51
|
Ishii MN, Quinton M, Kamiguchi H. A highly sensitive and quantitative assay for dystrophin protein using Single Molecule Count Technology. Neuromuscul Disord 2023; 33:737-743. [PMID: 37666691 DOI: 10.1016/j.nmd.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle loss caused by mutations in dystrophin, resulting in decreased dystrophin levels. Dystrophin protein expression is a biomarker used to evaluate treatments that restore patient dystrophin levels. Currently, a semiquantitative assay using western blotting, which normalizes dystrophin expression to that of a control population, is used for regulatory filing. However, the current methods are limited in terms of sensitivity, quantification, and reproducibility. To address this, a highly sensitive and quantitative sandwich immune assay using Single Molecule Counting technology was established, with recombinant dystrophin protein as the calibrator. Capture and detection antibodies were selected to detect full-length dystrophin. Using this optimized assay, dystrophin levels in muscle samples from Myotonic Dystrophy (n = 9) and DMD (n = 8) subjects were 93.2 ± 31.9 (range: 49.4-145.3) and 14.5 ± 6.8 (range: 6.18-22.6) fmol/total protein mg, respectively. The lowest concentration of dystrophin measured in the DMD samples was 5 times higher than that in the lower limit of quantitation, a level not detected by western blotting. These data indicate that this assay accurately and sensitively measured dystrophin protein and may be useful in clinical trials assessing dystrophin restoration therapies.
Collapse
Affiliation(s)
- Misawa Niki Ishii
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 251-0012, 26-1, 2-chome, Higashimuraoka, Fujisawa, Kanagawa, Tokyo, Japan.
| | - Maria Quinton
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals, 40 Lansdowne Street, Cambridge MA 02139 USA
| | - Hidenori Kamiguchi
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 251-0012, 26-1, 2-chome, Higashimuraoka, Fujisawa, Kanagawa, Tokyo, Japan
| |
Collapse
|
52
|
Lek A, Wong B, Keeler A, Blackwood M, Ma K, Huang S, Sylvia K, Batista AR, Artinian R, Kokoski D, Parajuli S, Putra J, Carreon CK, Lidov H, Woodman K, Pajusalu S, Spinazzola JM, Gallagher T, LaRovere J, Balderson D, Black L, Sutton K, Horgan R, Lek M, Flotte T. Death after High-Dose rAAV9 Gene Therapy in a Patient with Duchenne's Muscular Dystrophy. N Engl J Med 2023; 389:1203-1210. [PMID: 37754285 DOI: 10.1056/nejmoa2307798] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
We treated a 27-year-old patient with Duchenne's muscular dystrophy (DMD) with recombinant adeno-associated virus (rAAV) serotype 9 containing dSaCas9 (i.e., "dead" Staphylococcus aureus Cas9, in which the Cas9 nuclease activity has been inactivated) fused to VP64; this transgene was designed to up-regulate cortical dystrophin as a custom CRISPR-transactivator therapy. The dose of rAAV used was 1×1014 vector genomes per kilogram of body weight. Mild cardiac dysfunction and pericardial effusion developed, followed by acute respiratory distress syndrome (ARDS) and cardiac arrest 6 days after transgene treatment; the patient died 2 days later. A postmortem examination showed severe diffuse alveolar damage. Expression of transgene in the liver was minimal, and there was no evidence of AAV serotype 9 antibodies or effector T-cell reactivity in the organs. These findings indicate that an innate immune reaction caused ARDS in a patient with advanced DMD treated with high-dose rAAV gene therapy. (Funded by Cure Rare Disease.).
Collapse
Affiliation(s)
- Angela Lek
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Brenda Wong
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Allison Keeler
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Meghan Blackwood
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Kaiyue Ma
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Shushu Huang
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Katelyn Sylvia
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - A Rita Batista
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Rebecca Artinian
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Danielle Kokoski
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Shestruma Parajuli
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Juan Putra
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - C Katte Carreon
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Hart Lidov
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Keryn Woodman
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Sander Pajusalu
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Janelle M Spinazzola
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Thomas Gallagher
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Joan LaRovere
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Diane Balderson
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Lauren Black
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Keith Sutton
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Richard Horgan
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Monkol Lek
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Terence Flotte
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| |
Collapse
|
53
|
Kioutchoukova IP, Foster DT, Thakkar RN, Foreman MA, Burgess BJ, Toms RM, Molina Valero EE, Lucke-Wold B. Neurologic orphan diseases: Emerging innovations and role for genetic treatments. World J Exp Med 2023; 13:59-74. [PMID: 37767543 PMCID: PMC10520757 DOI: 10.5493/wjem.v13.i4.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Orphan diseases are rare diseases that affect less than 200000 individuals within the United States. Most orphan diseases are of neurologic and genetic origin. With the current advances in technology, more funding has been devoted to developing therapeutic agents for patients with these conditions. In our review, we highlight emerging options for patients with neurologic orphan diseases, specifically including diseases resulting in muscular deterioration, epilepsy, seizures, neurodegenerative movement disorders, inhibited cognitive development, neuron deterioration, and tumors. After extensive literature review, gene therapy offers a promising route for the treatment of neurologic orphan diseases. The use of clustered regularly interspaced palindromic repeats/Cas9 has demonstrated positive results in experiments investigating its role in several diseases. Additionally, the use of adeno-associated viral vectors has shown improvement in survival, motor function, and developmental milestones, while also demonstrating reversal of sensory ataxia and cardiomyopathy in Friedreich ataxia patients. Antisense oligonucleotides have also been used in some neurologic orphan diseases with positive outcomes. Mammalian target of rapamycin inhibitors are currently being investigated and have reduced abnormal cell growth, proliferation, and angiogenesis. Emerging innovations and the role of genetic treatments open a new window of opportunity for the treatment of neurologic orphan diseases.
Collapse
Affiliation(s)
| | - Devon T Foster
- Florida International University Herbert Wertheim College of Medicine, Florida International University Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Rajvi N Thakkar
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Marco A Foreman
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Brandon J Burgess
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Rebecca M Toms
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
54
|
Le Guiner C, Xiao X, Larcher T, Lafoux A, Huchet C, Toumaniantz G, Adjali O, Anegon I, Remy S, Grieger J, Li J, Farrokhi V, Neubert H, Owens J, McIntyre M, Moullier P, Samulski RJ. Evaluation of an AAV9-mini-dystrophin gene therapy candidate in a rat model of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev 2023; 30:30-47. [PMID: 37746247 PMCID: PMC10512999 DOI: 10.1016/j.omtm.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/15/2023] [Indexed: 09/26/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease caused by loss-of-function mutations in the dystrophin gene and is characterized by muscle wasting and early mortality. Adeno-associated virus-mediated gene therapy is being investigated as a treatment for DMD. In the nonclinical study documented here, we determined the effective dose of fordadistrogene movaparvovec, a clinical candidate adeno-associated virus serotype 9 vector carrying a human mini-dystrophin transgene, after single intravenous injection in a dystrophin-deficient (DMDmdx) rat model of DMD. Overall, we found that transduction efficiency, number of muscle fibers expressing the human mini-dystrophin polypeptide, improvement of the skeletal and cardiac muscle tissue architecture, correction of muscle strength and fatigability, and improvement of diastolic and systolic cardiac function were directly correlated with the amount of vector administered. The effective dose was then tested in older DMDmdx rats with a more dystrophic phenotype similar to the pathology observed in older patients with DMD. Except for a less complete rescue of muscle function in the oldest cohort, fordadistrogene movaparvovec was also found to be therapeutically effective in older DMDmdx rats, suggesting that this product may be appropriate for evaluation in patients with DMD at all stages of disease.
Collapse
Affiliation(s)
- Caroline Le Guiner
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
| | - Xiao Xiao
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599-7352, USA
| | | | - Aude Lafoux
- Therassay Platform, Capacités, Nantes Université, 44007 Nantes, France
| | - Corinne Huchet
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
- Therassay Platform, Capacités, Nantes Université, 44007 Nantes, France
| | - Gilles Toumaniantz
- Therassay Platform, Capacités, Nantes Université, 44007 Nantes, France
- Nantes Université, CHU Nantes, CNRS, L’Institut du Thorax, 44007 Nantes, France
| | - Oumeya Adjali
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
| | - Ignacio Anegon
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, 44093 Nantes, France
| | - Séverine Remy
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, 44093 Nantes, France
| | - Josh Grieger
- Bamboo Therapeutics, Pfizer, Chapel Hill, NC 27514, USA
| | - Juan Li
- Gene Therapy Center, Eshelman School of Pharmacy DPMP, University of North Carolina, Chapel Hill, NC 27599-7352, USA
| | | | | | | | | | - Philippe Moullier
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599-7352, USA
| |
Collapse
|
55
|
Stephenson AA, Nicolau S, Vetter TA, Dufresne GP, Frair EC, Sarff JE, Wheeler GL, Kelly BJ, White P, Flanigan KM. CRISPR-Cas9 homology-independent targeted integration of exons 1-19 restores full-length dystrophin in mice. Mol Ther Methods Clin Dev 2023; 30:486-499. [PMID: 37706184 PMCID: PMC10495553 DOI: 10.1016/j.omtm.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
Duchenne muscular dystrophy is an X-linked disorder typically caused by out-of-frame mutations in the DMD gene. Most of these are deletions of one or more exons, which can theoretically be corrected through CRISPR-Cas9-mediated knockin. Homology-independent targeted integration is a mechanism for achieving such a knockin without reliance on homology-directed repair pathways, which are inactive in muscle. We designed a system based on insertion into intron 19 of a DNA fragment containing a pre-spliced mega-exon encoding DMD exons 1-19, along with the MHCK7 promoter, and delivered it via a pair of AAV9 vectors in mice carrying a Dmd exon 2 duplication. Maximal efficiency was achieved using a Cas9:donor adeno-associated virus (AAV) ratio of 1:5, with Cas9 under the control of the SPc5-12 promoter. This approach achieved editing of 1.4% of genomes in the heart, leading to 30% correction at the transcript level and restoration of 11% of normal dystrophin levels. Treatment efficacy was lower in skeletal muscles. Sequencing additionally revealed integration of fragmentary and recombined AAV genomes at the target site. These data provide proof of concept for a gene editing system that could restore full-length dystrophin in individuals carrying mutations upstream of intron 19, accounting for approximately 25% of Duchenne muscular dystrophy patients.
Collapse
Affiliation(s)
- Anthony A. Stephenson
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Stefan Nicolau
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Tatyana A. Vetter
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Gabrielle P. Dufresne
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Emma C. Frair
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Jessica E. Sarff
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Gregory L. Wheeler
- The Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Benjamin J. Kelly
- The Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Peter White
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
- The Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kevin M. Flanigan
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
56
|
Stirm M, Shashikadze B, Blutke A, Kemter E, Lange A, Stöckl JB, Jaudas F, Laane L, Kurome M, Keßler B, Zakhartchenko V, Bähr A, Klymiuk N, Nagashima H, Walter MC, Wurst W, Kupatt C, Fröhlich T, Wolf E. Systemic deletion of DMD exon 51 rescues clinically severe Duchenne muscular dystrophy in a pig model lacking DMD exon 52. Proc Natl Acad Sci U S A 2023; 120:e2301250120. [PMID: 37428903 PMCID: PMC10629550 DOI: 10.1073/pnas.2301250120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/10/2023] [Indexed: 07/12/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease caused by mutations in the DMD gene, leading to complete absence of dystrophin and progressive degeneration of skeletal musculature and myocardium. In DMD patients and in a corresponding pig model with a deletion of DMD exon 52 (DMDΔ52), expression of an internally shortened dystrophin can be achieved by skipping of DMD exon 51 to reframe the transcript. To predict the best possible outcome of this strategy, we generated DMDΔ51-52 pigs, additionally representing a model for Becker muscular dystrophy (BMD). DMDΔ51-52 skeletal muscle and myocardium samples stained positive for dystrophin and did not show the characteristic dystrophic alterations observed in DMDΔ52 pigs. Western blot analysis confirmed the presence of dystrophin in the skeletal muscle and myocardium of DMDΔ51-52 pigs and its absence in DMDΔ52 pigs. The proteome profile of skeletal muscle, which showed a large number of abundance alterations in DMDΔ52 vs. wild-type (WT) samples, was normalized in DMDΔ51-52 samples. Cardiac function at age 3.5 mo was significantly reduced in DMDΔ52 pigs (mean left ventricular ejection fraction 58.8% vs. 70.3% in WT) but completely rescued in DMDΔ51-52 pigs (72.3%), in line with normalization of the myocardial proteome profile. Our findings indicate that ubiquitous deletion of DMD exon 51 in DMDΔ52 pigs largely rescues the rapidly progressing, severe muscular dystrophy and the reduced cardiac function of this model. Long-term follow-up studies of DMDΔ51-52 pigs will show if they develop symptoms of the milder BMD.
