51
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
52
|
Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo. Nat Commun 2021; 12:6267. [PMID: 34725353 PMCID: PMC8560862 DOI: 10.1038/s41467-021-26518-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 10/06/2021] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are important delivery platforms for therapeutic genome editing but are severely constrained by cargo limits. Simultaneous delivery of multiple vectors can limit dose and efficacy and increase safety risks. Here, we describe single-vector, ~4.8-kb AAV platforms that express Nme2Cas9 and either two sgRNAs for segmental deletions, or a single sgRNA with a homology-directed repair (HDR) template. We also use anti-CRISPR proteins to enable production of vectors that self-inactivate via Nme2Cas9 cleavage. We further introduce a nanopore-based sequencing platform that is designed to profile rAAV genomes and serves as a quality control measure for vector homogeneity. We demonstrate that these platforms can effectively treat two disease models [type I hereditary tyrosinemia (HT-I) and mucopolysaccharidosis type I (MPS-I)] in mice by HDR-based correction of the disease allele. These results will enable the engineering of single-vector AAVs that can achieve diverse therapeutic genome editing outcomes. Long-term expression of Cas9 following precision genome editing in vivo may lead to undesirable consequences. Here we show that a single-vector, self-inactivating AAV system containing Cas9 nuclease, guide, and DNA donor can use homology-directed repair to correct disease mutations in vivo.
Collapse
|
53
|
Hernández-Juárez J, Rodríguez-Uribe G, Borooah S. Toward the Treatment of Inherited Diseases of the Retina Using CRISPR-Based Gene Editing. Front Med (Lausanne) 2021; 8:698521. [PMID: 34660621 PMCID: PMC8517184 DOI: 10.3389/fmed.2021.698521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal dystrophies [IRDs] are a common cause of severe vision loss resulting from pathogenic genetic variants. The eye is an attractive target organ for testing clinical translational approaches in inherited diseases. This has been demonstrated by the approval of the first gene supplementation therapy to treat an autosomal recessive IRD, RPE65-linked Leber congenital amaurosis (type 2), 4 years ago. However, not all diseases are amenable for treatment using gene supplementation therapy, highlighting the need for alternative strategies to overcome the limitations of this supplementation therapeutic modality. Gene editing has become of increasing interest with the discovery of the CRISPR-Cas9 platform. CRISPR-Cas9 offers several advantages over previous gene editing technologies as it facilitates targeted gene editing in an efficient, specific, and modifiable manner. Progress with CRISPR-Cas9 research now means that gene editing is a feasible strategy for the treatment of IRDs. This review will focus on the background of CRISPR-Cas9 and will stress the differences between gene editing using CRISPR-Cas9 and traditional gene supplementation therapy. Additionally, we will review research that has led to the first CRISPR-Cas9 trial for the treatment of CEP290-linked Leber congenital amaurosis (type 10), as well as outline future directions for CRISPR-Cas9 technology in the treatment of IRDs.
Collapse
Affiliation(s)
- Jennifer Hernández-Juárez
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, United States
| | - Genaro Rodríguez-Uribe
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Mexico.,Department of Ocular Genetics and Research, CODET Vision Institute, Tijuana, Mexico
| | - Shyamanga Borooah
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
54
|
Mellen PL, Heier JS. Gene Therapy for Neovascular Macular Degeneration, Diabetic Retinopathy, and Diabetic Macular Edema. Int Ophthalmol Clin 2021; 61:229-239. [PMID: 34584059 DOI: 10.1097/iio.0000000000000382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
55
|
Shughoury A, Ciulla TA, Bakall B, Pennesi ME, Kiss S, Cunningham ET. Genes and Gene Therapy in Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:3-45. [PMID: 34584043 DOI: 10.1097/iio.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
56
|
Wang Y, Hu LF, Zhou TJ, Qi LY, Xing L, Lee J, Wang FZ, Oh YK, Jiang HL. Gene therapy strategies for rare monogenic disorders with nuclear or mitochondrial gene mutations. Biomaterials 2021; 277:121108. [PMID: 34478929 DOI: 10.1016/j.biomaterials.2021.121108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Rare monogenic disorders are a group of single-gene-mutated diseases that have a low incidence rate (less than 0.5‰) and eventually lead to patient disability and even death. Due to the relatively low number of people affected, these diseases typically fail to attract a great deal of commercial investment and research interest, and the affected patients thus have unmet medical needs. Advances in genomics biology, gene editing, and gene delivery can now offer potentially effective options for treating rare monogenic diseases. Herein, we review the application of gene therapy strategies (traditional gene therapy and gene editing) against various rare monogenic diseases with nuclear or mitochondrial gene mutations, including eye, central nervous system, pulmonary, systemic, and blood cell diseases. We summarize their pathologic features, address the barriers to gene delivery for these diseases, discuss available therapies in the clinic and in clinical trials, and sum up in-development gene delivery systems for various rare monogenic disorders. Finally, we elaborate the possible directions and outlook of gene therapy for rare monogenic disorders.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Fan Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lian-Yu Qi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Feng-Zhen Wang
- Department of Clinical Pharmacy, The First Clinical School of Xuzhou Medical University, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China; Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
57
|
Rasoulinejad SA, Maroufi F. CRISPR-Based Genome Editing as a New Therapeutic Tool in Retinal Diseases. Mol Biotechnol 2021; 63:768-779. [PMID: 34057656 DOI: 10.1007/s12033-021-00345-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/19/2021] [Indexed: 12/26/2022]
Abstract
Retinal diseases are the primary reasons for severe visual defects and irreversible blindness. Retinal diseases are also inherited and acquired. Both of them are caused by mutations in genes or disruptions in specific gene expression, which can be treated by gene-editing therapy. Clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) system is a frontier of gene-editing tools with great potential for therapeutic applications in the ophthalmology field to modify abnormal genes and treat the genome or epigenome-related retinal diseases. The CRISPR system is able to edit and trim the gene include deletion, insertion, inhibition, activation, replacing, remodeling, epigenetic alteration, and modify the gene expression. CRISPR-based genome editing techniques have indicated the enormous potential to treat retinal diseases that previous treatment was not available for them. Also, recent CRISPR genome surgery experiments have shown the improvement of patient's vision who suffered from severe visual loss. In this article, we review the applications of the CRISPR-Cas9 system in human or animal models for treating retinal diseases such as retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), age-related macular degeneration (AMD), proliferative diabetic retinopathy (PDR), and proliferative vitreoretinopathy (PVR), then we survey limitations of CRISPR system for clinical therapy.
Collapse
Affiliation(s)
- Seyed Ahmad Rasoulinejad
- Department of Ophthalmology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran.
| | - Faezeh Maroufi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
58
|
Sun C, Zhou J, Meng X. Primary cilia in retinal pigment epithelium development and diseases. J Cell Mol Med 2021; 25:9084-9088. [PMID: 34448530 PMCID: PMC8500982 DOI: 10.1111/jcmm.16882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Retinal pigment epithelium (RPE) is a highly polarized epithelial monolayer lying between the photoreceptor layer and the Bruch membrane. It is essential for vision through participating in many critical activities, including phagocytosis of photoreceptor outer segments, recycling the visual cycle‐related compounds, forming a barrier to control the transport of nutrients, ions, and water, and the removal of waste. Primary cilia are conservatively present in almost all the vertebrate cells and acts as a sensory organelle to control tissue development and homeostasis maintenance. Numerous studies reveal that abnormalities in RPE lead to various retinal diseases, such as age‐related macular degeneration and diabetic macular oedema, but the mechanism of primary cilia in these physiological and pathological activities remains to be elucidated. Herein, we summarize the functions of primary cilia in the RPE development and the mutations of ciliary genes identified in RPE‐related diseases. By highlighting the significance of primary cilia in regulating the physiological and pathological processes of RPE, we aim to provide novel insights for the treatment of RPE‐related retinal diseases.
Collapse
Affiliation(s)
- Chunjiao Sun
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Xiaoqian Meng
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
59
|
Design of time-delayed safety switches for CRISPR gene therapy. Sci Rep 2021; 11:16908. [PMID: 34413448 PMCID: PMC8377138 DOI: 10.1038/s41598-021-96510-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
CRISPR system is a powerful gene editing tool which has already been reported to address a variety of gene relevant diseases in different cell lines. However, off-target effect and immune response caused by Cas9 remain two fundamental problems. Inspired by previously reported Cas9 self-elimination systems, time-delayed safety switches are designed in this work. Firstly, ultrasensitive relationship is constructed between Cas9-sgRNA (enzyme) and Cas9 plasmids (substrate), which generates the artificial time delay. Then intrinsic time delay in biomolecular activities is revealed by data fitting and utilized in constructing safety switches. The time-delayed safety switches function by separating the gene editing process and self-elimination process, and the tunable delay time may ensure a good balance between gene editing efficiency and side effect minimization. By addressing gene therapy efficiency, off-target effect, immune response and drug accumulation, we hope our safety switches may offer inspiration in realizing safe and efficient gene therapy in humans.
Collapse
|
60
|
Testa F, Sodi A, Signorini S, Di Iorio V, Murro V, Brunetti-Pierri R, Valente EM, Karali M, Melillo P, Banfi S, Simonelli F. Spectrum of Disease Severity in Nonsyndromic Patients With Mutations in the CEP290 Gene: A Multicentric Longitudinal Study. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 34196655 PMCID: PMC8267213 DOI: 10.1167/iovs.62.9.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose The purpose of this study was to perform a detailed longitudinal phenotyping and genetic characterization of 32 Italian patients with a nonsyndromic retinal dystrophy and mutations in the CEP290 gene. Methods We reviewed the clinical history and examinations of 32 patients with a nonsyndromic retinal dystrophy due to mutations in the CEP290 gene, followed up (mean follow-up: 5.9 years) at 3 Italian centers. The clinical examinations included: best corrected visual acuity (BCVA), optical coherence tomography (OCT), and full-field electroretinogram (ERG). Results Patients (mean age = 19.0 ± 3.4 years) had a mean BCVA of 1.73 ± 0.20 logMAR. Longitudinal analysis of BCVA showed a nonsignificant decline. Central retinal thickness (CRT) declined significantly with age at an exponential rate of 1.0%/year (P = 0.001). At disease onset, most patients (19/32; 49.4%) had nystagmus. The absence of nystagmus was significantly associated with better BCVA and more preserved CRT (P < 0.05). ERG showed undetectable responses in most patients (64.0%), whereas reduced scotopic and photopic responses were observed in four patients (16.0%) who had no nystagmus. We identified 35 different variants, among which 12 were novel. Our genotype-phenotype correlation analysis shows a significantly worse BCVA in patients harboring a loss-of-function mutation and the deep-intronic variant c.2991+1655A>G. Conclusions Our study highlights a mild phenotype of the disease, characterized by absence of nystagmus, good visual acuity, considerably preserved retinal morphology, and recordable ERG, confirming the wide spectrum of CEP290-related retinal dystrophies. Finally, in our cohort, the deep intronic variant c.2991+1655A>G was associated with a more severe phenotype.
Collapse
Affiliation(s)
- Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Sodi
- Eye Clinic, Neuromuscolar and Sense Organs Department, Careggi University Hospital, Florence, Italy
| | - Sabrina Signorini
- Unit of Child Neurology and Psychiatry, IRCCS C. Mondino Foundation, Pavia, Italy
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Vittoria Murro
- Eye Clinic, Neuromuscolar and Sense Organs Department, Careggi University Hospital, Florence, Italy
| | - Raffaella Brunetti-Pierri
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marianthi Karali
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Paolo Melillo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
61
|
Shahryari A, Burtscher I, Nazari Z, Lickert H. Engineering Gene Therapy: Advances and Barriers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Shahryari
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Stem Cell Research Center Golestan University of Medical Sciences Gorgan 49341‐74515 Iran
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| | - Zahra Nazari
- Department of Biology School of Basic Sciences Golestan University Gorgan 49361‐79142 Iran
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| |
Collapse
|
62
|
Xiang X, Zhao X, Pan X, Dong Z, Yu J, Li S, Liang X, Han P, Qu K, Jensen JB, Farup J, Wang F, Petersen TS, Bolund L, Teng H, Lin L, Luo Y. Efficient correction of Duchenne muscular dystrophy mutations by SpCas9 and dual gRNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:403-415. [PMID: 33868784 PMCID: PMC8039775 DOI: 10.1016/j.omtn.2021.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/10/2021] [Indexed: 12/17/2022]
Abstract
CRISPR gene therapy is one promising approach for treatment of Duchenne muscular dystrophy (DMD), which is caused by a large spectrum of mutations in the dystrophin gene. To broaden CRISPR gene editing strategies for DMD treatment, we report the efficient restoration of dystrophin expression in induced myotubes by SpCas9 and dual guide RNAs (gRNAs). We first sequenced 32 deletion junctions generated by this editing method and revealed that non-homologous blunt-end joining represents the major indel type. Based on this predictive repair outcome, efficient in-frame deletion of a part of DMD exon 51 was achieved in HEK293T cells with plasmids expressing SpCas9 and dual gRNAs. More importantly, we further corrected a frameshift mutation in human DMD (exon45del) fibroblasts with SpCas9-dual gRNA ribonucleoproteins. The edited DMD fibroblasts were transdifferentiated into myotubes by lentiviral-mediated overexpression of a human MYOD transcription factor. Restoration of DMD expression at both the mRNA and protein levels was confirmed in the induced myotubes. With further development, the combination of SpCas9-dual gRNA-corrected DMD patient fibroblasts and transdifferentiation may provide a valuable therapeutic strategy for DMD.
Collapse
Affiliation(s)
- Xi Xiang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Xiaoying Zhao
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Xiaoguang Pan
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Zhanying Dong
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Jiaying Yu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Siyuan Li
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Xue Liang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Kunli Qu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Jonas Brorson Jensen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Fei Wang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | | | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Huajing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| |
Collapse
|
63
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
64
|
He X, Urip BA, Zhang Z, Ngan CC, Feng B. Evolving AAV-delivered therapeutics towards ultimate cures. J Mol Med (Berl) 2021; 99:593-617. [PMID: 33594520 PMCID: PMC7885987 DOI: 10.1007/s00109-020-02034-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy has entered a new era after decades-long efforts, where the recombinant adeno-associated virus (AAV) has stood out as the most potent vector for in vivo gene transfer and demonstrated excellent efficacy and safety profiles in numerous preclinical and clinical studies. Since the first AAV-derived therapeutics Glybera was approved by the European Medicines Agency (EMA) in 2012, there is an increasing number of AAV-based gene augmentation therapies that have been developed and tested for treating incurable genetic diseases. In the subsequent years, the United States Food and Drug Administration (FDA) approved two additional AAV gene therapy products, Luxturna and Zolgensma, to be launched into the market. Recent breakthroughs in genome editing tools and the combined use with AAV vectors have introduced new therapeutic modalities using somatic gene editing strategies. The promising outcomes from preclinical studies have prompted the continuous evolution of AAV-delivered therapeutics and broadened the scope of treatment options for untreatable diseases. Here, we describe the clinical updates of AAV gene therapies and the latest development using AAV to deliver the CRISPR components as gene editing therapeutics. We also discuss the major challenges and safety concerns associated with AAV delivery and CRISPR therapeutics, and highlight the recent achievement and toxicity issues reported from clinical applications.
Collapse
Affiliation(s)
- Xiangjun He
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Brian Anugerah Urip
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhenjie Zhang
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Chun Christopher Ngan
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Shatin N.T., Hong Kong SAR, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Shatin N.T., Hong Kong SAR, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510320, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
65
|
Leroy BP, Birch DG, Duncan JL, Lam BL, Koenekoop RK, Porto FBO, Russell SR, Girach A. LEBER CONGENITAL AMAUROSIS DUE TO CEP290 MUTATIONS-SEVERE VISION IMPAIRMENT WITH A HIGH UNMET MEDICAL NEED: A Review. Retina 2021; 41:898-907. [PMID: 33595255 PMCID: PMC8078118 DOI: 10.1097/iae.0000000000003133] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Leber congenital amaurosis due to CEP290 mutations (LCA10) is an inherited retinal disease that often results in severe visual impairment or blindness in early childhood. Currently, there are no approved treatments, highlighting the considerable unmet medical need associated with LCA10. We aimed to review the clinical characteristics of LCA10, its impact on patients and society, and the investigational treatment strategies currently in development. METHODS Review of the current literature. RESULTS LCA10 is an autosomal recessive ciliopathy, for which the CEP290 intronic variant c.2991+1655A>G (p.Cys998X) is the most common mutation. Usually diagnosed in early childhood, most patients with LCA10 have severe visual impairment during their first decade of life, which significantly affects the quality of life and development. LCA10 also has a significant societal burden (direct and indirect costs). RNA editing using antisense oligonucleotides or Staphylococcus aureus CRISPR-associated protein-9 nuclease is currently under investigation for treatment of p.Cys998X LCA10. Specifically, the antisense oligonucleotide therapy QR-110 (sepofarsen) has demonstrated encouraging safety and efficacy data in a first-in-human trial; a phase 3 clinical trial is ongoing. CONCLUSION Interventions that can preserve or improve vision in patients with LCA10 have considerable potential to improve the patient quality of life and reduce burden of disease.
Collapse
Affiliation(s)
- Bart P. Leroy
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David G. Birch
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Retina Foundation of the Southwest, Dallas, Texas
| | - Jacque L. Duncan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Byron L. Lam
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Robert K. Koenekoop
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Fernanda B. O. Porto
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stephen R. Russell
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa; and
| | | |
Collapse
|
66
|
Vilaplana F, Ros A, Garcia B, Blanco I, Castellanos E, Edwards NJ, Valldeperas X, Ruiz-Bilbao S, Sabala A. Clinical characteristics, imaging findings, and genetic results of a patient with CEP290-related cone-rod dystrophy. Ophthalmic Genet 2021; 42:474-479. [PMID: 33886416 DOI: 10.1080/13816810.2021.1916827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To describe the clinical characteristics, the imaging findings, and the genetic results of a patient with cone-rod dystrophy (CORD) related to mutations in CEP290. METHODS A case report of atypical CEP290-related CORD. Ophthalmological examination was performed, including best-corrected visual acuity (BCVA), fundus photography, fundus autofluorescence (FAF) imaging, optical coherence tomography (OCT), a visual field test, and electroretinography testing. The genetic test was performed by next-generation sequencing (NGS)-based panel test containing 336 genes. RESULTS A 57-year-old female who had reported a visual loss for 5 years. BCVA was 20/100 in both eyes. The fundus examination revealed a hypopigmented halo around the fovea, showing a paracentral hyperautofluorescent ring on FAF. OCT demonstrated the presence of atrophy in the outer retinal layers. The genetic test identified the probably pathogenic variants c.4028delA and c.5254C>T in compound heterozygosis in CEP290. CONCLUSIONS This is the first report to present the clinical characteristics, imaging findings, and genetic test results of a patient with CEP290-related CORD. Our case contributes to expanding the clinical involvement of CEP290 pathogenic variants. This study indicates that CEP290-related CORD may have a mild phenotype with late-onset dystrophy, making these patients interesting candidates for innovative treatments such as genetic therapeutic approaches.
Collapse
Affiliation(s)
- Ferran Vilaplana
- Department of Ophthalmology, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrea Ros
- Genetic Counseling Unit, Genetics Service, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Belen Garcia
- Genetic Counseling Unit, Genetics Service, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Ignacio Blanco
- Genetic Counseling Unit, Genetics Service, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Elisabeth Castellanos
- Clinical Genomics Unit, Genetics Service, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Hereditary Cancer Group, Germans Trias Research Institute, IGTP, Barcelona, Spain
| | | | - Xavier Valldeperas
- Department of Ophthalmology, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Ruiz-Bilbao
- Department of Ophthalmology, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Sabala
- Department of Ophthalmology, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
67
|
Bansal M, Acharya S, Sharma S, Phutela R, Rauthan R, Maiti S, Chakraborty D. CRISPR Cas9 based genome editing in inherited retinal dystrophies. Ophthalmic Genet 2021; 42:365-374. [PMID: 33821751 DOI: 10.1080/13816810.2021.1904421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Precision genome engineering, with targeted therapy towards patient-specific mutations is predicted to be the future of personalized medicine. Ophthalmology is in the frontiers of development of targeted therapy since the eye is an accessible organ and has the ease of both delivery as well as monitoring effects of therapy. MATERIALS AND METHODS We reviewed literature using keywords CRISPR, precision medicine, genomic editing, retinal dystrophies, retinitis pigmentosa, Usher syndrome, Stargardt's Disease. Further, we collated data on current clinical trials. RESULTS There is growing evidence on the role of genomic editing in retinal dystrophies, the various methods used, and stage of development of different therapies have been summarized in this paper. CONCLUSIONS The CRISPR-Cas9 system has revolutionized genome editing, and opened avenues in drug discovery. It is important to understand the role of this system along with its applicability in the field of ophthalmology. In this review article, we briefly describe its methodology, the strategies of employing it for making genetic perturbations, and explore its applications in inherited retinal dystrophies.
Collapse
Affiliation(s)
- Mayank Bansal
- Council of Scientific and Industrial Research - Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Sundaram Acharya
- Council of Scientific and Industrial Research - Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Saumya Sharma
- Council of Scientific and Industrial Research - Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Rhythm Phutela
- Council of Scientific and Industrial Research - Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Riya Rauthan
- Council of Scientific and Industrial Research - Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Souvik Maiti
- Council of Scientific and Industrial Research - Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Debojyoti Chakraborty
- Council of Scientific and Industrial Research - Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| |
Collapse
|
68
|
Syafruddin SE, Ling S, Low TY, Mohtar MA. More Than Meets the Eye: Revisiting the Roles of Heat Shock Factor 4 in Health and Diseases. Biomolecules 2021; 11:523. [PMID: 33807297 PMCID: PMC8066111 DOI: 10.3390/biom11040523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
Cells encounter a myriad of endogenous and exogenous stresses that could perturb cellular physiological processes. Therefore, cells are equipped with several adaptive and stress-response machinery to overcome and survive these insults. One such machinery is the heat shock response (HSR) program that is governed by the heat shock factors (HSFs) family in response towards elevated temperature, free radicals, oxidants, and heavy metals. HSF4 is a member of this HSFs family that could exist in two predominant isoforms, either the transcriptional repressor HSFa or transcriptional activator HSF4b. HSF4 is constitutively active due to the lack of oligomerization negative regulator domain. HSF4 has been demonstrated to play roles in several physiological processes and not only limited to regulating the classical heat shock- or stress-responsive transcriptional programs. In this review, we will revisit and delineate the recent updates on HSF4 molecular properties. We also comprehensively discuss the roles of HSF4 in health and diseases, particularly in lens cell development, cataract formation, and cancer pathogenesis. Finally, we will posit the potential direction of HSF4 future research that could enhance our knowledge on HSF4 molecular networks as well as physiological and pathophysiological functions.
Collapse
|
69
|
Michalakis S, Gerhardt M, Rudolph G, Priglinger S, Priglinger C. Gene Therapy for Inherited Retinal Disorders: Update on Clinical Trials. Klin Monbl Augenheilkd 2021; 238:272-281. [PMID: 33784790 DOI: 10.1055/a-1384-0818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Within the last decade, continuous advances in molecular biological techniques have made it possible to develop causative therapies for inherited retinal disorders (IRDs). Some of the most promising options are gene-specific approaches using adeno-associated virus-based vectors to express a healthy copy of the disease-causing gene in affected cells of a patient. This concept of gene supplementation therapy is already advocated for the treatment of retinal dystrophy in RPE65-linked Leber's congenital amaurosis (LCA) patients. While the concept of gene supplementation therapy can be applied to treat autosomal recessive and X-linked forms of IRD, it is not sufficient for autosomal dominant IRDs, where the pathogenic gene product needs to be removed. Therefore, for autosomal dominant IRDs, alternative approaches that utilize CRISPR/Cas9 or antisense oligonucleotides to edit or deplete the mutant allele or gene product are needed. In recent years, research retinal gene therapy has intensified and promising approaches for various forms of IRD are currently in preclinical and clinical development. This review article provides an overview of current clinical trials for the treatment of IRDs.
Collapse
Affiliation(s)
| | - Maximilian Gerhardt
- Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| | - Günter Rudolph
- Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| | | | - Claudia Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| |
Collapse
|
70
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
71
|
Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021; 15:652215. [PMID: 33815052 PMCID: PMC8010260 DOI: 10.3389/fnins.2021.652215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Vision and hearing disorders comprise the most common sensory disorders found in people. Many forms of vision and hearing loss are inherited and current treatments only provide patients with temporary or partial relief. As a result, developing genetic therapies for any of the several hundred known causative genes underlying inherited retinal and cochlear disorders has been of great interest. Recent exciting advances in gene therapy have shown promise for the clinical treatment of inherited retinal diseases, and while clinical gene therapies for cochlear disease are not yet available, research in the last several years has resulted in significant advancement in preclinical development for gene delivery to the cochlea. Furthermore, the development of somatic targeted genome editing using CRISPR/Cas9 has brought new possibilities for the treatment of dominant or gain-of-function disease. Here we discuss the current state of gene therapy for inherited diseases of the retina and cochlea with an eye toward areas that still need additional development.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
72
|
Local Protein Translation and RNA Processing of Synaptic Proteins in Autism Spectrum Disorder. Int J Mol Sci 2021; 22:ijms22062811. [PMID: 33802132 PMCID: PMC8001067 DOI: 10.3390/ijms22062811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heritable neurodevelopmental condition associated with impairments in social interaction, communication and repetitive behaviors. While the underlying disease mechanisms remain to be fully elucidated, dysfunction of neuronal plasticity and local translation control have emerged as key points of interest. Translation of mRNAs for critical synaptic proteins are negatively regulated by Fragile X mental retardation protein (FMRP), which is lost in the most common single-gene disorder associated with ASD. Numerous studies have shown that mRNA transport, RNA metabolism, and translation of synaptic proteins are important for neuronal health, synaptic plasticity, and learning and memory. Accordingly, dysfunction of these mechanisms may contribute to the abnormal brain function observed in individuals with autism spectrum disorder (ASD). In this review, we summarize recent studies about local translation and mRNA processing of synaptic proteins and discuss how perturbations of these processes may be related to the pathophysiology of ASD.
Collapse
|
73
|
Molinari E, Sayer JA. Gene and epigenetic editing in the treatment of primary ciliopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:353-401. [PMID: 34175048 DOI: 10.1016/bs.pmbts.2021.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary ciliopathies are inherited human disorders that arise from mutations in ciliary genes. They represent a spectrum of severe, incurable phenotypes, differentially involving several organs, including the kidney and the eye. The development of gene-based therapies is opening up new avenues for the treatment of ciliopathies. Particularly attractive is the possibility of correcting in situ the causative genetic mutation, or pathological epigenetic changes, through the use of gene editing tools. Due to their versatility and efficacy, CRISPR/Cas-based systems represent the most promising gene editing toolkit for clinical applications. However, delivery and specificity issues have so far held back the translatability of CRISPR/Cas-based therapies into clinical practice, especially where systemic administration is required. The eye, with its characteristics of high accessibility and compartmentalization, represents an ideal target for in situ gene correction. Indeed, studies for the evaluation of a CRISPR/Cas-based therapy for in vivo gene correction to treat a retinal ciliopathy have reached the clinical stage. Further technological advances may be required for the development of in vivo CRISPR-based treatments for the kidney. We discuss here the possibilities and the challenges associated to the implementation of CRISPR/Cas-based therapies for the treatment of primary ciliopathies with renal and retinal phenotypes.
Collapse
Affiliation(s)
- Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom; Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
74
|
Diakatou M, Dubois G, Erkilic N, Sanjurjo-Soriano C, Meunier I, Kalatzis V. Allele-Specific Knockout by CRISPR/Cas to Treat Autosomal Dominant Retinitis Pigmentosa Caused by the G56R Mutation in NR2E3. Int J Mol Sci 2021; 22:ijms22052607. [PMID: 33807610 PMCID: PMC7961898 DOI: 10.3390/ijms22052607] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal dystrophy that causes progressive vision loss. The G56R mutation in NR2E3 is the second most common mutation causing autosomal dominant (ad) RP, a transcription factor that is essential for photoreceptor development and maintenance. The G56R variant is exclusively responsible for all cases of NR2E3-associated adRP. Currently, there is no treatment for NR2E3-related or, other, adRP, but genome editing holds promise. A pertinent approach would be to specifically knockout the dominant mutant allele, so that the wild type allele can perform unhindered. In this study, we developed a CRISPR/Cas strategy to specifically knockout the mutant G56R allele of NR2E3 and performed a proof-of-concept study in induced pluripotent stem cells (iPSCs) of an adRP patient. We demonstrate allele-specific knockout of the mutant G56R allele in the absence of off-target events. Furthermore, we validated this knockout strategy in an exogenous overexpression system. Accordingly, the mutant G56R-CRISPR protein was truncated and mis-localized to the cytosol in contrast to the (peri)nuclear localizations of wild type or G56R NR2E3 proteins. Finally, we show, for the first time, that G56R iPSCs, as well as G56R-CRISPR iPSCs, can differentiate into NR2E3-expressing retinal organoids. Overall, we demonstrate that G56R allele-specific knockout by CRISPR/Cas could be a clinically relevant approach to treat NR2E3-associated adRP.
Collapse
Affiliation(s)
- Michalitsa Diakatou
- INM, University of Montpellier, Inserm, 34091 Montpellier, France; (M.D.); (G.D.); (N.E.); (C.S.-S.); (I.M.)
| | - Gregor Dubois
- INM, University of Montpellier, Inserm, 34091 Montpellier, France; (M.D.); (G.D.); (N.E.); (C.S.-S.); (I.M.)
| | - Nejla Erkilic
- INM, University of Montpellier, Inserm, 34091 Montpellier, France; (M.D.); (G.D.); (N.E.); (C.S.-S.); (I.M.)
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, 34295 Montpellier, France
| | - Carla Sanjurjo-Soriano
- INM, University of Montpellier, Inserm, 34091 Montpellier, France; (M.D.); (G.D.); (N.E.); (C.S.-S.); (I.M.)
| | - Isabelle Meunier
- INM, University of Montpellier, Inserm, 34091 Montpellier, France; (M.D.); (G.D.); (N.E.); (C.S.-S.); (I.M.)
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, 34295 Montpellier, France
| | - Vasiliki Kalatzis
- INM, University of Montpellier, Inserm, 34091 Montpellier, France; (M.D.); (G.D.); (N.E.); (C.S.-S.); (I.M.)
- Correspondence:
| |
Collapse
|
75
|
Dasgupta I, Flotte TR, Keeler AM. CRISPR/Cas-Dependent and Nuclease-Free In Vivo Therapeutic Gene Editing. Hum Gene Ther 2021; 32:275-293. [PMID: 33750221 PMCID: PMC7987363 DOI: 10.1089/hum.2021.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022] Open
Abstract
Precise gene manipulation by gene editing approaches facilitates the potential to cure several debilitating genetic disorders. Gene modification stimulated by engineered nucleases induces a double-stranded break (DSB) in the target genomic locus, thereby activating DNA repair mechanisms. DSBs triggered by nucleases are repaired either by the nonhomologous end-joining or the homology-directed repair pathway, enabling efficient gene editing. While there are several ongoing ex vivo genome editing clinical trials, current research underscores the therapeutic potential of CRISPR/Cas-based (clustered regularly interspaced short palindrome repeats-associated Cas nuclease) in vivo gene editing. In this review, we provide an overview of the CRISPR/Cas-mediated in vivo genome therapy applications and explore their prospective clinical translatability to treat human monogenic disorders. In addition, we discuss the various challenges associated with in vivo genome editing technologies and strategies used to circumvent them. Despite the robust and precise nuclease-mediated gene editing, a promoterless, nuclease-independent gene targeting strategy has been utilized to evade the drawbacks of the nuclease-dependent system, such as off-target effects, immunogenicity, and cytotoxicity. Thus, the rapidly evolving paradigm of gene editing technologies will continue to foster the progress of gene therapy applications.
