalena
- Departamento de Biología Aplicada, Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Junia Rebelo Dos Santos
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Biologia Estructural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | - Ivan Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Biología Aplicada, Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Everardo M. Carneiro
- Departamento de Biologia Estructural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | - Angel Nadal
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
- * E-mail:
| |
Collapse
|
61
|
Nachman RM, Hartle JC, Lees PSJ, Groopman JD. Early Life Metabolism of Bisphenol A: A Systematic Review of the Literature. Curr Environ Health Rep 2014; 1:90-100. [PMID: 25838989 PMCID: PMC4380326 DOI: 10.1007/s40572-013-0003-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
When a comprehensive report on BPA was published in 2008, few data were available to assess the extent to which known poor glucuronidation capacity impacts BPA internal dose in infants and young children. In this paper, evidence that has emerged since the 2008 report is summarized, including: 1) human biomarker studies in children aged 0-5 years; 2) animal studies of neonatal toxicokinetics; and 3) physically based pharmacokinetic (PBPK) models. To address limitations in these studies, we recommend more human biomonitoring studies in children aged 0-5 years in which unmetabolized (free) BPA and BPA metabolites are separately quantified and detailed quality-control data are reported, investigation of metabolic differences between humans and animal species used for the study of BPA metabolism, and enzyme ontogeny studies, which along with biomonitoring studies would reduce uncertainty in PBPK models of early-life BPA metabolism.
Collapse
Affiliation(s)
- Rebecca M Nachman
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Jennifer C Hartle
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA
| | - Peter S J Lees
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - John D Groopman
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
62
|
Whitaker-Azmitia PM, Lobel M, Moyer A. Low maternal progesterone may contribute to both obstetrical complications and autism. Med Hypotheses 2014; 82:313-8. [PMID: 24485701 DOI: 10.1016/j.mehy.2013.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 12/20/2013] [Accepted: 12/27/2013] [Indexed: 11/17/2022]
Abstract
Studies show increased autism risk among children born to mothers experiencing obstetrical complications. Although this is usually interpreted as suggesting that the obstetrical complications could be causing autism, it is possible that a single factor could be responsible for both complications and autism. We hypothesized that low levels of the hormone progesterone is responsible since it is supplied to the fetus maternally and does not only support pregnancy but also promotes brain development. Following a review of the literature, we report findings from a survey of mothers of autistic children (n=86) compared to mothers of typically-developing children (n=88) regarding obstetrical histories, including five obstetrical risk factors indicative of low progesterone. Using this analysis, the ASD group had significantly more risk factors than controls (1.21 ± 0.09 vs. 0.76 ± 0.08, p<.0001), suggesting low progesterone. Thus, results suggest that low progesterone may be responsible for both obstetrical complications and brain changes associated with autism and that progesterone levels should be routinely monitored in at-risk pregnancies. Our hypothesis also suggests that ensuring adequate levels of progesterone may decrease the likelihood of autism.
Collapse
Affiliation(s)
| | - Marci Lobel
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Anne Moyer
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
63
|
Michaela P, Mária K, Silvia H, L'ubica L. Bisphenol A differently inhibits CaV3.1, Ca V3.2 and Ca V3.3 calcium channels. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:153-63. [PMID: 24170242 DOI: 10.1007/s00210-013-0932-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/16/2013] [Indexed: 01/26/2023]
Abstract
Bisphenol A (BPA) is a widespread environmental contaminant detected in urine of 93 % of investigated US population. Recent epidemiological studies found correlation between BPA exposure and diseases including cardiovascular and neuronal disorders. BPA targets include hormone receptors and voltage-dependent ion channels. T-type calcium channels are important regulatory elements in both cardiovascular and neuronal system. Therefore, we investigated effects of BPA on T-type calcium channels. Calcium current flowing through recombinant T-type calcium channels expressed in HEK 293 cells was measured using whole-cell patch clamp. BPA inhibited the current through individual T-type calcium channel subtypes in a concentration-dependent manner with two distinguishable components in these concentration-dependencies. Nanomolar concentrations of BPA inhibited calcium current through T-type calcium channels in the order of efficiency CaV3.2 ≥ CaV3.1 > CaV3.3 without affecting voltage dependence and kinetics of channel gating. Micromolar concentrations of BPA accelerated kinetics of current decay, shifted voltage dependence of steady-state inactivation towards more negative values and inhibited current amplitudes. We suggest that BPA acts as a modifier of channel gating and directly plugs conductive channel pore at high concentration. Concentration range in which inhibition was observed corresponds to concentrations detected in human fluids and therefore may be relevant for evaluation of health effects of BPA.
