51
|
Dudzic JP, Hanson MA, Iatsenko I, Kondo S, Lemaitre B. More Than Black or White: Melanization and Toll Share Regulatory Serine Proteases in Drosophila. Cell Rep 2019; 27:1050-1061.e3. [DOI: 10.1016/j.celrep.2019.03.101] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/05/2018] [Accepted: 03/27/2019] [Indexed: 12/15/2022] Open
|
52
|
Staats S, Wagner AE, Lüersen K, Künstner A, Meyer T, Kahns AK, Derer S, Graspeuntner S, Rupp J, Busch H, Sina C, Ipharraguerre IR, Rimbach G. Dietary ursolic acid improves health span and life span in male Drosophila melanogaster. Biofactors 2019; 45:169-186. [PMID: 30496629 DOI: 10.1002/biof.1467] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
The health and life span of Drosophila melanogaster are partly determined by intestinal barrier integrity, metabolic rate as well as stress response and the expression of longevity-associated genes, depending on genetic and dietary factors. Ursolic acid (UA) is a naturally occurring triterpenoid exhibiting potential antimicrobial, anti-inflammatory, and antiobesity activity and counteracting age-related deficits in muscle strength. In this study, UA was dietarily administered to w1118 D. melanogaster which significantly elongated the health and life span of males. Spargel (srl) is the Drosophila orthologue of mammalian peroxisome proliferator-activated receptor-gamma coactivator 1 α(PGC1α), an important regulator of energy homeostasis and mitochondrial function. Our results indicate that the health-promoting effect of UA, demonstrated by a significant increase in climbing activity, occurs via an upregulation of srl expression leading to a metabolic shift in the fly without reducing fecundity or gut integrity. Moreover, UA affected the flies' microbiota in a manner that contributed to life span extension. Srl expression and microbiota both seem to be affected by UA, as we determined by using srl-mutant and axenic flies. © 2018 BioFactors, 45(2):169-186, 2019.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Anika E Wagner
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Axel Künstner
- Group for Medical Systems Biology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Timo Meyer
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Anna K Kahns
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Group for Medical Systems Biology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | | | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
53
|
Hanson MA, Dostálová A, Ceroni C, Poidevin M, Kondo S, Lemaitre B. Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach. eLife 2019; 8:e44341. [PMID: 30803481 PMCID: PMC6398976 DOI: 10.7554/elife.44341] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading microorganisms. These short, cationic peptides have been implicated in many biological processes, primarily involving innate immunity. In vitro studies have shown AMPs kill bacteria and fungi at physiological concentrations, but little validation has been done in vivo. We utilized CRISPR gene editing to delete all known immune-inducible AMPs of Drosophila, namely: 4 Attacins, 4 Cecropins, 2 Diptericins, Drosocin, Drosomycin, Metchnikowin and Defensin. Using individual and multiple knockouts, including flies lacking all 14 AMP genes, we characterize the in vivo function of individual and groups of AMPs against diverse bacterial and fungal pathogens. We found that Drosophila AMPs act primarily against Gram-negative bacteria and fungi, contributing either additively or synergistically. We also describe remarkable specificity wherein certain AMPs contribute the bulk of microbicidal activity against specific pathogens, providing functional demonstrations of highly specific AMP-pathogen interactions in an in vivo setting.
Collapse
Affiliation(s)
- Mark Austin Hanson
- Global Health Institute, School of Life ScienceÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Anna Dostálová
- Global Health Institute, School of Life ScienceÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Camilla Ceroni
- Global Health Institute, School of Life ScienceÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Mickael Poidevin
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-Saclay, CEA, CNRS, Université Paris SudGif-sur-YvetteFrance
| | - Shu Kondo
- Invertebrate Genetics Laboratory, Genetic Strains Research CenterNational Institute of GeneticsMishimaJapan
| | - Bruno Lemaitre
- Global Health Institute, School of Life ScienceÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
54
|
Abhyankar V, Kaduskar B, Kamat SS, Deobagkar D, Ratnaparkhi GS. Drosophila DNA/RNA methyltransferase contributes to robust host defense in aging animals by regulating sphingolipid metabolism. ACTA ACUST UNITED AC 2018; 221:jeb.187989. [PMID: 30254027 DOI: 10.1242/jeb.187989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
Drosophila methyltransferase (Mt2) has been implicated in the methylation of both DNA and tRNA. In this study, we demonstrate that loss of Mt2 activity leads to an age-dependent decline of immune function in the adult fly. A newly eclosed adult has mild immune defects that are exacerbated in a 15 day old Mt2-/- fly. The age-dependent effects appear to be systemic, including disturbances in lipid metabolism, changes in cell shape of hemocytes and significant fold-changes in levels of transcripts related to host defense. Lipid imbalance, as measured by quantitative lipidomics, correlates with immune dysfunction, with high levels of immunomodulatory lipids, sphingosine-1-phosphate (S1P) and ceramides, along with low levels of storage lipids. Activity assays on fly lysates confirm the age-dependent increase in S1P and concomitant reduction of S1P lyase activity. We hypothesize that Mt2 functions to regulate genetic loci such as S1P lyase and this regulation is essential for robust host defense as the animal ages. Our study uncovers novel links between age--dependent Mt2 function, innate immune response and lipid homeostasis.
Collapse
Affiliation(s)
- Varada Abhyankar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Bhagyashree Kaduskar
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Deepti Deobagkar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India .,Center of Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| |
Collapse
|
55
|
Characterization of Spz5 as a novel ligand for Drosophila Toll-1 receptor. Biochem Biophys Res Commun 2018; 506:510-515. [PMID: 30361090 DOI: 10.1016/j.bbrc.2018.10.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 11/22/2022]
Abstract
The Drosophila Toll-1 receptor is involved in embryonic development, innate immunity, and tissue homeostasis. Currently, as a ligand for the Toll-1 receptor, only Spätzle (Spz) has been identified and characterized. We previously reported that Drosophila larva-derived tissue extract contains ligand activity for the Toll-1 receptor, which differs from Spz based on the observation that larval extract prepared from spz mutants possessed full ligand activity. Here, we demonstrate that Spz5, a member of the Spz family of proteins, functions as a ligand for the Toll-1 receptor. Processing of Spz5 by Furin protease, which is known to be important for ligand activity of Spz5 to Toll-6, is not required for its function to the Toll-1 receptor. By generating a spz5 null mutant, we further showed that the Toll-1 ligand activity of larva-derived extract is mainly derived from Spz5. Finally, we found a genetic interaction between spz and spz5 in terms of developmental processes. This study identified a novel ligand for the Drosophila Toll-1 receptor, providing evidence that Toll-1 is a multi-ligand receptor, similar to the mammalian Toll-like receptor.
Collapse
|
56
|
Lindsay SA, Lin SJH, Wasserman SA. Short-Form Bomanins Mediate Humoral Immunity in Drosophila. J Innate Immun 2018; 10:306-314. [PMID: 29920489 DOI: 10.1159/000489831] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022] Open
Abstract
The Bomanins (Boms) are a family of a dozen secreted peptides that mediate the innate immune response governed by the Drosophila Toll receptor. We recently showed that deleting a cluster of 10 Bom genes blocks Toll-mediated defenses against a range of fungi and gram-positive bacteria. Here, we characterize the activity of individual Bom family members. We provide evidence that the Boms overlap in function and that a single Bom gene encoding a mature peptide of just 16 amino acids can act largely or entirely independent of other family members to provide phenotypic rescue in vivo. We further demonstrate that the Boms function in Drosophila humoral immunity, mediating the killing of the fungal pathogen Candida glabrata in an in vitro assay of cell-free hemolymph. In addition, we find that the level of antifungal activity both in vivo and in vitro is linked to the level of Bom gene expression. Although Toll dictates expression of the antimicrobial peptides (AMPs) drosomycin and metchnikowin, we find no evidence that Boms act by modifying the expression of the mature forms of these antifungal AMPs.
Collapse
|
57
|
Siva-Jothy JA, Prakash A, Vasanthakrishnan RB, Monteith KM, Vale PF. Oral Bacterial Infection and Shedding in Drosophila melanogaster. J Vis Exp 2018. [PMID: 29912178 PMCID: PMC6101445 DOI: 10.3791/57676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The fruit fly Drosophila melanogaster is one of the best developed model systems of infection and innate immunity. While most work has focused on systemic infections, there has been a recent increase of interest in the mechanisms of gut immunocompetence to pathogens, which require methods to orally infect flies. Here we present a protocol to orally expose individual flies to an opportunistic bacterial pathogen (Pseudomonas aeruginosa) and a natural bacterial pathogen of D. melanogaster (Pseudomonas entomophila). The goal of this protocol is to provide a robust method to expose male and female flies to these pathogens. We provide representative results showing survival phenotypes, microbe loads, and bacterial shedding, which is relevant for the study of heterogeneity in pathogen transmission. Finally, we confirm that Dcy mutants (lacking the protective peritrophic matrix in the gut epithelium) and Relish mutants (lacking a functional immune deficiency (IMD) pathway), show increased susceptibility to bacterial oral infection. This protocol, therefore, describes a robust method to infect flies using the oral route of infection, which can be extended to the study of a variety genetic and environmental sources of variation in gut infection outcomes and bacterial transmission.
