51
|
Lee PN, Fry JS, Ljung T. Estimating the public health impact had tobacco-free nicotine pouches been introduced into the US in 2000. BMC Public Health 2022; 22:1025. [PMID: 35597944 PMCID: PMC9123784 DOI: 10.1186/s12889-022-13441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For smokers not intending to quit, switching to a reduced-risk nicotine product should be healthier than continuing smoking. We estimate the health impact, over the period 2000-2050, had the nicotine pouch ZYN hypothetically been introduced into the US in 2000. ZYN's toxicant profile and method of use is like that for Swedish snus, a product with known health effects much less than smoking. METHODS Our modelling approach is similar to others developed for estimating potential effects of new tobacco products. It starts with a simulated cohort of 100,000 individuals in the year 2000 subdivided by age, sex, and smoking status (including years since quitting). They are followed annually accounting for births, net immigrations, deaths and product use changes, with follow-up carried out in the Base Case (ZYN not introduced) and Modified Case (ZYN introduced). Using informed assumptions about initiation, quitting and switching rates, distributions of the population over time are then constructed for each Case, and used to estimate product mortality based on assumptions about the relative risk according to product use. RESULTS Whereas in both Base and Modified Cases, the prevalence of any current product use is predicted to decline from about 22% to 10% during follow-up, in the Modified Case about 25% of current users use ZYN by 2050, about a quarter being dual users and the rest ZYN-only users. Over the 50 years, deaths at ages 35-84 from product use among the 100,000 are estimated as 249 less in the Modified than the Base Case, equivalent to about 700,000 less in the whole US. Sensitivity analyses varying individual parameter values confirm the benefits of switching to ZYN, which increase as either the switching rate to ZYN increases or the initiation rate of ZYN relative to smoking increases. Even assuming the reduction in excess mortality risk using ZYN use is 20% of that from smoking rather than the 3.5% assumed in the main analyses, the reduction in product-related deaths would still be 213, or about 600,000 in the US. CONCLUSIONS Although such model-based estimates involve uncertainties, the results suggest that introducing ZYN could substantially reduce product-related deaths.
Collapse
Affiliation(s)
- Peter N Lee
- P.N.Lee Statistics and Computing Ltd., 17 Cedar Road, Sutton, Surrey, SM2 5DA, UK.
| | - John S Fry
- RoeLee Statistics Ltd., 17 Cedar Road, Sutton, Surrey, SM2 5DA, UK
| | - Tryggve Ljung
- Swedish Match, Sveavägen 44 8th Floor, SE-118 85, Stockholm, Sweden
| |
Collapse
|
52
|
El-Kaassamani M, Yen M, Talih S, El-Hellani A. Analysis of mainstream emissions, secondhand emissions and the environmental impact of IQOS waste: a systematic review on IQOS that accounts for data source. Tob Control 2022; 33:tobaccocontrol-2021-056986. [PMID: 35568394 DOI: 10.1136/tobaccocontrol-2021-056986] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To highlight the general features of IQOS literature focusing on the chemical analysis of IQOS emissions. DATA SOURCES PubMed, Web of Science and Scopus databases were searched on 8 November 2021 using the terms 'heated tobacco product', 'heat-not-burn', 'IQOS' and 'tobacco heating system' with time restriction (2010-2021). The search yielded 5480 records. STUDY SELECTION Relevant publications on topics related to IQOS assessment were retrieved (n=341). Two reviewers worked separately and reached agreement by consensus. DATA EXTRACTION Data on author affiliation and funding, article type and date of publication were extracted. Publications were categorised depending on their focus and outcomes. Data on IQOS emissions from the chemical analysis category were extracted. DATA SYNTHESIS Of the included publications, 25% were published by Philip Morris International (PMI) affiliates or PMI-funded studies. PMI-sponsored publications on emissions, toxicology assessments and health effects were comparable in number to those reported by independent research, in contrast to publications on IQOS use, market trends and regulation. Data on nicotine yield, carbonyl emissions, other mainstream emissions, secondhand emissions and IQOS waste were compared between data sources to highlight agreement or disagreement between PMI-sponsored and independent research. CONCLUSIONS Our analysis showed agreement between the data sources on nicotine yield from IQOS under the same puffing conditions. Also, both sources agreed that IQOS emits significantly reduced levels of some emissions compared with combustible cigarettes. However, independent studies and examination of PMI's data showed significant increases in other emissions from and beyond the Food and Drug Administration's harmful and potentially harmful constituents list.