Collapse
Affiliation(s)
- Pavlovičová Michaela
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34, Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
64
|
Diaz Weinstein S, Villafane JJ, Juliano N, Bowman RE. Adolescent exposure to Bisphenol-A increases anxiety and sucrose preference but impairs spatial memory in rats independent of sex. Brain Res 2013; 1529:56-65. [DOI: 10.1016/j.brainres.2013.07.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022]
|
65
|
Fan Y, Ding S, Ye X, Manyande A, He D, Zhao N, Yang H, Jin X, Liu J, Tian C, Xu S, Ying C. Does preconception paternal exposure to a physiologically relevant level of bisphenol A alter spatial memory in an adult rat? Horm Behav 2013; 64:598-604. [PMID: 24005185 DOI: 10.1016/j.yhbeh.2013.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 01/13/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental endocrine disrupting compound (EDC); public health concerns have been fueled by findings that maternal BPA exposure can change sex differences in the brain and in some behaviors. We investigated whether a physiologically relevant dose of BPA ingested by male rats before conception would affect spatial memory and hippocampal acetylcholinesterase (AchE) in their adult offspring. Twenty-two 60-day-old male rats (F0) received either a BPA diet (50 μg/kg/day) or vehicle alone for 10 weeks before being mated with non-exposed females. The paternal rats and their forty adult offspring's (F1) behaviors were then examined in the Morris Water Maze (MWM) and their AchE activities in the hippocampus were evaluated. BPA exposure led to spatial memory deficits along with decreased AchE activities in the hippocampus (p = 0.01) in adult F0 rats. This paternal exposure also induced impairment in spatial memory acquisition in both sexes while retention only in females in F1 rats, as well as abolished sex differences in the hippocampus AchE. Overall, these data provide new evidence that paternal BPA exposure, at a "safe" dose, may induce transgenerational alterations in spatial memory in a sex-specific manner.
Collapse
Affiliation(s)
- Ying Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Zeng J, Kuang H, Hu C, Shi X, Yan M, Xu L, Wang L, Xu C, Xu G. Effect of bisphenol A on rat metabolic profiling studied by using capillary electrophoresis time-of-flight mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7457-7465. [PMID: 23746042 DOI: 10.1021/es400490f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bisphenol A (BPA), a chemical widely used in the manufacture of polycarbonate plastics, has raised considerable concern in recent decades because of its hormone-like properties. Whether BPA exposure is a health risk remains controversial in many countries. A metabolomics study based on capillary electrophoresis time-of-flight mass spectrometry (CE-TOF/MS) was performed to study the urine metabolic profiles of Sprague-Dawley rats fed with four dose levels of BPA (0, 1, 10, and 100 μg/kg body weight) for 45 days. Multivariate pattern recognition directly reflected the metabolic perturbations caused by BPA. On the basis of univariate analysis, 42 metabolites including amino acids, polyamines, nucleosides, organic acids, carbohydrates, pterins, polyphenols, and sugar phosphates were found as the most significantly differential metabolites. The marked perturbations were related with valine, leucine and isoleucine biosynthesis, D-glutamine and D-glutamate metabolism, etc. Significant alterations of neurotransmitters (glutamate, gamma-aminobutyric acid, and noradrenaline) and neurotransmitter-related metabolites (tyrosine, histamine, valine, and taurine) suggested that the toxic effects of small-dose BPA (below 50 mg/kg/day) may contribute to its interactions with the neuromediating system. Our study demonstrated that metabolomics may offer more specific insights into the molecular changes underlying the physiological effects of BPA.
Collapse
Affiliation(s)
- Jun Zeng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Xu X, Liu X, Zhang Q, Zhang G, Lu Y, Ruan Q, Dong F, Yang Y. Sex-specific effects of bisphenol-A on memory and synaptic structural modification in hippocampus of adult mice. Horm Behav 2013; 63:766-75. [PMID: 23523742 DOI: 10.1016/j.yhbeh.2013.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 12/16/2022]
Abstract
Humans are routinely exposed to low levels of bisphenol A (BPA), a synthetic xenoestrogen widely used in the production of polycarbonate plastics. The effects of long-term exposure to BPA on memory and modification of synaptic structure in hippocampus of adult mice were investigated in the present study. The adult mice were exposed to BPA (0.4, 4, and 40 mg/kg/day) or arachis oil for 12 weeks. In open field test, BPA at 0.4, 4, or 40 mg/kg/day increased the frequency of rearing and time in the central area of the males, while BPA at 0.4 mg/kg/day reduced the frequency of rearing in the females. Exposure to BPA (0.4 or 40 mg/kg/day) extended the average escape pathlength to the hidden platform in Morris water maze task and shortened the step-down latency 24 h after footshock of the males, but no changes were found in the females for these measures. Meanwhile, BPA induced a reduced numeric synaptic density and a negative effect on the structural parameters of synaptic interface, including an enlarged synaptic cleft and the reduced length of active zone and PSD thickness, in the hippocampus of the male mice. Western blot analyses further indicated that BPA down-regulated expressions of synaptic proteins (synapsin I and PSD-95) and synaptic NMDA receptor subunit NR1 and AMPA receptor subunit GluR1 in the hippocampus of the males. These results suggest that long-term exposure to low levels of BPA in adulthood sex-specifically impaired spatial and passive avoidance memory of mice. These effects may be associated with the higher susceptibility of the hippocampal synaptic plasticity processes, such as remodeling of spinal synapses and the expressions of synaptic proteins (e.g. synapsin I and PSD-95) and NMDA and AMPA receptors, to BPA in the adult male mice.