Collapse
Affiliation(s)
- Jonathon A Siva-Jothy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh
| | - Arun Prakash
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh
| | | | - Katy M Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh; Centre for Immunity, Infection and Evolution, University of Edinburgh;
| |
Collapse
|
58
|
Hiroyasu A, DeWitt DC, Goodman AG. Extraction of Hemocytes from Drosophila melanogaster Larvae for Microbial Infection and Analysis. J Vis Exp 2018. [PMID: 29889203 DOI: 10.3791/57077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During the pathogenic infection of Drosophila melanogaster, hemocytes play an important role in the immune response throughout the infection. Thus, the goal of this protocol is to develop a method to visualize the pathogen invasion in a specific immune compartment of flies, namely hemocytes. Using the method presented here, up to 3 × 106 live hemocytes can be obtained from 200 Drosophila 3rd instar larvae in 30 min for ex vivo infection. Alternatively, hemocytes can be infected in vivo through injection of 3rd instar larvae followed by hemocyte extraction up to 24 h post-infection. These infected primary cells were fixed, stained, and imaged using confocal microscopy. Then, 3D representations were generated from the images to definitively show pathogen invasion. Additionally, high-quality RNA for qRT-PCR can be obtained for the detection of pathogen mRNA following infection, and sufficient protein can be extracted from these cells for Western blot analysis. Taken together, we present a method for definite reconciliation of pathogen invasion and confirmation of infection using bacterial and viral pathogen types and an efficient method for hemocyte extraction to obtain enough live hemocytes from Drosophila larvae for ex vivo and in vivo infection experiments.
Collapse
Affiliation(s)
- Aoi Hiroyasu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University
| | - David C DeWitt
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University;
| |
Collapse
|
59
|
Zhai Z, Boquete JP, Lemaitre B. Cell-Specific Imd-NF-κB Responses Enable Simultaneous Antibacterial Immunity and Intestinal Epithelial Cell Shedding upon Bacterial Infection. Immunity 2018; 48:897-910.e7. [DOI: 10.1016/j.immuni.2018.04.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/31/2017] [Accepted: 04/10/2018] [Indexed: 12/13/2022]
|
60
|
Staats S, Lüersen K, Wagner AE, Rimbach G. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3737-3753. [PMID: 29619822 DOI: 10.1021/acs.jafc.7b05900] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drosophila melanogaster has been widely used in the biological sciences as a model organism. Drosophila has a relatively short life span of 60-80 days, which makes it attractive for life span studies. Moreover, approximately 60% of the fruit fly genes are orthologs to mammals. Thus, metabolic and signal transduction pathways are highly conserved. Maintenance and reproduction of Drosophila do not require sophisticated equipment and are rather cheap. Furthermore, there are fewer ethical issues involved in experimental Drosophila research compared with studies in laboratory rodents, such as rats and mice. Drosophila is increasingly recognized as a model organism in food and nutrition research. Drosophila is often fed complex solid diets based on yeast, corn, and agar. There are also so-called holidic diets available that are defined in terms of their amino acid, fatty acid, carbohydrate, vitamin, mineral, and trace element compositions. Feed intake, body composition, locomotor activity, intestinal barrier function, microbiota, cognition, fertility, aging, and life span can be systematically determined in Drosophila in response to dietary factors. Furthermore, diet-induced pathophysiological mechanisms including inflammation and stress responses may be evaluated in the fly under defined experimental conditions. Here, we critically evaluate Drosophila melanogaster as a versatile model organism in experimental food and nutrition research, review the corresponding data in the literature, and make suggestions for future directions of research.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Anika E Wagner
- Institute of Nutritional Medicine , University of Lübeck , Ratzeburger Allee 160 , D-23538 Lübeck , Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| |
Collapse
|
61
|
Liu SH, Li HF, Yang Y, Wei D, Jiang HB, Dou W, Yuan GR, Wang JJ. Antimicrobial peptide gene BdPho responds to peptidoglycan infection and mating stimulation in oriental fruit fly, Bactrocera dorsalis (Hendel). AMB Express 2018; 8:5. [PMID: 29327267 PMCID: PMC5764898 DOI: 10.1186/s13568-017-0533-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/29/2017] [Indexed: 11/10/2022] Open
Abstract
Phormicins belong to defensin family, which are important antimicrobial peptides (AMPs) in insects. These AMPs are inducible upon challenging by immune triggers. In the present study, we identified the cDNA of a phormicin gene (BdPho) in the oriental fruit fly, Bactrocera dorsalis (Hendel), a ruinous agricultural pest causing great economic losses to fruits and vegetables. The cDNA of BdPho contains a 282 bp open reading frame encoding 93 amino acid residues, and the predicted molecular weight and isoelectric point of BdPho peptide were 9.83 kDa and 7.54, respectively. Quantitative real-time PCR analyses showed that the transcription level of BdPho was the highest in adult during different developmental stages and was the highest in abdomen among adult tagmata. Moreover, BdPho was highly expressed in fat body among different tissues, both in female and male adult. The mRNA level of BdPho was significantly up-regulated to 7.46- and 14.53-fold at 3 and 6 h after the insects were challenged with peptidoglycans from Escherichia coli (PGN-EB), respectively, suggesting its antimicrobial activity against Gram-negative microorganisms. Furthermore, the expression level of BdPho was significantly up-regulated to 3.83-fold after mating, suggesting that female adults might enhance their immunity by up-regulating the expression level of BdPho during mating. These results firstly describe the basic properties of the phormicin gene from B. dorsalis, and lay the foundation for investigating functional properties of AMPs and exploring the molecular mechanisms in the immune system.
Collapse
|
62
|
Li S, Xu J, Sun L, Li R, Jin P, Ma F. Drosophila miR-964 modulates Toll signaling pathway in response to bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:252-258. [PMID: 28823799 DOI: 10.1016/j.dci.2017.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
Recent studies suggest that microRNA (miRNA) plays important roles in the control of immune response and tolerance. We previously found that the expression level of antimicrobial peptide gene Drosomycin (Drs) is decreased in miR-964 overexpressing flies. Here, we further verified that miR-964 deficiency leads to hyper-activation of Drs. In addition, we employed three widely-used bioinformatic algorithms to screen potential miR-964 targets. Finally, we identified that miR-964 modulates Toll signaling pathway, at least in part, by repressing the expression of Drs. Taken together, our study identifies miR-964 as a modulator of Toll signaling and enriches the repertoire of immune-modulating miRNAs in Drosophila.
Collapse
Affiliation(s)
- Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Jiao Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Lianjie Sun
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
63
|
Tariq K, Noor M, Hori M, Ali A, Hussain A, Peng W, Chang CJ, Zhang H. Blue light-induced immunosuppression in Bactrocera dorsalis adults, as a carryover effect of larval exposure. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:734-741. [PMID: 28485267 DOI: 10.1017/s0007485317000438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Detrimental effects of ultraviolet (UV) light on living organisms are well understood, little is known about the effects of blue light irradiation. Although a recent study revealed that blue light caused more harmful effects on insects than UV light and blue light irradiation killed insect pests of various orders including Diptera, the effects of blue light on physiology of insects are still largely unknown. Here we studied the effects of blue light irradiation on cuticular melanin in larval and the immune response in adult stage of Bactrocera dorsalis. We also evaluated the effects of blue light exposure in larval stage on various age and mass at metamorphosis and the mediatory role of cuticular melanin in carryover effects of larval stressors across metamorphosis. We found that larvae exposed to blue light decreased melanin contents in their exoskeleton with smaller mass and delayed metamorphosis than insects reared without blue light exposure. Across metamorphosis, lower melanotic encapsulation response and higher susceptibility to Beauveria bassiana was detected in adults that had been exposed to blue light at their larval stage, thereby constituting the first evidence that blue light impaired adult immune function in B. dorsalis as a carryover effect of larval exposure.
Collapse
Affiliation(s)
- K Tariq
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - M Noor
- Molecular Biotechnology Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - M Hori
- Graduate School of Agricultural Sciences, Tohoku University, Sendai 981-8555, Japan
| | - A Ali
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - A Hussain
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - W Peng
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - C-J Chang
- Department of Plant Pathology, College of Agricultural and Environmental Sciences University of Georgia, Griffin, GA 30223, USA
| | - H Zhang
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| |
Collapse
|
64
|
Mondotte JA, Saleh MC. Antiviral Immune Response and the Route of Infection in Drosophila melanogaster. Adv Virus Res 2017; 100:247-278. [PMID: 29551139 DOI: 10.1016/bs.aivir.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of Drosophila as a model organism has made an important contribution to our understanding of the function and regulation of innate immunity in insects. Indeed, insects can discriminate between different types of pathogens and mount specific and effective responses. Strikingly, the same pathogen can trigger a different immune response in the same organism, depending solely on the route of infection by which the pathogen is delivered. In this review, we recapitulate what is known about antiviral responses in Drosophila, and how they are triggered depending on the route and the mode used for the virus to infect its host.