Collapse
Affiliation(s)
- Michael Stirm
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich80539, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Andreas Lange
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Jan B. Stöckl
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
| | - Florian Jaudas
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Laeticia Laane
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Barbara Keßler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Andrea Bähr
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich81675, Germany
| | - Nikolai Klymiuk
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich81675, Germany
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki214-8571, Japan
| | - Maggie C. Walter
- Department of Neurology, Friedrich Baur Institute, LMU Munich, Munich80336, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg85674, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising85354, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich81675, Germany
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich81675, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer, LMU Munich, Munich81377, Germany
| |
Collapse
|
57
|
Stec MJ, Su Q, Adler C, Zhang L, Golann DR, Khan NP, Panagis L, Villalta SA, Ni M, Wei Y, Walls JR, Murphy AJ, Yancopoulos GD, Atwal GS, Kleiner S, Halasz G, Sleeman MW. A cellular and molecular spatial atlas of dystrophic muscle. Proc Natl Acad Sci U S A 2023; 120:e2221249120. [PMID: 37410813 PMCID: PMC10629561 DOI: 10.1073/pnas.2221249120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
Asynchronous skeletal muscle degeneration/regeneration is a hallmark feature of Duchenne muscular dystrophy (DMD); however, traditional -omics technologies that lack spatial context make it difficult to study the biological mechanisms of how asynchronous regeneration contributes to disease progression. Here, using the severely dystrophic D2-mdx mouse model, we generated a high-resolution cellular and molecular spatial atlas of dystrophic muscle by integrating spatial transcriptomics and single-cell RNAseq datasets. Unbiased clustering revealed nonuniform distribution of unique cell populations throughout D2-mdx muscle that were associated with multiple regenerative timepoints, demonstrating that this model faithfully recapitulates the asynchronous regeneration observed in human DMD muscle. By probing spatiotemporal gene expression signatures, we found that propagation of inflammatory and fibrotic signals from locally damaged areas contributes to widespread pathology and that querying expression signatures within discrete microenvironments can identify targetable pathways for DMD therapy. Overall, this spatial atlas of dystrophic muscle provides a valuable resource for studying DMD disease biology and therapeutic target discovery.
Collapse
Affiliation(s)
| | - Qi Su
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | - Lance Zhang
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | | | | | - S. Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA92697
- Institute for Immunology, University of California Irvine, Irvine, CA92697
- Department of Neurology, University of California Irvine, Irvine, CA92697
| | - Min Ni
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | - Yi Wei
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Bogle C, Colan SD, Miyamoto SD, Choudhry S, Baez-Hernandez N, Brickler MM, Feingold B, Lal AK, Lee TM, Canter CE, Lipshultz SE. Treatment Strategies for Cardiomyopathy in Children: A Scientific Statement From the American Heart Association. Circulation 2023; 148:174-195. [PMID: 37288568 DOI: 10.1161/cir.0000000000001151] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This scientific statement from the American Heart Association focuses on treatment strategies and modalities for cardiomyopathy (heart muscle disease) in children and serves as a companion scientific statement for the recent statement on the classification and diagnosis of cardiomyopathy in children. We propose that the foundation of treatment of pediatric cardiomyopathies is based on these principles applied as personalized therapy for children with cardiomyopathy: (1) identification of the specific cardiac pathophysiology; (2) determination of the root cause of the cardiomyopathy so that, if applicable, cause-specific treatment can occur (precision medicine); and (3) application of therapies based on the associated clinical milieu of the patient. These clinical milieus include patients at risk for developing cardiomyopathy (cardiomyopathy phenotype negative), asymptomatic patients with cardiomyopathy (phenotype positive), patients with symptomatic cardiomyopathy, and patients with end-stage cardiomyopathy. This scientific statement focuses primarily on the most frequent phenotypes, dilated and hypertrophic, that occur in children. Other less frequent cardiomyopathies, including left ventricular noncompaction, restrictive cardiomyopathy, and arrhythmogenic cardiomyopathy, are discussed in less detail. Suggestions are based on previous clinical and investigational experience, extrapolating therapies for cardiomyopathies in adults to children and noting the problems and challenges that have arisen in this experience. These likely underscore the increasingly apparent differences in pathogenesis and even pathophysiology in childhood cardiomyopathies compared with adult disease. These differences will likely affect the utility of some adult therapy strategies. Therefore, special emphasis has been placed on cause-specific therapies in children for prevention and attenuation of their cardiomyopathy in addition to symptomatic treatments. Current investigational strategies and treatments not in wide clinical practice, including future direction for investigational management strategies, trial designs, and collaborative networks, are also discussed because they have the potential to further refine and improve the health and outcomes of children with cardiomyopathy in the future.
Collapse
|
59
|
Happi Mbakam C, Tremblay JP. Gene therapy for Duchenne muscular dystrophy: an update on the latest clinical developments. Expert Rev Neurother 2023; 23:905-920. [PMID: 37602688 DOI: 10.1080/14737175.2023.2249607] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is one of the most severe and devastating neuromuscular hereditary diseases with a male newborn incidence of 20 000 cases each year. The disease caused by mutations (exon deletions, nonsense mutations, intra-exonic insertions or deletions, exon duplications, splice site defects, and deep intronic mutations) in the DMD gene, progressively leads to muscle wasting and loss of ambulation. This situation is painful for both patients and their families, calling for an emergent need for effective treatments. AREAS COVERED In this review, the authors describe the state of the gene therapy approach in clinical trials for DMD. This therapeutics included gene replacement, gene substitution, RNA-based therapeutics, readthrough mutation, and the CRISPR approach. EXPERT OPINION Only a few drug candidates have yet been granted conditional approval for the treatment of DMD. Most of these therapies have only a modest capability to restore the dystrophin or improve muscle function, suggesting an important unmet need in the development of DMD therapeutics. Complementary genes and cellular therapeutics need to be explored to both restore dystrophin, improve muscle function, and efficiently reconstitute the muscle fibers in the advanced stage of the disease.
Collapse
Affiliation(s)
- Cedric Happi Mbakam
- CHU de Québec research centre, Laval University, Québec, Canada
- Molecular Medicine Department, Faculty of Medicine, Laval University, Québec, Canada
| | - Jacques P Tremblay
- CHU de Québec research centre, Laval University, Québec, Canada
- Molecular Medicine Department, Faculty of Medicine, Laval University, Québec, Canada
| |
Collapse
|
60
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
61
|
Hamm SE, Yuan C, McQueen LF, Wallace MA, Zhang H, Arora A, Garafalo AM, McMillan RP, Lawlor MW, Prom MJ, Ott EM, Yan J, Addington AK, Morris CA, Gonzalez JP, Grange RW. Prolonged voluntary wheel running reveals unique adaptations in mdx mice treated with microdystrophin constructs ± the nNOS-binding site. Front Physiol 2023; 14:1166206. [PMID: 37435312 PMCID: PMC10330712 DOI: 10.3389/fphys.2023.1166206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/10/2023] [Indexed: 07/13/2023] Open
Abstract
We tested the effects of prolonged voluntary wheel running on the muscle function of mdx mice treated with one of two different microdystrophin constructs. At 7 weeks of age mdx mice were injected with a single dose of AAV9-CK8-microdystrophin with (gene therapy 1, GT1) or without (gene therapy 2, GT2) the nNOS-binding domain and were assigned to one of four gene therapy treated groups: mdxRGT1 (run, GT1), mdxGT1 (no run, GT1), or mdxRGT2 (run,GT2), mdxGT2 (no run, GT2). There were two mdx untreated groups injected with excipient: mdxR (run, no gene therapy) and mdx (no run, no gene therapy). A third no treatment group, Wildtype (WT) received no injection and did not run. mdxRGT1, mdxRGT2 and mdxR performed voluntary wheel running for 52 weeks; WT and remaining mdx groups were cage active. Robust expression of microdystrophin occurred in diaphragm, quadriceps, and heart muscles of all treated mice. Dystrophic muscle pathology was high in diaphragms of non-treated mdx and mdxR mice and improved in all treated groups. Endurance capacity was rescued by both voluntary wheel running and gene therapy alone, but their combination was most beneficial. All treated groups increased in vivo plantarflexor torque over both mdx and mdxR mice. mdx and mdxR mice displayed ∼3-fold lower diaphragm force and power compared to WT values. Treated groups demonstrated partial improvements in diaphragm force and power, with mdxRGT2 mice experiencing the greatest improvement at ∼60% of WT values. Evaluation of oxidative red quadriceps fibers revealed the greatest improvements in mitochondrial respiration in mdxRGT1 mice, reaching WT levels. Interestingly, mdxGT2 mice displayed diaphragm mitochondrial respiration values similar to WT but mdxRGT2 animals showed relative decreases compared to the no run group. Collectively, these data demonstrate that either microdystrophin construct combined with voluntary wheel running increased in vivo maximal muscle strength, power, and endurance. However, these data also highlighted important differences between the two microdystrophin constructs. GT1, with the nNOS-binding site, improved more markers of exercise-driven adaptations in metabolic enzyme activity of limb muscles, while GT2, without the nNOS-binding site, demonstrated greater protection of diaphragm strength after chronic voluntary endurance exercise but decreased mitochondrial respiration in the context of running.
Collapse
Affiliation(s)
- S. E. Hamm
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - C. Yuan
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - L. F. McQueen
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - M. A. Wallace
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - H. Zhang
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - A. Arora
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - A. M. Garafalo
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - R. P. McMillan
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - M. W. Lawlor
- Department of Pathology and Neuroscience Research Center, Medical College of Wisconsin and Diverge Translational Science Laboratory, Milwaukee, WI, United States
| | - M. J. Prom
- Department of Pathology and Neuroscience Research Center, Medical College of Wisconsin and Diverge Translational Science Laboratory, Milwaukee, WI, United States
| | - E. M. Ott
- Department of Pathology and Neuroscience Research Center, Medical College of Wisconsin and Diverge Translational Science Laboratory, Milwaukee, WI, United States
| | - J. Yan
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - A. K. Addington
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - C. A. Morris
- Solid Biosciences, Inc., Cambridge, MA, United States
| | | | - R. W. Grange
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
62
|
Mirouse V. Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex. Front Cell Dev Biol 2023; 11:1182524. [PMID: 37384252 PMCID: PMC10293626 DOI: 10.3389/fcell.2023.1182524] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
The Dystrophin-Associated Protein Complex (DAPC) is a well-defined and evolutionarily conserved complex in animals. DAPC interacts with the F-actin cytoskeleton via dystrophin, and with the extracellular matrix via the membrane protein dystroglycan. Probably for historical reasons that have linked its discovery to muscular dystrophies, DAPC function is often described as limited to muscle integrity maintenance by providing mechanical robustness, which implies strong cell-extracellular matrix adhesion properties. In this review, phylogenetic and functional data from different vertebrate and invertebrate models will be analyzed and compared to explore the molecular and cellular functions of DAPC, with a specific focus on dystrophin. These data reveals that the evolution paths of DAPC and muscle cells are not intrinsically linked and that many features of dystrophin protein domains have not been identified yet. DAPC adhesive properties also are discussed by reviewing the available evidence of common key features of adhesion complexes, such as complex clustering, force transmission, mechanosensitivity and mechanotransduction. Finally, the review highlights DAPC developmental roles in tissue morphogenesis and basement membrane (BM) assembly that may indicate adhesion-independent functions.