Collapse
Affiliation(s)
- Xiaohong Xu
- Chemistry and Life Sciences College, Zhejiang Normal University, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Xu X, Xie L, Hong X, Ruan Q, Lu H, Zhang Q, Zhang G, Liu X. Perinatal exposure to bisphenol-A inhibits synaptogenesis and affects the synaptic morphological development in offspring male mice. CHEMOSPHERE 2013; 91:1073-1081. [PMID: 23490186 DOI: 10.1016/j.chemosphere.2012.12.065] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 06/01/2023]
Abstract
Our previous study indicated that perinatal exposure to low-dose BPA, one of the most common environmental endocrine disrupters, alters behavioral development in offspring mice. Given that synaptic structure of the hippocampus is closely related to behaviors, in the present study, we examined the effects of perinatal exposure to BPA (0.04, 0.4, and 4.0 mg kg(-1) day(-1)) on the synaptic density and the synaptic structural modification of pyramidal cells in hippocampus region CA1 and the expressions of synaptic proteins such as synapsin I and PSD-95 and glutamate NMDA and AMPA receptors in male offspring mice on postnatal day (PND) 14, 21, and 56. The results of electron microscope measurement showed that BPA significantly reduced the numeric synaptic density and altered the structural modification of synaptic interface of pyramidal cells with the enlarged synaptic cleft, the shortened active zone, and the thinned postsynaptic density (PSD) on PND 14, 21, and 56 and the increased curvature of synaptic interface on PND 14 and 21. Further analyses of Western blot indicated that BPA markedly reduced the levels of synapsin I and PSD-95 on PND 14, 21, and 56 and down-regulated NMDA receptor subunit NR1 and AMPA receptor subunit GluR1 during development and young adulthood. These results suggest that perinatal exposure to low level of BPA inhibits synaptogenesis and affects synaptic structural modification after birth. The reduced expressions of synaptic proteins synapsin I and PSD-95 and glutamate NMDA and AMPA receptors may be involved in the negative changes in the synaptic plasticity.
Collapse
Affiliation(s)
- Xiaohong Xu
- Chemistry and Life Science College, Zhejiang Normal University, Jinhua 321004, China.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Gioiosa L, Parmigiani S, Vom Saal FS, Palanza P. The effects of bisphenol A on emotional behavior depend upon the timing of exposure, age and gender in mice. Horm Behav 2013; 63:598-605. [PMID: 23470777 DOI: 10.1016/j.yhbeh.2013.02.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 12/22/2022]
Abstract
Experimental evidence suggests that endocrine-disrupting chemicals (EDCs) can permanently disrupt the development of sexually dimorphic behaviors and the structure of sexually dimorphic areas of the brain. EDC exposure has different effects depending on diverse factors, such as the timing and dose of the exposure, the maternal environment and the individual's age and sex. Among EDCs, bisphenol A (BPA) is one of the most studied because of its extensive use, which ranges from dentistry to food/drink packaging. In the present study, we aimed to investigate the behavioral effects of developmental exposure to a low dose of BPA with respect to the timing of the exposure, maternal environment, sex and age at testing. Starting from the last week of pregnancy to the first postpartum week, dams spontaneously drank either corn oil (control group) or a solution containing BPA (10 μg/kg bw/day). At birth, the litters were cross-fostered to different dams to differentiate among the effects of pre- and postnatal exposure. Pre- and postnatally exposed offspring underwent three diverse experimental paradigms for anxiety-related behaviors: as juveniles, a novelty test and at adulthood, both the free exploratory open field and elevated plus maze tests. At both testing ages, pre- and postnatally exposed females showed evidence of increased anxiety and were less prone to explore a novel environment relative to the control females, showing a behavioral profile more similar to control males than females. In this study, the direction of the behavioral changes was affected similarly by the pre- and postnatal exposures, resulting in a disruption of these sexually dimorphic behaviors, although with a greater effect associated with postnatal exposure primarily in females. Our findings indicate that non-reproductive, sexually dimorphic behaviors are sensitive to endocrine disruption during critical developmental periods-particularly the highly critical early neonatal stage. Combined with previous research, our study provides further evidence of the potential risks that even low doses of EDCs may pose to humans, with fetuses and infants being highly vulnerable.
Collapse
Affiliation(s)
- Laura Gioiosa
- Unit of Behavioral Biology, Department of Neuroscience, University of Parma, Viale delle Scienze 11/A, 43100 Parma, Italy.
| | | | | | | |
Collapse
|
70
|
Williams SA, Jasarevic E, Vandas GM, Warzak DA, Geary DC, Ellersieck MR, Roberts RM, Rosenfeld CS. Effects of developmental bisphenol A exposure on reproductive-related behaviors in California mice (Peromyscus californicus): a monogamous animal model. PLoS One 2013; 8:e55698. [PMID: 23405200 PMCID: PMC3565966 DOI: 10.1371/journal.pone.0055698] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/02/2013] [Indexed: 11/28/2022] Open
Abstract
Bisphenol A (BPA), a pervasive, endocrine disrupting compound (EDC), acts as a mixed agonist-antagonist with respect to estrogens and other steroid hormones. We hypothesized that sexually selected traits would be particularly sensitive to EDC. Consistent with this concept, developmental exposure of males from the polygynous deer mouse, Peromyscus maniculatus, to BPA resulted in compromised spatial navigational ability and exploratory behaviors, while there was little effect on females. Here, we have examined a related, monogamous species, the California mouse (Peromyscus californicus), where we predicted that males would be less sensitive to BPA in terms of navigational and exploratory behaviors, while displaying other traits related to interactions with females and territorial marking that might be vulnerable to disruption. As in the deer mouse experiments, females were fed either a phytoestrogen-free CTL diet through pregnancy and lactation or the same diet supplemented with BPA (50 mg/kg feed weight) or ethinyl estradiol (EE) (0.1 part per billion) to provide a "pure" estrogen control. After weaning, pups were maintained on CTL diet until they had reached sexual maturity, at which time behaviors were evaluated. In addition, territorial marking was assessed in BPA-exposed males housed alone and when a control male was visible in the testing arena. In contrast to deer mice, BPA and EE exposure had no effect on spatial navigational skills in either male or female California mice. While CTL females exhibited greater exploratory behavior than CTL males, BPA exposure abolished this sex difference. BPA-exposed males, however, engaged in less territorial marking when CTL males were present. These studies demonstrate that developmental BPA exposure can disrupt adult behaviors in a sex- and species-dependent manner and are consistent with the hypothesis that sexually selected traits are particularly vulnerable to endocrine disruption and should be a consideration in risk assessment studies.
Collapse
Affiliation(s)
- Scott A. Williams
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Eldin Jasarevic
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Neuroscience Program, Center for Translational Neuroscience, University of Missouri, Columbia, Missouri, United States of America
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, Columbia, Missouri, United States of America
| | - Gregory M. Vandas
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Denise A. Warzak
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - David C. Geary
- Interdisciplinary Neuroscience Program, Center for Translational Neuroscience, University of Missouri, Columbia, Missouri, United States of America
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Mark R. Ellersieck
- College of Agriculture, Food, and Natural Resources- Statistician, University of Missouri, Columbia, Missouri, United States of America
| | - R. Michael Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Genetics Area Program, University of Missouri, Columbia, Missouri, United States of America
| | - Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Genetics Area Program, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
71
|
Elsworth JD, Jentsch JD, Vandevoort CA, Roth RH, Redmond DE, Leranth C. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. Neurotoxicology 2013; 35:113-20. [PMID: 23337607 DOI: 10.1016/j.neuro.2013.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/29/2012] [Accepted: 01/03/2013] [Indexed: 11/29/2022]
Abstract
Prevalent use of bisphenol-A (BPA) in the manufacture of resins, plastics and paper products has led to frequent exposure of most people to this endocrine disruptor. Some rodent studies have suggested that BPA can exert detrimental effects on brain development. However as rodent models cannot be relied on to predict consequences of human exposure to BPA during development, it is important to investigate the effects of BPA on non-human primate brain development. Previous research suggests that BPA preferentially targets dopamine neurons in ventral mesencephalon and glutamatergic neurons in hippocampus, so the present work examined the susceptibility of these systems to low dose BPA exposure at the fetal and juvenile stages of development in non-human primates. Exposure of pregnant rhesus monkeys to relatively low levels of BPA during the final 2 months of gestation, induced abnormalities in fetal ventral mesencephalon and hippocampus. Specifically, light microscopy revealed a decrease in tyrosine hydroxylase-expressing (dopamine) neurons in the midbrain of BPA-exposed fetuses and electron microscopy identified a reduction in spine synapses in the CA1 region of hippocampus. In contrast, administration of BPA to juvenile vervet monkeys (14-18 months of age) was without effect on these indices, or on dopamine and serotonin concentrations in striatum and prefrontal cortex, or on performance of a cognitive task that tests working memory capacity. These data indicate that BPA exerts an age-dependent detrimental impact on primate brain development, at blood levels within the range measured in humans having only environmental contact with BPA.
Collapse
Affiliation(s)
- John D Elsworth
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA.
| | | | | | | | | | | |
Collapse
|
72
|
Viguié C, Collet SH, Gayrard V, Picard-Hagen N, Puel S, Roques BB, Toutain PL, Lacroix MZ. Maternal and fetal exposure to bisphenol a is associated with alterations of thyroid function in pregnant ewes and their newborn lambs. Endocrinology 2013; 154:521-8. [PMID: 23150491 DOI: 10.1210/en.2012-1401] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The putative thyroid-disrupting properties of bisphenol A (BPA) highlight the need for an evaluation of fetal exposure and its consequence on the mother/newborn thyroid functions in models relevant to human. The goals of this study were to characterize in sheep a relevant model for human pregnancy and thyroid physiology, the internal exposures of the fetuses and their mothers to BPA and its main metabolite BPA-glucuronide (Gluc), and to determine to what extent it might be associated with thyroid disruption. Ewes were treated with BPA [5 mg/(kg · d) sc] or vehicle from d 28 until the end of pregnancy. Unconjugated BPA did not appear to accumulate in pregnant ewes, and its concentration was similar in the newborns and their mothers (0.13 ± 0.02 and 0.18 ± 0.03 nmol/ml in cord and maternal blood, respectively). In amniotic fluid and cord blood, BPA-Gluc concentrations were about 1300-fold higher than those of BPA. Total T(4) concentrations were decreased in BPA-treated pregnant ewes and in the cord and the jugular blood of their newborns (30% decrease). A similar difference was observed for free T(4) plasma concentrations in the jugular blood of the newborns. Our results show in a long-gestation species with a similar regulatory scheme of thyroid function as humans that BPA in utero exposure can be associated with hypothyroidism in the newborns. If such an effect were to be confirmed for a more relevant exposure scheme to BPA, this would constitute a major issue for BPA risk assessment.
Collapse
Affiliation(s)
- Catherine Viguié
- Institut National de la Recherche Agronomique/Institut National Polytechnique/Université Paul Sabatire, Ecole Nationale Vétérinaire de Toulouse, Laboratoire de Physiologie, 23 chemin des Capelles, BP 87614, F-31076 Toulouse cedex 3, France.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Luine V, Frankfurt M. Interactions between estradiol, BDNF and dendritic spines in promoting memory. Neuroscience 2012; 239:34-45. [PMID: 23079626 DOI: 10.1016/j.neuroscience.2012.10.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 01/17/2023]
Abstract
Several lines of evidence have converged to indicate that memory formation involves plasticity of dendritic spines in the medial prefrontal cortex (PFC) and the hippocampus. Memory varies with estrogen levels throughout the lifespan of the female. Generally, increased levels of estrogen are related to greater dendritic spine density on pyramidal cells in the PFC and the hippocampus and to improved memory function. Brain-derived neurotrophic factor (BDNF) is a growth factor which increases dendritic spines and enhances memory function. Estrogens increase BDNF levels in the PFC and the hippocampus. In the present review we provide evidence that estradiol and BDNF may work in concert to enhance cognition. In adult females, fluctuations in recognition memory following ovariectomy and estradiol replacement, during the estrous cycle, in pregnancy and with aging are accompanied by similar changes in circulating estradiol, BDNF levels and spine density alterations in the PFC and the hippocampus. In addition, both estradiol and BDNF induce spine plasticity via rapid membrane effects and slower transcriptional regulation via the CREB pathway. Moreover, estradiol increases BDNF levels through action on nuclear receptors. While the exact mechanism(s) for the influence of estrogens and BDNF on memory remain unclear, this combination may provide the basis for new and more effective strategies for treating age-related and neurodegenerative memory loss.
Collapse
Affiliation(s)
- V Luine
- Department of Psychology, Hunter College of CUNY, New York, NY 10065, USA.
| | | |
Collapse
|
74
|
Luine VN, Frankfurt M. Estrogens facilitate memory processing through membrane mediated mechanisms and alterations in spine density. Front Neuroendocrinol 2012; 33:388-402. [PMID: 22981654 PMCID: PMC3496031 DOI: 10.1016/j.yfrne.2012.07.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/20/2012] [Accepted: 07/19/2012] [Indexed: 01/27/2023]
Abstract
Estrogens exert sustained, genomically mediated effects on memory throughout the female life cycle, but here we review new studies documenting rapid effects of estradiol on memory, which are exerted through membrane-mediated mechanisms. Use of recognition memory tasks in rats shows that estrogens enhance memory consolidation within 1h. 17α-Estradiol is more potent than 17β-estradiol, and the dose response relationship between estrogens and memory is an inverted U shape. Use of specific estrogen receptor (ER) agonists suggests mediation by an ERβ-like membrane receptor. Enhanced memory is associated with increased spine density and altered noradrenergic activity in the medial prefrontal cortex and hippocampus within 30 min of administration. The environmental chemical, bisphenol-A, rapidly antagonizes enhancements in memory in both sexes possibly through actions on spines. Thus, estradiol and related compounds exert rapid alterations in cognition through non-genomic mechanisms, a finding which may provide a basis for better understanding and treating memory impairments.
Collapse
Affiliation(s)
- Victoria N Luine
- Department of Psychology, Hunter College of CUNY, New York, NY 10065, USA.
| | | |
Collapse
|
75
|
A single exposure to bisphenol A alters the levels of important neuroproteins in adult male and female mice. Neurotoxicology 2012; 33:1390-5. [DOI: 10.1016/j.neuro.2012.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/14/2012] [Accepted: 09/04/2012] [Indexed: 01/15/2023]
|
76
|
|
77
|
Tanabe N, Yoshino H, Kimoto T, Hojo Y, Ogiue-Ikeda M, Shimohigashi Y, Kawato S. Nanomolar dose of bisphenol A rapidly modulates spinogenesis in adult hippocampal neurons. Mol Cell Endocrinol 2012; 351:317-25. [PMID: 22281313 DOI: 10.1016/j.mce.2012.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/23/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
We demonstrated the rapid effects of 10nM bisphenol A (BPA) on the spinogenesis of adult rat hippocampal slices. The density of spines was analyzed by imaging Lucifer Yellow-injected CA1 neurons in slices. Not only the total spine density but also the head diameter distribution of spine was quantitatively analyzed. Spinogenesis was significantly enhanced by BPA within 2h. In particular, the density of middle-head spine (with head diameter of 0.4-0.5μm) was significantly increased. Hydroxytamoxifen, an antagonist of both estrogen-related receptor gamma (ERRγ) and estrogen receptors (ERα/ERβ), blocked the BPA-induced enhancement of the spine density. However, ICI 182,780, an antagonist of ERα/ERβ, did not suppress the BPA effects. Therefore, ERRγ is deduced to be a high affinity receptor of BPA, responsible for modulation of spinogenesis. The BPA-induced enhancement of spinogenesis was also suppressed by MAP kinase inhibitor, PD98059, and the blocker of NMDA receptors, MK-801. Washout of BPA for additional 2h after 2h BPA treatment abolished the BPA-induced enhancement of spinogenesis, suggesting that the BPA effect was reversible. ERRγ was localized at synapses as well as cell bodies of principal neurons. ERRγ at synapses may contribute to the observed rapid effect. The level of BPA in the hippocampal slices was determined by mass-spectrometric analysis.
Collapse
Affiliation(s)
- Nobuaki Tanabe
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | | | | | |
Collapse
|
78
|
Panzica GC, Balthazart J, Frye CA, Garcia-Segura LM, Herbison AE, Mensah-Nyagan AG, McCarthy MM, Melcangi RC. Milestones on Steroids and the Nervous System: 10 years of basic and translational research. J Neuroendocrinol 2012; 24:1-15. [PMID: 22188420 DOI: 10.1111/j.1365-2826.2011.02265.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During the last 10 years, the conference on 'Steroids and Nervous System' held in Torino (Italy) has been an important international point of discussion for scientists involved in this exciting and expanding research field. The present review aims to recapitulate the main topics that have been presented through the various meetings. Two broad areas have been explored: the impact of gonadal hormones on brain circuits and behaviour, as well as the mechanism of action of neuroactive steroids. Relationships among steroids, brain and behaviour, the sexual differentiation of the brain and the impact of gonadal hormones, the interactions of exogenous steroidal molecules (endocrine disrupters) with neural circuits and behaviour, and how gonadal steroids modulate the behaviour of gonadotrophin-releasing hormone neurones, have been the topics of several lectures and symposia during this series of meetings. At the same time, many contributions have been dedicated to the biosynthetic pathways, the physiopathological relevance of neurosteroids, the demonstration of the cellular localisation of different enzymes involved in neurosteroidogenesis, the mechanisms by which steroids may exert some of their effects, both the classical and nonclassical actions of different steroids, the role of neuroactive steroids on neurodegeneration, neuroprotection, and the response of the neural tissue to injury. In these 10 years, this field has significantly advanced and neuroactive steroids have emerged as new potential therapeutic tools to counteract neurodegenerative events.
Collapse
Affiliation(s)
- G C Panzica
- Laboratory of Neuroendocrinology, Department of Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of Turin (NIT), University of Torino, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Eilam-Stock T, Serrano P, Frankfurt M, Luine V. Bisphenol-A impairs memory and reduces dendritic spine density in adult male rats. Behav Neurosci 2011; 126:175-85. [PMID: 22004261 DOI: 10.1037/a0025959] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Exposure to Bisphenol-A (BPA), an endocrine disruptor used in plastics, occurs in the United States on a daily basis. Recent studies suggest exposure during development causes memory deficits later in life; however, the ramifications of exposure in adulthood are unclear. We examined the effects of acute BPA administration (40 μg/kg) on memory and synaptic plasticity in adult male rats. BPA significantly impaired both visual and spatial memory and decreased dendritic spine density on pyramidal cells in CA1 and the medial prefrontal cortex (mPFC). Additionally, BPA significantly decreased PSD-95, a synaptic marker, in the hippocampus and increased cytosolic pCREB, a transcription factor, in mPFC. Together, these findings show that a single dose of BPA, below the USEPA reference safe daily limit of 50 μg/kg/day, may block the formation of new memories by interfering with neural plasticity processes in the adult brain.
Collapse
Affiliation(s)
- Tehila Eilam-Stock
- Department of Psychology, Hunter College, The City University of New York, New York, NY 10065, USA
| | | | | | | |
Collapse
|
80
|
Taylor JA, Richter CA, Ruhlen RL, vom Saal FS. Estrogenic environmental chemicals and drugs: mechanisms for effects on the developing male urogenital system. J Steroid Biochem Mol Biol 2011; 127:83-95. [PMID: 21827855 PMCID: PMC3191287 DOI: 10.1016/j.jsbmb.2011.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 11/24/2022]
Abstract
Development and differentiation of the prostate from the fetal urogenital sinus (UGS) is dependent on androgen action via androgen receptors (AR) in the UGS mesenchyme. Estrogens are not required for prostate differentiation but do act to modulate androgen action. In mice exposure to exogenous estrogen during development results in permanent effects on adult prostate size and function, which is mediated through mesenchymal estrogen receptor (ER) alpha. For many years estrogens were thought to inhibit prostate growth because estrogenic drugs studied were administered at very high concentrations that interfered with normal prostate development. There is now extensive evidence that exposure to estrogen at very low concentrations during the early stages of prostate differentiation can stimulate fetal/neonatal prostate growth and lead to prostate disease in adulthood. Bisphenol A (BPA) is an environmental endocrine disrupting chemical that binds to both ER receptor subtypes as well as to AR. Interest in BPA has increased because of its prevalence in the environment and its detection in over 90% of people in the USA. In tissue culture of fetal mouse UGS mesenchymal cells, BPA and estradiol stimulated changes in the expression of several genes. We discuss here the potential involvement of estrogen in regulating signaling pathways affecting cellular functions relevant to steroid hormone signaling and metabolism and to inter- and intra-cellular communications that promote cell growth. The findings presented here provide additional evidence that BPA and the estrogenic drug ethinylestradiol disrupt prostate development in male mice at administered doses relevant to human exposures.
Collapse
Affiliation(s)
- Julia A Taylor
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
81
|
Rubin BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 2011; 127:27-34. [PMID: 21605673 DOI: 10.1016/j.jsbmb.2011.05.002] [Citation(s) in RCA: 836] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/29/2011] [Accepted: 05/05/2011] [Indexed: 12/23/2022]
Abstract
Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. This compound is a building block of polycarbonate plastics often used for food and beverage storage, and BPA is also a component of epoxy resins that are used to line food and beverage containers. Studies have shown that BPA can leach from these and other products in contact with food and drink, and as a result, routine ingestion of BPA is presumed. This compound is also found in an enormous number of other products that we come into contact with daily, and therefore it is not surprising that it has been detected in the majority of individuals examined. BPA is a known endocrine disruptor. Although initially considered to be a weak environmental estrogen, more recent studies have demonstrated that BPA may be similar in potency to estradiol in stimulating some cellular responses. Moreover, emerging evidence suggests that BPA may influence multiple endocrine-related pathways. Studies in rodents have identified adverse effects of BPA at levels at or below the current acceptable daily intake level for this compound. The various reported adverse effects of BPA are reviewed, and potential mechanisms of BPA action are discussed. Much more investigation is needed to understand the potential adverse health effects of BPA exposure in humans and to understand the multiple pathways through which it may act. Although many questions remain to be answered, it is becoming increasingly apparent that exposure to BPA is ubiquitous and that the effects of this endocrine disruptor are complex and wide-ranging.
Collapse
Affiliation(s)
- Beverly S Rubin
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111, United States.
| |
Collapse
|
82
|
Wolstenholme JT, Taylor JA, Shetty SRJ, Edwards M, Connelly JJ, Rissman EF. Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice. PLoS One 2011; 6:e25448. [PMID: 21980460 PMCID: PMC3182223 DOI: 10.1371/journal.pone.0025448] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/05/2011] [Indexed: 12/02/2022] Open
Abstract
Bisphenol A (BPA) is a man-made compound used to make polycarbonate plastics and epoxy resins; public health concerns have been fueled by findings that BPA exposure can reduce sex differences in brain and some behaviors. We asked if a low BPA dose, within the range measured in humans, ingested during pregnancy, would affect social behaviors in prepubertal mice. We noted sex differences in social interactions whereby females spent more time sitting side-by-side, while males engaged in more exploring and sitting alone. In addition BPA increased display of nose-to-nose contacts, play solicitations and approaches in both sexes. Interactions between sex and diet were found for self grooming, social interactions while sitting side-by-side and following the other mouse. In all these cases interactions were produced by differences between control and BPA females. We examined brains from embryos during late gestation to determine if gene expression differences might be correlated with some of the sexually dimorphic or BPA affected behaviors we observed. Because BPA treatments ended at birth we took the brains during embryogenesis to increase the probability of discovering BPA mediated effects. We also selected this embryonic age (E18.5) because it coincides with the onset of sexual differentiation of the brain. Interestingly, mRNA for the glutamate transporter, Slc1a1, was enhanced by exposure to BPA in female brains. Also we noted that BPA changed the expression of two of the three DNA methyltransferase genes, Dnmt1 and Dnmt3a. We propose that BPA affects DNA methylation of Sc1a1 during neural development. Sex differences in juvenile social interactions are affected by BPA and in particular this compound modifies behavior in females.
Collapse
Affiliation(s)
- Jennifer T. Wolstenholme
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Julia A. Taylor
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Savera R. J. Shetty
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Michelle Edwards
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Jessica J. Connelly
- Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Emilie F. Rissman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
83
|
Maternal bisphenol A (BPA) decreases attractiveness of male offspring. Proc Natl Acad Sci U S A 2011; 108:11305-6. [PMID: 21730127 DOI: 10.1073/pnas.1108769108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
84
|
Disruption of adult expression of sexually selected traits by developmental exposure to bisphenol A. Proc Natl Acad Sci U S A 2011; 108:11715-20. [PMID: 21709224 DOI: 10.1073/pnas.1107958108] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exposure to endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), may cause adverse health effects in wildlife and humans, but controversy remains as to what traits are most sensitive to EDCs and might serve as barometers of exposure. Expression of sexually selected traits that have evolved through intrasexual competition for mates and intersexual choice of mating partner are more dependent on developmental and physical condition of an animal than naturally selected traits and thus might be particularly vulnerable to disruption by developmental exposure to EDCs. We have used the deer mouse (Peromyscus maniculatus) as a model to test this hypothesis. Adult male-male competition for mates in this species is supported by enhanced spatial navigational and exploratory abilities, which enable males to search for prospective, widely dispersed females. Male deer mice exposed to BPA or ethinyl estradiol (EE) through maternal diet showed no changes in external phenotype, sensory development, or adult circulating concentrations of testosterone and corticosterone, but spatial learning abilities and exploratory behaviors were severely compromised compared with control males. Because these traits are not sexually selected in females, BPA exposure predictably had no effect, although EE-exposed females demonstrated enhanced spatial navigational abilities. Both BPA-exposed and control females preferred control males to BPA-exposed males. Our demonstration that developmental exposure to BPA compromises cognitive abilities and behaviors essential for males to reproduce successfully has broad implications for other species, including our own. Thus, sexually selected traits might provide useful biomarkers to assess risk of environmental contamination in animal and human populations.
Collapse
|
85
|
Inhibition of voltage-gated sodium channels by bisphenol A in mouse dorsal root ganglion neurons. Brain Res 2011; 1378:1-8. [PMID: 21241682 DOI: 10.1016/j.brainres.2011.01.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/14/2010] [Accepted: 01/08/2011] [Indexed: 11/22/2022]
Abstract
Bisphenol A (BPA), an estrogenic compound, is contained in cans, polycarbonate bottles, and some dental sealants. Exposure to BPA might have potential toxicological effects on the nervous system. Previous studies have demonstrated that BPA may affect ion channel function, but the effects of BPA on voltage-gated sodium channels are unknown. Herein, we report the effects of BPA on TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) Na+ currents, using a conventional whole-cell patch clamp technique from acutely isolated mouse dorsal root ganglion neurons. BPA inhibited TTX-S Na+ currents and TTX-R Na+ currents, the effects of BPA were rapid, reversible and in a concentration-dependent manner. Moreover, BPA could shift the voltage-gated activation curve for TTX-S Na+ channel in the hyperpolarizing direction without changing that for TTX-R Na+ channel; shift the steady-state inactivation curve for TTX-S Na+ channel in the depolarizing direction without changing that for TTX-R Na+ channel; and lengthen the time course of recovery from inactivation for both TTX-S Na+ current and TTX-R Na+ current. We also found that PKC inhibitor GÖ-6983 and PKA inhibitor H-89 blocked the BPA-induced inhibition of Na+ currents. Considering its complex modulatory effects on voltage-gated sodium channels, BPA might have potential toxicological effects on the nervous system and lead to a change in excitability of nociceptive afferent fibers.
Collapse
|