Collapse
Affiliation(s)
- Malak El-Kaassamani
- Department of Chemistry, American University of Beirut Faculty of Arts and Sciences, Beirut, Lebanon
| | - Miaoshan Yen
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Soha Talih
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Mechanical Engineering, American University of Beirut Faculty of Engineering and Architecture, Beirut, Lebanon
| | - Ahmad El-Hellani
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
- Division of Environmental Health Sciences, The Ohio State University College of Public Health, Columbus, Ohio, USA
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
53
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
54
|
Espinoza-Derout J, Shao XM, Lao CJ, Hasan KM, Rivera JC, Jordan MC, Echeverria V, Roos KP, Sinha-Hikim AP, Friedman TC. Electronic Cigarette Use and the Risk of Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:879726. [PMID: 35463745 PMCID: PMC9021536 DOI: 10.3389/fcvm.2022.879726] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Electronic cigarettes or e-cigarettes are the most frequently used tobacco product among adolescents. Despite the widespread use of e-cigarettes and the known detrimental cardiac consequences of nicotine, the effects of e-cigarettes on the cardiovascular system are not well-known. Several in vitro and in vivo studies delineating the mechanisms of the impact of e-cigarettes on the cardiovascular system have been published. These include mechanisms associated with nicotine or other components of the aerosol or thermal degradation products of e-cigarettes. The increased hyperlipidemia, sympathetic dominance, endothelial dysfunction, DNA damage, and macrophage activation are prominent effects of e-cigarettes. Additionally, oxidative stress and inflammation are unifying mechanisms at many levels of the cardiovascular impairment induced by e-cigarette exposure. This review outlines the contribution of e-cigarettes in the development of cardiovascular diseases and their molecular underpinnings.
Collapse
Affiliation(s)
- Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xuesi M. Shao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Candice J. Lao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Kamrul M. Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Juan Carlos Rivera
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Maria C. Jordan
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Valentina Echeverria
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Kenneth P. Roos
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amiya P. Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Theodore C. Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Friends Research Institute, Cerritos, CA, United States
| |
Collapse
|
55
|
Kärkelä T, Tapper U, Kajolinna T. Comparison of 3R4F cigarette smoke and IQOS heated tobacco product aerosol emissions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27051-27069. [PMID: 34935111 PMCID: PMC8989957 DOI: 10.1007/s11356-021-18032-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 12/06/2021] [Indexed: 06/05/2023]
Abstract
In this study, the smoke from a 3R4F research cigarette and the aerosol generated by the Heated Tobacco Product IQOS, also referred to as the Tobacco Heating System (THS) 2.2 in the literature, were compared. The objective was to characterize the gas and suspended particulate matter compositions in the mainstream smoke from a combusted 3R4F cigarette and in the aerosol generated by IQOS during use. The results indicated that the determined aerosol emissions from IQOS were notably lower than in the cigarette smoke under a Health Canada Intense puffing regimen. As an interesting detail in this study, the maximum nicotine concentrations within a puff were practically the same in both the 3R4F smoke and the IQOS aerosol, but the average concentration was lower for the IQOS aerosol. For both products, water constituted a significant proportion of the particulate matter, although it was substantially higher in the IQOS aerosol. Furthermore, combustion-related solid particles observed in the 3R4F smoke contained elements such as carbon, oxygen, potassium, calcium, and silicon. In contrast, IQOS aerosol particulate matter was composed of semi-volatile organic constituents with some minor traces of oxygen and silicon. The particulate matter found in the IQOS aerosol was volatile, which was especially noticeable when exposed to the electron beam of the scanning electron microscope (SEM) and Transmission Electron Microscope (TEM).
Collapse
Affiliation(s)
- Teemu Kärkelä
- Department of Nuclear Energy, VTT Technical Research Centre of Finland Ltd., Kivimiehentie 3, 02044 VTT, Espoo, Finland.
| | - Unto Tapper
- