51
|
Abstract
Algae are photosynthetic eukaryotes whose taxonomic breadth covers a range of life histories, degrees of cellular and developmental complexity, and diverse patterns of sexual reproduction. These patterns include haploid- and diploid-phase sex determination, isogamous mating systems, and dimorphic sexes. Despite the ubiquity of sexual reproduction in algae, their mating-type-determination and sex-determination mechanisms have been investigated in only a limited number of representatives. These include volvocine green algae, where sexual cycles and sex-determining mechanisms have shed light on the transition from mating types to sexes, and brown algae, which are a model for UV sex chromosome evolution in the context of a complex haplodiplontic life cycle. Recent advances in genomics have aided progress in understanding sexual cycles in less-studied taxa including ulvophyte, charophyte, and prasinophyte green algae, as well as in diatoms.
Collapse
Affiliation(s)
- James Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA;
| | - Susana Coelho
- Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Université Paris 06, CNRS, CS 90074, F-29688 Roscoff, France;
| |
Collapse
|
52
|
Starko S, Soto Gomez M, Darby H, Demes KW, Kawai H, Yotsukura N, Lindstrom SC, Keeling PJ, Graham SW, Martone PT. A comprehensive kelp phylogeny sheds light on the evolution of an ecosystem. Mol Phylogenet Evol 2019; 136:138-150. [PMID: 30980936 DOI: 10.1016/j.ympev.2019.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022]
Abstract
Reconstructing phylogenetic topologies and divergence times is essential for inferring the timing of radiations, the appearance of adaptations, and the historical biogeography of key lineages. In temperate marine ecosystems, kelps (Laminariales) drive productivity and form essential habitat but an incomplete understanding of their phylogeny has limited our ability to infer their evolutionary origins and the spatial and temporal patterns of their diversification. Here, we reconstruct the diversification of habitat-forming kelps using a global genus-level phylogeny inferred primarily from organellar genome datasets, and investigate the timing of kelp radiation. We resolve several important phylogenetic features, including relationships among the morphologically simple kelp families and the broader radiation of complex kelps, demonstrating that the initial radiation of the latter resulted from an increase in speciation rate around the Eocene-Oligocene boundary. This burst in speciation rate is consistent with a possible role of recent climatic cooling in triggering the kelp radiation and pre-dates the origin of benthic-foraging carnivores. Historical biogeographical reconstructions point to a northeast Pacific origin of complex kelps, with subsequent colonization of new habitats likely playing an important role in driving their ecological diversification. We infer that complex morphologies associated with modern kelp forests (e.g. branching, pneumatocysts) evolved several times over the past 15-20 MY, highlighting the importance of morphological convergence in establishing modern upright kelp forests. Our phylogenomic findings provide new insights into the geographical and ecological proliferation of kelps and provide a timeline along which feedbacks between kelps and their food-webs could have shaped the structure of temperate ecosystems.
Collapse
Affiliation(s)
- Samuel Starko
- Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada; Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield V0R 1B0, Canada; Hakai Institute, Heriot Bay, Quadra Island, Canada.
| | - Marybel Soto Gomez
- Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada
| | - Hayley Darby
- Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada
| | - Kyle W Demes
- Department of Zoology, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada
| | - Hiroshi Kawai
- Department of Biology, Kobe University, Rokkodaicho 657-8501, Japan
| | - Norishige Yotsukura
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo 060-0809, Japan
| | - Sandra C Lindstrom
- Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada
| | - Patrick J Keeling
- Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada; Department of Zoology, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada
| | - Sean W Graham
- Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada
| | - Patrick T Martone
- Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada; Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield V0R 1B0, Canada; Hakai Institute, Heriot Bay, Quadra Island, Canada
| |
Collapse
|
53
|
Coelho SM, Mignerot L, Cock JM. Origin and evolution of sex-determination systems in the brown algae. THE NEW PHYTOLOGIST 2019; 222:1751-1756. [PMID: 30667071 DOI: 10.1111/nph.15694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Sexual reproduction is a nearly universal feature of eukaryotic organisms. Meiosis appears to have had a single ancient origin, but the mechanisms underlying male or female sex determination are diverse and have emerged repeatedly and independently in the different eukaryotic groups. The brown algae are a group of multicellular photosynthetic eukaryotes that have a distinct evolutionary history compared with animals and plants, as they have been evolving independently for over 1 billion yr. Here, we review recent work using the brown alga Ectocarpus as a model organism to study haploid sex chromosomes, and highlight how the diversity of reproductive and life cycle features of the brown algae offer unique opportunities to characterize the evolutionary forces and the mechanisms underlying the evolution of sex determination.
Collapse
Affiliation(s)
- Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90c074, F-29688, Roscoff, France
| | - Laure Mignerot
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90c074, F-29688, Roscoff, France
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90c074, F-29688, Roscoff, France
| |
Collapse
|
54
|
Mignerot L, Avia K, Luthringer R, Lipinska AP, Peters AF, Cock JM, Coelho SM. A key role for sex chromosomes in the regulation of parthenogenesis in the brown alga Ectocarpus. PLoS Genet 2019; 15:e1008211. [PMID: 31194744 PMCID: PMC6592573 DOI: 10.1371/journal.pgen.1008211] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/25/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of these shifts remain largely elusive. Here, we used classic quantitative trait analysis, combined with genomic and transcriptomic information to dissect the genetic basis of asexual, parthenogenetic reproduction in the brown alga Ectocarpus. We found that parthenogenesis is controlled by the sex locus, together with two additional autosomal loci, highlighting the key role of the sex chromosome as a major regulator of asexual reproduction. We identify several negative effects of parthenogenesis on male fitness, and different fitness effects of parthenogenetic capacity depending on the life cycle generation. Although allele frequencies in natural populations are currently unknown, we discuss the possibility that parthenogenesis may be under both sex-specific selection and generation/ploidally-antagonistic selection, and/or that the action of fluctuating selection on this trait may contribute to the maintenance of polymorphisms in populations. Importantly, our data provide the first empirical illustration, to our knowledge, of a trade-off between the haploid and diploid stages of the life cycle, where distinct parthenogenesis alleles have opposing effects on sexual and asexual reproduction and may help maintain genetic variation. These types of fitness trade-offs have profound evolutionary implications in natural populations and may structure life history evolution in organisms with haploid-diploid life cycles.
Collapse
Affiliation(s)
- Laure Mignerot
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Komlan Avia
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Remy Luthringer
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Agnieszka P. Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | | | - J. Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Susana M. Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
55
|
Lipinska AP, Serrano-Serrano ML, Cormier A, Peters AF, Kogame K, Cock JM, Coelho SM. Rapid turnover of life-cycle-related genes in the brown algae. Genome Biol 2019; 20:35. [PMID: 30764885 PMCID: PMC6374913 DOI: 10.1186/s13059-019-1630-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 01/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations. RESULTS We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression. CONCLUSION Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity.
Collapse
Affiliation(s)
- Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | | | - Alexandre Cormier
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | | | - Kazuhiro Kogame
- Department of Biological Sciences, Faculty of Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
| |
Collapse
|
56
|
Birkemeyer C, Osmolovskaya N, Kuchaeva L, Tarakhovskaya E. Distribution of natural ingredients suggests a complex network of metabolic transport between source and sink tissues in the brown alga Fucus vesiculosus. PLANTA 2019; 249:377-391. [PMID: 30209618 DOI: 10.1007/s00425-018-3009-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
MAIN CONCLUSION Tight regulation of intra-thallus metabolite distribution in Fucus vesiculosus in late summer reveals the complex biochemical processes complying with reproduction and the preparation to the dark season. We used inductively coupled plasma atomic emission spectroscopy to study the tissue-specific elemental composition, and gas chromatography coupled to mass spectrometry to study the distribution of small-molecular weight primary and secondary metabolites of the brown alga Fucus vesiculosus thalli in the reproductive phase. Beyond general physiological requirements, the observed distribution of the analysed nutrients was also found to depend on characteristics related to the season of harvesting, i.e., the reproductive period. However, a particular curious result was the high metabolic activity found in the stipe of the plant. In conclusion, our data not only provide valuable information for industrial use of fucoids targeting specific algal ingredients, but also give highly interesting insights in the multifaceted system of intra-thallus biochemical interactions during reproduction of the brown algae.
Collapse
Affiliation(s)
- Claudia Birkemeyer
- Faculty of Chemistry and Mineralogy, Leipzig University, 04103, Leipzig, Germany
| | - Natalia Osmolovskaya
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St.-Petersburg State University, 199034, St.-Petersburg, Russia
| | - Ludmila Kuchaeva
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St.-Petersburg State University, 199034, St.-Petersburg, Russia
| | - Elena Tarakhovskaya
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St.-Petersburg State University, 199034, St.-Petersburg, Russia.
- Department of Scientific Information, Russian Academy of Sciences Library, 199034, St.-Petersburg, Russia.
| |
Collapse
|
57
|
Bruno de Sousa C, Cox CJ, Brito L, Pavão MM, Pereira H, Ferreira A, Ginja C, Campino L, Bermejo R, Parente M, Varela J. Improved phylogeny of brown algae Cystoseira (Fucales) from the Atlantic-Mediterranean region based on mitochondrial sequences. PLoS One 2019; 14:e0210143. [PMID: 30699208 PMCID: PMC6364706 DOI: 10.1371/journal.pone.0210143] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2018] [Indexed: 11/19/2022] Open
Abstract
Cystoseira is a common brown algal genus widely distributed throughout the Atlantic and Mediterranean regions whose taxonomical assignment of specimens is often hampered by intra- and interspecific morphological variability. In this study, three mitochondrial regions, namely cytochrome oxidase subunit 1 (COI), 23S rDNA (23S), and 23S-tRNAVal intergenic spacer (mt-spacer) were used to analyse the phylogenetic relationships of 22 Cystoseira taxa (n = 93 samples). A total of 135 sequences (48 from COI, 43 from 23S and 44 from mt-spacer) were newly generated and analysed together with Cystoseira sequences (9 COI, 31 23S and 35 mt-spacer) from other authors. Phylogenetic analysis of these three markers identified 3 well-resolved clades and also corroborated the polyphyletic nature of the genus. The resolution of Cystoseira taxa within the three clades improves significantly when the inclusion of specimens of related genera was minimized. COI and mt-spacer markers resolved the phylogeny of some of the Cystoseira taxa, such as the C. baccata, C. foeniculacea and C. usneoides. Furthermore, trends between phylogeny, embryonic development and available chemotaxonomic classifications were identified, showing that phylogenetic, chemical and morphological data should be taken into account to study the evolutionary relationships among the algae currently classified as Cystoseira. The resolution of Cystoseira macroalgae into three well supported clades achieved here is relevant for a more accurate isolation and identification of natural compounds and the implementation of conservation measures for target species.