Collapse
Affiliation(s)
- Ishani Dasgupta
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Terence R. Flotte
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Allison M. Keeler
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| |
Collapse
|
76
|
Kanu LN, Ciolino JB. Nerve Growth Factor as an Ocular Therapy: Applications, Challenges, and Future Directions. Semin Ophthalmol 2021; 36:224-231. [PMID: 33641595 DOI: 10.1080/08820538.2021.1890793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nerve growth factor (NGF), the prototypical neurotrophin first discovered in the 1950s, has recently garnered increased interest as a therapeutic agent promoting neuronal health and regeneration. After gaining orphan drug status within the last decade, NGF-related research and drug development has accelerated. The purpose of this article is to review the preclinical and clinical evidence of NGF in various applications, including central and peripheral nervous system, skin, and ophthalmic disorders. We focus on the ophthalmic applications including not only the FDA-approved indication of neurotrophic keratitis but also retinal disease and glaucoma. NGF represents a promising therapy whose therapeutic profile is evolving. The challenges related to this therapy are reviewed, along with possible solutions and future directions.
Collapse
Affiliation(s)
- Levi N Kanu
- 1. Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Joseph B Ciolino
- 1. Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
77
|
Ballios BG, Pierce EA, Huckfeldt RM. Gene editing technology: Towards precision medicine in inherited retinal diseases. Semin Ophthalmol 2021; 36:176-184. [PMID: 33621144 DOI: 10.1080/08820538.2021.1887903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: To review preclinical and clinical advances in gene therapy, with a focus on gene editing technologies, and application to inherited retinal disease.Methods: A narrative overview of the literature, summarizing the state-of-the-art in clinical gene therapy for inherited retinal disease, as well as the science and application of new gene editing technology.Results: The last three years has seen the first FDA approval of an in vivo gene replacement therapy for a hereditary blinding eye disease and, recently, the first clinical application of an in vivo gene editing technique. Limitations and challenges in this evolving field are highlighted, as well as new technologies developed to address the multitude of molecular mechanisms of disease.Conclusion: Genetic therapy for the treatment of inherited retinal disease is a rapidly expanding area of ophthalmology. New technologies have revolutionized the field of genome engineering and rekindled an interest in precision medicines for these conditions.
Collapse
Affiliation(s)
- Brian G Ballios
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel M Huckfeldt
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
78
|
Bioanalytical challenges and strategies of CRISPR genome editors. Bioanalysis 2021; 13:169-179. [PMID: 33538183 DOI: 10.4155/bio-2020-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genome editing using clustered regularly interspaced short palindromic repeats (CRISPR) has been used to great effect in vitro to allow scientists to more rapidly investigate molecular pathways that may be involved in disease. The logical progression for the CRISPR machinery is to move from bench to bedside into the world of therapeutics and clinical diagnostics. Depending upon the intended therapeutic use of CRISPR, there are as many bioanalytical challenges in order to resolve scientific questions as drug development and regulatory questions. The aim of this article is to highlight bioanalytical challenges associated with such a powerful therapeutic tool, and strategies that may be required to facilitate the clinical development of CRISPR.
Collapse
|
79
|
Yang A, Kantor B, Chiba-Falek O. APOE: The New Frontier in the Development of a Therapeutic Target towards Precision Medicine in Late-Onset Alzheimer's. Int J Mol Sci 2021; 22:1244. [PMID: 33513969 PMCID: PMC7865856 DOI: 10.3390/ijms22031244] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) has a critical unmet medical need. The consensus around the amyloid cascade hypothesis has been guiding pre-clinical and clinical research to focus mainly on targeting beta-amyloid for treating AD. Nevertheless, the vast majority of the clinical trials have repeatedly failed, prompting the urgent need to refocus on other targets and shifting the paradigm of AD drug development towards precision medicine. One such emerging target is apolipoprotein E (APOE), identified nearly 30 years ago as one of the strongest and most reproduceable genetic risk factor for late-onset Alzheimer's disease (LOAD). An exploration of APOE as a new therapeutic culprit has produced some very encouraging results, proving that the protein holds promise in the context of LOAD therapies. Here, we review the strategies to target APOE based on state-of-the-art technologies such as antisense oligonucleotides, monoclonal antibodies, and gene/base editing. We discuss the potential of these initiatives in advancing the development of novel precision medicine therapies to LOAD.
Collapse
Affiliation(s)
- Anna Yang
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA;
- Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA
- Duke Center for Advanced Genomic Technologies, Durham, NC 27708, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA;
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
80
|
Holmgaard AB, Askou AL, Jensen EG, Alsing S, Bak RO, Mikkelsen JG, Corydon TJ. Targeted Knockout of the Vegfa Gene in the Retina by Subretinal Injection of RNP Complexes Containing Cas9 Protein and Modified sgRNAs. Mol Ther 2021; 29:191-207. [PMID: 33022212 PMCID: PMC7791085 DOI: 10.1016/j.ymthe.2020.09.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/20/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022] Open
Abstract
The therapeutic effect of retinal gene therapy using CRISPR/Cas9-mediated genome editing and knockout applications is dependent on efficient and safe delivery of gene-modifying tool kits. Recently, transient administration of single guide RNAs (sgRNAs) and SpCas9 proteins delivered as ribonucleoproteins (RNPs) has provided potent gene knockout in vitro. To improve efficacy of CRISPR-based gene therapy, we delivered RNPs containing SpCas9 protein complexed to chemically modified sgRNAs (msgRNAs). In K562 cells, msgRNAs significantly increased the insertion/deletion (indel) frequency (25%) compared with unmodified counterparts leading to robust knockout of the VEGFA gene encoding vascular endothelial growth factor A (96% indels). Likewise, in HEK293 cells, lipoplexes containing varying amounts of RNP and EGFP mRNA showed efficient VEGFA knockout (43% indels) and strong EGFP expression, indicative of efficacious functional knockout using small amounts of RNP. In mice, subretinal injections of equivalent lipoplexes yielded 6% indels in Vegfa of isolated EGFP-positive RPE cells. However, signs of toxicity following delivery of lipoplexes containing high amounts of RNP were observed. Although the mechanism resulting in the varying efficacy remains to be elucidated, our data suggest that a single subretinal injection of RNPs carrying msgRNAs and SpCas9 induces targeted retinal indel formation, thus providing a clinically relevant strategy relying on nonviral delivery of short-lived nuclease activity.
Collapse
Affiliation(s)
| | - Anne Louise Askou
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Sidsel Alsing
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus C, Denmark
| | | | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
| |
Collapse
|
81
|
Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases. Adv Drug Deliv Rev 2021; 168:181-195. [PMID: 32603815 DOI: 10.1016/j.addr.2020.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022]
Abstract
A variety of inherited or multifactorial ocular diseases call for novel treatment paradigms. The newly developed genome editing technology, CRISPR, has shown great promise in treating these diseases, but delivery of the CRISPR/Cas components to target ocular tissues and cells requires appropriate use of vectors and routes of administration to ensure safety, efficacy and specificity. Although adeno-associated viral (AAV) vectors are thus far the most commonly used tool for ocular gene delivery, sustained expression of CRISPR/Cas components may cause immune reactions and an increased risk of off-target editing. In this review, we summarize the ocular administration routes and discuss the advantages and disadvantages of viral and non-viral vectors for delivery of CRISPR/Cas components to the eye. We review the existing studies of CRISPR/Cas genome editing for ocular diseases and discuss the major challenges of the technology in ocular applications. We also discuss the most recently developed CRISPR tools such as base editing and prime editing which may be used for future ocular applications.
Collapse
|
82
|
Li J, Røise JJ, He M, Das R, Murthy N. Non-viral strategies for delivering genome editing enzymes. Adv Drug Deliv Rev 2021; 168:99-117. [PMID: 32931860 DOI: 10.1016/j.addr.2020.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/02/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Genome-editing tools such as Cre recombinase (Cre), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and most recently the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein system have revolutionized biomedical research, agriculture, microbial engineering, and therapeutic development. Direct delivery of genome editing enzymes, as opposed to their corresponding DNA and mRNA precursors, is advantageous since they do not require transcription and/or translation. In addition, prolonged overexpression is a problem when delivering viral vector or plasmid DNA which is bypassed when delivering whole proteins. This lowers the risk of insertional mutagenesis and makes for relatively easier manufacturing. However, a major limitation of utilizing genome editing proteins in vivo is their low delivery efficiency, and currently the most successful strategy involves using potentially immunogenic viral vectors. This lack of safe and effective non-viral delivery systems is still a big hurdle for the clinical translation of such enzymes. This review discusses the challenges of non-viral delivery strategies of widely used genome editing enzymes, including Cre recombinase, ZFNs and TALENs, CRISPR/Cas9, and Cas12a (Cpf1) in their protein format and highlights recent innovations of non-viral delivery strategies which have the potential to overcome current delivery limitations and advance the clinical translation of genome editing.
Collapse
|
83
|
Knyazeva A, Khudiakov A, Vaz R, Muravyev A, Sukhareva K, Sejersen T, Kostareva A. FLNC Expression Level Influences the Activity of TEAD-YAP/TAZ Signaling. Genes (Basel) 2020; 11:genes11111343. [PMID: 33202721 PMCID: PMC7696573 DOI: 10.3390/genes11111343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Filamin C (FLNC), being one of the major actin-binding proteins, is involved in the maintenance of key muscle cell functions. Inherited skeletal muscle and cardiac disorders linked to genetic variants in FLNC have attracted attention because of their high clinical importance and possibility of genotype-phenotype correlations. To further expand on the role of FLNC in muscle cells, we focused on detailed alterations of muscle cell properties developed after the loss of FLNC. Using the CRISPR/Cas9 method we generated a C2C12 murine myoblast cell line with stably suppressed Flnc expression. FLNC-deficient myoblasts have a significantly higher proliferation rate combined with an impaired cell migration capacity. The suppression of Flnc expression leads to inability to complete myogenic differentiation, diminished expression of Myh1 and Myh4, alteration of transcriptional dynamics of myogenic factors, such as Mymk and Myog, and deregulation of Hippo signaling pathway. Specifically, we identified elevated basal levels of Hippo activity in myoblasts with loss of FLNC, and ineffective reduction of Hippo signaling activity during myogenic differentiation. The latter was restored by Flnc overexpression. In summary, we confirmed the role of FLNC in muscle cell proliferation, migration and differentiation, and demonstrated for the first time the direct link between Flnc expression and activity of TEAD-YAP\TAZ signaling. These findings support a role of FLNC in regulation of essential muscle processes relying on mechanical as well as signaling mechanisms.
Collapse
Affiliation(s)
- Anastasia Knyazeva
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
- Correspondence:
| | - Aleksandr Khudiakov
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
| | - Raquel Vaz
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden;
| | - Aleksey Muravyev
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
| | - Ksenia Sukhareva
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
- Graduate School of Life and Health Science, University of Verona, 10 37134 Verona, Italy
| | - Thomas Sejersen
- Department of Women’s and Children’s Health, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Anna Kostareva
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
- Department of Women’s and Children’s Health, Karolinska Institute, 171 77 Stockholm, Sweden;
| |
Collapse
|
84
|
Ran J, Zhou J. Targeting the photoreceptor cilium for the treatment of retinal diseases. Acta Pharmacol Sin 2020; 41:1410-1415. [PMID: 32753732 DOI: 10.1038/s41401-020-0486-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023] Open
Abstract
Photoreceptors, as polarised sensory neurons, are essential for light sensation and phototransduction, which are highly dependent on the photoreceptor cilium. Structural defects and/or dysfunction of the photoreceptor cilium caused by mutations in photoreceptor-specific genes or common ciliary genes can lead to retinal diseases, including syndromic and nonsyndromic diseases. In this review, we describe the structure and function of the photoreceptor cilium. We also discuss recent findings that underscore the dysregulation of the photoreceptor cilium in various retinal diseases and the therapeutic potential of targeting ciliary genes in these diseases.
Collapse
|
85
|
Abstract
The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized gene editing research. Through the repurposing of programmable RNA-guided CRISPR-associated (Cas) nucleases, CRISPR-based genome editing systems allow for the precise modification of specific sites in the human genome and inspire novel approaches for the study and treatment of inherited and acquired human diseases. Here, we review how CRISPR technologies have stimulated key advances in dermatologic research. We discuss the role of CRISPR in genome editing for cutaneous disease and highlight studies on the use of CRISPR-Cas technologies for genodermatoses, cutaneous viruses and bacteria, and melanoma. Additionally, we examine key limitations of current CRISPR technologies, including the challenges these limitations pose for the widespread therapeutic application of CRISPR-based therapeutics.
Collapse
Affiliation(s)
- Catherine Baker
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Matthew S Hayden
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.,Section of Dermatology, Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, 03766, USA
| |
Collapse
|
86
|
Ates I, Rathbone T, Stuart C, Bridges PH, Cottle RN. Delivery Approaches for Therapeutic Genome Editing and Challenges. Genes (Basel) 2020; 11:E1113. [PMID: 32977396 PMCID: PMC7597956 DOI: 10.3390/genes11101113] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Impressive therapeutic advances have been possible through the advent of zinc-finger nucleases and transcription activator-like effector nucleases. However, discovery of the more efficient and highly tailorable clustered regularly interspaced short palindromic repeats (CRISPR) and associated proteins (Cas9) has provided unprecedented gene-editing capabilities for treatment of various inherited and acquired diseases. Despite recent clinical trials, a major barrier for therapeutic gene editing is the absence of safe and effective methods for local and systemic delivery of gene-editing reagents. In this review, we elaborate on the challenges and provide practical considerations for improving gene editing. Specifically, we highlight issues associated with delivery of gene-editing tools into clinically relevant cells.
Collapse
Affiliation(s)
- Ilayda Ates
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| | - Tanner Rathbone
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| | - Callie Stuart
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| | - P. Hudson Bridges
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Renee N. Cottle
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| |
Collapse
|
87
|
Tran NT, Heiner C, Weber K, Weiand M, Wilmot D, Xie J, Wang D, Brown A, Manokaran S, Su Q, Zapp ML, Gao G, Tai PW. AAV-Genome Population Sequencing of Vectors Packaging CRISPR Components Reveals Design-Influenced Heterogeneity. Mol Ther Methods Clin Dev 2020; 18:639-651. [PMID: 32775498 PMCID: PMC7397707 DOI: 10.1016/j.omtm.2020.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
The gene therapy field has been galvanized by two technologies that have revolutionized treating genetic diseases: vectors based on adeno-associated viruses (AAVs), and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas gene-editing tools. When combined into one platform, these safe and broadly tropic biotherapies can be engineered to target any region in the human genome to correct genetic flaws. Unfortunately, few investigations into the design compatibility of CRISPR components in AAV vectors exist. Using AAV-genome population sequencing (AAV-GPseq), we previously found that self-complementary AAV vector designs with strong DNA secondary structures can cause a high degree of truncation events, impacting production and vector efficacy. We hypothesized that the single-guide RNA (sgRNA) scaffold, which contains several loop regions, may also compromise vector integrity. We have therefore advanced the AAV-GPseq method to also interrogate single-strand AAV vectors to investigate whether vector genomes carrying Cas9-sgRNA cassettes can cause truncation events. We found that on their own, sgRNA sequences do not produce a high degree of truncation events. However, we demonstrate that vector genome designs that carry dual sgRNA expression cassettes in tail-to-tail configurations lead to truncations. In addition, we revealed that heterogeneity in inverted terminal repeat sequences in the form of regional deletions inherent to certain AAV vector plasmids can be interrogated.
Collapse
Affiliation(s)
- Ngoc Tam Tran
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Cheryl Heiner
- Pacific Biosciences, Inc., Menlo Park, CA 94025, USA
| | | | | | - Daniella Wilmot
- Program in Molecular Medicine and Center for AIDS Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Alexander Brown
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sangeetha Manokaran
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Maria L. Zapp
- Program in Molecular Medicine and Center for AIDS Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Phillip W.L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
88
|
Ernst MPT, Broeders M, Herrero-Hernandez P, Oussoren E, van der Ploeg AT, Pijnappel WWMP. Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Mol Ther Methods Clin Dev 2020; 18:532-557. [PMID: 32775490 PMCID: PMC7393410 DOI: 10.1016/j.omtm.2020.06.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present an overview of clinical trials involving gene editing using clustered interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), or zinc finger nucleases (ZFNs) and discuss the underlying mechanisms. In cancer immunotherapy, gene editing is applied ex vivo in T cells, transgenic T cell receptor (tTCR)-T cells, or chimeric antigen receptor (CAR)-T cells to improve adoptive cell therapy for multiple cancer types. This involves knockouts of immune checkpoint regulators such as PD-1, components of the endogenous TCR and histocompatibility leukocyte antigen (HLA) complex to generate universal allogeneic CAR-T cells, and CD7 to prevent self-destruction in adoptive cell therapy. In cervix carcinoma caused by human papillomavirus (HPV), E6 and E7 genes are disrupted using topically applied gene editing machinery. In HIV infection, the CCR5 co-receptor is disrupted ex vivo to generate HIV-resistant T cells, CAR-T cells, or hematopoietic stem cells. In β-thalassemia and sickle cell disease, hematopoietic stem cells are engineered ex vivo to induce the production of fetal hemoglobin. AAV-mediated in vivo gene editing is applied to exploit the liver for systemic production of therapeutic proteins in hemophilia and mucopolysaccharidoses, and in the eye to restore splicing of the CEP920 gene in Leber's congenital amaurosis. Close consideration of safety aspects and education of stakeholders will be essential for a successful implementation of gene editing technology in the clinic.
Collapse
Affiliation(s)
- Martijn P T Ernst
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Mike Broeders
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Pablo Herrero-Hernandez
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Esmee Oussoren
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| |
Collapse
|
89
|
Li F, Wing K, Wang JH, Luu CD, Bender JA, Chen J, Wang Q, Lu Q, Nguyen Tran MT, Young KM, Wong RCB, Pébay A, Cook AL, Hung SSC, Liu GS, Hewitt AW. Comparison of CRISPR/Cas Endonucleases for in vivo Retinal Gene Editing. Front Cell Neurosci 2020; 14:570917. [PMID: 33132845 PMCID: PMC7511709 DOI: 10.3389/fncel.2020.570917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
CRISPR/Cas has opened the prospect of direct gene correction therapy for some inherited retinal diseases. Previous work has demonstrated the utility of adeno-associated virus (AAV) mediated delivery to retinal cells in vivo; however, with the expanding repertoire of CRISPR/Cas endonucleases, it is not clear which of these are most efficacious for retinal editing in vivo. We sought to compare CRISPR/Cas endonuclease activity using both single and dual AAV delivery strategies for gene editing in retinal cells. Plasmids of a dual vector system with SpCas9, SaCas9, Cas12a, CjCas9 and a sgRNA targeting YFP, as well as a single vector system with SaCas9/YFP sgRNA were generated and validated in YFP-expressing HEK293A cell by flow cytometry and the T7E1 assay. Paired CRISPR/Cas endonuclease and its best performing sgRNA was then packaged into an AAV2 capsid derivative, AAV7m8, and injected intravitreally into CMV-Cre:Rosa26-YFP mice. SpCas9 and Cas12a achieved better knockout efficiency than SaCas9 and CjCas9. Moreover, no significant difference in YFP gene editing was found between single and dual CRISPR/SaCas9 vector systems. With a marked reduction of YFP-positive retinal cells, AAV7m8 delivered SpCas9 was found to have the highest knockout efficacy among all investigated endonucleases. We demonstrate that the AAV7m8-mediated delivery of CRISPR/SpCas9 construct achieves the most efficient gene modification in neurosensory retinal cells in vivo.
Collapse
Affiliation(s)
- Fan Li
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China
| | - Kristof Wing
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| | - James A Bender
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Jinying Chen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qi Wang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Qinyi Lu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| | - Alice Pébay
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Sandy S C Hung
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| |
Collapse
|
90
|
Watry HL, Feliciano CM, Gjoni K, Takahashi G, Miyaoka Y, Conklin BR, Judge LM. Rapid, precise quantification of large DNA excisions and inversions by ddPCR. Sci Rep 2020; 10:14896. [PMID: 32913194 PMCID: PMC7483445 DOI: 10.1038/s41598-020-71742-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
The excision of genomic sequences using paired CRISPR-Cas nucleases is a powerful tool to study gene function, create disease models and holds promise for therapeutic gene editing. However, our understanding of the factors that favor efficient excision is limited by the lack of a rapid, accurate measurement of DNA excision outcomes that is free of amplification bias. Here, we introduce ddXR (droplet digital PCR eXcision Reporter), a method that enables the accurate and sensitive detection of excisions and inversions independent of length. The method can be completed in a few hours without the need for next-generation sequencing. The ddXR method uncovered unexpectedly high rates of large (> 20 kb) excisions and inversions, while also revealing a surprisingly low dependence on linear distance, up to 170 kb. We further modified the method to measure precise repair of excision junctions and allele-specific excision, with important implications for disease modeling and therapeutic gene editing.
Collapse
Affiliation(s)
- Hannah L Watry
- Gladstone Institute of Data Sciences and Biotechnology, San Francisco, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Carissa M Feliciano
- Gladstone Institute of Data Sciences and Biotechnology, San Francisco, CA, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| | - Ketrin Gjoni
- Gladstone Institute of Data Sciences and Biotechnology, San Francisco, CA, USA
| | - Gou Takahashi
- Regenerative Medicine Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuichiro Miyaoka
- Regenerative Medicine Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Bruce R Conklin
- Gladstone Institute of Data Sciences and Biotechnology, San Francisco, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
- Department of Ophthalmology, UCSF, San Francisco, CA, USA.
- Department of Medicine, UCSF, San Francisco, CA, USA.
| | - Luke M Judge
- Gladstone Institute of Data Sciences and Biotechnology, San Francisco, CA, USA.
- Department of Pediatrics, UCSF, San Francisco, CA, USA.
| |
Collapse
|
91
|
Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 2020; 18:2401-2415. [PMID: 33005303 PMCID: PMC7508700 DOI: 10.1016/j.csbj.2020.08.031] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Genome editing is the modification of genomic DNA at a specific target site in a wide variety of cell types and organisms, including insertion, deletion and replacement of DNA, resulting in inactivation of target genes, acquisition of novel genetic traits and correction of pathogenic gene mutations. Due to the advantages of simple design, low cost, high efficiency, good repeatability and short-cycle, CRISPR-Cas systems have become the most widely used genome editing technology in molecular biology laboratories all around the world. In this review, an overview of the CRISPR-Cas systems will be introduced, including the innovations, the applications in human disease research and gene therapy, as well as the challenges and opportunities that will be faced in the practical application of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
92
|
Ku CA, Pennesi ME. The new landscape of retinal gene therapy. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:846-859. [PMID: 32888388 DOI: 10.1002/ajmg.c.31842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Novel therapeutics for inherited retinal dystrophies (IRDs) have rapidly evolved since groundbreaking clinical trials for LCA due to RPE65 mutations led to the first FDA-approved in vivo gene therapy. Since then, advancements in viral vectors have led to more efficient AAV transduction and developed other viral vectors for gene augmentation therapy of large gene targets. Furthermore, significant developments in gene editing and RNA modulation technologies have introduced novel capabilities for treatment of autosomal dominant diseases, intronic mutations, and/or large genes otherwise unable to be treated with current viral vectors. We highlight strategies currently being evaluated in gene therapy clinical trials and promising preclinical developments for IRDs.
Collapse
Affiliation(s)
- Cristy A Ku
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
93
|
Panagiotopoulos AL, Karguth N, Pavlou M, Böhm S, Gasparoni G, Walter J, Graf A, Blum H, Biel M, Riedmayr LM, Becirovic E. Antisense Oligonucleotide- and CRISPR-Cas9-Mediated Rescue of mRNA Splicing for a Deep Intronic CLRN1 Mutation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1050-1061. [PMID: 32841912 PMCID: PMC7452116 DOI: 10.1016/j.omtn.2020.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/23/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
Mutations in CLRN1 cause Usher syndrome (USH) type III (USH3A), a disease characterized by progressive hearing impairment, retinitis pigmentosa, and vestibular dysfunction. Due to the lack of appropriate disease models, no efficient therapy for retinitis pigmentosa in USH patients exists so far. In addition, given the yet undefined functional role and expression of the different CLRN1 splice isoforms in the retina, non-causative therapies such as gene supplementation are unsuitable at this stage. In this study, we focused on the recently identified deep intronic c.254-649T>G CLRN1 splicing mutation and aimed to establish two causative treatment approaches: CRISPR-Cas9-mediated excision of the mutated intronic region and antisense oligonucleotide (AON)-mediated correction of mRNA splicing. The therapeutic potential of these approaches was validated in different cell types transiently or stably expressing CLRN1 minigenes. Both approaches led to substantial correction of the splice defect. Surprisingly, however, no synergistic effect was detected when combining both methods. Finally, the injection of naked AONs into mice expressing the mutant CLRN1 minigene in the retina also led to a significant splice rescue. We propose that both AONs and CRISPR-Cas9 are suitable strategies to initiate advanced preclinical studies for treatment of USH3A patients.
Collapse
Affiliation(s)
- Anna-Lena Panagiotopoulos
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nina Karguth
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marina Pavlou
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Ophthalmology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sybille Böhm
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gilles Gasparoni
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Alexander Graf
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Blum
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lisa Maria Riedmayr
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
94
|
High rate of HDR in gene editing of p.(Thr158Met) MECP2 mutational hotspot. Eur J Hum Genet 2020; 28:1231-1242. [PMID: 32332872 PMCID: PMC7609331 DOI: 10.1038/s41431-020-0624-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Rett syndrome is a progressive neurodevelopmental disorder which affects almost exclusively girls, caused by variants in MECP2 gene. Effective therapies for this devastating disorder are not yet available and the need for tight regulation of MECP2 expression for brain to properly function makes gene replacement therapy risky. For this reason, gene editing with CRISPR/Cas9 technology appears as a preferable option for the development of new therapies. To study the disease, we developed and characterized a human neuronal model obtained by genetic reprogramming of patient-derived primary fibroblasts into induced Pluripotent Stem Cells. This cellular model represents an important source for our studies, aiming to correct MECP2 variants in neurons which represent the primarily affected cell type. We engineered a gene editing toolkit composed by a two-plasmid system to correct a hotspot missense variant in MECP2, c.473 C > T (p.(Thr158Met)). The first construct expresses the variant-specific sgRNA and the Donor DNA along with a fluorescent reporter system. The second construct brings Cas9 and targets for auto-cleaving, to avoid long-term Cas9 expression. NGS analysis on sorted cells from four independent patients demonstrated an exceptionally high editing efficiency, with up to 80% of HDR and less than 1% of indels in all patients, outlining the relevant potentiality of the approach for Rett syndrome therapy.
Collapse
|
95
|
Hu S, Du J, Chen N, Jia R, Zhang J, Liu X, Yang L. In Vivo CRISPR/Cas9-Mediated Genome Editing Mitigates Photoreceptor Degeneration in a Mouse Model of X-Linked Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2020; 61:31. [PMID: 32330228 PMCID: PMC7401909 DOI: 10.1167/iovs.61.4.31] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Retinitis pigmentosa GTPase regulator (RPGR)-related X-linked retinitis pigmentosa is associated with one of the most severe phenotypes among inherited retinal disease. The aim of this study was to investigate Clustered Regularly Interspaced Short Palindromic Repeat/Cas9-mediated gene editing therapy in a mouse model of Rpgr. Methods The Rpgr−/yCas9+/WT male mice were used for this study. At 6 months of age, they received a single subretinal injection of adeno-associated virus vectors carrying sgRNA and donor template separately, and therapeutic effect was examined after 1, 6, and 12 months. Results Rpgr knockout mouse showed slow but progressive age-related retinal degeneration, which emulates the disease occurring in humans. Significant photoreceptor preservation was observed in the treated part of the retina, in sharp contrast to the untreated part of the retina in the same eye after 6 and 12 months. It was surprising that precise modification at the target locus as demonstrated by genomic DNA sequencing in the post-mitotic photoreceptor was observed. Moreover, the therapeutic effect lasts for up to 12 months and no off-target effects were shown. Conclusions Our study strongly demonstrates that gene editing therapy is a promising therapeutic strategy to treat inherited retinal degeneration.
Collapse
|
96
|
Gallego C, Gonçalves MAFV, Wijnholds J. Novel Therapeutic Approaches for the Treatment of Retinal Degenerative Diseases: Focus on CRISPR/Cas-Based Gene Editing. Front Neurosci 2020; 14:838. [PMID: 32973430 PMCID: PMC7468381 DOI: 10.3389/fnins.2020.00838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Inherited retinal diseases encompass a highly heterogenous group of disorders caused by a wide range of genetic variants and with diverse clinical symptoms that converge in the common trait of retinal degeneration. Indeed, mutations in over 270 genes have been associated with some form of retinal degenerative phenotype. Given the immune privileged status of the eye, cell replacement and gene augmentation therapies have been envisioned. While some of these approaches, such as delivery of genes through recombinant adeno-associated viral vectors, have been successfully tested in clinical trials, not all patients will benefit from current advancements due to their underlying genotype or phenotypic traits. Gene editing arises as an alternative therapeutic strategy seeking to correct mutations at the endogenous locus and rescue normal gene expression. Hence, gene editing technologies can in principle be tailored for treating retinal degeneration. Here we provide an overview of the different gene editing strategies that are being developed to overcome the challenges imposed by the post-mitotic nature of retinal cell types. We further discuss their advantages and drawbacks as well as the hurdles for their implementation in treating retinal diseases, which include the broad range of mutations and, in some instances, the size of the affected genes. Although therapeutic gene editing is at an early stage of development, it has the potential of enriching the portfolio of personalized molecular medicines directed at treating genetic diseases.
Collapse
Affiliation(s)
- Carmen Gallego
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
97
|
CRISPR-Cas9 system: A genome-editing tool with endless possibilities. J Biotechnol 2020; 319:36-53. [DOI: 10.1016/j.jbiotec.2020.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022]
|
98
|
Recent developments in regenerative ophthalmology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1450-1490. [PMID: 32621058 DOI: 10.1007/s11427-019-1684-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Regenerative medicine (RM) is one of the most promising disciplines for advancements in modern medicine, and regenerative ophthalmology (RO) is one of the most active fields of regenerative medicine. This review aims to provide an overview of regenerative ophthalmology, including the range of tools and materials being used, and to describe its application in ophthalmologic subspecialties, with the exception of surgical implantation of artificial tissues or organs (e.g., contact lens, artificial cornea, intraocular lens, artificial retina, and bionic eyes) due to space limitations. In addition, current challenges and limitations of regenerative ophthalmology are discussed and future directions are highlighted.
Collapse
|
99
|
Nielsen NS, Poulsen ET, Lukassen MV, Chao Shern C, Mogensen EH, Weberskov CE, DeDionisio L, Schauser L, Moore TC, Otzen DE, Hjortdal J, Enghild JJ. Biochemical mechanisms of aggregation in TGFBI-linked corneal dystrophies. Prog Retin Eye Res 2020; 77:100843. [DOI: 10.1016/j.preteyeres.2020.100843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
|
100
|
van Haasteren J, Li J, Scheideler OJ, Murthy N, Schaffer DV. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat Biotechnol 2020; 38:845-855. [PMID: 32601435 DOI: 10.1038/s41587-020-0565-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
Abstract
Genome editing has the potential to treat an extensive range of incurable monogenic and complex diseases. In particular, advances in sequence-specific nuclease technologies have dramatically accelerated the development of therapeutic genome editing strategies that are based on either the knockout of disease-causing genes or the repair of endogenous mutated genes. These technologies are progressing into human clinical trials. However, challenges remain before the therapeutic potential of genome editing can be fully realized. Delivery technologies that have serendipitously been developed over the past couple decades in the protein and nucleic acid delivery fields have been crucial to genome editing success to date, including adeno-associated viral and lentiviral vectors for gene therapy and lipid nanoparticle and other non-viral vectors for nucleic acid and protein delivery. However, the efficiency and tissue targeting capabilities of these vehicles must be further improved. In addition, the genome editing enzymes themselves need to be optimized, and challenges regarding their editing efficiency, specificity and immunogenicity must be addressed. Emerging protein engineering and synthetic chemistry approaches can offer solutions and enable the development of safe and efficacious clinical genome editing.
Collapse
Affiliation(s)
- Joost van Haasteren
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Jie Li
- Department of Bioengineering, University of California, Berkeley, CA, USA.,Innovative Genomics Institute (IGI), University of California, Berkeley, CA, USA
| | | | - Niren Murthy
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute (IGI), University of California, Berkeley, CA, USA.
| | - David V Schaffer
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute (IGI), University of California, Berkeley, CA, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA. .,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. .,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|