Collapse
Affiliation(s)
- Vincent Mirouse
- Institute of Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne-UMR CNRS 6293-INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
63
|
Ziegler A, Walter MC, Schoser BE. [Molecular therapies: present and future in neuromuscular diseases]. DER NERVENARZT 2023:10.1007/s00115-023-01495-3. [PMID: 37221259 DOI: 10.1007/s00115-023-01495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND The possibilities in the field of molecular therapies of neuromuscular diseases have rapidly developed in recent years. First compounds are already available in clinical practice and numerous other substances are in advanced phases of clinical trials. This article gives an exemplary overview of the current state of clinical research in molecular therapies of neuromuscular diseases. It also gives a view into the near future of the clinical application, including the challenges. DISCUSSION Using Duchenne muscular dystrophy (DMD) and myotubular myopathy as examples, the principles of gene addition in monogenetic skeletal muscle diseases, which are already manifested in childhood are described. In addition to initial successes, the challenges and setbacks hindering the approval and regular clinical application of further compounds are demonstrated. Furthermore, the state of current clinical research in Becker-Kiener muscular dystrophy (BMD) and the numerous forms of limb-girdle muscular dystrophy (LGMD) are summarized. Numerous new therapeutic approaches and a corresponding outlook are also shown for facioscapulohumeral muscular dystrophy (FSHD), Pompe disease, and myotonic dystrophy. CONCLUSION Clinical research in the field of molecular therapy of neuromuscular diseases is one of the pacesetters of modern precision medicine; however, challenges need to be seen, jointly addressed and overcome in the future.
Collapse
Affiliation(s)
- Andreas Ziegler
- Zentrum für Kinder- und Jugendmedizin Heidelberg, Sektion Neuropädiatrie und Stoffwechselmedizin, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland.
| | - Maggie C Walter
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, Universitätsklinikum München, LMU München, Ziemssenstr. 1, 80336, München, Deutschland
| | - Benedikt E Schoser
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, Universitätsklinikum München, LMU München, Ziemssenstr. 1, 80336, München, Deutschland
| |
Collapse
|
64
|
Egorova TV, Galkin II, Velyaev OA, Vassilieva SG, Savchenko IM, Loginov VA, Dzhenkova MA, Korshunova DS, Kozlova OS, Ivankov DN, Polikarpova AV. In-Frame Deletion of Dystrophin Exons 8-50 Results in DMD Phenotype. Int J Mol Sci 2023; 24:ijms24119117. [PMID: 37298068 DOI: 10.3390/ijms24119117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Mutations that prevent the production of proteins in the DMD gene cause Duchenne muscular dystrophy. Most frequently, these are deletions leading to reading-frame shift. The "reading-frame rule" states that deletions that preserve ORF result in a milder Becker muscular dystrophy. By removing several exons, new genome editing tools enable reading-frame restoration in DMD with the production of BMD-like dystrophins. However, not every truncated dystrophin with a significant internal loss functions properly. To determine the effectiveness of potential genome editing, each variant should be carefully studied in vitro or in vivo. In this study, we focused on the deletion of exons 8-50 as a potential reading-frame restoration option. Using the CRISPR-Cas9 tool, we created the novel mouse model DMDdel8-50, which has an in-frame deletion in the DMD gene. We compared DMDdel8-50 mice to C57Bl6/CBA background control mice and previously generated DMDdel8-34 KO mice. We discovered that the shortened protein was expressed and correctly localized on the sarcolemma. The truncated protein, on the other hand, was unable to function like a full-length dystrophin and prevent disease progression. On the basis of protein expression, histological examination, and physical assessment of the mice, we concluded that the deletion of exons 8-50 is an exception to the reading-frame rule.
Collapse
Affiliation(s)
- Tatiana V Egorova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| | - Ivan I Galkin
- Marlin Biotech LLC, Sochi 354340, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Oleg A Velyaev
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Svetlana G Vassilieva
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Irina M Savchenko
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Vyacheslav A Loginov
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Marina A Dzhenkova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Diana S Korshunova
- Core Facilities, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga S Kozlova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Dmitry N Ivankov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna V Polikarpova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| |
Collapse
|
65
|
Xiang YS, Hao GG. Biophysical characterization of adeno-associated virus capsid through the viral transduction life cycle. J Genet Eng Biotechnol 2023; 21:62. [PMID: 37195476 DOI: 10.1186/s43141-023-00518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
Adeno-associated virus (AAV) vectors have emerged as the leading delivery platforms for gene therapy. Throughout the life cycle of the virions, the capsid vector carries out diverse functions, ranging from cell surface receptor engagement, cellular entry, endosomal escape, nuclear import to new particle packaging, and assembly. Each of these steps is mediated by exquisite structure features of the viral capsid and its interaction with viral genome, Rep proteins, and cellular organelle and apparatus. In this brief review, we provide an overview of results from over a decade of extensive biophysical studies of the capsid employing various techniques. The remaining unaddressed questions and perspective are also discussed. The detailed understanding of the structure and function interplay would provide insight to the strategy for improving the efficacy and safety of the viral vectors.
Collapse
Affiliation(s)
| | - Gang Gary Hao
- Weston Biomedical Reviews, 65 Autumn Road, Weston, MA, 02493, USA.
| |
Collapse
|
66
|
Neto S, Mendes JP, Santos SBD, Solbrand A, Carrondo MJT, Peixoto C, Silva RJS. Efficient adeno-associated virus serotype 5 capture with affinity functionalized nanofiber adsorbents. Front Bioeng Biotechnol 2023; 11:1183974. [PMID: 37260828 PMCID: PMC10229133 DOI: 10.3389/fbioe.2023.1183974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Adeno-associated viruses (AAVs) are one of the most promising tools for gene therapy applications. These vectors are purified using affinity and ion exchange chromatography, typically using packed beds of resin adsorbents. This leads to diffusion and pressure drop limitations that affect process productivity. Due to their high surface area and porosity, electrospun nanofiber adsorbents offer mass transfer and flow rate advantages over conventional chromatographic media. The present work investigated the use of affinity cellulose-based nanofiber adsorbents for adeno-associated virus serotype 5 (AAV5) capture, evaluating dynamic binding capacity, pressure drop, and AAV5 recovery at residence times (RT) less than 5 s. The dynamic binding capacity was found to be residence time-dependent, but nevertheless higher than 1.0 × 1014 TP mL-1 (RT = 1.6 s), with a pressure drop variation of 0.14 MPa obtained after loading more than 2,000 column volumes of clarified AAV5 feedstock. The single affinity chromatography purification step using these new affinity adsorbents resulted in 80% virus recovery, with the removal of impurities comparable to that of bead-based affinity adsorbents. The high binding capacity, virus recovery and reduced pressure drop observed at residence times in the sub-minute range can potentially eliminate the need for prior concentration steps, thereby reducing the overall number of unit operations, process time and costs.
Collapse
Affiliation(s)
- Salomé Neto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João P. Mendes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo J. S. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
67
|
Hindi SM, Petrany MJ, Greenfeld E, Focke LC, Cramer AAW, Whitt MA, Khairallah RJ, Ward CW, Chamberlain JS, Podbilewicz B, Prasad V, Millay DP. Enveloped viruses pseudotyped with mammalian myogenic cell fusogens target skeletal muscle for gene delivery. Cell 2023; 186:2062-2077.e17. [PMID: 37075755 PMCID: PMC11181154 DOI: 10.1016/j.cell.2023.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 04/21/2023]
Abstract
Entry of enveloped viruses into cells is mediated by viral fusogenic proteins that drive membrane rearrangements needed for fusion between viral and target membranes. Skeletal muscle development also requires membrane fusion events between progenitor cells to form multinucleated myofibers. Myomaker and Myomerger are muscle-specific cell fusogens but do not structurally or functionally resemble classical viral fusogens. We asked whether the muscle fusogens could functionally substitute for viral fusogens, despite their structural distinctiveness, and fuse viruses to cells. We report that engineering of Myomaker and Myomerger on the membrane of enveloped viruses leads to specific transduction of skeletal muscle. We also demonstrate that locally and systemically injected virions pseudotyped with the muscle fusogens can deliver μDystrophin to skeletal muscle of a mouse model of Duchenne muscular dystrophy and alleviate pathology. Through harnessing the intrinsic properties of myogenic membranes, we establish a platform for delivery of therapeutic material to skeletal muscle.
Collapse
Affiliation(s)
- Sajedah M Hindi
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elena Greenfeld
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Leah C Focke
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alyssa A W Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael A Whitt
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffrey S Chamberlain
- Departments of Neurology, Medicine and Biochemistry, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
68
|
Cernisova V, Lu-Nguyen N, Trundle J, Herath S, Malerba A, Popplewell L. Microdystrophin Gene Addition Significantly Improves Muscle Functionality and Diaphragm Muscle Histopathology in a Fibrotic Mouse Model of Duchenne Muscular Dystrophy. Int J Mol Sci 2023; 24:ijms24098174. [PMID: 37175881 PMCID: PMC10179398 DOI: 10.3390/ijms24098174] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare neuromuscular disease affecting 1:5000 newborn males. No cure is currently available, but gene addition therapy, based on the adeno-associated viral (AAV) vector-mediated delivery of microdystrophin transgenes, is currently being tested in clinical trials. The muscles of DMD boys present significant fibrotic and adipogenic tissue deposition at the time the treatment starts. The presence of fibrosis not only worsens the disease pathology, but also diminishes the efficacy of gene therapy treatments. To gain an understanding of the efficacy of AAV-based microdystrophin gene addition in a relevant, fibrotic animal model of DMD, we conducted a systemic study in juvenile D2.mdx mice using the single intravenous administration of an AAV8 system expressing a sequence-optimized murine microdystrophin, named MD1 (AAV8-MD1). We mainly focused our study on the diaphragm, a respiratory muscle that is crucial for DMD pathology and that has never been analyzed after treatment with AAV-microdystrophin in this mouse model. We provide strong evidence here that the delivery of AAV8-MD1 provides significant improvement in body-wide muscle function. This is associated with the protection of the hindlimb muscle from contraction-induced damage and the prevention of fibrosis deposition in the diaphragm muscle. Our work corroborates the observation that the administration of gene therapy in DMD is beneficial in preventing muscle fibrosis.
Collapse
Affiliation(s)
- Viktorija Cernisova
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Jessica Trundle
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Shan Herath
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
69
|
Wasala LP, Watkins TB, Wasala NB, Burke MJ, Yue Y, Lai Y, Yao G, Duan D. The Implication of Hinge 1 and Hinge 4 in Micro-Dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Hum Gene Ther 2023; 34:459-470. [PMID: 36310439 PMCID: PMC10210230 DOI: 10.1089/hum.2022.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/15/2022] [Indexed: 11/04/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by dystrophin deficiency. Dystrophin consists of the amino terminus, central rod domain with 24 spectrin-like repeats and four hinges (H), cysteine-rich domain, and carboxyl terminus. Several highly abbreviated micro-dystrophins (μDys) are currently in clinical trials. They all carry H1 and H4. In this study, we investigated whether these two hinges are essential for μDy function in murine DMD models. Three otherwise identical μDys were engineered to contain H1 and/or H4 and were named H1/H4 (with both H1 and H4), ΔH1 (without H1), and ΔH4 (without H4). These constructs were packaged in adeno-associated virus serotype-9 and delivered to the tibialis anterior muscle of 3-month-old male mdx4cv mice (1E12 vector genome particles/muscle). Three months later, we detected equivalent μDys expression in total muscle lysate. However, only H1/H4 and ΔH1 showed correct sarcolemmal localization. ΔH4 mainly existed as sarcoplasmic aggregates. H1/H4 and ΔH1, but not ΔH4, fully restored the dystrophin-associated protein complex and significantly improved the specific muscle force. Eccentric contraction-induced force decline was best protected by H1/H4, followed by ΔH1, but not by ΔH4. Next, we compared H1/H4 and ΔH1 in 6-week-old male mdx mice by intravenous injection (1E13 vector genome particles/mouse). Four months postinjection, H1/H4 significantly outperformed ΔH1 in extensor digitorum longus muscle force measurements but two constructs yielded comparable electrocardiography improvements. We conclude that H4 is essential for μDys function and H1 facilitates force production. Our findings will help develop next-generation μDys gene therapy.
Collapse
Affiliation(s)
- Lakmini P. Wasala
- Department of Veterinary Pathobiology, College of Veterinary Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Thais B. Watkins
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Nalinda B. Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Matthew J. Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Yi Lai
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Gang Yao
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, Missouri, USA
| | - Dongsheng Duan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, The University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, Missouri, USA
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, College of Veterinary Medicine; The University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
70
|
Chemello F, Olson EN, Bassel-Duby R. CRISPR-Editing Therapy for Duchenne Muscular Dystrophy. Hum Gene Ther 2023; 34:379-387. [PMID: 37060194 PMCID: PMC10210224 DOI: 10.1089/hum.2023.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 04/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating genetic disorder that results in progressive muscle degeneration and premature death. DMD is caused by mutations in the gene encoding dystrophin protein, a membrane-associated protein required for maintenance of muscle structure and function. Although the genetic mutations causing the disease are well known, no curative therapies have been developed to date. The advent of genome-editing technologies provides new opportunities to correct the underlying mutations responsible for DMD. These mutations have been successfully corrected in human cells, mice, and large animal models through different strategies based on CRISPR-Cas9 gene editing. Ideally, CRISPR-editing could offer a one-time treatment for DMD by correcting the genetic mutations and enabling normal expression of the repaired gene. However, numerous challenges remain to be addressed, including optimization of gene editing, delivery of gene-editing components to all the muscles of the body, and the suppression of possible immune responses to the CRISPR-editing therapy. This review provides an overview of the recent advances toward CRISPR-editing therapy for DMD and discusses the opportunities and the remaining challenges in the path to clinical translation.
Collapse
Affiliation(s)
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
71
|
Wasala NB, Yue Y, Hu B, Shin JH, Srivastava A, Yao G, Duan D. Lifelong Outcomes of Systemic Adeno-Associated Virus Micro-Dystrophin Gene Therapy in a Murine Duchenne Muscular Dystrophy Model. Hum Gene Ther 2023; 34:449-458. [PMID: 36515166 PMCID: PMC10210228 DOI: 10.1089/hum.2022.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Adeno-associated virus (AAV)-mediated systemic micro-dystrophin (μDys) therapy is currently in clinical trials. The hope is to permanently improve the life quality of Duchenne muscular dystrophy (DMD) patients. Numerous preclinical studies have been conducted to support these trials. However, none examined whether a single therapy at a young age can lead to lifelong disease amelioration. To address this critical question, we injected 1 × 1013 vg particles/mouse of an AAV serotype-9 μDys vector to 3-month-old mdx mice through the tail vein. Therapeutic outcomes were evaluated at the age of 11 months (adulthood, 8 months postinjection) and 21 months (terminal age, 18 months postinjection). Immunostaining and Western blot showed saturated supraphysiological levels of μDys expression in skeletal muscle and heart till the end of the study. Treatment significantly improved grip force and treadmill running, and significantly reduced the serum creatine kinase level at both time points. Since cardiac death is a major threat in late-stage patients, we evaluated cardiac electrophysiology and hemodynamics by ECG and the closed-chest cardiac catheter assay, respectively. Significant improvements were observed in these assays. Importantly, many ECG and hemodynamic parameters (heart rate, PR interval, QRS duration, QTc interval, end-diastolic/systolic volume, dP/dt max and min, max pressure, and ejection fraction) were completely normalized at 21 months of age. Our results have provided direct evidence that a single systemic AAV μDys therapy has the potential to provide lifelong benefits in the murine DMD model.
Collapse
Affiliation(s)
- Nalinda B. Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Bryan Hu
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Jin-Hong Shin
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Child Health Research Institute, Department of Pediatrics, Department of Molecular Genetics and Microbiology, The University of Florida College of Medicine, Gainesville, Florida, USA
| | - Gang Yao
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, Missouri, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, Missouri, USA
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
72
|
West C, Federspiel J, Rogers K, Khatri A, Rao-Dayton S, Fernandez Ocana M, Lim S, D'Antona AM, Casinghino S, Somanathan S. Complement activation by AAV-neutralizing antibody complexes. Hum Gene Ther 2023. [PMID: 37082966 DOI: 10.1089/hum.2023.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Treatment of monogenetic disorders using adeno-associated viral vectors (AAV) is an area of intense interest. AAV is a human pathogen and pre-existing capsid antibodies are prevalent in the population posing a challenge to safety and efficacy of AAV-mediated gene therapies. Here we investigated the risk of AAV-mediated complement activation when sera from a cohort of human donors was exposed to AAV9 capsid. Seropositive donor sera carrying neutralizing antibodies from a previous environmental exposure activated complement when admixed with AAV9 capsids and complement-activation was associated with donors who had higher levels of ant-AAV IgG1 antibodies. These findings were consistent with Mass spectrometry analysis that identified increased binding of immunoglobulins and complement factors when AAV9 capsids were admixed with seropositive sera. Finally, complement activation was abrogated after IgG-depletion using affinity columns or serum pre-treatment with an IgG degrading enzyme. Overall, these results demonstrate an important role of pre-existing neutralizing antibodies in activating complement; a risk that can be mitigated by employing adequate immunosuppression strategies when dosing seropositive patients with vector.
Collapse
Affiliation(s)
- Cara West
- Pfizer Inc, 2253, Rare Diseases Research Unit, Cambridge, Massachusetts, United States;
| | - Joel Federspiel
- Pfizer Inc, 2253, Drug Safety Research and Development, Andover, Massachusetts, United States;
| | - Kara Rogers
- Pfizer Inc, 2253, Drug Safety Research & Development, Groton, Connecticut, United States;
| | - Arpana Khatri
- Pfizer Inc, 2253, Rare Disease Research Unit, Cambridge, Massachusetts, United States;
| | - Sheila Rao-Dayton
- Pfizer Inc, 2253, Biomedicine Design, Morrisville, North Carolina, United States;
| | - Mireia Fernandez Ocana
- Pfizer Inc, 2253, Drug Safety Research and Development, Andover, Massachusetts, United States;
| | - Sean Lim
- Pfizer Inc, 2253, Biomedicine design, Cambridge, Massachusetts, United States;
| | | | - Sandra Casinghino
- Pfizer Inc, 2253, Drug Safety Research & Development, Groton, Connecticut, United States;
| | | |
Collapse
|
73
|
Lillback V, Savarese M, Sandholm N, Hackman P, Udd B. Long-term favorable prognosis in late onset dominant distal titinopathy: Tibial muscular dystrophy. Eur J Neurol 2023; 30:1080-1088. [PMID: 36692225 DOI: 10.1111/ene.15688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE Tibial muscular dystrophy (TMD) is a dominant late onset distal titinopathy. It was first described in Finnish patients 3 decades ago. TMD patients with several other TTN mutations occur in many European populations. In this retrospective study, we were able to obtain longitudinal follow-up data of the disease progression over 15 years in 137 TMD patients. METHODS We retrieved clinical data retrospectively from three examinations spanning a period of 15 years. The data were analyzed in R. Frequencies, percentages, and median values were used to describe data. Probability values were determined with the chi-squared test. RESULTS In the cohort, the first symptoms were walking difficulties (97.8%) and weakness in distal lower limbs (98.5%). The progression of the weakness in distal lower limbs was moderate, and in the proximal lower limbs and proximal upper limbs it was mild. The distal upper limbs were not affected. Magnetic resonance imaging results indicated fatty degeneration preferentially in lower leg anterior muscles, gluteus minimus, and hamstring muscles. Serum creatine kinase values in the cohort were mostly normal (40.7%) or mildly elevated (53.7%). The data suggest that 50% of patients need walking aids by the age of 88 years. CONCLUSIONS Despite individual variability of severity, the overall disability due to walking difficulties and upper limb weakness remained moderate even at very advanced ages, and cardiomyopathy did not develop due to the titin defect alone. The acquired results promote the correct identification of TMD, and the obtained trajectories of disease evolution can be used as natural history data for any therapeutic intervention.
Collapse
Affiliation(s)
- Victoria Lillback
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
| | | | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
74
|
Hindi SM, Petrany MJ, Greenfeld E, Focke LC, Cramer AA, Whitt MA, Prasad V, Chamberlain JS, Podbilewicz B, Millay DP. Enveloped viruses pseudotyped with mammalian myogenic cell fusogens target skeletal muscle for gene delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533157. [PMID: 36993357 PMCID: PMC10055243 DOI: 10.1101/2023.03.17.533157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Entry of enveloped viruses into cells is mediated by fusogenic proteins that form a complex between membranes to drive rearrangements needed for fusion. Skeletal muscle development also requires membrane fusion events between progenitor cells to form multinucleated myofibers. Myomaker and Myomerger are muscle-specific cell fusogens, but do not structurally or functionally resemble classical viral fusogens. We asked if the muscle fusogens could functionally substitute for viral fusogens, despite their structural distinctiveness, and fuse viruses to cells. We report that engineering of Myomaker and Myomerger on the membrane of enveloped viruses leads to specific transduction of skeletal muscle. We also demonstrate that locally and systemically injected virions pseudotyped with the muscle fusogens can deliver micro-Dystrophin (μDys) to skeletal muscle of a mouse model of Duchenne muscular dystrophy. Through harnessing the intrinsic properties of myogenic membranes, we establish a platform for delivery of therapeutic material to skeletal muscle.
Collapse
Affiliation(s)
- Sajedah M. Hindi
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Michael J. Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Elena Greenfeld
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Leah C. Focke
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Alyssa A.W. Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Michael A. Whitt
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey S. Chamberlain
- Departments of Neurology, Medicine and Biochemistry, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
75
|
Ishibashi Y, Sung CYW, Grati M, Chien W. Immune responses in the mammalian inner ear and their implications for AAV-mediated inner ear gene therapy. Hear Res 2023; 432:108735. [PMID: 36965335 DOI: 10.1016/j.heares.2023.108735] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/13/2023]
Abstract
Adeno-associated virus (AAV)-mediated inner ear gene therapy is a promising treatment option for hearing loss and dizziness. Several studies have shown that AAV-mediated inner ear gene therapy can be applied to various mouse models of hereditary hearing loss to improve their auditory function. Despite the increase in AAV-based animal and clinical studies aiming to rescue auditory and vestibular functions, little is currently known about the host immune responses to AAV in the mammalian inner ear. It has been reported that the host immune response plays an important role in the safety and efficacy of viral-mediated gene therapy. Therefore, in order for AAV-mediated gene therapy to be successfully and safely translated into patients with hearing loss and dizziness, a better understanding of the host immune responses to AAV in the inner ear is critical. In this review, we summarize the current knowledge on host immune responses to AAV-mediated gene therapy in the mammalian inner ear and other organ systems. We also outline the areas of research that are critical for ensuring the safety and efficacy of AAV-mediated inner ear gene therapy in future clinical and translational studies.