Collapse
Affiliation(s)
| | - Cymon J. Cox
- Centro de Ciências do Mar, Universidade do Algarve, Faro,
Portugal
| | - Luís Brito
- Centro de Ciências do Mar, Universidade do Algarve, Faro,
Portugal
| | | | - Hugo Pereira
- Centro de Ciências do Mar, Universidade do Algarve, Faro,
Portugal
| | - Ana Ferreira
- Universidade dos Açores, Faculdade de Ciências e Tecnologia, Ponta
Delgada, Açores, Portugal
| | - Catarina Ginja
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos
Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão,
Portugal
| | - Lenea Campino
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina
Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ricardo Bermejo
- Departamento de Biología- Área de Ecología, Facultad de Ciencias del Mar
y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
- Irish Seaweed Research Group & Earth and Ocean Sciences Department,
Ryan Institute and School of Natural Sciences, National University of Ireland,
Galway, Ireland
| | - Manuela Parente
- CIBIO-Açores, Centro de Investigação em Biodiversidade e Recursos
Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Departamento de
Biologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - João Varela
- Centro de Ciências do Mar, Universidade do Algarve, Faro,
Portugal
| |
Collapse
|
58
|
Sousa F, Neiva J, Martins N, Jacinto R, Anderson L, Raimondi PT, Serrão EA, Pearson GA. Increased evolutionary rates and conserved transcriptional response following allopolyploidization in brown algae. Evolution 2019; 73:59-72. [PMID: 30421788 DOI: 10.1111/evo.13645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023]
Abstract
Genome mergers between independently evolving lineages, via allopolyploidy, can potentially lead to instantaneous sympatric speciation. However, little is known about the consequences of allopolyploidy and the resultant "genome shock" on genome evolution and expression beyond the plant and fungal branches of the Tree of Life. The aim of this study was to compare substitution rates and gene expression patterns in two allopolyploid brown algae (Phaeophyceae and Heterokonta) and their progenitors in the genus Pelvetiopsis N. L. Gardner in the north-east Pacific, and to date their relationships. We used RNA-seq data, all potential orthologues, and putative single-copy loci for phylogenomic, divergence, and gene expression analyses. The multispecies coalescent placed the origin of allopolyploids in the late Pleistocene (0.35-0.05 Ma). Homoeologues displayed increased nonsynonymous divergence compared with parental orthologues, consistent with relaxed selective constraint following allopolyploidization, including for genes with no evidence of pseudogenization or neofunctionalization. Patterns of homoeologue-orthologue expression conservation and expression level dominance were largely shared with both natural plant and fungal allopolyploids. Our results provide further support for common cross-Kingdom patterns of allopolyploid genome evolution and transcriptional responses, here in the evolutionarily distinct marine heterokont brown algae.
Collapse
Affiliation(s)
- Filipe Sousa
- CCMAR-Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, Faro, 8005-139, Portugal
| | - João Neiva
- CCMAR-Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, Faro, 8005-139, Portugal
| | - Neusa Martins
- CCMAR-Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, Faro, 8005-139, Portugal
| | - Rita Jacinto
- CCMAR-Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, Faro, 8005-139, Portugal
| | - Laura Anderson
- Long Marine Laboratory, University of California, Santa Cruz, California, 95064
| | - Peter T Raimondi
- Long Marine Laboratory, University of California, Santa Cruz, California, 95064
| | - Ester A Serrão
- CCMAR-Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, Faro, 8005-139, Portugal
| | - Gareth A Pearson
- CCMAR-Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, Faro, 8005-139, Portugal
| |
Collapse
|
59
|
Rabillé H, Billoud B, Tesson B, Le Panse S, Rolland É, Charrier B. The brown algal mode of tip growth: Keeping stress under control. PLoS Biol 2019; 17:e2005258. [PMID: 30640903 PMCID: PMC6347293 DOI: 10.1371/journal.pbio.2005258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/25/2019] [Accepted: 12/20/2018] [Indexed: 01/09/2023] Open
Abstract
Tip growth has been studied in pollen tubes, root hairs, and fungal and oomycete hyphae and is the most widely distributed unidirectional growth process on the planet. It ensures spatial colonization, nutrient predation, fertilization, and symbiosis with growth speeds of up to 800 μm h-1. Although turgor-driven growth is intuitively conceivable, a closer examination of the physical processes at work in tip growth raises a paradox: growth occurs where biophysical forces are low, because of the increase in curvature in the tip. All tip-growing cells studied so far rely on the modulation of cell wall extensibility via the polarized excretion of cell wall-loosening compounds at the tip. Here, we used a series of quantitative measurements at the cellular level and a biophysical simulation approach to show that the brown alga Ectocarpus has an original tip-growth mechanism. In this alga, the establishment of a steep gradient in cell wall thickness can compensate for the variation in tip curvature, thereby modulating wall stress within the tip cell. Bootstrap analyses support the robustness of the process, and experiments with fluorescence recovery after photobleaching (FRAP) confirmed the active vesicle trafficking in the shanks of the apical cell, as inferred from the model. In response to auxin, biophysical measurements change in agreement with the model. Although we cannot strictly exclude the involvement of a gradient in mechanical properties in Ectocarpus morphogenesis, the viscoplastic model of cell wall mechanics strongly suggests that brown algae have evolved an alternative strategy of tip growth. This strategy is largely based on the control of cell wall thickness rather than fluctuations in cell wall mechanical properties.
Collapse
Affiliation(s)
- Hervé Rabillé
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| | - Bernard Billoud
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| | - Benoit Tesson
- SCRIPPS Institution of Oceanography, University of California, San Diego, San Diego, California, United States of America
| | - Sophie Le Panse
- MerImage platform, FR2424, CNRS, Sorbonne Université, Station Biologique, Roscoff, France
| | - Élodie Rolland
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| | - Bénédicte Charrier
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| |
Collapse
|
60
|
Liu F, Zhang Y, Bi Y, Chen W, Moejes FW. Understanding the Evolution of Mitochondrial Genomes in Phaeophyceae Inferred from Mitogenomes of Ishige okamurae (Ishigeales) and Dictyopteris divaricata (Dictyotales). J Mol Evol 2019; 87:16-26. [PMID: 30604018 DOI: 10.1007/s00239-018-9881-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 12/15/2018] [Indexed: 11/29/2022]
Abstract
To gain further insight into the evolution of mitochondrial genomes (mtDNAs) in Phaeophyceae, the first recorded characterization of an Ishigeophycidae mtDNA from Ishige okamurae (Yendo), and only the second recorded characterization of a Dictyotophycidae mtDNA from Dictyopteris divaricata (Okamura) Okamura are presented in this study. The 35,485 bp I. okamurae mtDNA contained 36 protein-coding genes (PCGs), 22 tRNAs, three rRNAs, and four open reading frames (orfs), and the 32,021 bp D. divaricata mtDNA harbored 35 PCGs, 25 tRNAs, three rRNAs, and three orfs. The A + T content in D. divaricata (61.69%) was the lowest recorded in sequenced brown algal mtDNAs. The I. okamurae mtDNA displayed unique genome features including an elevated start-codon usage bias for GTG, while the organization of D. divaricata mtDNA was identical to that of Dictyota dichotoma. Phylogenetic analysis based on the amino acid sequence dataset of 35 PCGs indicated that I. okamurae (Ishigeophycidae) diverged early from the Fucophycidae-Dictyotophycidae complex, which was confirmed by the comparative analysis of the mitogenome structure. The novel mitogenome data made available by this study have improved our understanding of the evolution, phylogenetics, and genomics of brown algae.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, Shandong, People's Republic of China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, Shandong, People's Republic of China.
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, People's Republic of China
| | - Yuping Bi
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, People's Republic of China
| | - Weizhou Chen
- Marine Biology Institute, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | | |
Collapse
|
61
|
Raven J. Blue carbon: past, present and future, with emphasis on macroalgae. Biol Lett 2018; 14:rsbl.2018.0336. [PMID: 30282745 DOI: 10.1098/rsbl.2018.0336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/04/2018] [Indexed: 11/12/2022] Open
Abstract
Blue carbon did not originally include macroalgal ecosystems; however evidence is mounting that macroalgal ecosystems function in marine carbon sequestration. The great majority of present day marine macroalgal net primary productivity (NPP) involves haptophytic algae on eroding shores. For these organisms the long-term storage of particulate organic carbon involves export from the site of production of biomass that has evaded parasites and grazers, and that some of the exported biomass is sedimented and stored rather than being mineralized en route by detritivores (microbes and fauna). Export from eroding shores, and subsequent storage, of haptophytic marine macroalgal particulate organic carbon could have started by 1.6 Ga. Storage on depositing shores close to the site of NPP by rhizophytic macroalgae and then by rhizophytic coastal seagrasses, tidal marshes and mangroves began not less than 209 Ma ago. Future increases in surface ocean temperatures may bring tropical marine macroalgae to their upper temperature limit, while temperate marine macroalgae will migrate poleward, in both cases assuming that temperature increases faster than genetic adaptation to higher temperature. Increased CO2 in the surface ocean will generally favour uncalcified over calcified marine macroalgae. This results in decreased CO2 release from decreased calcification, as well as decreased ballasting by CaCO3 of exported particulate organic carbon resulting in decreasing sedimentation. While much more work is needed, the available information suggests that macroalgae play a significant role in marine organic carbon storage.
Collapse
Affiliation(s)
- John Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DQ, UK .,Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
62
|
Küpper FC, Miller EP, Andrews SJ, Hughes C, Carpenter LJ, Meyer-Klaucke W, Toyama C, Muramatsu Y, Feiters MC, Carrano CJ. Emission of volatile halogenated compounds, speciation and localization of bromine and iodine in the brown algal genome model Ectocarpus siliculosus. J Biol Inorg Chem 2018; 23:1119-1128. [PMID: 29523971 DOI: 10.1007/s00775-018-1539-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/28/2018] [Indexed: 11/25/2022]
Abstract
This study explores key features of bromine and iodine metabolism in the filamentous brown alga and genomics model Ectocarpus siliculosus. Both elements are accumulated in Ectocarpus, albeit at much lower concentration factors (2-3 orders of magnitude for iodine, and < 1 order of magnitude for bromine) than e.g. in the kelp Laminaria digitata. Iodide competitively reduces the accumulation of bromide. Both iodide and bromide are accumulated in the cell wall (apoplast) of Ectocarpus, with minor amounts of bromine also detectable in the cytosol. Ectocarpus emits a range of volatile halogenated compounds, the most prominent of which by far is methyl iodide. Interestingly, biosynthesis of this compound cannot be accounted for by vanadium haloperoxidase since the latter have not been found to catalyze direct halogenation of an unactivated methyl group or hydrocarbon so a methyl halide transferase-type production mechanism is proposed.
Collapse
Affiliation(s)
- Frithjof C Küpper
- Oceanlab, University of Aberdeen, Main Street, Newburgh, AB41 6AA, Scotland, UK.