Collapse
Affiliation(s)
- Juan A Mondotte
- Institut Pasteur, Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche 3569, Paris, France
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche 3569, Paris, France.
| |
Collapse
|
65
|
Hori A, Kurata S, Kuraishi T. Unexpected role of the IMD pathway in Drosophila gut defense against Staphylococcus aureus. Biochem Biophys Res Commun 2017; 495:395-400. [PMID: 29108998 DOI: 10.1016/j.bbrc.2017.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 12/29/2022]
Abstract
In this study, fruit fly of the genus Drosophila is utilized as a suitable model animal to investigate the molecular mechanisms of innate immunity. To combat orally transmitted pathogenic Gram-negative bacteria, the Drosophila gut is armed with the peritrophic matrix, which is a physical barrier composed of chitin and glycoproteins: the Duox system that produces reactive oxygen species (ROS), which in turn sterilize infected microbes, and the IMD pathway that regulates the expression of antimicrobial peptides (AMPs), which in turn control ROS-resistant pathogens. However, little is known about the defense mechanisms against Gram-positive bacteria in the fly gut. Here, we show that the peritrophic matrix protects Drosophila against Gram-positive bacteria S. aureus. We also define the few roles of ROS in response to the infection and show that the IMD pathway is required for the clearance of ingested microbes, possibly independently from AMP expression. These findings provide a new aspect of the gut defense system of Drosophila, and helps to elucidate the processes of gut-microbe symbiosis and pathogenesis.
Collapse
Affiliation(s)
- Aki Hori
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan; Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Takayuki Kuraishi
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan; PRESTO, Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
66
|
Nagy P, Szatmári Z, Sándor GO, Lippai M, Hegedűs K, Juhász G. Drosophila Atg16 promotes enteroendocrine cell differentiation via regulation of intestinal Slit/Robo signaling. Development 2017; 144:3990-4001. [PMID: 28982685 DOI: 10.1242/dev.147033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
Abstract
Genetic variations of Atg16l1, Slit2 and Rab19 predispose to the development of inflammatory bowel disease (IBD), but the relationship between these mutations is unclear. Here we show that in Drosophila guts lacking the WD40 domain of Atg16, pre-enteroendocrine (pre-EE) cells accumulate that fail to differentiate into properly functioning secretory EE cells. Mechanistically, loss of Atg16 or its binding partner Rab19 impairs Slit production, which normally inhibits EE cell generation by activating Robo signaling in stem cells. Importantly, loss of Atg16 or decreased Slit/Robo signaling triggers an intestinal inflammatory response. Surprisingly, analysis of Rab19 and domain-specific Atg16 mutants indicates that their stem cell niche regulatory function is independent of autophagy. Our study reveals how mutations in these different genes may contribute to IBD.
Collapse
Affiliation(s)
- Péter Nagy
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest, H-1117 Hungary
| | - Zsuzsanna Szatmári
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest, H-1117 Hungary
| | - Gyöngyvér O Sándor
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest, H-1117 Hungary
| | - Mónika Lippai
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest, H-1117 Hungary
| | - Krisztina Hegedűs
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest, H-1117 Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest, H-1117 Hungary
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, H-6726 Hungary
| |
Collapse
|
67
|
Iatsenko I, Kondo S, Mengin-Lecreulx D, Lemaitre B. PGRP-SD, an Extracellular Pattern-Recognition Receptor, Enhances Peptidoglycan-Mediated Activation of the Drosophila Imd Pathway. Immunity 2017; 45:1013-1023. [PMID: 27851910 DOI: 10.1016/j.immuni.2016.10.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022]
Abstract
Activation of the innate immune response in Metazoans is initiated through the recognition of microbes by host pattern-recognition receptors. In Drosophila, diaminopimelic acid (DAP)-containing peptidoglycan from Gram-negative bacteria is detected by the transmembrane receptor PGRP-LC and by the intracellular receptor PGRP-LE. Here, we show that PGRP-SD acted upstream of PGRP-LC as an extracellular receptor to enhance peptidoglycan-mediated activation of Imd signaling. Consistent with this, PGRP-SD mutants exhibited impaired activation of the Imd pathway and increased susceptibility to DAP-type bacteria. PGRP-SD enhanced the localization of peptidoglycans to the cell surface and hence promoted signaling. Moreover, PGRP-SD antagonized the action of PGRP-LB, an extracellular negative regulator, to fine-tune the intensity of the immune response. These data reveal that Drosophila PGRP-SD functions as an extracellular receptor similar to mammalian CD14 and demonstrate that, comparable to lipopolysaccharide sensing in mammals, Drosophila relies on both intra- and extracellular receptors for the detection of bacteria.
Collapse
Affiliation(s)
- Igor Iatsenko
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland.
| | - Shu Kondo
- Invertebrate Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ Paris-Sud and Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|
68
|
Dostálová A, Rommelaere S, Poidevin M, Lemaitre B. Thioester-containing proteins regulate the Toll pathway and play a role in Drosophila defence against microbial pathogens and parasitoid wasps. BMC Biol 2017; 15:79. [PMID: 28874153 PMCID: PMC5584532 DOI: 10.1186/s12915-017-0408-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/25/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Members of the thioester-containing protein (TEP) family contribute to host defence in both insects and mammals. However, their role in the immune response of Drosophila is elusive. In this study, we address the role of TEPs in Drosophila immunity by generating a mutant fly line, referred to as TEPq Δ , lacking the four immune-inducible TEPs, TEP1, 2, 3 and 4. RESULTS Survival analyses with TEPq Δ flies reveal the importance of these proteins in defence against entomopathogenic fungi, Gram-positive bacteria and parasitoid wasps. Our results confirm that TEPs are required for efficient phagocytosis of bacteria, notably for the two Gram-positive species tested, Staphylococcus aureus and Enterococcus faecalis. Furthermore, we show that TEPq Δ flies have reduced Toll pathway activation upon microbial infection, resulting in lower expression of antimicrobial peptide genes. Epistatic analyses suggest that TEPs function upstream or independently of the serine protease ModSP at an initial stage of Toll pathway activation. CONCLUSIONS Collectively, our study brings new insights into the role of TEPs in insect immunity. It reveals that TEPs participate in both humoral and cellular arms of immune response in Drosophila. In particular, it shows the importance of TEPs in defence against Gram-positive bacteria and entomopathogenic fungi, notably by promoting Toll pathway activation.
Collapse
Affiliation(s)
- Anna Dostálová
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Samuel Rommelaere
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mickael Poidevin
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
69
|
Abstract
Many leukemia patients suffer from dysregulation of their immune system, making them more susceptible to infections and leading to general weakening (cachexia). Both adaptive and innate immunity are affected. The fruit fly Drosophila melanogaster has an innate immune system, including cells of the myeloid lineage (hemocytes). To study Drosophila immunity and physiology during leukemia, we established three models by driving expression of a dominant-active version of the Ras oncogene (RasV12 ) alone or combined with knockdowns of tumor suppressors in Drosophila hemocytes. Our results show that phagocytosis, hemocyte migration to wound sites, wound sealing, and survival upon bacterial infection of leukemic lines are similar to wild type. We find that in all leukemic models the two major immune pathways (Toll and Imd) are dysregulated. Toll-dependent signaling is activated to comparable extents as after wounding wild-type larvae, leading to a proinflammatory status. In contrast, Imd signaling is suppressed. Finally, we notice that adult tissue formation is blocked and degradation of cell masses during metamorphosis of leukemic lines, which is akin to the state of cancer-dependent cachexia. To further analyze the immune competence of leukemic lines, we used a natural infection model that involves insect-pathogenic nematodes. We identified two leukemic lines that were sensitive to nematode infections. Further characterization demonstrates that despite the absence of behavioral abnormalities at the larval stage, leukemic larvae show reduced locomotion in the presence of nematodes. Taken together, this work establishes new Drosophila models to study the physiological, immunological, and behavioral consequences of various forms of leukemia.
Collapse
|
70
|
Gupta V, Vasanthakrishnan RB, Siva-Jothy J, Monteith KM, Brown SP, Vale PF. The route of infection determines Wolbachia antibacterial protection in Drosophila. Proc Biol Sci 2017; 284:20170809. [PMID: 28592678 PMCID: PMC5474083 DOI: 10.1098/rspb.2017.0809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/12/2017] [Indexed: 12/03/2022] Open
Abstract
Bacterial symbionts are widespread among metazoans and provide a range of beneficial functions. Wolbachia-mediated protection against viral infection has been extensively demonstrated in Drosophila. In mosquitoes that are artificially transinfected with Drosophila melanogaster Wolbachia (wMel), protection from both viral and bacterial infections has been demonstrated. However, no evidence for Wolbachia-mediated antibacterial protection has been demonstrated in Drosophila to date. Here, we show that the route of infection is key for Wolbachia-mediated antibacterial protection. Drosophila melanogaster carrying Wolbachia showed reduced mortality during enteric-but not systemic-infection with the opportunist pathogen Pseudomonas aeruginosaWolbachia-mediated protection was more pronounced in male flies and is associated with increased early expression of the antimicrobial peptide Attacin A, and also increased expression of a reactive oxygen species detoxification gene (Gst D8). These results highlight that the route of infection is important for symbiont-mediated protection from infection, that Wolbachia can protect hosts by eliciting a combination of resistance and disease tolerance mechanisms, and that these effects are sexually dimorphic. We discuss the importance of using ecologically relevant routes of infection to gain a better understanding of symbiont-mediated protection.