Collapse
Affiliation(s)
- Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA
| | - Wade Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
76
|
Piepho AB, Lowe J, Cumby LR, Dorn LE, Lake DM, Rastogi N, Gertzen MD, Sturgill SL, Odom GL, Ziolo MT, Accornero F, Chamberlain JS, Rafael-Fortney JA. Micro-dystrophin gene therapy demonstrates long-term cardiac efficacy in a severe Duchenne muscular dystrophy model. Mol Ther Methods Clin Dev 2023; 28:344-354. [PMID: 36874243 PMCID: PMC9981810 DOI: 10.1016/j.omtm.2023.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Micro-dystrophin gene replacement therapies for Duchenne muscular dystrophy (DMD) are currently in clinical trials, but have not been thoroughly investigated for their efficacy on cardiomyopathy progression to heart failure. We previously validated Fiona/dystrophin-utrophin-deficient (dko) mice as a DMD cardiomyopathy model that progresses to reduced ejection fraction indicative of heart failure. Adeno-associated viral (AAV) vector delivery of an early generation micro-dystrophin prevented cardiac pathology and functional decline through 1 year of age in this new model. We now show that gene therapy using a micro-dystrophin optimized for skeletal muscle efficacy (AAV-μDys5), and which is currently in a clinical trial, is able to fully prevent cardiac pathology and cardiac strain abnormalities and maintain normal (>45%) ejection fraction through 18 months of age in Fiona/dko mice. Early treatment with AAV-μDys5 prevents inflammation and fibrosis in Fiona/dko hearts. Collagen in cardiac fibrotic scars becomes more tightly packed from 12 to 18 months in Fiona/dko mice, but the area of fibrosis containing tenascin C does not change. Increased tight collagen correlates with unexpected improvements in Fiona/dko whole-heart function that maintain impaired cardiac strain and strain rate. This study supports micro-dystrophin gene therapy as a promising intervention for preventing DMD cardiomyopathy progression.
Collapse
Affiliation(s)
- Arden B. Piepho
- Department of Physiology & Cell Biology and Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jeovanna Lowe
- Department of Physiology & Cell Biology and Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Laurel R. Cumby
- Department of Physiology & Cell Biology and Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Lisa E. Dorn
- Department of Physiology & Cell Biology and Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Dana M. Lake
- Department of Physiology & Cell Biology and Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Neha Rastogi
- Department of Physiology & Cell Biology and Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Megan D. Gertzen
- Department of Physiology & Cell Biology and Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Sarah L. Sturgill
- Department of Physiology & Cell Biology and Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Guy L. Odom
- Department of Neurology and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, WA 98109, USA
| | - Mark T. Ziolo
- Department of Physiology & Cell Biology and Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Federica Accornero
- Department of Physiology & Cell Biology and Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, WA 98109, USA
| | - Jill A. Rafael-Fortney
- Department of Physiology & Cell Biology and Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
77
|
Padmaswari MH, Agrawal S, Jia MS, Ivy A, Maxenberger DA, Burcham LA, Nelson CE. Delivery challenges for CRISPR-Cas9 genome editing for Duchenne muscular dystrophy. BIOPHYSICS REVIEWS 2023; 4:011307. [PMID: 36864908 PMCID: PMC9969352 DOI: 10.1063/5.0131452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Duchene muscular dystrophy (DMD) is an X-linked neuromuscular disorder that affects about one in every 5000 live male births. DMD is caused by mutations in the gene that codes for dystrophin, which is required for muscle membrane stabilization. The loss of functional dystrophin causes muscle degradation that leads to weakness, loss of ambulation, cardiac and respiratory complications, and eventually, premature death. Therapies to treat DMD have advanced in the past decade, with treatments in clinical trials and four exon-skipping drugs receiving conditional Food and Drug Administration approval. However, to date, no treatment has provided long-term correction. Gene editing has emerged as a promising approach to treating DMD. There is a wide range of tools, including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases, and, most notably, RNA-guided enzymes from the bacterial adaptive immune system clustered regularly interspaced short palindromic repeats (CRISPR). Although challenges in using CRISPR for gene therapy in humans still abound, including safety and efficiency of delivery, the future for CRISPR gene editing for DMD is promising. This review will summarize the progress in CRISPR gene editing for DMD including key summaries of current approaches, delivery methodologies, and the challenges that gene editing still faces as well as prospective solutions.
Collapse
Affiliation(s)
| | - Shilpi Agrawal
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Mary S. Jia
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Allie Ivy
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Daniel A. Maxenberger
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Landon A. Burcham
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | |
Collapse
|
78
|
Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023; 12:785. [PMID: 36899921 PMCID: PMC10000783 DOI: 10.3390/cells12050785] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.
Collapse
Affiliation(s)
- Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
79
|
Wang Q, Zhao J, Chen H, Zhou J, Chen A, Zhang J, Wang Y, Mao Z, Wang J, Qiu X, Chen Y, Wang R, Zhang Y, Miao D, Jin J. Bmi-1 Overexpression Improves Sarcopenia Induced by 1,25(OH) 2 D 3 Deficiency and Downregulates GATA4-Dependent Rela Transcription. J Bone Miner Res 2023; 38:427-442. [PMID: 36625422 DOI: 10.1002/jbmr.4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Sarcopenia increases with age, and an underlying mechanism needs to be determined to help with designing more effective treatments. This study aimed to determine whether 1,25(OH)2 D3 deficiency could cause cellular senescence and a senescence-associated secretory phenotype (SASP) in skeletal muscle cells to induce sarcopenia, whether GATA4 could be upregulated by 1,25(OH)2 D3 deficiency to promote SASP, and whether Bmi-1 reduces the expression of GATA4 and GATA4-dependent SASP induced by 1,25(OH)2 D3 deficiency in skeletal muscle cells. Bioinformatics analyses with RNA sequencing data in skeletal muscle from physiologically aged and young mice were conducted. Skeletal muscles from 2-month-old young and 2-year-old physiologically aged wild-type (WT) mice and 8-week-old WT, Bmi-1 mesenchymal transgene (Bmi-1Tg ), Cyp27b1 homozygous (Cyp27b1-/- ), and Bmi-1Tg Cyp27b1-/- mice were observed for grip strength, cell senescence, DNA damage, and NF-κB-mediated SASP signaling of skeletal muscle. We found that muscle-derived Bmi-1 and vitamin D receptor (VDR) decreased with physiological aging, and DNA damage and GATA4-dependent SASP activation led to sarcopenia. Furthermore, 1,25(OH)2 D3 deficiency promoted DNA damage-induced GATA4 accumulation in muscles. GATA4 upregulated Rela at the region from -1448 to -1412 bp at the transcriptional level to cause NF-κB-dependent SASP for aggravating cell senescence and muscular dysfunction and sarcopenia. Bmi-1 overexpression promoted the ubiquitination and degradation of GATA4 by binding RING1B, which prevented cell senescence, SASP, and dysfunctional muscle, and improved sarcopenia induced by 1,25(OH)2 D3 deficiency. Thus, Bmi-1 overexpression improves sarcopenia induced by 1,25(OH)2 D3 deficiency, downregulates GATA4-dependent Rela transcription, and sequentially inhibits GATA4-dependent SASP in muscle cells. Therefore, Bmi-1 overexpression could be used for translational gene therapy for the ubiquitination of GATA4 and prevention of sarcopenia. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Qiuyi Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyu Zhao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyun Chen
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Medical School of Nanjing University, Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Jiawen Zhou
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ao Chen
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin'ge Zhang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyuan Mao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiachen Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuehan Qiu
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yutong Chen
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongjie Zhang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dengshun Miao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
80
|
Khan MW, Raza SA, Raza M, Rogers E, Riel-Romero RMS. Coexistence of a Heterozygous Caveolin-3 Deletion and a Novel Dystrophin Gene Mutation in a Duchenne Muscular Dystrophy Patient. Cureus 2023; 15:e34704. [PMID: 36909082 PMCID: PMC9995560 DOI: 10.7759/cureus.34704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Inherited muscular abnormalities are debilitating disorders that greatly diminish the quality of life in affected individuals. Mutations in proteins such as dystrophin and caveolin, which together with other proteins form structural connections between the cytoskeleton and the extracellular matrix, are frequently the culprit of muscular dystrophies. In this case report, we describe a patient with a novel pathogenic dystrophin mutation co-existing with a caveolin-3 deletion. While genetically composed of this unique combination, the patient phenotypically presented with a primary clinical manifestation of Duchenne muscular dystrophy (DMD) in contrast to other cases of dual mutations in dystrophin and dystrophin-associated proteins.
Collapse
Affiliation(s)
| | - Syed Ali Raza
- Neurology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Madiha Raza
- Neurology, Ziauddin University, Karachi, PAK
| | - Eli Rogers
- Neurology, University of Rochester, Rochester, USA
| | | |
Collapse
|
81
|
Engelbeen S, Pasteuning-Vuhman S, Boertje-van der Meulen J, Parmar R, Charisse K, Sepp-Lorenzino L, Manoharan M, Aartsma-Rus A, van Putten M. Efficient Downregulation of Alk4 in Skeletal Muscle After Systemic Treatment with Conjugated siRNAs in a Mouse Model for Duchenne Muscular Dystrophy. Nucleic Acid Ther 2023; 33:26-34. [PMID: 36269327 PMCID: PMC9940804 DOI: 10.1089/nat.2022.0021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Downregulation of genes involved in the secondary pathology of Duchenne muscular dystrophy, for example, inflammation, fibrosis, and adiposis, is an interesting approach to ameliorate degeneration of muscle and replacement by fibrotic and adiposis tissue. Small interfering RNAs (siRNAs) are able to downregulate target genes, however, delivery of siRNAs to skeletal muscle still remains a challenge. We investigated delivery of fully chemically modified, cholesterol-conjugated siRNAs targeting Alk4, a nontherapeutic target that is expressed highly in muscle. We observed that a single intravenous or intraperitoneal (IP) injection of 10 mg/kg resulted in significant downregulation of Alk4 mRNA expression in skeletal muscles in both wild-type and mdx mice. Treatment with multiple IP injections of 10 mg/kg led to an overall reduction of Alk4 expression, reaching significance in tibialis anterior (39.7% ± 6.2%), diaphragm (32.7% ± 5.8%), and liver (41.3% ± 29.9%) in mdx mice. Doubling of the siRNA dose did not further increase mRNA silencing in muscles of mdx mice. The chemically modified conjugated siRNAs used in this study are very promising for delivery to both nondystrophic and dystrophic muscles and could have major implications for treatment of muscular dystrophy pathology.
Collapse
Affiliation(s)
- Sarah Engelbeen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Rubina Parmar
- Alnalym Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | | | | | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Address correspondence to: Maaike van Putten, PhD, Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| |
Collapse
|
82
|
Filonova G, Aartsma-Rus A. Next steps for the optimization of exon therapy for Duchenne muscular dystrophy. Expert Opin Biol Ther 2023; 23:133-143. [PMID: 36655939 DOI: 10.1080/14712598.2023.2169070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION It is established that the exon-skipping approach can restore dystrophin in Duchenne muscular dystrophy (DMD) patients. However, dystrophin restoration levels are low, and the field is evolving to provide solutions for improved exon skipping. DMD is a neuromuscular disorder associated with chronic muscle tissue loss attributed to the lack of dystrophin, which causes muscle inflammation, fibrosis formation, and impaired regeneration. Currently, four antisense oligonucleotides (AONs) based on phosphorodiamidate morpholino oligomer (PMO) chemistry are approved by US Food and Drug Administration for exon skipping therapy of eligible DMD patients. AREAS COVERED This review describes a preclinical and clinical experience with approved and newly developed AONs for DMD, outlines efforts that have been done to enhance AON efficiency, reviews challenges of clinical trials, and summarizes the current state of the exon skipping approach in the DMD field. EXPERT OPINION The exon skipping approach for DMD is under development, and several chemical modifications with improved properties are under (pre)-clinical investigation. Despite existing advantages of these modifications, their safety and effectiveness have to be examined in clinical trials, which are planned or ongoing. Furthermore, we propose clinical settings using natural history controls to facilitate studying the functional effect of the therapy.
Collapse
Affiliation(s)
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
83
|
Wijekoon N, Gonawala L, Ratnayake P, Sirisena D, Gunasekara H, Dissanayake A, Senanayake S, Keshavaraj A, Hathout Y, Steinbusch HW, Mohan C, Dalal A, Hoffman E, D de Silva K. Gene therapy for selected neuromuscular and trinucleotide repeat disorders - An insight to subsume South Asia for multicenter clinical trials. IBRO Neurosci Rep 2023; 14:146-153. [PMID: 36819775 PMCID: PMC9931913 DOI: 10.1016/j.ibneur.2023.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Background In this article, the authors discuss how they utilized the genetic mutation data in Sri Lankan Duchenne muscular dystrophy (DMD), Spinal muscular atrophy (SMA), Spinocerebellar ataxia (SCA) and Huntington's disease (HD) patients and compare the available literature from South Asian countries to identifying potential candidates for available gene therapy for DMD, SMA, SCA and HD patients. Methods Rare disease patients (n = 623) with the characteristic clinical findings suspected of HD, SCA, SMA and Muscular Dystrophy were genetically confirmed using Multiplex Ligation Dependent Probe Amplification (MLPA), and single plex PCR. A survey was conducted in the "Wiley database on Gene Therapy Trials Worldwide" to identify DMD, SMA, SCA, and HD gene therapy clinical trials performed worldwide up to April 2021. In order to identify candidates for gene therapy in other neighboring countries we compared our findings with available literature from India and Pakistan which has utilized the same molecular diagnostic protocol to our study. Results From the overall cohort of 623 rare disease patients with the characteristic clinical findings suspected of HD, SCA, SMA and Muscular Dystrophy, n = 343 (55%) [Muscular Dystrophy- 65%; (DMD-139, Becker Muscular Dystrophy -BMD-11), SCA type 1-3-53% (SCA1-61,SCA2- 23, SCA3- 39), HD- 52% (45) and SMA- 34% (22)] patients were positive for molecular diagnostics by MLPA and single plex PCR. A total of 147 patients in Sri Lanka amenable to available gene therapy; [DMD-83, SMA-15 and HD-49] were identified. A comparison of Sri Lankan finding with available literature from India and Pakistan identified a total of 1257 patients [DMD-1076, SMA- 57, and HD-124] from these three South Asian Countries as amenable for existing gene therapy trials. DMD, SMA, and HD gene therapy clinical trials (113 studies) performed worldwide up to April 2021 were concentrated mostly (99%) in High Income Countries (HIC) and Upper Middle-Income Countries (UMIC). However, studies on the potential use of anti-sense oligonucleotides (ASO) for treatment of SCAs have yet to reach clinical trials. Conclusion Most genetic therapies for neurodegenerative and neuromuscular disorders have been evaluated for efficacy primarily in Western populations. No multicenter gene therapy clinical trial sites for DMD, SMA and HD in the South Asian region, leading to lack of knowledge on the safety and efficacy of such personalized therapies in other populations, including South Asians. By fostering collaboration between researchers, clinicians, patient advocacy groups, government and industry in gene therapy initiatives for the inherited-diseases community in the developing world would link the Global North and Global South and breathe life into the motto "Together we can make a difference".
Collapse
Key Words
- BMD, Becker muscular dystrophy
- Bio Bank
- DMD, Duchenne muscular dystrophy
- Developing Countries
- Duchenne Muscular Dystrophy
- EMA, European Medical Agency
- EMQN, European Molecular Quality Genetics Network
- FDA, U. S. Food and Drug Administration
- HD, Huntington’s disease
- HIC, High Income Countries
- Huntington’s Disease
- Indian Sub-continent
- MLPA, Multiplex Ligation Dependent Probe Amplification
- Neurogenetic Disorders
- SCA, Spinocerebellar ataxia
- SMA, Spinal muscular atrophy
- Spinal Muscular Atrophy
- Spinocerebellar Ataxia
- UMIC, Upper Middle Income Countries
- WTO, World Trade Organization
Collapse
Affiliation(s)
- Nalaka Wijekoon
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, University of Sri Jayewardenepura, Nugegoda, Sri Lanka,School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, the Netherlands,EURON - European Graduate School of Neuroscience, the Netherlands
| | - Lakmal Gonawala
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, University of Sri Jayewardenepura, Nugegoda, Sri Lanka,School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, the Netherlands,EURON - European Graduate School of Neuroscience, the Netherlands
| | | | | | | | | | | | | | - Yetrib Hathout
- Pharmaceutical Sciences Department, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, USA
| | - Harry W.M. Steinbusch
- School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, the Netherlands,EURON - European Graduate School of Neuroscience, the Netherlands,Dept. of Brain & Cognitive Sciences, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Chandra Mohan
- Department of Bioengineering, University of Houston, Houston, TX, USA
| | - Ashwin Dalal
- Diagnostics Division, Center for DNA Fingerprinting and Diagnostics, India
| | - Eric Hoffman
- Pharmaceutical Sciences Department, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, USA
| | - K.Ranil D de Silva
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, University of Sri Jayewardenepura, Nugegoda, Sri Lanka,EURON - European Graduate School of Neuroscience, the Netherlands,Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka,Corresponding author at: Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka.
| |
Collapse
|
84
|
TRIM72 Alleviates Muscle Inflammation in mdx Mice via Promoting Mitophagy-Mediated NLRP3 Inflammasome Inactivation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8408574. [PMID: 36713032 PMCID: PMC9876702 DOI: 10.1155/2023/8408574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
Chronic muscle inflammation exacerbates the pathogenesis of Duchenne muscular dystrophy (DMD), which is characterized by progressive muscle degeneration and weakness. NLRP3 (nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3) inflammasome plays a key role in the inflammatory process, and its abnormal activation leads to a variety of inflammatory or immune diseases. TRIM72 (MG53) is a protective myokine for tissue repair and regeneration. However, little is known about the potential impact of TRIM72 in the crosstalk between mitophagy and inflammatory process of DMD. Here, 10-week-old male mdx mice were injected intramuscularly with adeno-associated virus (AAV-TRIM72) to overexpress TRIM72 protein for 6 weeks. Then, skeletal muscle samples were collected, and relevant parameters were measured by histopathological analysis and molecular biology techniques. C2C12 cell line was transfected with lentivirus (LV-TRIM72) to overexpress or siRNA (si-TRIM72) to suppress the TRIM72 expression for the following experiment. Our data firstly showed that the TRIM72 expression was decreased in skeletal muscles of mdx mice. Then, we observed the increased NLRP3 inflammasome and impaired mitophagy in mdx mice compared with wild type mice. In mdx mice, administration of AAV-TRIM72 alleviated the accumulation of NLRP3 inflammasome and the consequent IL-18 and IL1β maturation by inducing autophagy, while this protective effect was reversed by chloroquine. Mitochondrial reactive oxygen species (mtROS), as a recognized activator for NLRP3 inflammasome, was attenuated by TRIM72 through the induction of mitophagy in C2C12 cells. Additionally, we proposed that the TRIM72 overexpression might promote mitophagy through both the early stage by PI3K-AKT pathway and the late stage by autolysosome fusion. In conclusion, the current study suggests that TRIM72 prevents DMD inflammation via decreasing NLRP3 inflammasomes and enhancing mitophagy. Collectively, our study provides insight into TRIM72 as a promising target for therapeutic intervention for DMD.
Collapse
|
85
|
Millozzi F, Papait A, Bouché M, Parolini O, Palacios D. Nano-Immunomodulation: A New Strategy for Skeletal Muscle Diseases and Aging? Int J Mol Sci 2023; 24:1175. [PMID: 36674691 PMCID: PMC9862642 DOI: 10.3390/ijms24021175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
The skeletal muscle has a very remarkable ability to regenerate upon injury under physiological conditions; however, this regenerative capacity is strongly diminished in physio-pathological conditions, such as those present in diseased or aged muscles. Many muscular dystrophies (MDs) are characterized by aberrant inflammation due to the deregulation of both the lymphoid and myeloid cell populations and the production of pro-inflammatory cytokines. Pathological inflammation is also observed in old muscles due to a systemic change in the immune system, known as "inflammaging". Immunomodulation represents, therefore, a promising therapeutic opportunity for different skeletal muscle conditions. However, the use of immunomodulatory drugs in the clinics presents several caveats, including their low stability in vivo, the need for high doses to obtain therapeutically relevant effects, and the presence of strong side effects. Within this context, the emerging field of nanomedicine provides the powerful tools needed to control the immune response. Nano-scale materials are currently being explored as biocarriers to release immunomodulatory agents in the damaged tissues, allowing therapeutic doses with limited off-target effects. In addition, the intrinsic immunomodulatory properties of some nanomaterials offer further opportunities for intervention that still need to be systematically explored. Here we exhaustively review the state-of-the-art regarding the use of nano-sized materials to modulate the aberrant immune response that characterizes some physio-pathological muscle conditions, such as MDs or sarcopenia (the age-dependent loss of muscle mass). Based on our learnings from cancer and immune tolerance induction, we also discuss further opportunities, challenges, and limitations of the emerging field of nano-immunomodulation.
Collapse
Affiliation(s)
- Francesco Millozzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Andrea Papait
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| | - Marina Bouché
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Ornella Parolini
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| | - Daniela Palacios
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| |
Collapse
|
86
|
Birch SM, Lawlor MW, Conlon TJ, Guo LJ, Crudele JM, Hawkins EC, Nghiem PP, Ahn M, Meng H, Beatka MJ, Fickau BA, Prieto JC, Styner MA, Struharik MJ, Shanks C, Brown KJ, Golebiowski D, Bettis AK, Balog-Alvarez CJ, Clement N, Coleman KE, Corti M, Pan X, Hauschka SD, Gonzalez JP, Morris CA, Schneider JS, Duan D, Chamberlain JS, Byrne BJ, Kornegay JN. Assessment of systemic AAV-microdystrophin gene therapy in the GRMD model of Duchenne muscular dystrophy. Sci Transl Med 2023; 15:eabo1815. [PMID: 36599002 PMCID: PMC11107748 DOI: 10.1126/scitranslmed.abo1815] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by the absence of dystrophin, a membrane-stabilizing protein encoded by the DMD gene. Although mouse models of DMD provide insight into the potential of a corrective therapy, data from genetically homologous large animals, such as the dystrophin-deficient golden retriever muscular dystrophy (GRMD) model, may more readily translate to humans. To evaluate the clinical translatability of an adeno-associated virus serotype 9 vector (AAV9)-microdystrophin (μDys5) construct, we performed a blinded, placebo-controlled study in which 12 GRMD dogs were divided among four dose groups [control, 1 × 1013 vector genomes per kilogram (vg/kg), 1 × 1014 vg/kg, and 2 × 1014 vg/kg; n = 3 each], treated intravenously at 3 months of age with a canine codon-optimized microdystrophin construct, rAAV9-CK8e-c-μDys5, and followed for 90 days after dosing. All dogs received prednisone (1 milligram/kilogram) for a total of 5 weeks from day -7 through day 28. We observed dose-dependent increases in tissue vector genome copy numbers; μDys5 protein in multiple appendicular muscles, the diaphragm, and heart; limb and respiratory muscle functional improvement; and reduction of histopathologic lesions. As expected, given that a truncated dystrophin protein was generated, phenotypic test results and histopathologic lesions did not fully normalize. All administrations were well tolerated, and adverse events were not seen. These data suggest that systemically administered AAV-microdystrophin may be dosed safely and could provide therapeutic benefit for patients with DMD.
Collapse
Affiliation(s)
- Sharla M. Birch
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | | | - Thomas J. Conlon
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Lee-Jae Guo
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | | | - Eleanor C. Hawkins
- North Carolina State University, College of Veterinary Medicine, Raleigh, NC; 27606
| | - Peter P. Nghiem
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | - Mihye Ahn
- University of Nevada-Reno, Reno, NV; 89557
| | - Hui Meng
- Medical College of Wisconsin, Milwaukee, WI; 53226
| | | | | | | | | | | | | | | | | | - Amanda K. Bettis
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | - Cynthia J. Balog-Alvarez
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | - Nathalie Clement
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Kirsten E. Coleman
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Manuela Corti
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Xiufang Pan
- University of Missouri, School of Medicine, Columbia, MO 65212
| | | | | | | | | | - Dongsheng Duan
- University of Missouri, School of Medicine, Columbia, MO 65212
| | | | - Barry J. Byrne
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Joe. N. Kornegay
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| |
Collapse
|
87
|
Boehler JF, Brown KJ, Beatka M, Gonzalez JP, Donisa Dreghici R, Soustek-Kramer M, McGonigle S, Ganot A, Palmer T, Lowie C, Chamberlain JS, Lawlor MW, Morris CA. Clinical potential of microdystrophin as a surrogate endpoint. Neuromuscul Disord 2023; 33:40-49. [PMID: 36575103 DOI: 10.1016/j.nmd.2022.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Accelerated approval based on a likely surrogate endpoint can be life-changing for patients suffering from a rare progressive disease with unmet medical need, as it substantially hastens access to potentially lifesaving therapies. In one such example, antisense morpholinos were approved to treat Duchenne muscular dystrophy (DMD) based on measurement of shortened dystrophin in skeletal muscle biopsies as a surrogate biomarker. New, promising therapeutics for DMD include AAV gene therapy to restore another form of dystrophin termed mini- or microdystrophin. AAV-microdystrophins are currently in clinical trials but have yet to be accepted by regulatory agencies as reasonably likely surrogate endpoints. To evaluate microdystrophin expression as a reasonably likely surrogate endpoint for DMD, this review highlights dystrophin biology in the context of functional and clinical benefit to support the argument that microdystrophin proteins have a high probability of providing clinical benefit based on their rational design. Unlike exon-skipping based strategies, the approach of rational design allows for functional capabilities (i.e. quality) of the protein to be maximized with every patient receiving the same optimized microdystrophin. Therefore, the presence of rationally designed microdystrophin in a muscle biopsy is likely to predict clinical benefit and is consequently a strong candidate for a surrogate endpoint analysis to support accelerated approval.
Collapse
Affiliation(s)
- Jessica F Boehler
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States
| | - Kristy J Brown
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States
| | - Margaret Beatka
- Diverge TSL, 247 Freshwater Way Suite 610, Milwaukee, WI 53204, United States
| | - J Patrick Gonzalez
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States
| | | | | | - Sharon McGonigle
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States
| | - Annie Ganot
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States
| | - Timothy Palmer
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States
| | - Caitlin Lowie
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, United States
| | - Michael W Lawlor
- Diverge TSL, 247 Freshwater Way Suite 610, Milwaukee, WI 53204, United States
| | - Carl A Morris
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States.
| |
Collapse
|
88
|
Chey YCJ, Arudkumar J, Aartsma-Rus A, Adikusuma F, Thomas PQ. CRISPR applications for Duchenne muscular dystrophy: From animal models to potential therapies. WIREs Mech Dis 2023; 15:e1580. [PMID: 35909075 PMCID: PMC10078488 DOI: 10.1002/wsbm.1580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/28/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
CRISPR gene-editing technology creates precise and permanent modifications to DNA. It has significantly advanced our ability to generate animal disease models for use in biomedical research and also has potential to revolutionize the treatment of genetic disorders. Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting disease that could potentially benefit from the development of CRISPR therapy. It is commonly associated with mutations that disrupt the reading frame of the DMD gene that encodes dystrophin, an essential scaffolding protein that stabilizes striated muscles and protects them from contractile-induced damage. CRISPR enables the rapid generation of various animal models harboring mutations that closely simulates the wide variety of mutations observed in DMD patients. These models provide a platform for the testing of sequence-specific interventions like CRISPR therapy that aim to reframe or skip DMD mutations to restore functional dystrophin expression. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Yu C J Chey
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jayshen Arudkumar
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Fatwa Adikusuma
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,CSIRO Synthetic Biology Future Science Platform, Canberra, Australia
| | - Paul Q Thomas
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,South Australian Genome Editing (SAGE), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
89
|
Zhang Y, Bassel-Duby R, Olson EN. CRISPR-Cas9 Correction of Duchenne Muscular Dystrophy in Mice by a Self-Complementary AAV Delivery System. Methods Mol Biol 2023; 2587:411-425. [PMID: 36401041 PMCID: PMC10069557 DOI: 10.1007/978-1-0716-2772-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder, caused by mutations in the DMD gene coding dystrophin. Applying clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) for therapeutic gene editing represents a promising technology to correct this devastating disease through elimination of underlying genetic mutations. Adeno-associated virus (AAV) has been widely used for gene therapy due to its low immunogenicity and high tissue tropism. In particular, CRISPR-Cas9 gene editing components packaged by self-complementary AAV (scAAV) demonstrate robust viral transduction and efficient gene editing, enabling restoration of dystrophin expression throughout skeletal and cardiac muscle in animal models of DMD. Here, we describe protocols for cloning CRISPR single guide RNAs (sgRNAs) into a scAAV plasmid and procedures for systemic delivery of AAVs into a DMD mouse model. We also provide methodologies for quantification of dystrophin restoration after systemic CRISPR-Cas9-mediated correction of DMD.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
90
|
Wilton-Clark H, Yokota T. Biological and genetic therapies for the treatment of Duchenne muscular dystrophy. Expert Opin Biol Ther 2023; 23:49-59. [PMID: 36409820 DOI: 10.1080/14712598.2022.2150543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy is a lethal genetic disease which currently has no cure, and poor standard treatment options largely focused on symptom relief. The development of multiple biological and genetic therapies is underway across various stages of clinical progress which could markedly affect how DMD patients are treated in the future. AREAS COVERED The purpose of this review is to provide an introduction to the different therapeutic modalities currently being studied, as well as a brief description of their progress to date and relative advantages and disadvantages for the treatment of DMD. This review discusses exon skipping therapy, microdystrophin therapy, stop codon readthrough therapy, CRISPR-based gene editing, cell-based therapy, and utrophin upregulation. Secondary therapies addressing nonspecific symptoms of DMD were excluded. EXPERT OPINION Despite the vast potential held by gene replacement therapy options such as microdystrophin production and utrophin upregulation, safety risks inherent to the adeno-associated virus delivery vector might hamper the clinical viability of these approaches until further improvements can be made. Of the mutation-specific therapies, exon skipping therapy remains the most extensively validated and explored option, and the cell-based CAP-1002 therapy may prove to be a suitable adjunct therapy filling the urgent need for cardiac-specific therapies.
Collapse
Affiliation(s)
- Harry Wilton-Clark
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Toshifumi Yokota
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
91
|
Hakim CH, Pérez-López D, Burke MJ, Teixeira J, Duan D. Molecular and Biochemical Assessment of Gene Therapy in the Canine Model of Duchenne Muscular Dystrophy. Methods Mol Biol 2023; 2587:255-301. [PMID: 36401035 DOI: 10.1007/978-1-0716-2772-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mutations in the dystrophin gene result in Duchenne muscular dystrophy (DMD), a progressive muscle-wasting disease. Adeno-associated virus (AAV) mediated gene replacement, and CRISPR/Cas9-mediated genome editing hold the potential to treat DMD. Molecular and biochemical analyses are essential to determine gene transfer efficiency and therapeutic efficacy. In this chapter, we present a series of methods routinely used in our laboratory to extract and quantify DNA, RNA, and protein in gene therapy studies performed in the canine DMD model.
Collapse
Affiliation(s)
- Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Dennis Pérez-López
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Matthew J Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - James Teixeira
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA.
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, The University of Missouri, Columbia, MO, USA.
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA.
| |
Collapse
|
92
|
Berling E, Nicolle R, Laforêt P, Ronzitti G. Gene therapy review: Duchenne muscular dystrophy case study. Rev Neurol (Paris) 2023; 179:90-105. [PMID: 36517287 DOI: 10.1016/j.neurol.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Gene therapy, i.e., any therapeutic approach involving the use of genetic material as a drug and more largely altering the transcription or translation of one or more genes, covers a wide range of innovative methods for treating diseases, including neurological disorders. Although they share common principles, the numerous gene therapy approaches differ greatly in their mechanisms of action. They also differ in their maturity for some are already used in clinical practice while others have never been used in humans. The aim of this review is to present the whole range of gene therapy techniques through the example of Duchenne muscular dystrophy (DMD). DMD is a severe myopathy caused by mutations in the dystrophin gene leading to the lack of functional dystrophin protein. It is a disease known to all neurologists and in which almost all gene therapy methods were applied. Here we discuss the mechanisms of gene transfer techniques with or without viral vectors, DNA editing with or without matrix repair and those acting at the RNA level (RNA editing, exon skipping and STOP-codon readthrough). For each method, we present the results obtained in DMD with a particular focus on clinical data. This review aims also to outline the advantages, limitations and risks of gene therapy related to the approach used.
Collapse
Affiliation(s)
- E Berling
- Neurology department, Raymond Poincaré university hospital, AP-HP, Garches, France; Nord-Est-Île-de-France neuromuscular reference center, FHU PHENIX, Garches, France; U 1179 Inserm, université Paris-Saclay, Montigny-Le-Bretonneux, France.
| | - R Nicolle
- Université Paris Cité, Inserm UMR1163, Imagine Institute, Clinical Bioinformatics laboratory, 75015 Paris, France
| | - P Laforêt
- Neurology department, Raymond Poincaré university hospital, AP-HP, Garches, France; Nord-Est-Île-de-France neuromuscular reference center, FHU PHENIX, Garches, France; U 1179 Inserm, université Paris-Saclay, Montigny-Le-Bretonneux, France
| | - G Ronzitti
- Université Paris Cité, Inserm UMR1163, Imagine Institute, Clinical Bioinformatics laboratory, 75015 Paris, France; Genethon, Evry, France
| |
Collapse
|
93
|
Soderstrom CI, Larsen J, Owen C, Gifondorwa D, Beidler D, Yong FH, Conrad P, Neubert H, Moore SA, Hassanein M. Development and Validation of a Western Blot Method to Quantify Mini-Dystrophin in Human Skeletal Muscle Biopsies. AAPS J 2022; 25:12. [PMID: 36539515 PMCID: PMC10034579 DOI: 10.1208/s12248-022-00776-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a degenerative muscular disease affecting roughly one in 5000 males at birth. The disease is often caused by inherited X-linked recessive pathogenic variants in the dystrophin gene, but may also arise from de novo mutations. Disease-causing variants include nonsense, out of frame deletions or duplications that result in loss of dystrophin protein expression. There is currently no cure for DMD and the few treatment options available aim at slowing muscle degradation. New advances in gene therapy and understanding of dystrophin (DYS) expression in other muscular dystrophies have opened new opportunities for treatment. Therefore, reliable methods are needed to monitor dystrophin expression and assess the efficacy of new therapies for muscular dystrophies such as DMD and Becker muscular dystrophy (BMD). Here, we describe the validation of a novel Western blot (WB) method for the quantitation of mini-dystrophin protein in human skeletal muscle tissues that is easy to adopt in most laboratory settings. This WB method was assessed through precision, accuracy, selectivity, dilution linearity, stability, and repeatability. Based on mini-DYS standard performance, the assay has a dynamic range of 0.5-15 ng protein (per 5 µg total protein per lane), precision of 3.3 to 25.5%, and accuracy of - 7.5 to 3.3%. Our stability assessment showed that the protein is stable after 4 F/T cycles, up to 2 h at RT and after 7 months at - 70°C. Furthermore, our WB method was compared to the results from our recently published LC-MS method. Workflow for our quantitative WB method to determine mini-dystrophin levels in muscle tissues (created in Biorender.com). Step 1 involves protein extraction from skeletal muscle tissue lysates from control, DMD, or BMD biospecimen. Step 2 measures total protein concentrations. Step 3 involves running gel electrophoresis with wild-type dystrophin (wt-DYS) from muscle tissue extracts alongside mini-dystrophin STD curve and mini-DYS and protein normalization with housekeeping GAPDH.