- Dunstaffnage Marine Laboratory, Scottish Association for Marine Science, Oban, Argyll, PA37 1QA, Scotland, UK.
| | - Eric P Miller
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182-1030, USA
| | - Stephen J Andrews
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Claire Hughes
- Environment Department, University of York, York, YO10 5NG, UK
| | - Lucy J Carpenter
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Wolfram Meyer-Klaucke
- Department of Chemistry - Inorganic Chemistry, Faculty of Science, University of Paderborn, Warburger Strasse 100, 33098, Paderborn, Germany
| | - Chiaki Toyama
- Geological Survey of Japan, The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Yasuyuki Muramatsu
- Department of Chemistry, Faculty of Science, Gakushuin University, Toshima-Ku, Tokyo, 171-8588, Japan
| | - Martin C Feiters
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Carl J Carrano
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182-1030, USA
| |
Collapse
|
63
|
Animal origins and the Tonian Earth system. Emerg Top Life Sci 2018; 2:289-298. [PMID: 32412615 DOI: 10.1042/etls20170160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/30/2023]
Abstract
The Neoproterozoic Era (1000-541 million years ago, Ma) was characterized by dramatic environmental and evolutionary change, including at least two episodes of extensive, low-latitude glaciation, potential changes in the redox structure of the global ocean, and the origin and diversification of animal life. How these different events related to one another remains an active area of research, particularly how these environmental changes influenced, and were influenced by, the earliest evolution of animals. Animal multicellularity is estimated to have evolved in the Tonian Period (1000-720 Ma) and represents one of at least six independent acquisitions of complex multicellularity, characterized by cellular differentiation, three-dimensional body plans, and active nutrient transport. Compared with the other instances of complex multicellularity, animals represent the only clade to have evolved from wall-less, phagotrophic flagellates, which likely placed unique cytological and trophic constraints on the evolution of animal multicellularity. Here, we compare recent molecular clock estimates with compilations of the chromium isotope, micropaleontological, and organic biomarker records, suggesting that, as of now, the origin of animals was not obviously correlated to any environmental-ecological change in the Tonian Period. This lack of correlation is consistent with the idea that the evolution of animal multicellularity was primarily dictated by internal, developmental constraints and occurred independently of the known environmental-ecological changes that characterized the Neoproterozoic Era.
Collapse
|
64
|
Nagy LG, Kovács GM, Krizsán K. Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol Rev Camb Philos Soc 2018; 93:1778-1794. [DOI: 10.1111/brv.12418] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- László G. Nagy
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy; Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C; H-1117 Budapest Hungary
- Plant Protection Institute, Centre for Agricultural Research; Hungarian Academy of Sciences (MTA-ATK); PO Box 102, H-1525 Budapest Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| |
Collapse
|
65
|
Kenrick P. Changing expressions: a hypothesis for the origin of the vascular plant life cycle. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170149. [PMID: 29254970 PMCID: PMC5745341 DOI: 10.1098/rstb.2017.0149] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
Plant life cycles underwent fundamental changes during the initial colonization of the land in the Early Palaeozoic, shaping the direction of evolution. Fossils reveal unanticipated diversity, including new variants of meiotic cell division and leafless gametophytes with mycorrhizal-like symbioses, rhizoids, vascular tissues and stomata. Exceptional fossils from the 407-Ma Rhynie chert (Scotland) play a key role in unlocking this diversity. These fossils are reviewed against progress in our understanding of the plant tree of life and recent advances in developmental genetics. Combining data from different sources sheds light on a switch in life cycle that gave rise to the vascular plants. One crucial step was the establishment of a free-living sporophyte from one that was an obligate matrotroph borne on the gametophyte. It is proposed that this difficult evolutionary transition was achieved through expansion of gene expression primarily from the gametophyte to the sporophyte, establishing a now extinct life cycle variant that was more isomorphic than heteromorphic. These changes also linked for the first time in one developmental system rhizoids, vascular tissues and stomata, putting in place the critical components that regulate transpiration and forming a physiological platform of primary importance to the diversification of vascular plants.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.
Collapse
Affiliation(s)
- Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
66
|
Lemay MA, Martone PT, Keeling PJ, Burt JM, Krumhansl KA, Sanders RD, Wegener Parfrey L. Sympatric kelp species share a large portion of their surface bacterial communities. Environ Microbiol 2018; 20:658-670. [PMID: 29124859 DOI: 10.1111/1462-2920.13993] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
Kelp forest ecosystems are biodiversity hotspots, providing habitat for dense assemblages of marine organisms and nutrients for marine and terrestrial food webs. The surfaces of kelps support diverse microbial communities that facilitate the transfer of carbon from algal primary production to higher trophic levels. We quantified the diversity of bacteria on the surfaces of eight sympatric kelp species from four sites in British Columbia. Kelp-associated bacterial communities are significantly different from their environment, even though 86% of their bacterial taxa are shared with seawater and 97% are shared with rocky substrate. This differentiation is driven by differences in relative abundance of the bacterial taxa present. Similarly, a large portion of bacterial taxa (37%) is shared among all eight kelp species, yet differential abundance of bacterial taxa underlies differences in community structure among species. Kelp-associated bacterial diversity does not track host phylogeny; instead bacterial community composition is correlated with the life-history strategy of the host, with annual and perennial kelps supporting divergent bacterial communities. These data provide the first community-scale investigation of kelp forest-associated bacterial diversity. More broadly, this study provides insight into mechanisms that may structure bacterial communities among closely related sympatric host species.
Collapse
Affiliation(s)
- Matthew A Lemay
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, Canada V6T 1Z4
- Hakai Institute, PO Box 309, Heriot Bay, BC, Canada V0P 1H0
| | - Patrick T Martone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, Canada V6T 1Z4
- Hakai Institute, PO Box 309, Heriot Bay, BC, Canada V0P 1H0
| | - Patrick J Keeling
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, Canada V6T 1Z4
- Hakai Institute, PO Box 309, Heriot Bay, BC, Canada V0P 1H0
| | - Jenn M Burt
- Hakai Institute, PO Box 309, Heriot Bay, BC, Canada V0P 1H0
- School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Kira A Krumhansl
- Hakai Institute, PO Box 309, Heriot Bay, BC, Canada V0P 1H0
- School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Rhea D Sanders
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, Canada V6T 1Z4
- Hakai Institute, PO Box 309, Heriot Bay, BC, Canada V0P 1H0
| | - Laura Wegener Parfrey
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, Canada V6T 1Z4
- Hakai Institute, PO Box 309, Heriot Bay, BC, Canada V0P 1H0
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
67
|
Mueller R, Wright JT, Bolch CJS. Historical demography and colonization pathways of the widespread intertidal seaweed Hormosira banksii (Phaeophyceae) in southeastern Australia. JOURNAL OF PHYCOLOGY 2018; 54:56-65. [PMID: 29054124 DOI: 10.1111/jpy.12599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
The palaeoceanography of southern Australia has been characterized by fluctuating sea levels during glacial periods, changing temperature regimes and modified boundary currents. Previous studies on genetic structuring of species in southeastern Australia have focused mainly on the differentiation of eastern and western populations while the potential role of Bass Strait as a region of overlap for three biogeographic provinces (Peronia, Maugea, and Flindersia) has been largely ignored. This study aimed to explore the likely roles of historic and contemporary factors in determining divergence patterns in the habitat-forming intertidal seaweed Hormosira banksii in southeastern Australia with a special focus on postglacial dispersal into Bass Strait. We examined the genetic diversity of 475 Hormosira specimens collected from 19 sites around southern Australia using DNA sequence analysis of cytochrome oxidase 1. Three major haplotype groups were identified (western, centre and eastern) corresponding with the three existing biogeographical provinces in this region. Historic break points appeared to be retained and reinforced by modern day dispersal barriers. Phylogeographic grouping of Hormosira reflected a combination of historic and contemporary oceanography. As western and eastern group haplotypes were largely absent within Bass Strait, re-colonization after the last glacial maximum appeared to have originated from refuges within or near present day Bass Strait. Patterns of genetic structure for Hormosira are consistent with other marine species in this region and highlight the importance of biogeographical barriers in contributing to modern genetic structure.
Collapse
Affiliation(s)
- Rebecca Mueller
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 1370, Launceston, Tasmania, 7250, Australia
| | - Jeffrey T Wright
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 1370, Launceston, Tasmania, 7250, Australia
| | - Christopher J S Bolch
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 1370, Launceston, Tasmania, 7250, Australia
| |
Collapse
|
68
|
Liu F, Jin Z, Wang Y, Bi Y, Melton JT. Plastid Genome of Dictyopteris divaricata (Dictyotales, Phaeophyceae): Understanding the Evolution of Plastid Genomes in Brown Algae. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:627-637. [PMID: 29164355 DOI: 10.1007/s10126-017-9781-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/05/2017] [Indexed: 06/07/2023]
Abstract
Dictyotophycidae is a subclass of brown algae containing 395 species that are distributed worldwide. A complete plastid (chloroplast) genome (ptDNA or cpDNA) had not previously been sequenced from this group. In this study, the complete plastid genome of Dictyopteris divaricata (Okamura) Okamura (Dictyotales, Phaeophyceae) was characterized and compared to other brown algal ptDNAs. This plastid genome was 126,099 bp in size with two inverted repeats (IRs) of 6026 bp. The D. divaricata IRs contained rpl21, making its IRs larger than representatives from the orders Fucales and Laminariales, but was smaller than that from Ectocarpales. The G + C content of D. divaricata (31.19%) was the highest of the known ptDNAs of brown algae (28.94-31.05%). Two protein-coding genes, rbcR and rpl32, were present in ptDNAs of Laminariales, Ectocarpales (Ectocarpus siliculosus), and Fucales (LEF) but were absent in D. divaricata. Reduced intergenic space (13.11%) and eight pairs of overlapping genes in D. divaricata ptDNA made it the most compact plastid genome in brown algae so far. The architecture of D. divaricata ptDNA showed higher similarity to that of Laminariales compared with Fucales and Ectocarpales. The difference in general features, gene content, and architecture among the ptDNAs of D. divaricata and LEF clade revealed the diversity and evolutionary trends of plastid genomes in brown algae.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, People's Republic of China.
| | - Zhe Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, People's Republic of China
- College of Life Science, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Yu Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, People's Republic of China
- School of Life Sciences, Shandong University, Jinan, Shandong, 250100, People's Republic of China
| | - Yuping Bi
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, People's Republic of China
| | - James T Melton
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487-0345, USA
| |
Collapse
|
69
|
Robin A, Chavel P, Chemodanov A, Israel A, Golberg A. Diversity of monosaccharides in marine macroalgae from the Eastern Mediterranean Sea. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
70
|
Graf L, Kim YJ, Cho GY, Miller KA, Yoon HS. Plastid and mitochondrial genomes of Coccophora langsdorfii (Fucales, Phaeophyceae) and the utility of molecular markers. PLoS One 2017; 12:e0187104. [PMID: 29095864 PMCID: PMC5695614 DOI: 10.1371/journal.pone.0187104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/15/2017] [Indexed: 11/29/2022] Open
Abstract
Coccophora langsdorfii (Turner) Greville (Fucales) is an intertidal brown alga that is endemic to Northeast Asia and increasingly endangered by habitat loss and climate change. We sequenced the complete circular plastid and mitochondrial genomes of C. langsdorfii. The circular plastid genome is 124,450 bp and contains 139 protein-coding, 28 tRNA and 6 rRNA genes. The circular mitochondrial genome is 35,660 bp and contains 38 protein-coding, 25 tRNA and 3 rRNA genes. The structure and gene content of the C. langsdorfii plastid genome is similar to those of other species in the Fucales. The plastid genomes of brown algae in other orders share similar gene content but exhibit large structural recombination. The large in-frame insert in the cox2 gene in the mitochondrial genome of C. langsdorfii is typical of other brown algae. We explored the effect of this insertion on the structure and function of the cox2 protein. We estimated the usefulness of 135 plastid genes and 35 mitochondrial genes for developing molecular markers. This study shows that 29 organellar genes will prove efficient for resolving brown algal phylogeny. In addition, we propose a new molecular marker suitable for the study of intraspecific genetic diversity that should be tested in a large survey of populations of C. langsdorfii.
Collapse
Affiliation(s)
- Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Yae Jin Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ga Youn Cho
- National Institute of Biological Resources, Incheon, Korea
| | - Kathy Ann Miller
- University Herbarium, University of California, Berkeley, CA, United States of America
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
71
|
Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: Cell wall context, biomedical properties and key research challenges. Carbohydr Polym 2017; 175:395-408. [PMID: 28917882 DOI: 10.1016/j.carbpol.2017.07.082] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
Studies on brown algal cell walls have entered a new phase with the concomitant discovery of novel polysaccharides present in cell walls and the establishment of a comprehensive generic model for cell wall architecture. Brown algal cell walls are composites of structurally complex polysaccharides. In this review we discuss the most recent progress in the structural composition of brown algal cell walls, emphasizing the significance of extraction and screening techniques, and the biological activities of the corresponding polysaccharides, with a specific focus on the fucose-containing sulfated polysaccharides. They include valuable marine molecules that exert a broad range of pharmacological properties such as antioxidant and anti-inflammatory activities, functions in the regulation of immune responses and of haemostasis, anti-infectious and anticancer actions. We identify the key remaining challenges in this research field.
Collapse
Affiliation(s)
- Estelle Deniaud-Bouët
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Kevin Hardouin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Philippe Potin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Bernard Kloareg
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Cécile Hervé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| |
Collapse
|
72
|
How the Land Became the Locus of Major Evolutionary Innovations. Curr Biol 2017; 27:3178-3182.e1. [DOI: 10.1016/j.cub.2017.08.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/23/2022]
|
73
|
Raven JA, Giordano M. Acquisition and metabolism of carbon in the Ochrophyta other than diatoms. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160400. [PMID: 28717026 PMCID: PMC5516109 DOI: 10.1098/rstb.2016.0400] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 11/12/2022] Open
Abstract
The acquisition and assimilation of inorganic C have been investigated in several of the 15 clades of the Ochrophyta other than diatoms, with biochemical, physiological and genomic data indicating significant mechanistic variation. Form ID Rubiscos in the Ochrophyta are characterized by a broad range of kinetics values. In spite of relatively high K0.5CO2 and low CO2 : O2 selectivity, diffusive entry of CO2 occurs in the Chrysophyceae and Synurophyceae. Eustigmatophyceae and Phaeophyceae, on the contrary, have CO2 concentrating mechanisms, usually involving the direct or indirect use of [Formula: see text] This variability is possibly due to the ecological contexts of the organism. In brown algae, C fixation generally takes place through a classical C3 metabolism, but there are some hints of the occurrence of C4 metabolism and low amplitude CAM in a few members of the Fucales. Genomic data show the presence of a number of potential C4 and CAM genes in Ochrophyta other than diatoms, but the other core functions of many of these genes give a very limited diagnostic value to their presence and are insufficient to conclude that C4 photosynthesis is present in these algae.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona 60131, Italy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Trěboň 37901, Czech Republic
| |
Collapse
|
74
|
Balakirev ES, Saveliev PA, Ayala FJ. Complete Mitochondrial Genomes of the Cherskii's Sculpin Cottus czerskii and Siberian Taimen Hucho taimen Reveal GenBank Entry Errors: Incorrect Species Identification and Recombinant Mitochondrial Genome. Evol Bioinform Online 2017; 13:1176934317726783. [PMID: 28890653 PMCID: PMC5574479 DOI: 10.1177/1176934317726783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/20/2017] [Indexed: 12/03/2022] Open
Abstract
The complete mitochondrial (mt) genome is sequenced in 2 individuals of the Cherskii's sculpin Cottus czerskii. A surprisingly high level of sequence divergence (10.3%) has been detected between the 2 genomes of C czerskii studied here and the GenBank mt genome of C czerskii (KJ956027). At the same time, a surprisingly low level of divergence (1.4%) has been detected between the GenBank C czerskii (KJ956027) and the Amur sculpin Cottus szanaga (KX762049, KX762050). We argue that the observed discrepancies are due to incorrect taxonomic identification so that the GenBank accession number KJ956027 represents actually the mt genome of C szanaga erroneously identified as C czerskii. Our results are of consequence concerning the GenBank database quality, highlighting the potential negative consequences of entry errors, which once they are introduced tend to be propagated among databases and subsequent publications. We illustrate the premise with the data on recombinant mt genome of the Siberian taimen Hucho taimen (NCBI Reference Sequence Database NC_016426.1; GenBank accession number HQ897271.1), bearing 2 introgressed fragments (≈0.9 kb [kilobase]) from 2 lenok subspecies, Brachymystax lenok and Brachymystax lenok tsinlingensis, submitted to GenBank on June 12, 2011. Since the time of submission, the H taimen recombinant mt genome leading to incorrect phylogenetic inferences was propagated in multiple subsequent publications despite the fact that nonrecombinant H taimen genomes were also available (submitted to GenBank on August 2, 2014; KJ711549, KJ711550). Other examples of recombinant sequences persisting in GenBank are also considered. A GenBank Entry Error Depositary is urgently needed to monitor and avoid a progressive accumulation of wrong biological information.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
| | - Pavel A Saveliev
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Francisco J Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
75
|
Dittami SM, Heesch S, Olsen JL, Collén J. Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. JOURNAL OF PHYCOLOGY 2017; 53:731-745. [PMID: 28509401 DOI: 10.1111/jpy.12547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/19/2017] [Indexed: 05/03/2023]
Abstract
Marine-freshwater and freshwater-marine transitions have been key events in the evolution of life, and most major groups of organisms have independently undergone such events at least once in their history. Here, we first compile an inventory of bidirectional freshwater and marine transitions in multicellular photosynthetic eukaryotes. While green and red algae have mastered multiple transitions in both directions, brown algae have colonized freshwater on a maximum of six known occasions, and angiosperms have made the transition to marine environments only two or three times. Next, we review the early evolutionary events leading to the colonization of current habitats. It is commonly assumed that the conquest of land proceeded in a sequence from marine to freshwater habitats. However, recent evidence suggests that early photosynthetic eukaryotes may have arisen in subaerial or freshwater environments and only later colonized marine environments as hypersaline oceans were diluted to the contemporary level. Although this hypothesis remains speculative, it is important to keep these alternative scenarios in mind when interpreting the current habitat distribution of plants and algae. Finally, we discuss the roles of structural and functional adaptations of the cell wall, reactive oxygen species scavengers, osmoregulation, and reproduction. These are central for acclimatization to freshwater or to marine environments. We observe that successful transitions appear to have occurred more frequently in morphologically simple forms and conclude that, in addition to physiological studies of euryhaline species, comparative studies of closely related species fully adapted to one or the other environment are necessary to better understand the adaptive processes.
Collapse
Affiliation(s)
- Simon M Dittami
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
| | - Svenja Heesch
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
| | - Jeanine L Olsen
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Jonas Collén
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
| |
Collapse
|
76
|
Rothman MD, Mattio L, Anderson RJ, Bolton JJ. A phylogeographic investigation of the kelp genus Laminaria (Laminariales, Phaeophyceae), with emphasis on the South Atlantic Ocean. JOURNAL OF PHYCOLOGY 2017; 53:778-789. [PMID: 28434206 DOI: 10.1111/jpy.12544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 03/06/2017] [Indexed: 06/07/2023]
Abstract
The genus Laminaria has a wide distribution range compared with other kelp genera because it is found in both the North and the South Atlantic, on both sides of the North Pacific, as well as in the Mediterranean. Hypotheses behind this biogeographical pattern have been discussed by several authors but have not yet been fully evaluated with time-calibrated phylogenies. Based on the analysis of four molecular markers (ITS2, rbcL, atp8 and trnWI), our goal was to reassess the Laminaria species diversity in South Africa, assess its relationship with the other species distributed in the South Atlantic and reconstruct the historical biogeography of the genus. Our results confirm the occurrence of a single species, L. pallida, in southern Africa, and its sister relationship with the North Atlantic L. ochroleuca. Both species belonged to a clade containing the other South Atlantic species: L. abyssalis from Brazil, and the Mediterranean L. rodriguezii. Our time-calibrated phylogenies suggest that Laminaria originated in the northern Pacific around 25 mya, followed by at least two migration events through the Bering Strait after its opening (~5.32 mya). Today, the first is represented by L. solidungula in the Arctic, while the second gave rise to the rest of the Atlantic species. The colonization of the North Atlantic was followed by a gradual colonization southward along the west coast of Europe, into the Mediterranean (~2.07 mya) and two recent, but disconnected, migrations (~1.34 and 0.87 mya) across the equator, giving rise to L. abyssalis in Brazil and L. pallida in southern Africa, respectively.
Collapse
Affiliation(s)
- Mark D Rothman
- Department of Agriculture, Forestry and Fisheries, Private bag X2, Rogge Bay, 8012, South Africa
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, Cape Town, 7701, South Africa
| | - Lydiane Mattio
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, Cape Town, 7701, South Africa
- School of Plant Biology and Oceans Institute, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Robert J Anderson
- Department of Agriculture, Forestry and Fisheries, Private bag X2, Rogge Bay, 8012, South Africa
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, Cape Town, 7701, South Africa
| | - John J Bolton
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, Cape Town, 7701, South Africa
| |
Collapse
|
77
|
LoDuca ST, Bykova N, Wu M, Xiao S, Zhao Y. Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: A tale of two floras. GEOBIOLOGY 2017; 15:588-616. [PMID: 28603844 DOI: 10.1111/gbi.12244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Non-calcified marine macroalgae ("seaweeds") play a variety of key roles in the modern Earth system, and it is likely that they were also important players in the geological past, particularly during critical transitions such as the Cambrian Explosion (CE) and the Great Ordovician Biodiversification Event (GOBE). To investigate the morphology and ecology of seaweeds spanning the time frame from the CE through the GOBE, a carefully vetted database was constructed that includes taxonomic and morphometric information for non-calcified macroalgae from 69 fossil deposits. Analysis of the database shows a pattern of seaweed history that can be explained in terms of two floras: the Cambrian Flora and the Ordovician Flora. The Cambrian Flora was dominated by rather simple morphogroups, whereas the Ordovician Flora, which replaced the Cambrian Flora in the Ordovician and extended through the Silurian, mainly comprised comparatively complex morphogroups. In addition to morphogroup representation, the two floras show marked differences in taxonomic composition, morphospace occupation, functional-form group representation, and life habit, thereby pointing to significant morphological and ecological changes for seaweeds roughly concomitant with the GOBE and the transition from the Cambrian to Paleozoic Evolutionary Faunas. Macroalgal changes of a similar nature and magnitude, however, are not evident in concert with the CE, as the Cambrian Flora consists largely of forms established during the Ediacaran. The cause of such a lag in macroalgal morphological diversification remains unclear, but an intriguing possibility is that it signals a previously unknown difference between the CE and GOBE with regard to the introduction of novel grazing pressures. The consequences of the establishment of the Ordovician Flora for shallow marine ecosystems and Earth system dynamics remain to be explored in detail but could have been multifaceted and potentially include impacts on the global carbon cycle.
Collapse
Affiliation(s)
- S T LoDuca
- Department of Geography and Geology, Eastern Michigan University, Ypsilanti, MI, USA
| | - N Bykova
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
- Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russia
| | - M Wu
- Department of Economics and Management, Guiyang University, Guiyang, Guizhou, China
| | - S Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - Y Zhao
- College of Resource and Environment Engineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
78
|
Lipinska AP, Toda NRT, Heesch S, Peters AF, Cock JM, Coelho SM. Multiple gene movements into and out of haploid sex chromosomes. Genome Biol 2017; 18:104. [PMID: 28595587 PMCID: PMC5463336 DOI: 10.1186/s13059-017-1201-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long-term evolution of sex chromosomes is a dynamic process shaped by gene gain and gene loss. Sex chromosome gene traffic has been studied in XY and ZW systems but no detailed analyses have been carried out for haploid phase UV sex chromosomes. Here, we explore sex-specific sequences of seven brown algal species to understand the dynamics of the sex-determining region (SDR) gene content across 100 million years of evolution. RESULTS A core set of sex-linked genes is conserved across all the species investigated, but we also identify modifications of both the U and the V SDRs that occurred in a lineage-specific fashion. These modifications involve gene loss, gene gain and relocation of genes from the SDR to autosomes. Evolutionary analyses suggest that the SDR genes are evolving rapidly and that this is due to relaxed purifying selection. Expression analysis indicates that genes that were acquired from the autosomes have been retained in the SDR because they confer a sex-specific role in reproduction. By examining retroposed genes in Saccharina japonica, we demonstrate that UV sex chromosomes have generated a disproportionate number of functional orphan retrogenes compared with autosomes. Movement of genes out of the UV sex chromosome could be a means to compensate for gene loss from the non-recombining region, as has been suggested for Y-derived retrogenes in XY sexual systems. CONCLUSION This study provides the first analysis of gene traffic in a haploid UV system and identifies several features of general relevance to the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Nicholas R T Toda
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Svenja Heesch
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | | | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
| |
Collapse
|
79
|
Salmeán AA, Duffieux D, Harholt J, Qin F, Michel G, Czjzek M, Willats WGT, Hervé C. Insoluble (1 → 3), (1 → 4)-β-D-glucan is a component of cell walls in brown algae (Phaeophyceae) and is masked by alginates in tissues. Sci Rep 2017; 7:2880. [PMID: 28588313 PMCID: PMC5460208 DOI: 10.1038/s41598-017-03081-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/24/2017] [Indexed: 12/13/2022] Open
Abstract
Brown algae are photosynthetic multicellular marine organisms. They belong to the phylum of Stramenopiles, which are not closely related to land plants and green algae. Brown algae share common evolutionary features with other photosynthetic and multicellular organisms, including a carbohydrate-rich cell-wall. Brown algal cell walls are composed predominantly of the polyanionic polysaccharides alginates and fucose-containing sulfated polysaccharides. These polymers are prevalent over neutral and crystalline components, which are believed to be mostly, if not exclusively, cellulose. In an attempt to better understand brown algal cell walls, we performed an extensive glycan array analysis of a wide range of brown algal species. Here we provide the first demonstration that mixed-linkage (1 → 3), (1 → 4)-β-D-glucan (MLG) is common in brown algal cell walls. Ultra-Performance Liquid Chromatography analyses indicate that MLG in brown algae solely consists of trisaccharide units of contiguous (1 → 4)-β-linked glucose residues joined by (1 → 3)-β-linkages. This regular conformation may allow long stretches of the molecule to align and to form well-structured microfibrils. At the tissue level, immunofluorescence studies indicate that MLG epitopes in brown algae are unmasked by a pre-treatment with alginate lyases to remove alginates. These findings are further discussed in terms of the origin and evolution of MLG in the Stramenopile lineage.
Collapse
Affiliation(s)
- Armando A Salmeán
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Delphine Duffieux
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| | - Jesper Harholt
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, København V, Denmark
| | - Fen Qin
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, København V, Denmark
| | - Gurvan Michel
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| | - Mirjam Czjzek
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| | - William G T Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
- William G.T. Willats, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Cécile Hervé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| |
Collapse
|
80
|
Abstract
The first animals evolved from an unknown single-celled ancestor in the Precambrian period. Recently, the identification and characterization of the genomic and cellular traits of the protists most closely related to animals have shed light on the origin of animals. Comparisons of animals with these unicellular relatives allow us to reconstruct the first evolutionary steps towards animal multicellularity. Here, we review the results of these investigations and discuss their implications for understanding the earliest stages of animal evolution, including the origin of metazoan genes and genome function.
Collapse
|
81
|
Kinoshita N, Nagasato C, Motomura T. Phototaxis and chemotaxis of brown algal swarmers. JOURNAL OF PLANT RESEARCH 2017; 130:443-453. [PMID: 28271338 DOI: 10.1007/s10265-017-0914-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/08/2017] [Indexed: 06/06/2023]
Abstract
Brown algae exhibit three patterns of sexual reproduction: isogamy, anisogamy, and oogamy. Unicellular swarmers including gametes and zoospores bear two heterogenous flagella, an anterior flagellum with mastigonemes (fine tripartite hairs) and a posterior one. In seawater, these flagellates usually receive physico-chemical signals for finding partners and good habitats. It is well known that brown algal swarmers change their swimming direction depending on blue light (phototaxis), and male gametes do so, based on the sex pheromones from female gametes (chemotaxis). In recent years, the comparative analysis of chemotaxis in isogamy, anisogamy, and oogamy has been conducted. In this paper, we focused on the phototaxis and chemotaxis of brown algal gametes comparing the current knowledge with our recent studies.
Collapse
Affiliation(s)
- Nana Kinoshita
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Hokkaido, 051-0013, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Hokkaido, 051-0013, Japan.
| |
Collapse
|
82
|
Vieira C, Camacho O, Sun Z, Fredericq S, Leliaert F, Payri C, De Clerck O. Historical biogeography of the highly diverse brown seaweed Lobophora (Dictyotales, Phaeophyceae). Mol Phylogenet Evol 2017; 110:81-92. [PMID: 28279809 DOI: 10.1016/j.ympev.2017.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/22/2017] [Accepted: 03/04/2017] [Indexed: 11/23/2022]
Abstract
The tropical to warm-temperate marine brown macroalgal genus Lobophora (Dictyotales, Phaeophyceae) recently drew attention because of its striking regional diversity. In this study we reassess Lobophora global species diversity, and species distributions, and explore how historical factors have shaped current diversity patterns. We applied a series of algorithmic species delineation techniques on a global mitochondrial cox3 dataset of 598 specimens, resulting in an estimation of 98-121 species. This diversity by far exceeds traditional diversity estimates based on morphological data. A multi-locus time-calibrated species phylogeny using a relaxed molecular clock, along with DNA-confirmed species distribution data was used to analyse ancestral area distributions, dispersal-vicariance-founder events, and temporal patterns of diversification under different biogeographical models. The origin of Lobophora was estimated in the Upper Cretaceous (-75 to -60 MY), followed by gradual diversification until present. While most speciation events were inferred within marine realms, founder events also played a non-negligible role in Lobophora diversification. The Central Indo-Pacific showed the highest species diversity as a result of higher speciation events in this region. Most Lobophora species have small ranges limited to marine realms. Lobophora probably originated in the Tethys Sea and dispersed repeatedly in the Atlantic (including the Gulf of Mexico) and Pacific Oceans. The formation of the major historical marine barriers (Terminal Tethyan event, Isthmus of Panama, Benguela upwelling) did not act as important vicariance events. Long-distance dispersal presumably represented an important mode of speciation over evolutionary time-scales. The limited geographical ranges of most Lobophora species, however, vouch for the rarity of such events.
Collapse
Affiliation(s)
- Christophe Vieira
- ENTROPIE (IRD, UR, CNRS), LabEx-CORAIL, Institut de Recherche pour le Développement, B.P. A5, 98848 Nouméa Cedex, Nouvelle-Calédonie, France; Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Gent B-9000, Belgium; Sorbonne Universités, UPMC Univ Paris 06, IFD, Paris F75252, France.
| | - Olga Camacho
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504-3602, USA
| | - Zhongmin Sun
- Institute of Oceanology, Chinese Academy of Sciences, Department of Marine Organism Taxonomy and Phylogeny, China
| | - Suzanne Fredericq
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504-3602, USA
| | - Frederik Leliaert
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Gent B-9000, Belgium; Botanic Garden Meise, 1860 Meise, Belgium
| | - Claude Payri
- ENTROPIE (IRD, UR, CNRS), LabEx-CORAIL, Institut de Recherche pour le Développement, B.P. A5, 98848 Nouméa Cedex, Nouvelle-Calédonie, France
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Gent B-9000, Belgium
| |
Collapse
|
83
|
Terauchi M, Yamagishi T, Hanyuda T, Kawai H. Genome-wide computational analysis of the secretome of brown algae (Phaeophyceae). Mar Genomics 2017; 32:49-59. [PMID: 28063828 DOI: 10.1016/j.margen.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/06/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022]
Abstract
Brown algae have evolved complex multicellularity in the heterokont lineage. They are phylogenetically distant to land plants, fungi and animals. Especially, the members of Laminariales (so-called kelps) have developed highly differentiated tissues. Extracellular matrix (ECM) plays pivotal roles in a number of essential processes in multicellular organisms, such as cell adhesion, cell and tissue differentiations, cell-to-cell communication, and responses to environmental stimuli. In these processes, a set of extracellular secreted proteins called the secretome operates remodeling of the physicochemical nature of ECM and signal transduction by interacting with cell surface proteins and signaling molecules. Characterization of the secretome is a critical step to clarify the contributions of ECM to the multicellularity of brown algae. However, the identity of the brown algal secretome has been poorly understood. In order to reveal the repertory of the brown algal secretome and its involvement in the evolution of Laminariales, we conducted a genome-wide analysis of the brown algal secretome utilizing the published complete genome data of Ectocarpus siliculosus and Saccharina japonica as well as newly obtained RNA-seq data of seven laminarialean species (Agarum clathratum, Alaria crassifolia, Aureophycus aleuticus, Costaria costata, Pseudochorda nagaii, Saccharina angustata and Undaria pinnatifida) largely covering the laminarialean families. We established the in silico pipeline to systematically and accurately detect the secretome by combining multiple prediction algorithms for the N-terminal signal peptide and transmembrane domain within the protein sequence. From 16,189 proteins of E. siliculosus and 18,733 proteins of S. japonica, 552 and 964 proteins respectively were predicted to be classified as the secretome. Conserved domain analysis showed that the domain repertory were very similar to each other, and that of the brown algal secretome was partially common with that of the secretome of other multicellular organisms (land plants, fungi and animals). In the laminarialean species, it was estimated that the gene abundance and the domain architecture of putative ECM remodeling-related proteins were altered compared with those of E. siliculosus, and that the alteration started from the basal group of Laminariales. These results suggested that brown algae have developed their own secretome, and its functions became more elaborated in the more derived members in Laminariales.
Collapse
Affiliation(s)
- Makoto Terauchi
- Organization for Advanced and Integrated Research, Kobe University, Kobe 657-8501, Japan.
| | | | - Takeaki Hanyuda
- Research Center for Inland Seas, Kobe University, Kobe 657-8501, Japan
| | - Hiroshi Kawai
- Research Center for Inland Seas, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
84
|
Cormier A, Avia K, Sterck L, Derrien T, Wucher V, Andres G, Monsoor M, Godfroy O, Lipinska A, Perrineau MM, Van De Peer Y, Hitte C, Corre E, Coelho SM, Cock JM. Re-annotation, improved large-scale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga Ectocarpus. THE NEW PHYTOLOGIST 2017; 214:219-232. [PMID: 27870061 DOI: 10.1111/nph.14321] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/08/2016] [Indexed: 05/28/2023]
Abstract
The genome of the filamentous brown alga Ectocarpus was the first to be completely sequenced from within the brown algal group and has served as a key reference genome both for this lineage and for the stramenopiles. We present a complete structural and functional reannotation of the Ectocarpus genome. The large-scale assembly of the Ectocarpus genome was significantly improved and genome-wide gene re-annotation using extensive RNA-seq data improved the structure of 11 108 existing protein-coding genes and added 2030 new loci. A genome-wide analysis of splicing isoforms identified an average of 1.6 transcripts per locus. A large number of previously undescribed noncoding genes were identified and annotated, including 717 loci that produce long noncoding RNAs. Conservation of lncRNAs between Ectocarpus and another brown alga, the kelp Saccharina japonica, suggests that at least a proportion of these loci serve a function. Finally, a large collection of single nucleotide polymorphism-based markers was developed for genetic analyses. These resources are available through an updated and improved genome database. This study significantly improves the utility of the Ectocarpus genome as a high-quality reference for the study of many important aspects of brown algal biology and as a reference for genomic analyses across the stramenopiles.
Collapse
Affiliation(s)
- Alexandre Cormier
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Komlan Avia
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Lieven Sterck
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9000, Ghent, Belgium
- Bioinformatics Institute Ghent, Technologiepark 927, 9052, Ghent, Belgium
| | | | | | - Gwendoline Andres
- Abims Platform, CNRS-UPMC, FR2424, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | - Misharl Monsoor
- Abims Platform, CNRS-UPMC, FR2424, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | - Olivier Godfroy
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Agnieszka Lipinska
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Marie-Mathilde Perrineau
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Yves Van De Peer
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9000, Ghent, Belgium
- Bioinformatics Institute Ghent, Technologiepark 927, 9052, Ghent, Belgium
- Department of Genetics, Genomics Research Institute, University of Pretoria, 0028, Pretoria, South Africa
| | | | - Erwan Corre
- Abims Platform, CNRS-UPMC, FR2424, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | - Susana M Coelho
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - J Mark Cock
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| |
Collapse
|
85
|
Cock JM, Liu F, Duan D, Bourdareau S, Lipinska AP, Coelho SM, Tarver JE. Rapid Evolution of microRNA Loci in the Brown Algae. Genome Biol Evol 2017; 9:740-749. [PMID: 28338896 PMCID: PMC5381526 DOI: 10.1093/gbe/evx038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Stringent searches for microRNAs (miRNAs) have so far only identified these molecules in animals, land plants, chlorophyte green algae, slime molds and brown algae. The identification of miRNAs in brown algae was based on the analysis of a single species, the filamentous brown alga Ectocarpus sp. Here, we have used deep sequencing of small RNAs and a recently published genome sequence to identify miRNAs in a second brown alga, the kelp Saccharina japonica. S. japonica possesses a large number of miRNAs (117) and these miRNAs are highly diverse, falling into 98 different families. Surprisingly, none of the S. japonica miRNAs share significant sequence similarity with the Ectocarpus sp. miRNAs. However, the miRNA repertoires of the two species share a number of structural and genomic features indicating that they were generated by similar evolutionary processes and therefore probably evolved within the context of a common, ancestral miRNA system. This lack of sequence similarity suggests that miRNAs evolve rapidly in the brown algae (the two species are separated by ∼95 Myr of evolution). The sets of predicted targets of miRNAs in the two species were also very different suggesting that the divergence of the miRNAs may have had significant consequences for miRNA function.
Collapse
Affiliation(s)
- J. Mark Cock
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Fuli Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Delin Duan
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Lab for Marine Biology and Biotechnology, Qingdao, China
| | - Simon Bourdareau
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Agnieszka P. Lipinska
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Susana M. Coelho
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - James E. Tarver
- School of Earth Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
86
|
Macaisne N, Liu F, Scornet D, Peters AF, Lipinska A, Perrineau MM, Henry A, Strittmatter M, Coelho SM, Cock JM. The Ectocarpus IMMEDIATE UPRIGHT gene encodes a member of a novel family of cysteine-rich proteins with an unusual distribution across the eukaryotes. Development 2017; 144:409-418. [PMID: 28049657 DOI: 10.1242/dev.141523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/12/2016] [Indexed: 01/09/2023]
Abstract
The sporophyte generation of the brown alga Ectocarpus sp. exhibits an unusual pattern of development compared with the majority of brown algae. The first cell division is symmetrical and the apical-basal axis is established late in development. In the immediate upright (imm) mutant, the initial cell undergoes an asymmetric division to immediately establish the apical-basal axis. We provide evidence which suggests that this phenotype corresponds to the ancestral state of the sporophyte. The IMM gene encodes a protein of unknown function that contains a repeated motif also found in the EsV-1-7 gene of the Ectocarpus virus EsV-1. Brown algae possess large families of EsV-1-7 domain genes but these genes are rare in other stramenopiles, suggesting that the expansion of this family might have been linked with the emergence of multicellular complexity. EsV-1-7 domain genes have a patchy distribution across eukaryotic supergroups and occur in several viral genomes, suggesting possible horizontal transfer during eukaryote evolution.
Collapse
Affiliation(s)
- Nicolas Macaisne
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - Fuli Liu
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - Delphine Scornet
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | | | - Agnieszka Lipinska
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - Marie-Mathilde Perrineau
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - Antoine Henry
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - Martina Strittmatter
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - Susana M Coelho
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - J Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| |
Collapse
|
87
|
Weber XA, Edgar GJ, Banks SC, Waters JM, Fraser CI. A morphological and phylogenetic investigation into divergence among sympatric Australian southern bull kelps (Durvillaea potatorum and D. amatheiae sp. nov.). Mol Phylogenet Evol 2017; 107:630-643. [PMID: 28017856 DOI: 10.1016/j.ympev.2016.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 12/11/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022]
Abstract
Genetic analyses can reveal a wealth of hitherto undiscovered cryptic biodiversity. For co-occurring and morphologically similar species, the combination of molecular, ecological and morphological analyses provides an excellent opportunity for understanding some of the processes that can lead to divergence and speciation. The Australian endemic brown macroalga Durvillaea potatorum (Phaeophyceae) was examined with a combination of genetic and morphological approaches to confirm the presence of two separate species and to infer the processes that led to their divergence. A total of 331 individuals from 11 sites around coastal Tasmania were collected and measured in situ for a range of morphological and ecological characteristics. Tissue samples were also collected for each individual to allow genetic analyses using mitochondrial (COI) and nuclear (28S) markers. Genetic analyses confirmed the presence of two deeply divergent clades. The significant morphological differentiation, despite high levels of intra-lineage variability, further supported their recognition as distinct species. We describe a new species, D. amatheiae sp. nov., which is characterised by a narrower and proportionately shorter stipe, shorter total length, and higher number of stipitate lateral blades and branches than D. potatorum (sensu stricto). The occurrence of both species in sympatry along Tasmania's eastern and western coasts, as well as their contrasting patterns of haplotype diversity, supports a hypothesis of geographical isolation, allopatric speciation and subsequent secondary contact in response to sea level and ocean current change throughout the Pleistocene glaciation cycles. This research contributes to resolving the phylogenetic relationships, taxonomy and evolution of the ecologically keystone kelp genus Durvillaea.
Collapse
Affiliation(s)
- Xénia A Weber
- Fenner School of Environment and Society, Australian National University, Building 141, Linnaeus Way, Acton ACT 2601, Australia.
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, GPO Box 252-49, Hobart, Tasmania 7001, Australia
| | - Sam C Banks
- Fenner School of Environment and Society, Australian National University, Building 141, Linnaeus Way, Acton ACT 2601, Australia
| | - Jonathan M Waters
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| | - Ceridwen I Fraser
- Fenner School of Environment and Society, Australian National University, Building 141, Linnaeus Way, Acton ACT 2601, Australia
| |
Collapse
|
88
|
Neiva J, Serrão EA, Anderson L, Raimondi PT, Martins N, Gouveia L, Paulino C, Coelho NC, Miller KA, Reed DC, Ladah LB, Pearson GA. Cryptic diversity, geographical endemism and allopolyploidy in NE Pacific seaweeds. BMC Evol Biol 2017; 17:30. [PMID: 28114901 PMCID: PMC5260064 DOI: 10.1186/s12862-017-0878-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/10/2017] [Indexed: 11/10/2022] Open
Abstract
Background Molecular markers are revealing a much more diverse and evolutionarily complex picture of marine biodiversity than previously anticipated. Cryptic and/or endemic marine species are continually being found throughout the world oceans, predominantly in inconspicuous tropical groups but also in larger, canopy-forming taxa from well studied temperate regions. Interspecific hybridization has also been found to be prevalent in many marine groups, for instance within dense congeneric assemblages, with introgressive gene-flow being the most common outcome. Here, using a congeneric phylogeographic approach, we investigated two monotypic and geographically complementary sister genera of north-east Pacific intertidal seaweeds (Hesperophycus and Pelvetiopsis), for which preliminary molecular tests revealed unexpected conflicts consistent with unrecognized cryptic diversity and hybridization. Results The three recovered mtDNA clades did not match a priori species delimitations. H. californicus was congruent, whereas widespread P. limitata encompassed two additional narrow-endemic species from California - P. arborescens (here genetically confirmed) and P. hybrida sp. nov. The congruence between the genotypic clusters and the mtDNA clades was absolute. Fixed heterozygosity was apparent in a high proportion of loci in P. limitata and P. hybrida, with genetic analyses showing that the latter was composed of both H. californicus and P. arborescens genomes. All four inferred species could be distinguished based on their general morphology. Conclusions This study confirmed additional diversity and reticulation within NE Pacific Hesperophycus/Pelvetiopsis, including the validity of the much endangered, modern climatic relict P. arborescens, and the identification of a new, stable allopolyploid species (P. hybrida) with clearly discernable ancestry (♀ H. californicus x ♂ P. arborescens), morphology, and geographical distribution. Allopolyploid speciation is otherwise completely unknown in brown seaweeds, and its unique occurrence within this genus (P. limitata possibly representing a second example) remains enigmatic. The taxonomic separation of Hesperophycus and Pelvetiopsis is not supported and the genera should be synonymized; we retain only the latter. The transitional coastline between Point Conception and Monterey Bay represented a diversity hotspot for the genus and the likely sites of extraordinary evolutionary events of allopolyploid speciation at sympatric range contact zones. This study pinpoints how much diversity (and evolutionary processes) potentially remains undiscovered even on a conspicuous seaweed genus from the well-studied Californian intertidal shores let alone in other, less studied marine groups and regions/depths. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0878-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- João Neiva
- CCMAR- Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, 8005-139, Faro, Portugal.
| | - Ester A Serrão
- CCMAR- Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, 8005-139, Faro, Portugal
| | - Laura Anderson
- Long Marine Laboratory, University of California, Santa Cruz, USA
| | - Peter T Raimondi
- Long Marine Laboratory, University of California, Santa Cruz, USA
| | - Neusa Martins
- CCMAR- Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, 8005-139, Faro, Portugal
| | - Licínia Gouveia
- CCMAR- Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, 8005-139, Faro, Portugal
| | - Cristina Paulino
- CCMAR- Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, 8005-139, Faro, Portugal
| | - Nelson C Coelho
- CCMAR- Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, 8005-139, Faro, Portugal
| | | | - Daniel C Reed
- Marine Science Institute, University of California, Santa Barbara, USA
| | - Lydia B Ladah
- CICESE - Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mexico
| | - Gareth A Pearson
- CCMAR- Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
89
|
Kinoshita N, Nagasato C, Motomura T. Chemotactic movement in sperm of the oogamous brown algae, Saccharina japonica and Fucus distichus. PROTOPLASMA 2017; 254:547-555. [PMID: 27108001 DOI: 10.1007/s00709-016-0974-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
In oogamous species of brown algae such as Saccharina japonica and Fucus distichus, the sperm possess an unusual long posterior flagellum, which oscillates actively and produces a propulsive force during swimming. In this study, we quantitatively analyzed the effect of chemotactic responses on sperm swimming and flagellar waveforms by high-speed video recordings. We found that the thigmotactic response to the chemo-attractant was not enhanced during chemotactic swimming and that the swimming velocity of sperm did not decrease. As concentration of the chemo-attractant decreased, the sperm performed drastic U-turn movements, which was caused by a rapid and large bend of the posterior flagellum. Unilateral bending of the posterior flagellum when sensing a decrease in the concentration of the chemo-attractant may be a common response in male gametes during fertilization of brown algae both oogamous and isogamous species.
Collapse
Affiliation(s)
- Nana Kinoshita
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Hokkaido, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Hokkaido, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Hokkaido, Japan.
| |
Collapse
|
90
|
Lee J, Cho CH, Park SI, Choi JW, Song HS, West JA, Bhattacharya D, Yoon HS. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC Biol 2016; 14:75. [PMID: 27589960 PMCID: PMC5010701 DOI: 10.1186/s12915-016-0299-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background The red algae (Rhodophyta) diverged from the green algae and plants (Viridiplantae) over one billion years ago within the kingdom Archaeplastida. These photosynthetic lineages provide an ideal model to study plastid genome reduction in deep time. To this end, we assembled a large dataset of the plastid genomes that were available, including 48 from the red algae (17 complete and three partial genomes produced for this analysis) to elucidate the evolutionary history of these organelles. Results We found extreme conservation of plastid genome architecture in the major lineages of the multicellular Florideophyceae red algae. Only three minor structural types were detected in this group, which are explained by recombination events of the duplicated rDNA operons. A similar high level of structural conservation (although with different gene content) was found in seed plants. Three major plastid genome architectures were identified in representatives of 46 orders of angiosperms and three orders of gymnosperms. Conclusions Our results provide a comprehensive account of plastid gene loss and rearrangement events involving genome architecture within Archaeplastida and lead to one over-arching conclusion: from an ancestral pool of highly rearranged plastid genomes in red and green algae, the aquatic (Florideophyceae) and terrestrial (seed plants) multicellular lineages display high conservation in plastid genome architecture. This phenomenon correlates with, and could be explained by, the independent and widely divergent (separated by >400 million years) origins of complex sexual cycles and reproductive structures that led to the rapid diversification of these lineages. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0299-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Won Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Suk Song
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - John A West
- School of Biosciences 2, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
91
|
Kawai H, Hanyuda T, Bolton J, Anderson R. Molecular phylogeny of Zeacarpa (Ralfsiales, Phaeophyceae) proposing a new family Zeacarpaceae and its transfer to Nemodermatales. JOURNAL OF PHYCOLOGY 2016; 52:682-6. [PMID: 27038002 DOI: 10.1111/jpy.12419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Zeacarpa leiomorpha is a crustose brown alga endemic to South Africa. The species has been tentatively placed in Ralfsiaceae, but its ordinal assignment has been uncertain. The molecular phylogeny of brown algae based on concatenated DNA sequences of seven chloroplast and mitochondrial gene sequences (atpB, psaA, psaB, psbA, psbC, rbcL, and cox1) of taxa covering most of the orders revealed the most related phylogenetic relationship of Z. leiomorpha to Nemoderma tingitanum (Nemodermatales) rather than Ralfsiaceae (Ralfsiales). Morphologically, Zeacarpa and Nemoderma share crustose thallus structure and multiple discoidal chloroplasts without pyrenoids in each cell, however, the formation of lateral unilocular zoidangia in tufts in loose upright filaments in Zeacarpa is distinctive in brown algae. Considering the relatively distant genetic divergence between the two taxa, comparable to that among families or orders in representative brown algae, in addition to the above-mentioned unique morphological features, we propose the classification of Zeacarpa in a new family Zeacarpaceae in the order Nemodermatales.
Collapse
Affiliation(s)
- Hiroshi Kawai
- Kobe University Research Center for Inland Seas, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Takeaki Hanyuda
- Kobe University Research Center for Inland Seas, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - John Bolton
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Robert Anderson
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
- Department of Agriculture, Forestry and Fisheries, Private Bag X2, Roggebaai, 8012, South Africa
| |
Collapse
|
92
|
Yang JH, Graf L, Cho CH, Jeon BH, Kim JH, Yoon HS. Complete plastid genome of an ecologically important brown alga Sargassum thunbergii (Fucales, Phaeophyceae). Mar Genomics 2016; 28:17-20. [PMID: 27012360 DOI: 10.1016/j.margen.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 11/30/2022]
Abstract
The brown algal species Sargassum thunbergii (Fucales, Phaeophyceae) is widely distributed in coastal area of East Asia. This alga is ecologically and economically important seaweeds; however, no genome data was reported thus far. To get a better understanding of organellar genome of S. thunbergii, we sequenced and annotated its complete plastid genome. The circular plastid genome is 124,592bp in size with 30.4% GC content, which is composed of a large single-copy (LSC) region of 73,668bp, a small single-copy (SSC) region of 40,032bp, and two inverted repeat (IR) of 5446bp each. The plastid genome of S. thunbergii includes 139 protein-coding genes, six ribosomal RNA (rRNA) operons, 28 transfer RNA (tRNA) sequences, and one intron (214bp) in tRNA-Leu (trnL) gene. Five overlapping genes were identified in the compact plastid genome. Base on the comparison with previously published five brown algae plastid genomes, we found that the gene content and gene order of S. thunbergii are identical to that of other Fucales species Fucus vesiculosus.
Collapse
Affiliation(s)
- Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Byung Hee Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeong Ha Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
93
|
Küpper FC, Peters AF, Shewring DM, Sayer MDJ, Mystikou A, Brown H, Azzopardi E, Dargent O, Strittmatter M, Brennan D, Asensi AO, van West P, Wilce RT. Arctic marine phytobenthos of northern Baffin Island. JOURNAL OF PHYCOLOGY 2016; 52:532-49. [PMID: 27037790 PMCID: PMC5113804 DOI: 10.1111/jpy.12417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/19/2016] [Indexed: 05/22/2023]
Abstract
Global climate change is expected to alter the polar bioregions faster than any other marine environment. This study assesses the biodiversity of seaweeds and associated eukaryotic pathogens of an established study site in northern Baffin Island (72° N), providing a baseline inventory for future work assessing impacts of the currently ongoing changes in the Arctic marine environment. A total of 33 Phaeophyceae, 24 Rhodophyceae, 2 Chlorophyceae, 12 Ulvophyceae, 1 Trebouxiophyceae, and 1 Dinophyceae are reported, based on collections of an expedition to the area in 2009, complemented by unpublished records of Robert T. Wilce and the first-ever photographic documentation of the phytobenthos of the American Arctic. Molecular barcoding of isolates raised from incubated substratum samples revealed the presence of 20 species of brown seaweeds, including gametophytes of kelp and of a previously unsequenced Desmarestia closely related to D. viridis, two species of Pylaiella, the kelp endophyte Laminariocolax aecidioides and 11 previously unsequenced species of the Ectocarpales, highlighting the necessity to include molecular techniques for fully unraveling cryptic algal diversity. This study also includes the first records of Eurychasma dicksonii, a eukaryotic pathogen affecting seaweeds, from the American Arctic. Overall, this study provides both the most accurate inventory of seaweed diversity of the northern Baffin Island region to date and can be used as an important basis to understand diversity changes with climate change.
Collapse
Affiliation(s)
- Frithjof C Küpper
- Scottish Association for Marine Science, Dunbeg, Oban, Argyll, PA37 1QA, UK
- Oceanlab, University of Aberdeen, Main Street, Newburgh, AB41 6AA, UK
| | - Akira F Peters
- BEZHIN ROSKO, 40 rue des pêcheurs, 29250, Santec, France
| | - Dawn M Shewring
- Oceanlab, University of Aberdeen, Main Street, Newburgh, AB41 6AA, UK
| | - Martin D J Sayer
- UK National Facility for Scientific Diving, Scottish Association for Marine Science, Dunbeg, Oban, Argyll, PA37 1QA, UK
| | | | - Hugh Brown
- UK National Facility for Scientific Diving, Scottish Association for Marine Science, Dunbeg, Oban, Argyll, PA37 1QA, UK
| | - Elaine Azzopardi
- UK National Facility for Scientific Diving, Scottish Association for Marine Science, Dunbeg, Oban, Argyll, PA37 1QA, UK
| | - Olivier Dargent
- Centre International de Valbonne, 190 rue Frédéric Mistral, 06560, Valbonne, France
| | | | - Debra Brennan
- Scottish Association for Marine Science, Dunbeg, Oban, Argyll, PA37 1QA, UK
| | | | - Pieter van West
- Institute of Medical Sciences, College of Life Sciences and Medicine, Aberdeen Oomycete Laboratory, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Robert T Wilce
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
94
|
Stepien CC, Pfister CA, Wootton JT. Functional Traits for Carbon Access in Macrophytes. PLoS One 2016; 11:e0159062. [PMID: 27415005 PMCID: PMC4944969 DOI: 10.1371/journal.pone.0159062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/27/2016] [Indexed: 12/02/2022] Open
Abstract
Understanding functional trait distributions among organisms can inform impacts on and responses to environmental change. In marine systems, only 1% of dissolved inorganic carbon in seawater exists as CO2. Thus the majority of marine macrophytes not only passively access CO2 for photosynthesis, but also actively transport CO2 and the more common bicarbonate (HCO3-, 92% of seawater dissolved inorganic carbon) into their cells. Because species with these carbon concentrating mechanisms (CCMs) are non-randomly distributed in ecosystems, we ask whether there is a phylogenetic pattern to the distribution of CCMs among algal species. To determine macrophyte traits that influence carbon uptake, we assessed 40 common macrophyte species from the rocky intertidal community of the Northeast Pacific Ocean to a) query whether macrophytes have a CCM and b) determine the evolutionary history of CCMs, using ancestral state reconstructions and stochastic character mapping based on previously published data. Thirty-two species not only depleted CO2, but also concentrated and depleted HCO3-, indicative of a CCM. While analysis of CCMs as a continuous trait in 30 families within Phylum Rhodophyta showed a significant phylogenetic signal under a Brownian motion model, analysis of CCMs as a discrete trait (presence or absence) indicated that red algal families are more divergent than expected in their CCM presence or absence; CCMs are a labile trait within the Rhodophyta. In contrast, CCMs were present in each of 18 Ochrophyta families surveyed, indicating that CCMs are highly conserved in the brown algae. The trait of CCM presence or absence was largely conserved within Families. Fifteen of 23 species tested also changed the seawater buffering capacity, or Total Alkalinity (TA), shifting DIC composition towards increasing concentrations of HCO3- and CO2 for photosynthesis. Manipulating the external TA of the local environment may influence carbon availability in boundary layers and areas of low water mixing, offering an additional mechanism to increase CO2 availability.
Collapse
Affiliation(s)
- Courtney C. Stepien
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, United States of America
| | - Catherine A. Pfister
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States of America
| | - J. Timothy Wootton
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
95
|
Mignerot L, Coelho SM. The origin and evolution of the sexes: Novel insights from a distant eukaryotic linage. C R Biol 2016; 339:252-7. [PMID: 27236828 DOI: 10.1016/j.crvi.2016.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Sexual reproduction is an extraordinarily widespread phenomenon that assures the production of new genetic combinations in nearly all eukaryotic lineages. Although the core features of sexual reproduction (meiosis and syngamy) are highly conserved, the control mechanisms that determine whether an individual is male or female are remarkably labile across eukaryotes. In genetically controlled sexual systems, gender is determined by sex chromosomes, which have emerged independently and repeatedly during evolution. Sex chromosomes have been studied in only a handful of classical model organism, and empirical knowledge on the origin and evolution of the sexes is still surprisingly incomplete. With the advent of new generation sequencing, the taxonomic breadth of model systems has been rapidly expanding, bringing new ideas and fresh views on this fundamental aspect of biology. This mini-review provides a quick state of the art of how the remarkable richness of the sexual characteristics of the brown algae is helping to increase our knowledge about the evolution of sex determination.
Collapse
Affiliation(s)
- Laure Mignerot
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Sorbonne Universités, UPMC (Université Paris-6, station biologique de Roscoff, place George-Teissier, CS 90074, 29688 Roscoff cedex, France
| | - Susana M Coelho
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Sorbonne Universités, UPMC (Université Paris-6, station biologique de Roscoff, place George-Teissier, CS 90074, 29688 Roscoff cedex, France.
| |
Collapse
|
96
|
Vermeij GJ. Gigantism and Its Implications for the History of Life. PLoS One 2016; 11:e0146092. [PMID: 26771527 PMCID: PMC4714876 DOI: 10.1371/journal.pone.0146092] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022] Open
Abstract
Gigantism-very large body size-is an ecologically important trait associated with competitive superiority. Although it has been studied in particular cases, the general conditions for the evolution and maintenance of gigantism remain obscure. I compiled sizes and dates for the largest species in 3 terrestrial and 7 marine trophic and habitat categories of animals from throughout the Phanerozoic. The largest species (global giants) in all categories are of post-Paleozoic age. Gigantism at this level appeared tens to hundreds of millions of years after mass extinctions and long after the origins of clades in which it evolved. Marine gigantism correlates with high planktic or seafloor productivity, but on land the correspondence between productivity and gigantism is weak at best. All global giants are aerobically active animals, not gentle giants with low metabolic demands. Oxygen concentration in the atmosphere correlates with gigantism in the Paleozoic but not thereafter, likely because of the elaboration of efficient gas-exchange systems in clades containing giants. Although temperature and habitat size are important in the evolution of very large size in some cases, the most important (and rare) enabling circumstance is a highly developed ecological infrastructure in which essential resources are abundant and effectively recycled and reused, permitting activity levels to increase and setting the stage for gigantic animals to evolve. Gigantism as a hallmark of competitive superiority appears to have lost its luster on land after the Mesozoic in favor of alternative means of achieving dominance, especially including social organization and coordinated food-gathering.
Collapse
Affiliation(s)
- Geerat J. Vermeij
- Department of Earth and Planetary Sciences, University of California, One Shields Avenue, Davis, California, 95616, United States of America
| |
Collapse
|
97
|
Zhang J, Yao JT, Sun ZM, Fu G, Galanin DA, Nagasato C, Motomura T, Hu ZM, Duan DL. Phylogeographic data revealed shallow genetic structure in the kelp Saccharina japonica (Laminariales, Phaeophyta). BMC Evol Biol 2015; 15:237. [PMID: 26525408 PMCID: PMC4630829 DOI: 10.1186/s12862-015-0517-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/21/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Population structure and genetic diversity of marine organisms in the Northwestern Pacific Ocean exhibited complex patterns. Saccharina japonica is a commercially and ecologically important kelp species widely distributed along the coast of Japan Sea. However, it is still poorly known about population genetics and phylogeographic patterns of wild S. japonica populations on a large geographic scale, which is an important contribution to breeding and conservation of this marine crop. RESULTS We collected 612 mitochondrial COI and trnW-trnL sequences. Diversity indices suggested that S. japonica populations along the coast of Hokkaido exhibited the highest genetic diversity. Bayesian Analysis of Population Structure (BAPS) revealed four clusters in the kelp species (cluster 1: Hokkaido and South Korea; cluster 2: northwestern Hokkaido; cluster 3: Far Eastern Russia; cluster 4: China). The network inferred from concatenated data exhibited two shallow genealogies corresponding to two BAPS groups (cluster 2 and cluster 3). We did not detect gene flow between the two shallow genealogies, but populations within genealogy have asymmetric gene exchange. Bayesian skyline plots and neutrality tests suggested that S. japonica experienced postglacial expansion around 10.45 ka. CONCLUSIONS The coast of Hokkaido might be the origin and diversification center of S. japonica. Gene exchange among S. japonica populations could be caused by anthropogenic interference and oceanographic regimes. Postglacial expansions and gene exchange apparently led to more shared haplotypes and less differentiation that in turn led to the present shallow phylogeographical patterns in S. japonica.
Collapse
Affiliation(s)
- Jie Zhang
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Ting Yao
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Zhong-Min Sun
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Gang Fu
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Hokkaido, Japan.
| | - Dmitry A Galanin
- Sakhalin Scientific Research Institute of Fisheries and Oceanology, Yuzhno-Sakhalinsk, 693023, Russia.
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Hokkaido, Japan.
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Hokkaido, Japan.
| | - Zi-Min Hu
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - De-Lin Duan
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
98
|
Luthringer R, Lipinska AP, Roze D, Cormier A, Macaisne N, Peters AF, Cock JM, Coelho SM. The Pseudoautosomal Regions of the U/V Sex Chromosomes of the Brown Alga Ectocarpus Exhibit Unusual Features. Mol Biol Evol 2015; 32:2973-85. [PMID: 26248564 PMCID: PMC4610043 DOI: 10.1093/molbev/msv173] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The recombining regions of sex chromosomes (pseudoautosomal regions, PARs) are predicted to exhibit unusual features due to their being genetically linked to the nonrecombining, sex-determining region. This phenomenon is expected to occur in both diploid (XY, ZW) and haploid (UV) sexual systems, with slightly different consequences for UV sexual systems because of the absence of masking during the haploid phase (when sex is expressed) and because there is no homozygous sex in these systems. Despite a considerable amount of theoretical work on PAR genetics and evolution, these genomic regions have remained poorly characterized empirically. We show here that although the PARs of the U/V sex chromosomes of the brown alga Ectocarpus recombine at a similar rate to autosomal regions of the genome, they exhibit many genomic features typical of nonrecombining regions. The PARs were enriched in clusters of genes that are preferentially, and often exclusively, expressed during the sporophyte generation of the life cycle, and many of these genes appear to have evolved since the Ectocarpales diverged from other brown algal lineages. A modeling-based approach was used to investigate possible evolutionary mechanisms underlying this enrichment in sporophyte-biased genes. Our results are consistent with the evolution of the PAR in haploid systems being influenced by differential selection pressures in males and females acting on alleles that are advantageous during the sporophyte generation of the life cycle.
Collapse
Affiliation(s)
- Rémy Luthringer
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Denis Roze
- UMI 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France
| | - Alexandre Cormier
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Nicolas Macaisne
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | | | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
99
|
Lipinska AP, Ahmed S, Peters AF, Faugeron S, Cock JM, Coelho SM. Development of PCR-Based Markers to Determine the Sex of Kelps. PLoS One 2015; 10:e0140535. [PMID: 26496392 PMCID: PMC4619726 DOI: 10.1371/journal.pone.0140535] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
Sex discriminating genetic markers are commonly used to facilitate breeding programs in economically and ecologically important animal and plant species. However, despite their considerable economic and ecological value, the development of sex markers for kelp species has been very limited. In this study, we used the recently described sequence of the sex determining region (SDR) of the brown algal model Ectocarpus to develop novel DNA-based sex-markers for three commercially relevant kelps: Laminaria digitata, Undaria pinnatifida and Macrocystis pyrifera. Markers were designed within nine protein coding genes of Ectocarpus male and female (U/V) sex chromosomes and tested on gametophytes of the three kelp species. Seven primer pairs corresponding to three loci in the Ectocarpus SDR amplified sex-specific bands in the three kelp species, yielding at least one male and one female marker for each species. Our work has generated the first male sex-specific markers for L. digitata and U. pinnatifida, as well as the first sex markers developed for the genus Macrocystis. The markers and methodology presented here will not only facilitate seaweed breeding programs but also represent useful tools for population and demography studies and provide a means to investigate the evolution of sex determination across this largely understudied eukaryotic group.
Collapse
Affiliation(s)
- Agnieszka P. Lipinska
- Sorbonne Université, UPMC Univ Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Sophia Ahmed
- Sorbonne Université, UPMC Univ Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | | | - Sylvain Faugeron
- Sorbonne Universités, UPMC University Paris 06, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- CNRS, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- Centro de Conservación Marina and CeBiB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J. Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M. Coelho
- Sorbonne Université, UPMC Univ Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| |
Collapse
|
100
|
Drobnitch ST, Jensen KH, Prentice P, Pittermann J. Convergent evolution of vascular optimization in kelp (Laminariales). Proc Biol Sci 2015; 282:20151667. [PMID: 26423844 PMCID: PMC4614777 DOI: 10.1098/rspb.2015.1667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/02/2015] [Indexed: 11/12/2022] Open
Abstract
Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric scaling suggests that these phyla have each evolved an 'optimal' transport strategy that has been overwhelmingly adopted by extant species. To truly evaluate the dominance and universality of vascular optimization, however, it is critical to examine other, lesser-known, vascularized phyla. The brown algae (Phaeophyceae) are one such group--as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong scaling relationships between all tested vascular parameters and agrees with our model; other species within the Laminariales display weak or inconsistent vascular allometries. The lack of universal scaling in the kelps and the presence of optimized transport anatomy in M. pyrifera raises important questions about the evolution of optimization and the possible competitive advantage conferred by optimized vascular systems to multicellular phyla.
Collapse
Affiliation(s)
- Sarah Tepler Drobnitch
- Department of Ecology and Evolutionary Biology, University of California, 1156 High Street, Santa Cruz, CA 95040, USA
| | - Kaare H Jensen
- Department of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Paige Prentice
- Department of Ecology and Evolutionary Biology, University of California, 1156 High Street, Santa Cruz, CA 95040, USA
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, 1156 High Street, Santa Cruz, CA 95040, USA
| |
Collapse
|