Collapse
Affiliation(s)
- Vanika Gupta
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | | | - Jonathon Siva-Jothy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Katy M Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sam P Brown
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
71
|
Li S, Shen L, Sun L, Xu J, Jin P, Chen L, Ma F. Small RNA-Seq analysis reveals microRNA-regulation of the Imd pathway during Escherichia coli infection in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:80-87. [PMID: 28069431 DOI: 10.1016/j.dci.2017.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Drosophila have served as a model for research on innate immunity for decades. However, knowledge of the post-transcriptional regulation of immune gene expression by microRNAs (miRNAs) remains rudimentary. In the present study, using small RNA-seq and bioinformatics analysis, we identified 67 differentially expressed miRNAs in Drosophila infected with Escherichia coli compared to injured flies at three time-points. Furthermore, we found that 21 of these miRNAs were potentially involved in the regulation of Imd pathway-related genes. Strikingly, based on UAS-miRNAs line screening and Dual-luciferase assay, we identified that miR-9a and miR-981 could both negatively regulate Drosophila antibacterial defenses and decrease the level of the antibacterial peptide, Diptericin. Taken together, these data support the involvement of miRNAs in the regulation of the Drosophila Imd pathway.
Collapse
Affiliation(s)
- Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Li Shen
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Lianjie Sun
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Jiao Xu
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Liming Chen
- The Key Laboratory of Developmental Genes and Human Disease, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
72
|
Trinder M, Daisley BA, Dube JS, Reid G. Drosophila melanogaster as a High-Throughput Model for Host-Microbiota Interactions. Front Microbiol 2017; 8:751. [PMID: 28503170 PMCID: PMC5408076 DOI: 10.3389/fmicb.2017.00751] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/12/2017] [Indexed: 01/14/2023] Open
Abstract
Microbiota research often assumes that differences in abundance and identity of microorganisms have unique influences on host physiology. To test this concept mechanistically, germ-free mice are colonized with microbial communities to assess causation. Due to the cost, infrastructure challenges, and time-consuming nature of germ-free mouse models, an alternative approach is needed to investigate host–microbial interactions. Drosophila melanogaster (fruit flies) can be used as a high throughput in vivo screening model of host–microbiome interactions as they are affordable, convenient, and replicable. D. melanogaster were essential in discovering components of the innate immune response to pathogens. However, axenic D. melanogaster can easily be generated for microbiome studies without the need for ethical considerations. The simplified microbiota structure enables researchers to evaluate permutations of how each microbial species within the microbiota contribute to host phenotypes of interest. This enables the possibility of thorough strain-level analysis of host and microbial properties relevant to physiological outcomes. Moreover, a wide range of mutant D. melanogaster strains can be affordably obtained from public stock centers. Given this, D. melanogaster can be used to identify candidate mechanisms of host–microbe symbioses relevant to pathogen exclusion, innate immunity modulation, diet, xenobiotics, and probiotic/prebiotic properties in a high throughput manner. This perspective comments on the most promising areas of microbiota research that could immediately benefit from using the D. melanogaster model.
Collapse
Affiliation(s)
- Mark Trinder
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, St. Joseph's Health Care London, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, University of Western Ontario, LondonON, Canada
| | - Brendan A Daisley
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, St. Joseph's Health Care London, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, University of Western Ontario, LondonON, Canada
| | - Josh S Dube
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, St. Joseph's Health Care London, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, University of Western Ontario, LondonON, Canada
| | - Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, St. Joseph's Health Care London, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, University of Western Ontario, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Surgery, University of Western Ontario, LondonON, Canada
| |
Collapse
|
73
|
Liu SH, Wei D, Yuan GR, Jiang HB, Dou W, Wang JJ. Antimicrobial peptide gene cecropin-2 and defensin respond to peptidoglycan infection in the female adult of oriental fruit fly, Bactrocera dorsalis (Hendel). Comp Biochem Physiol B Biochem Mol Biol 2017; 206:1-7. [DOI: 10.1016/j.cbpb.2017.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
|
74
|
Li Q, Dong X, Zheng W, Zhang H. The PLA2 gene mediates the humoral immune responses in Bactrocera dorsalis (Hendel). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:293-299. [PMID: 27646139 DOI: 10.1016/j.dci.2016.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
The phospholipase A2 (PLA2) gene encodes the enzyme that catalyzes the hydrolysis of phospholipids (PLs) from the sn-2 position. However, little is known about its role in humoral immune responses. In this study, we investigated the expression profile of PLA2 in different tissues and developmental stages in Bactrocera dorsalis (Hendel), and the results showed that the transcriptional level of PLA2 was high in the egg and mature stage and in the testis tissue. Bacterial infection increased the expression of PLA2, and the highest degree of up-regulation appeared in the fat body. Silencing PLA2 influenced the expression of immune-related genes, including MyD88 and defensin in the Toll pathway and relish and diptericin in the Imd pathway. Moreover, the expression of MyD88 and defensin was down-regulated significantly in the ds-PLA2 group compared with those in the ds-egfp group when B. dorsalis was infected with L. monocytogenes and S. aureus, indicating that PLA2 was involved in the activation of the Toll pathway. Meanwhile, infection with L. monocytogenes and E. coli, which activate the Imd pathway, does not increase the mRNA levels of relish and diptericin in the ds-PLA2 group as severely as it increases those in the ds-egfp group, indicating that the Imd pathway was also repressed after silencing PLA2. Notably, the development of lipid droplets in fat body cells was influenced by silencing PLA2, implying that PLA2 affects the function of fat body tissue. These results suggest that the PLA2 gene may mediate humoral immune responses by reducing lipid storage in fat body cells in B. dorsalis.
Collapse
Affiliation(s)
- Qiujia Li
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolong Dong
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiwei Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
75
|
Abstract
Phagocytosis of invading pathogens and their subsequent clearance in lysosomes is important for organismal fitness. We have devised the following protocol to extract phagocytic hemocytes from wild-type and mutant Drosophila larvae and infect the isolated hemocytes with GFP-labeled E. coli to measure the rate of phagocytosis and degradation within individual hemocytes over time.
Collapse
Affiliation(s)
- Charles Tracy
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Helmut Krämer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
76
|
Li S, Li Y, Shen L, Jin P, Chen L, Ma F. miR-958 inhibits Toll signaling and Drosomycin expression via direct targeting of Toll and Dif in Drosophila melanogaster. Am J Physiol Cell Physiol 2016; 312:C103-C110. [PMID: 27974298 DOI: 10.1152/ajpcell.00251.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/16/2022]
Abstract
Drosophila melanogaster is widely used as a model system to study innate immunity and signaling pathways related to innate immunity, including the Toll signaling pathway. Although this pathway is well studied, the precise mechanisms of posttranscriptional regulation of key components of the Toll signaling pathway by microRNAs (miRNAs) remain obscure. In this study, we used an in silico strategy in combination with the Gal80ts-Gal4 driver system to identify microRNA-958 (miR-958) as a candidate Toll pathway regulating miRNA in Drosophila We report that overexpression of miR-958 significantly reduces the expression of Drosomycin, a key antimicrobial peptide involved in Toll signaling and the innate immune response. We further demonstrate in vitro and in vivo that miR-958 targets the Toll and Dif genes, key components of the Toll signaling pathway, to negatively regulate Drosomycin expression. In addition, a miR-958 sponge rescued the expression of Toll and Dif, resulting in increased expression of Drosomycin. These results, not only revealed a novel function and modulation pattern of miR-958, but also provided a new insight into the underlying molecular mechanisms of Toll signaling in regulation of innate immunity.
Collapse
Affiliation(s)
- Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China; and
| | - Yao Li
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China; and
| | - Li Shen
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China; and
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China; and
| | - Liming Chen
- The Key Laboratory of Developmental Genes and Human Disease, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China; and
| |
Collapse
|
77
|
Reimels TA, Pfleger CM. Methods to Examine the Lymph Gland and Hemocytes in Drosophila Larvae. J Vis Exp 2016. [PMID: 27929462 DOI: 10.3791/54544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Many parallels exist between the Drosophila and mammalian hematopoietic systems, even though Drosophila lack the lymphoid lineage that characterize mammalian adaptive immunity. Drosophila and mammalian hematopoiesis occur in spatially and temporally distinct phases to produce several blood cell lineages. Both systems maintain reservoirs of blood cell progenitors with which to expand or replace mature lineages. The hematopoietic system allows Drosophila and mammals to respond to and to adapt to immune challenges. Importantly, the transcriptional regulators and signaling pathways that control the generation, maintenance, and function of the hematopoietic system are conserved from flies to mammals. These similarities allow Drosophila to be used to genetically model hematopoietic development and disease. Here we detail assays to examine the hematopoietic system of Drosophila larvae. In particular, we outline methods to measure blood cell numbers and concentration, visualize a specific mature lineage in vivo, and perform immunohistochemistry on blood cells in circulation and in the hematopoietic organ. These assays can reveal changes in gene expression and cellular processes including signaling, survival, proliferation, and differentiation and can be used to investigate a variety of questions concerning hematopoiesis. Combined with the genetic tools available in Drosophila, these assays can be used to evaluate the hematopoietic system upon defined genetic alterations. While not specifically outlined here, these assays can also be used to examine the effect of environmental alterations, such as infection or diet, on the hematopoietic system.