Collapse
Affiliation(s)
| | - Jennifer Larsen
- Early Clinical Development, Precision Medicine, Cambridge, MA, USA
| | - Carolina Owen
- Early Clinical Development, Precision Medicine, Cambridge, MA, USA
| | - David Gifondorwa
- Clinical Assay Group, Global Product Development (GPD), Pfizer Inc, Groton, Connecticut, USA
| | - David Beidler
- Early Clinical Development, Precision Medicine, Pfizer Inc., 1 Portland, Cambridge, Massachusetts, 02139, USA
| | - Florence H Yong
- Biostatistics, Early Clinical Development, Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Patricia Conrad
- Early Clinical Development, Precision Medicine, Cambridge, MA, USA
| | - Hendrik Neubert
- Biomedicine Design, Worldwide Research & Development, Pfizer Inc., Andover, Massachusetts, USA
| | - Steven A Moore
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242, USA
| | - Mohamed Hassanein
- Early Clinical Development, Precision Medicine, Pfizer Inc., 1 Portland, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
94
|
Gushchina LV, Vetter TA, Frair EC, Bradley AJ, Grounds KM, Lay JW, Huang N, Suhaiba A, Schnell FJ, Hanson G, Simmons TR, Wein N, Flanigan KM. Systemic PPMO-mediated dystrophin expression in the Dup2 mouse model of Duchenne muscular dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:479-492. [PMID: 36420217 PMCID: PMC9678653 DOI: 10.1016/j.omtn.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating muscle-wasting disease that arises due to the loss of dystrophin expression, leading to progressive loss of motor and cardiorespiratory function. Four exon-skipping approaches using antisense phosphorodiamidate morpholino oligomers (PMOs) have been approved by the FDA to restore a DMD open reading frame, resulting in expression of a functional but internally deleted dystrophin protein, but in patients with single-exon duplications, exon skipping has the potential to restore full-length dystrophin expression. Cell-penetrating peptide-conjugated PMOs (PPMOs) have demonstrated enhanced cellular uptake and more efficient dystrophin restoration than unconjugated PMOs. In the present study, we demonstrate widespread PPMO-mediated dystrophin restoration in the Dup2 mouse model of exon 2 duplication, representing the most common single-exon duplication among patients with DMD. In this proof-of-concept study, a single intravenous injection of PPMO targeting the exon 2 splice acceptor site induced 45% to 68% exon 2-skipped Dmd transcripts in Dup2 skeletal muscles 15 days post-injection. Muscle dystrophin restoration peaked at 77% to 87% average dystrophin-positive fibers and 41% to 51% of normal signal intensity by immunofluorescence, and 15.7% to 56.8% of normal by western blotting 15 to 30 days after treatment. These findings indicate that PPMO-mediated exon skipping is a promising therapeutic strategy for muscle dystrophin restoration in the context of exon 2 duplications.
Collapse
Affiliation(s)
- Liubov V. Gushchina
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Tatyana A. Vetter
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Emma C. Frair
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Adrienne J. Bradley
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kelly M. Grounds
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jacob W. Lay
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Nianyuan Huang
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Aisha Suhaiba
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | - Tabatha R. Simmons
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Nicolas Wein
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Kevin M. Flanigan
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
95
|
Flanigan KM, Vetter TA, Simmons TR, Iammarino M, Frair EC, Rinaldi F, Chicoine LG, Harris J, Cheatham JP, Cheatham SL, Boe B, Waldrop MA, Zygmunt DA, Packer D, Martin PT. A first-in-human phase I/IIa gene transfer clinical trial for Duchenne muscular dystrophy using rAAVrh74.MCK. GALGT2. Mol Ther Methods Clin Dev 2022; 27:47-60. [PMID: 36186954 PMCID: PMC9483573 DOI: 10.1016/j.omtm.2022.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/26/2022] [Indexed: 02/04/2023]
Abstract
In a phase 1/2, open-label dose escalation trial, we delivered rAAVrh74.MCK.GALGT2 (also B4GALNT2) bilaterally to the legs of two boys with Duchenne muscular dystrophy using intravascular limb infusion. Subject 1 (age 8.9 years at dosing) received 2.5 × 1013 vector genome (vg)/kg per leg (5 × 1013 vg/kg total) and subject 2 (age 6.9 years at dosing) received 5 × 1013 vg/kg per leg (1 × 1014 vg/kg total). No serious adverse events were observed. Muscle biopsy evaluated 3 or 4 months post treatment versus baseline showed evidence of GALGT2 gene expression and GALGT2-induced muscle cell glycosylation. Functionally, subject 1 showed a decline in 6-min walk test (6MWT) distance; an increase in time to run 100 m, and a decline in North Star Ambulatory Assessment (NSAA) score until ambulation was lost at 24 months. Subject 2, treated at a younger age and at a higher dose, demonstrated an improvement over 24 months in NSAA score (from 20 to 23 points), an increase in 6MWT distance (from 405 to 478 m), and only a minimal increase in 100 m time (45.6-48.4 s). These data suggest preliminary safety at a dose of 1 × 1014 vg/kg and functional stabilization in one patient.
Collapse
Affiliation(s)
- Kevin M. Flanigan
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tatyana A. Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Tabatha R. Simmons
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Megan Iammarino
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emma C. Frair
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Federica Rinaldi
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Louis G. Chicoine
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Johan Harris
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - John P. Cheatham
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sharon L. Cheatham
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Boe
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Megan A. Waldrop
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Deborah A. Zygmunt
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Davin Packer
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Paul T. Martin
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
96
|
Morera C, Kim J, Paredes-Redondo A, Nobles M, Rybin D, Moccia R, Kowala A, Meng J, Garren S, Liu P, Morgan JE, Muntoni F, Christoforou N, Owens J, Tinker A, Lin YY. CRISPR-mediated correction of skeletal muscle Ca 2+ handling in a novel DMD patient-derived pluripotent stem cell model. Neuromuscul Disord 2022; 32:908-922. [PMID: 36418198 DOI: 10.1016/j.nmd.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Mutations in the dystrophin gene cause the most common and currently incurable Duchenne muscular dystrophy (DMD) characterized by progressive muscle wasting. Although abnormal Ca2+ handling is a pathological feature of DMD, mechanisms underlying defective Ca2+ homeostasis remain unclear. Here we generate a novel DMD patient-derived pluripotent stem cell (PSC) model of skeletal muscle with an isogenic control using clustered regularly interspaced short palindromic repeat (CRISPR)-mediated precise gene correction. Transcriptome analysis identifies dysregulated gene sets in the absence of dystrophin, including genes involved in Ca2+ handling, excitation-contraction coupling and muscle contraction. Specifically, analysis of intracellular Ca2+ transients and mathematical modeling of Ca2+ dynamics reveal significantly reduced cytosolic Ca2+ clearance rates in DMD-PSC derived myotubes. Pharmacological assays demonstrate Ca2+ flux in myotubes is determined by both intracellular and extracellular sources. DMD-PSC derived myotubes display significantly reduced velocity of contractility. Compared with a non-isogenic wildtype PSC line, these pathophysiological defects could be rescued by CRISPR-mediated precise gene correction. Our study provides new insights into abnormal Ca2+ homeostasis in DMD and suggests that Ca2+ signaling pathways amenable to pharmacological modulation are potential therapeutic targets. Importantly, we have established a human physiology-relevant in vitro model enabling rapid pre-clinical testing of potential therapies for DMD.
Collapse
Affiliation(s)
- Cristina Morera
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom
| | - Jihee Kim
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom
| | - Amaia Paredes-Redondo
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom; Centre for Predictive in vitro Model, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Muriel Nobles
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Denis Rybin
- Rare Disease Research Unit, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Robert Moccia
- Rare Disease Research Unit, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Anna Kowala
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom; Centre for Predictive in vitro Model, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Jinhong Meng
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Seth Garren
- Rare Disease Research Unit, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Jennifer E Morgan
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; NIHR Biomedical Research Centre at Great Ormond Street Hospital, Great Ormond Street, London, United Kingdom
| | - Francesco Muntoni
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; NIHR Biomedical Research Centre at Great Ormond Street Hospital, Great Ormond Street, London, United Kingdom
| | | | - Jane Owens
- Rare Disease Research Unit, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Andrew Tinker
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Yung-Yao Lin
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom; Centre for Predictive in vitro Model, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|
97
|
Gomez Limia C, Baird M, Schwartz M, Saxena S, Meyer K, Wein N. Emerging Perspectives on Gene Therapy Delivery for Neurodegenerative and Neuromuscular Disorders. J Pers Med 2022; 12:1979. [PMID: 36556200 PMCID: PMC9788053 DOI: 10.3390/jpm12121979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD) and Parkinson's Disease (PD), are a group of heterogeneous diseases that mainly affect central nervous system (CNS) functions. A subset of NDDs exhibit CNS dysfunction and muscle degeneration, as observed in Gangliosidosis 1 (GM1) and late stages of PD. Neuromuscular disorders (NMDs) are a group of diseases in which patients show primary progressive muscle weaknesses, including Duchenne Muscular Dystrophy (DMD), Pompe disease, and Spinal Muscular Atrophy (SMA). NDDs and NMDs typically have a genetic component, which affects the physiological functioning of critical cellular processes, leading to pathogenesis. Currently, there is no cure or efficient treatment for most of these diseases. More than 200 clinical trials have been completed or are currently underway in order to establish safety, tolerability, and efficacy of promising gene therapy approaches. Thus, gene therapy-based therapeutics, including viral or non-viral delivery, are very appealing for the treatment of NDDs and NMDs. In particular, adeno-associated viral vectors (AAV) are an attractive option for gene therapy for NDDs and NMDs. However, limitations have been identified after systemic delivery, including the suboptimal capacity of these therapies to traverse the blood-brain barrier (BBB), degradation of the particles during the delivery, high reactivity of the patient's immune system during the treatment, and the potential need for redosing. To circumvent these limitations, several preclinical and clinical studies have suggested intrathecal (IT) delivery to target the CNS and peripheral organs via cerebrospinal fluid (CSF). CSF administration can vastly improve the delivery of small molecules and drugs to the brain and spinal cord as compared to systemic delivery. Here, we review AAV biology and vector design elements, different therapeutic routes of administration, and highlight CSF delivery as an attractive route of administration. We discuss the different aspects of neuromuscular and neurodegenerative diseases, such as pathogenesis, the landscape of mutations, and the biological processes associated with the disease. We also describe the hallmarks of NDDs and NMDs as well as discuss current therapeutic approaches and clinical progress in viral and non-viral gene therapy and enzyme replacement strategies for those diseases.
Collapse
Affiliation(s)
- Cintia Gomez Limia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Megan Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Maura Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Smita Saxena
- Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - Kathrin Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
98
|
CRISPR-Based Tools for Fighting Rare Diseases. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121968. [PMID: 36556333 PMCID: PMC9787644 DOI: 10.3390/life12121968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
Rare diseases affect the life of a tremendous number of people globally. The CRISPR-Cas system emerged as a powerful genome engineering tool and has facilitated the comprehension of the mechanism and development of therapies for rare diseases. This review focuses on current efforts to develop the CRISPR-based toolbox for various rare disease therapy applications and compares the pros and cons of different tools and delivery methods. We further discuss the therapeutic applications of CRISPR-based tools for fighting different rare diseases.
Collapse
|
99
|
Abstract
Muscular dystrophies are a group of genetic disorders characterized by varying degrees of progressive muscle weakness and degeneration. They are clinically and genetically heterogeneous but share the common histological features of dystrophic muscle. There is currently no cure for muscular dystrophies, which is of particular concern for the more disabling and/or lethal forms of the disease. Through the years, several therapies have encouragingly been developed for muscular dystrophies and include genetic, cellular, and pharmacological approaches. In this chapter, we undertake a comprehensive exploration of muscular dystrophy therapeutics under current development. Our review includes antisense therapy, CRISPR, gene replacement, cell therapy, nonsense suppression, and disease-modifying small molecule compounds.
Collapse
|
100
|
Cell-Based and Gene-Based Therapy Approaches in Neuro-orthopedic Disorders: a Literature Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|