Collapse
Affiliation(s)
- Theresa A Reimels
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai; Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai
| | - Cathie M Pfleger
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai; Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai;
| |
Collapse
|
78
|
Srinivasan N, Gordon O, Ahrens S, Franz A, Deddouche S, Chakravarty P, Phillips D, Yunus AA, Rosen MK, Valente RS, Teixeira L, Thompson B, Dionne MS, Wood W, Reis e Sousa C. Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster. eLife 2016; 5:e19662. [PMID: 27871362 PMCID: PMC5138034 DOI: 10.7554/elife.19662] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are molecules released by dead cells that trigger sterile inflammation and, in vertebrates, adaptive immunity. Actin is a DAMP detected in mammals by the receptor, DNGR-1, expressed by dendritic cells (DCs). DNGR-1 is phosphorylated by Src-family kinases and recruits the tyrosine kinase Syk to promote DC cross-presentation of dead cell-associated antigens. Here we report that actin is also a DAMP in invertebrates that lack DCs and adaptive immunity. Administration of actin to Drosophila melanogaster triggers a response characterised by selective induction of STAT target genes in the fat body through the cytokine Upd3 and its JAK/STAT-coupled receptor, Domeless. Notably, this response requires signalling via Shark, the Drosophila orthologue of Syk, and Src42A, a Drosophila Src-family kinase, and is dependent on Nox activity. Thus, extracellular actin detection via a Src-family kinase-dependent cascade is an ancient means of detecting cell injury that precedes the evolution of adaptive immunity.
Collapse
Affiliation(s)
- Naren Srinivasan
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Oliver Gordon
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Susan Ahrens
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anna Franz
- Department of Biochemistry, Biomedical Sciences, University Walk, University of Bristol, Bristol, United Kingdom
| | - Safia Deddouche
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - David Phillips
- Genomics-Equipment Park, The Francis Crick Institute, London, United Kingdom
| | - Ali A Yunus
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael K Rosen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | | | | | - Barry Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Marc S Dionne
- Department of Life Sciences and MRC Centre for Molecular Bacteriology and Infection, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Will Wood
- Department of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
79
|
Baril C, Gavory G, Bidla G, Knævelsrud H, Sauvageau G, Therrien M. Human NUP98-HOXA9 promotes hyperplastic growth of hematopoietic tissues in Drosophila. Dev Biol 2016; 421:16-26. [PMID: 27838340 DOI: 10.1016/j.ydbio.2016.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) is a complex malignancy with poor prognosis. Several genetic lesions can lead to the disease. One of these corresponds to the NUP98-HOXA9 (NA9) translocation that fuses sequences encoding the N-terminal part of NUP98 to those encoding the DNA-binding domain of HOXA9. Despite several studies, the mechanism underlying NA9 ability to induce leukemia is still unclear. To bridge this gap, we sought to functionally dissect NA9 activity using Drosophila. For this, we generated transgenic NA9 fly lines and expressed the oncoprotein during larval hematopoiesis. This markedly enhanced cell proliferation and tissue growth, but did not alter cell fate specification. Moreover, reminiscent to NA9 activity in mammals, strong cooperation was observed between NA9 and the MEIS homolog HTH. Genetic characterization of NA9-induced phenotypes suggested interference with PVR (Flt1-4 RTK homolog) signaling, which is similar to functional interactions observed in mammals between Flt3 and HOXA9 in leukemia. Finally, NA9 expression was also found to induce non-cell autonomous effects, raising the possibility that its leukemia-inducing activity also relies on this property. Together, our work suggests that NA9 ability to induce blood cell expansion is evolutionarily conserved. The amenability of NA9 activity to a genetically-tractable system should facilitate unraveling its molecular underpinnings.
Collapse
Affiliation(s)
- Caroline Baril
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Gwenaëlle Gavory
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Gawa Bidla
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Helene Knævelsrud
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7; Département de médecine, Université de Montréal, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7; Département de pathologie et de biologie cellulaire, Université de Montréal, Canada.
| |
Collapse
|
80
|
Brookheart RT, Duncan JG. Drosophila melanogaster: An emerging model of transgenerational effects of maternal obesity. Mol Cell Endocrinol 2016; 435:20-28. [PMID: 26687062 PMCID: PMC4903087 DOI: 10.1016/j.mce.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022]
Abstract
The prevalence of obesity in the world is endemic with one rapidly growing health concern being maternal obesity. Obesity during pregnancy increases the risk of gestational diabetes, miscarriage, and preeclampsia, while rendering offspring susceptible to developmental anomalies and long-term metabolic complications including type 2 diabetes and cardiovascular disease. Several studies in humans and rodents demonstrate a correlation between the risks of maternal overnutrition and factors such as epigenetics, mitochondrial dysfunction, insulin resistance, ER stress, and immune system disruption. At present, the molecular mechanisms connecting these factors to maternal obesity are unknown. This review focuses on the use of Drosophila melanogaster to study human metabolic diseases, including obesity, and its emerging use to elucidate the mechanisms of maternal overnutrition and the impact on offspring.
Collapse
Affiliation(s)
- Rita T Brookheart
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer G Duncan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
81
|
Neyen C, Runchel C, Schüpfer F, Meier P, Lemaitre B. The regulatory isoform rPGRP-LC induces immune resolution via endosomal degradation of receptors. Nat Immunol 2016; 17:1150-8. [PMID: 27548432 DOI: 10.1038/ni.3536] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/18/2016] [Indexed: 12/18/2022]
Abstract
The innate immune system needs to distinguish between harmful and innocuous stimuli to adapt its activation to the level of threat. How Drosophila mounts differential immune responses to dead and live Gram-negative bacteria using the single peptidoglycan receptor PGRP-LC is unknown. Here we describe rPGRP-LC, an alternative splice variant of PGRP-LC that selectively dampens immune response activation in response to dead bacteria. rPGRP-LC-deficient flies cannot resolve immune activation after Gram-negative infection and die prematurely. The alternative exon in the encoding gene, here called rPGRP-LC, encodes an adaptor module that targets rPGRP-LC to membrane microdomains and interacts with the negative regulator Pirk and the ubiquitin ligase DIAP2. We find that rPGRP-LC-mediated resolution of an efficient immune response requires degradation of activating and regulatory receptors via endosomal ESCRT sorting. We propose that rPGRP-LC selectively responds to peptidoglycans from dead bacteria to tailor the immune response to the level of threat.
Collapse
Affiliation(s)
- Claudine Neyen
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Christopher Runchel
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, London, UK
| | - Fanny Schüpfer
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Pascal Meier
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, London, UK
| | - Bruno Lemaitre
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| |
Collapse
|
82
|
Vale PF, Jardine MD. Infection avoidance behavior: Viral exposure reduces the motivation to forage in female Drosophila melanogaster. Fly (Austin) 2016; 11:3-9. [PMID: 27362557 PMCID: PMC5354229 DOI: 10.1080/19336934.2016.1207029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Infection avoidance behaviors are the first line of defense against pathogenic encounters. Behavioral plasticity in response to internal or external cues of infection can therefore generate potentially significant heterogeneity in infection. We tested whether Drosophila melanogaster exhibits infection avoidance behavior, and whether this behavior is modified by prior exposure to Drosophila C Virus (DCV) and by the risk of DCV encounter. We examined 2 measures of infection avoidance: (1) the motivation to seek out food sources in the presence of an infection risk and (2) the preference to land on a clean food source over a potentially infectious source. While we found no evidence for preference of clean food sources over potentially infectious ones, previously exposed female flies showed lower motivation to pick a food source when presented with a risk of encountering DCV. We discuss the relevance of behavioral plasticity during foraging for host fitness and pathogen spread.
Collapse
Affiliation(s)
- Pedro F Vale
- a Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh , Edinburgh , UK.,b Centre for Immunity, Infection and Evolution, University of Edinburgh , Edinburgh , UK
| | - Michael D Jardine
- a Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
83
|
Sinam YM, Chatterjee A, Ranjini MS, Poojari A, Nagarajan A, Ramachandra NB, Nongthomba U. A newly evolved Drosophila Cytorace-9 shows trade-off between longevity and immune response. INFECTION GENETICS AND EVOLUTION 2016; 44:1-7. [PMID: 27306321 DOI: 10.1016/j.meegid.2016.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Species with an efficient immune system would be at an advantage to evade pathogenic challenges and adapt to an ever changing ecological niche. The upkeep of immunity is a costly affair, thus trade-offs between immunity and other life history traits are expected. However, studies on the relation between immunity and life span have yielded paradoxical results. Drosophila Cytoraces, being at different stages of evolutionary divergence, provide an excellent experimental model system to study how evolving populations gain novel traits in the absence of selection. We found that in the absence of pathogenic infections, the Cytorace-9 flies lived longer than those of Cytorace-3. However, when these Cytoraces were challenged with different pathogenic microbes, the trend was opposite. After infection with pathogens, the long-lived Cytorace-9 survived worse than the short lived Cytorace-3, which can be attributed to a reduction in its immune response. This study provides evidence to support the existence of a trade-off between life span and immunity.
Collapse
Affiliation(s)
- Yoirentomba Meetei Sinam
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560 012, India
| | - Arunita Chatterjee
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560 012, India
| | - Mysore S Ranjini
- Unit on Evolution and Genetics Laboratory, Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Adarsh Poojari
- Unit on Evolution and Genetics Laboratory, Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Aarthi Nagarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560 012, India
| | - Nallur B Ramachandra
- Unit on Evolution and Genetics Laboratory, Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560 012, India.
| |
Collapse
|
84
|
Chakrabarti S, Dudzic JP, Li X, Collas EJ, Boquete JP, Lemaitre B. Remote Control of Intestinal Stem Cell Activity by Haemocytes in Drosophila. PLoS Genet 2016; 12:e1006089. [PMID: 27231872 PMCID: PMC4883764 DOI: 10.1371/journal.pgen.1006089] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
The JAK/STAT pathway is a key signaling pathway in the regulation of development and immunity in metazoans. In contrast to the multiple combinatorial JAK/STAT pathways in mammals, only one canonical JAK/STAT pathway exists in Drosophila. It is activated by three secreted proteins of the Unpaired family (Upd): Upd1, Upd2 and Upd3. Although many studies have established a link between JAK/STAT activation and tissue damage, the mode of activation and the precise function of this pathway in the Drosophila systemic immune response remain unclear. In this study, we used mutations in upd2 and upd3 to investigate the role of the JAK/STAT pathway in the systemic immune response. Our study shows that haemocytes express the three upd genes and that injury markedly induces the expression of upd3 by the JNK pathway in haemocytes, which in turn activates the JAK/STAT pathway in the fat body and the gut. Surprisingly, release of Upd3 from haemocytes upon injury can remotely stimulate stem cell proliferation and the expression of Drosomycin-like genes in the intestine. Our results also suggest that a certain level of intestinal epithelium renewal is required for optimal survival to septic injury. While haemocyte-derived Upd promotes intestinal stem cell activation and survival upon septic injury, haemocytes are dispensable for epithelium renewal upon oral bacterial infection. Our study also indicates that intestinal epithelium renewal is sensitive to insults from both the lumen and the haemocoel. It also reveals that release of Upds by haemocytes coordinates the wound-healing program in multiple tissues, including the gut, an organ whose integrity is critical to fly survival.
Collapse
Affiliation(s)
- Sveta Chakrabarti
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail: (SC); (BL)
| | - Jan Paul Dudzic
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxue Li
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Esther Jeanne Collas
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Phillipe Boquete
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail: (SC); (BL)
| |
Collapse
|
85
|
McCormack S, Yadav S, Shokal U, Kenney E, Cooper D, Eleftherianos I. The insulin receptor substrate Chico regulates antibacterial immune function in Drosophila. Immun Ageing 2016; 13:15. [PMID: 27134635 PMCID: PMC4852101 DOI: 10.1186/s12979-016-0072-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/05/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Molecular and genetic studies in model organisms have recently revealed a dynamic interplay between immunity and ageing mechanisms. In the fruit fly Drosophila melanogaster, inhibition of the insulin/insulin-like growth factor signaling pathway prolongs lifespan, and mutations in the insulin receptor substrate Chico extend the survival of mutant flies against certain bacterial pathogens. Here we investigated the immune phenotypes, immune signaling activation and immune function of chico mutant adult flies against the virulent insect pathogen Photorhabdus luminescens as well as to non-pathogenic Escherichia coli bacteria. RESULTS We found that D. melanogaster chico loss-of-function mutant flies were equally able to survive infection by P. luminescens or E. coli compared to their background controls, but they contained fewer numbers of bacterial cells at most time-points after the infection. Analysis of immune signaling pathway activation in flies infected with the pathogenic or the non-pathogenic bacteria showed reduced transcript levels of antimicrobial peptide genes in the chico mutants than in controls. Evaluation of immune function in infected flies revealed increased phenoloxidase activity and melanization response to P. luminescens and E. coli together with reduced phagocytosis of bacteria in the chico mutants. Changes in the antibacterial immune function in the chico mutants was not due to altered metabolic activity. CONCLUSIONS Our results indicate a novel role for chico in the regulation of the antibacterial immune function in D. melanogaster. Similar studies will further contribute to a better understanding of the interconnection between ageing and immunity and lead to the identification and characterization of the molecular host components that modulate both important biological processes.
Collapse
Affiliation(s)
- Sarah McCormack
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 800 Science and Engineering Hall, 22nd Street NW, Washington, D.C., 20052 USA
| | - Shruti Yadav
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 800 Science and Engineering Hall, 22nd Street NW, Washington, D.C., 20052 USA
| | - Upasana Shokal
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 800 Science and Engineering Hall, 22nd Street NW, Washington, D.C., 20052 USA
| | - Eric Kenney
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 800 Science and Engineering Hall, 22nd Street NW, Washington, D.C., 20052 USA
| | - Dustin Cooper
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 800 Science and Engineering Hall, 22nd Street NW, Washington, D.C., 20052 USA
| | - Ioannis Eleftherianos
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 800 Science and Engineering Hall, 22nd Street NW, Washington, D.C., 20052 USA
| |
Collapse
|
86
|
Gold KS, Brückner K. Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol 2016; 27:357-68. [PMID: 27117654 DOI: 10.1016/j.smim.2016.03.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/08/2016] [Indexed: 12/16/2022]
Abstract
The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life.
Collapse
Affiliation(s)
| | - Katja Brückner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Department of Cell and Tissue Biology; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
87
|
How Many Parameters Does It Take to Describe Disease Tolerance? PLoS Biol 2016; 14:e1002435. [PMID: 27088212 PMCID: PMC4835111 DOI: 10.1371/journal.pbio.1002435] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/15/2016] [Indexed: 12/30/2022] Open
Abstract
The study of infectious disease has been aided by model organisms, which have helped to elucidate molecular mechanisms and contributed to the development of new treatments; however, the lack of a conceptual framework for unifying findings across models, combined with host variability, has impeded progress and translation. Here, we fill this gap with a simple graphical and mathematical framework to study disease tolerance, the dose response curve relating health to microbe load; this approach helped uncover parameters that were previously overlooked. Using a model experimental system in which we challenged Drosophila melanogaster with the pathogen Listeria monocytogenes, we tested this framework, finding that microbe growth, the immune response, and disease tolerance were all well represented by sigmoid models. As we altered the system by varying host or pathogen genetics, disease tolerance varied, as we would expect if it was indeed governed by parameters controlling the sensitivity of the system (the number of bacteria required to trigger a response) and maximal effect size according to a logistic equation. Though either the pathogen or host immune response or both together could theoretically be the proximal cause of pathology that killed the flies, we found that the pathogen, but not the immune response, drove damage in this model. With this new understanding of the circuitry controlling disease tolerance, we can now propose better ways of choosing, combining, and developing treatments. Experiments using fruit flies infected with Listeria monocytogenes show that changes in the shape of a disease tolerance curve can reveal the source of pathology for an infectious system. It is an intuitive assumption that the severity of symptoms suffered during an infection must be linked to pathogen loads. However, the dose–response relationship explaining how health varies with respect to pathogen load is non-linear and can be described as a “disease tolerance curve;” this relationship can vary in response to the genetic properties of the host or pathogen as well as environmental conditions. We studied what changes in the shape of this curve can teach us about the underlying circuitry of the immune response. Using a model system in which we infected fruit flies with the bacterial pathogen Listeria monocytogenes, we observed an S-shaped disease tolerance curve. This type of curve can be described by three or four parameters in a standard manner, which allowed us to develop a simple mathematical model to explain how the curve is expected to change shape as the immune response changes. After observing the variation in curve shape due to host and pathogen genetic variation, we conclude that the damage caused by Listeria infection does not result from an over-exuberant immune response but rather is caused more directly by the pathogen.
Collapse
|
88
|
Dong X, Li Q, Zhang H. The noa gene is functionally linked to the activation of the Toll/Imd signaling pathways in Bactrocera dorsalis (Hendel). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:233-240. [PMID: 26404497 DOI: 10.1016/j.dci.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 06/05/2023]
Abstract
The noa gene is an essential gene encoding a very long chain fatty acid elongase. In this study, we cloned the noa gene of Bactrocera dorsalis, which encodes a protein sharing 84.50% identity to the NOA in Drosophila melanogaster. The expression profiles indicated that the transcriptional level of noa was high at the egg stage and in the testis tissue. The results showed that noa expression was up-regulated after Listeria monocytogenes, Staphylococcus aureus and Escherichia coli infection. Silencing of noa would influence the expression of immune related genes, including MyD88 and defensin in the Toll pathway and relish and diptericin in the Imd pathway. Moreover, infection with L. monocytogenes and S. aureus after feeding ds-noa, the expression of MyD88 and defensin down-regulated significantly in ds-noa group compared with in ds-egfp group, indicating that noa interference influenced the activation of the Toll pathway. Meanwhile, infection with L. monocytogenes and E. coli, which activated the Imd pathway, do not cause increase of the mRNA levels of relish and diptericin in ds-noa group as severely as in ds-egfp treatment, indicating that the Imd pathway was also repressed after silences of noa.
Collapse
Affiliation(s)
- Xiaolong Dong
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, and Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiujia Li
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, and Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, and Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
89
|
Piegholdt S, Rimbach G, Wagner AE. Effects of the isoflavone prunetin on gut health and stress response in male Drosophila melanogaster. Redox Biol 2016; 8:119-26. [PMID: 26774080 PMCID: PMC4732017 DOI: 10.1016/j.redox.2016.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 01/30/2023] Open
Abstract
The traditional Asian diet is rich in fruits, vegetables and soy, the latter representing a significant source of dietary isoflavones. The isoflavone prunetin was recently identified to improve intestinal epithelial barrier function in vitro and to ameliorate general survival and overall health state in vivo in male Drosophila melanogaster. However, the prunetin-mediated health benefits in the fruit fly were ascertained under standard living conditions. As the loss of intestinal integrity is closely related to a reduction in Drosophila lifespan and barrier dysfunction increases with age, effects on prunetin-modulated gut health under oxidative or pathogenic stress provocation remain to be elucidated. In this study, male adult D. melanogaster were administered either a prunetin or a control diet. Gut-derived junction protein expression and pathogen-induced antimicrobial peptide expressions as well as the stem cell proliferation in the gut were evaluated. Furthermore, survival following exposure to hydrogen peroxide was assessed. Prunetin ingestion did not attenuate bacterial infection and did not protect flies from oxidative stress. Intestinal mRNA expression levels of adherence and septate junction proteins as well as the stem cell proliferation were not altered by prunetin intake. Prunetin does not improve the resistance of flies against severe injuring, exogenous stress and therefore seems to function in a preventive rather than a therapeutic approach since the health-promoting benefits appear to be exclusively restricted to normal living circumstances. Gram-negative bacterial strains induce AMP-mediated defense in the fruit fly. Prunetin improves life and health span in male fruit flies independent of gut health. Prunetin fails to ameliorate resistance of the flies towards severe injury. AMP expression, stem cell proliferation & oxidative stress resistance are unaffected.
Collapse
Affiliation(s)
- Stefanie Piegholdt
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany
| | - Anika E Wagner
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany
| |
Collapse
|
90
|
Vale PF, Jardine MD. Sex-specific behavioural symptoms of viral gut infection and Wolbachia in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2015; 82:28-32. [PMID: 26301521 DOI: 10.1016/j.jinsphys.2015.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 05/11/2023]
Abstract
All organisms are infected with a range of symbionts spanning the spectrum of beneficial mutualists to detrimental parasites. The fruit fly Drosophila melanogaster is a good example, as both endosymbiotic Wolbachia, and pathogenic Drosophila C Virus (DCV) commonly infect it. While the pathophysiology and immune responses against both symbionts are the focus of intense study, the behavioural effects of these infections have received less attention. Here we report sex-specific behavioural responses to these infections in D. melanogaster. DCV infection caused increased sleep in female flies, but had no detectable effect in male flies. The presence of Wolbachia did not reduce this behavioural response to viral infection. We also found evidence for a sex-specific cost of Wolbachia, as male flies infected with the endosymbiont became more lethargic when awake. We discuss these behavioural symptoms as potentially adaptive sickness behaviours.
Collapse
Affiliation(s)
- Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.
| | - Michael D Jardine
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
91
|
Dudzic JP, Kondo S, Ueda R, Bergman CM, Lemaitre B. Drosophila innate immunity: regional and functional specialization of prophenoloxidases. BMC Biol 2015; 13:81. [PMID: 26437768 PMCID: PMC4595066 DOI: 10.1186/s12915-015-0193-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/17/2015] [Indexed: 01/08/2023] Open
Abstract
Background The diversification of immune systems during evolution involves the expansion of particular gene families in given phyla. A better understanding of the metazoan immune system requires an analysis of the logic underlying such immune gene amplification. This analysis is now within reach due to the ease with which we can generate multiple mutations in an organism. In this paper, we analyze the contribution of the three Drosophila prophenoloxidases (PPOs) to host defense by generating single, double and triple mutants. PPOs are enzymes that catalyze the production of melanin at the site of infection and around parasites. They are the rate-limiting enzymes that contribute to the melanization reaction, a major immune mechanism of arthropods. The number of PPO-encoding genes is variable among insects, ranging from one in the bee to ten in the mosquito. Results By analyzing mutations alone and in combination, we ascribe a specific function to each of the three PPOs of Drosophila. Our study confirms that two PPOs produced by crystal cells, PPO1 and PPO2, contribute to the bulk of melanization in the hemolymph, upon septic or clean injury. In contrast, PPO3, a PPO restricted to the D. melanogaster group, is expressed in lamellocytes and contributes to melanization during the encapsulation process. Interestingly, another overlapping set of PPOs, PPO2 and PPO3, achieve melanization of the capsule upon parasitoid wasp infection. Conclusions The use of single or combined mutations allowed us to show that each PPO mutant has a specific phenotype, and that knocking out two of three genes is required to abolish fully a particular function. Thus, Drosophila PPOs have partially overlapping functions to optimize melanization in at least two conditions: following injury or during encapsulation. Since PPO3 is restricted to the D. melanogaster group, this suggests that production of PPO by lamellocytes emerged as a recent defense mechanism against parasitoid wasps. We conclude that differences in spatial localization, immediate or late availability, and mode of activation underlie the functional diversification of the three Drosophila PPOs, with each of them having non-redundant but overlapping functions. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0193-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan P Dudzic
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland.
| | - Shu Kondo
- Invertebrate Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, 411-8540, Japan.
| | - Ryu Ueda
- Invertebrate Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, 411-8540, Japan.
| | - Casey M Bergman
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland.
| |
Collapse
|
92
|
Neyen C, Binggeli O, Roversi P, Bertin L, Sleiman MB, Lemaitre B. The Black cells phenotype is caused by a point mutation in the Drosophila pro-phenoloxidase 1 gene that triggers melanization and hematopoietic defects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:166-174. [PMID: 25543001 DOI: 10.1016/j.dci.2014.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
Melanization contributes to arthropod-specific innate immunity through deposition of melanin at wound sites or around parasites, with concomitant release of microbicidal reactive oxygen species. Melanization requires sequential activation of proteolytic enzymes in the hemolymph, including the final enzyme pro-phenoloxidase. Black cells (Bc) is a mutation causing spontaneous melanization of Drosophila crystal cells, a hemocyte cell type producing phenoloxidases. Bc individuals exhibit circulating black spots but fail to melanize upon injury. Although Bc is widely used as a loss-of-function mutant of phenoloxidases, the mutation causing Bc remained unknown. Here, we identified a single point mutation in the pro-phenoloxidase 1 (PPO1) gene of Bc flies causing an Alanine to Valine change in the C-terminal domain of PPO1, predicted to affect the conformation of the N-terminal pro-domain cleavage site at a distance and causing uncontrolled catalytic activity. Genomic insertion of a PPO1(A480V) transgene phenocopies Black cells, proving that A480V is indeed the causal mutation of the historical Bc phenotype.
Collapse
Affiliation(s)
- Claudine Neyen
- Global Health Institute, Swiss Federal Institute of Technology, Station 19, CH-1015 Lausanne, Switzerland.
| | - Olivier Binggeli
- Global Health Institute, Swiss Federal Institute of Technology, Station 19, CH-1015 Lausanne, Switzerland
| | - Pietro Roversi
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Lise Bertin
- Global Health Institute, Swiss Federal Institute of Technology, Station 19, CH-1015 Lausanne, Switzerland
| | - Maroun Bou Sleiman
- Global Health Institute, Swiss Federal Institute of Technology, Station 19, CH-1015 Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, Swiss Federal Institute of Technology, Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
93
|
Khalil S, Jacobson E, Chambers MC, Lazzaro BP. Systemic bacterial infection and immune defense phenotypes in Drosophila melanogaster. J Vis Exp 2015:e52613. [PMID: 25992475 PMCID: PMC4542538 DOI: 10.3791/52613] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fruit fly Drosophila melanogaster is one of the premier model organisms for studying the function and evolution of immune defense. Many aspects of innate immunity are conserved between insects and mammals, and since Drosophila can readily be genetically and experimentally manipulated, they are powerful for studying immune system function and the physiological consequences of disease. The procedure demonstrated here allows infection of flies by introduction of bacteria directly into the body cavity, bypassing epithelial barriers and more passive forms of defense and allowing focus on systemic infection. The procedure includes protocols for the measuring rates of host mortality, systemic pathogen load, and degree of induction of the host immune system. This infection procedure is inexpensive, robust and quantitatively repeatable, and can be used in studies of functional genetics, evolutionary life history, and physiology.
Collapse
|
94
|
Clemmons AW, Lindsay SA, Wasserman SA. An effector Peptide family required for Drosophila toll-mediated immunity. PLoS Pathog 2015; 11:e1004876. [PMID: 25915418 PMCID: PMC4411088 DOI: 10.1371/journal.ppat.1004876] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/15/2022] Open
Abstract
In Drosophila melanogaster, recognition of an invading pathogen activates the Toll or Imd signaling pathway, triggering robust upregulation of innate immune effectors. Although the mechanisms of pathogen recognition and signaling are now well understood, the functions of the immune-induced transcriptome and proteome remain much less well characterized. Through bioinformatic analysis of effector gene sequences, we have defined a family of twelve genes – the Bomanins (Boms) – that are specifically induced by Toll and that encode small, secreted peptides of unknown biochemical activity. Using targeted genome engineering, we have deleted ten of the twelve Bom genes. Remarkably, inactivating these ten genes decreases survival upon microbial infection to the same extent, and with the same specificity, as does eliminating Toll pathway function. Toll signaling, however, appears unaffected. Assaying bacterial load post-infection in wild-type and mutant flies, we provide evidence that the Boms are required for resistance to, rather than tolerance of, infection. In addition, by generating and assaying a deletion of a smaller subset of the Bom genes, we find that there is overlap in Bom activity toward particular pathogens. Together, these studies deepen our understanding of Toll-mediated immunity and provide a new in vivo model for exploration of the innate immune effector repertoire. Dedicated defense systems in the bodies of humans and other animals protect against dangerous microbes, such as bacteria and fungi. We study these processes in the fruit fly Drosophila, which can be readily grown and manipulated in the laboratory. In this animal, as in humans, protective activities are triggered when fragments of bacteria or fungi activate a system for defense gene regulation known as the Toll signaling pathway. The result is the large-scale production of defense molecules and, in many cases, clearance of the infection and survival of the animal. Although the systems for recognizing and initiating responses are well described, the role of many defense molecules is not understood. We have identified a group of closely related defense molecules in flies and used state-of-the-art genomic engineering to simultaneously eliminate most of the genes in the group. By comparing the effect of fungal or bacterial infection on the genetically altered flies and normal siblings, we find that this group of defense molecules is essential for disease resistance.
Collapse
Affiliation(s)
- Alexa W. Clemmons
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Scott A. Lindsay
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Steven A. Wasserman
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
95
|
Bretscher AJ, Honti V, Binggeli O, Burri O, Poidevin M, Kurucz É, Zsámboki J, Andó I, Lemaitre B. The Nimrod transmembrane receptor Eater is required for hemocyte attachment to the sessile compartment in Drosophila melanogaster. Biol Open 2015; 4:355-63. [PMID: 25681394 PMCID: PMC4359741 DOI: 10.1242/bio.201410595] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eater is an EGF-like repeat transmembrane receptor of the Nimrod family and is expressed in Drosophila hemocytes. Eater was initially identified for its role in phagocytosis of both Gram-positive and Gram-negative bacteria. We have deleted eater and show that it appears to be required for efficient phagocytosis of Gram-positive but not Gram-negative bacteria. However, the most striking phenotype of eater deficient larvae is the near absence of sessile hemocytes, both plasmatocyte and crystal cell types. The eater deletion is the first loss of function mutation identified that causes absence of the sessile hemocyte state. Our study shows that Eater is required cell-autonomously in plasmatocytes for sessility. However, the presence of crystal cells in the sessile compartment requires Eater in plasmatocytes. We also show that eater deficient hemocytes exhibit a cell adhesion defect. Collectively, our data uncovers a new requirement of Eater in enabling hemocyte attachment at the sessile compartment and points to a possible role of Nimrod family members in hemocyte adhesion.
Collapse
Affiliation(s)
- Andrew J Bretscher
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Viktor Honti
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary
| | - Olivier Binggeli
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Olivier Burri
- Bioimaging and Optics Platform, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Mickael Poidevin
- Centre de Génétique Moléculaire, CNRS/Université Pierre et Marie Curie, 91198 Gif-sur-Yvette, France
| | - Éva Kurucz
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary
| | - János Zsámboki
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary
| | - István Andó
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| |
Collapse
|
96
|
Leitão AB, Sucena É. Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation. eLife 2015; 4. [PMID: 25650737 PMCID: PMC4357286 DOI: 10.7554/elife.06166] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 12/15/2022] Open
Abstract
Virtually all species of coelomate animals contain blood cells that display a division of labor necessary for homeostasis. This functional partition depends upon the balance between proliferation and differentiation mostly accomplished in the hematopoietic organs. In Drosophila melanogaster, the lymph gland produces plasmatocytes and crystal cells that are not released until pupariation. Yet, throughout larval development, both hemocyte types increase in numbers. Mature plasmatocytes can proliferate but it is not known if crystal cell numbers increase by self-renewal or by de novo differentiation. We show that new crystal cells in third instar larvae originate through a Notch-dependent process of plasmatocyte transdifferentiation. This process occurs in the sessile clusters and is contingent upon the integrity of these structures. The existence of this hematopoietic tissue, relying on structure-dependent signaling events to promote blood homeostasis, creates a new paradigm for addressing outstanding questions in Drosophila hematopoiesis and establishing further parallels with vertebrate systems.
Collapse
Affiliation(s)
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
97
|
Abstract
The route of infection can profoundly affect both the progression and outcome of disease. We investigated differences in Drosophila melanogaster defense against infection after bacterial inoculation into two sites--the abdomen and the thorax. Thorax inoculation results in increased bacterial proliferation and causes high mortality within the first few days of infection. In contrast, abdomen inoculation results in minimal mortality and lower bacterial loads than thorax inoculation. Inoculation into either site causes systemic infection. Differences in mortality and bacterial load are due to injury of the thorax and can be recapitulated by abdominal inoculation coupled with aseptic wounding of the thorax. This altered resistance appears to be independent of classical immune pathways and opens new avenues of research on the role of injury during defense against infection.
Collapse
|
98
|
Nitric oxide levels regulate the immune response of Drosophila melanogaster reference laboratory strains to bacterial infections. Infect Immun 2014; 82:4169-81. [PMID: 25047850 DOI: 10.1128/iai.02318-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on the innate immune response against microbial infections in Drosophila melanogaster involve mutant strains and their reference strains that act as experimental controls. We used five standard D. melanogaster laboratory reference strains (Oregon R, w1118, Canton-S, Cinnabar Brown, and Yellow White [YW]) and investigated their response against two pathogenic bacteria (Photorhabdus luminescens and Enterococcus faecalis) and two nonpathogenic bacteria (Escherichia coli and Micrococcus luteus). We detected high sensitivity among YW flies to bacterial infections and increased bacterial growth compared to the other strains. We also found variation in the transcription of certain antimicrobial peptide genes among strains, with Oregon and YW infected flies showing the highest and lowest gene transcription levels in most cases. We show that Oregon and w1118 flies possess more circulating hemocytes and higher levels of phenoloxidase activity than the other strains upon infection with the nonpathogenic bacteria. We further observed reduced fat accumulation in YW flies infected with the pathogenic bacteria, which suggests a possible decline in physiological condition. Finally, we found that nitrite levels are significantly lower in infected and uninfected YW flies compared to w1118 flies and that nitric oxide synthase mutant flies in YW background are more susceptible to bacterial infection compared to mutants in w1118 background. Therefore, increased sensitivity of YW flies to bacterial infections can be partly attributed to lower levels of nitric oxide. Such studies will significantly contribute toward a better understanding of the genetic variation between D. melanogaster reference strains.
Collapse
|
99
|
Evans CJ, Liu T, Banerjee U. Drosophila hematopoiesis: Markers and methods for molecular genetic analysis. Methods 2014; 68:242-51. [PMID: 24613936 PMCID: PMC4051208 DOI: 10.1016/j.ymeth.2014.02.038] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 01/09/2023] Open
Abstract
Analyses of the Drosophila hematopoietic system are becoming more and more prevalent as developmental and functional parallels with vertebrate blood cells become more evident. Investigative work on the fly blood system has, out of necessity, led to the identification of new molecular markers for blood cell types and lineages and to the refinement of useful molecular genetic tools and analytical methods. This review briefly describes the Drosophila hematopoietic system at different developmental stages, summarizes the major useful cell markers and tools for each stage, and provides basic protocols for practical analysis of circulating blood cells and of the lymph gland, the larval hematopoietic organ.
Collapse
Affiliation(s)
- Cory J Evans
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ting Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|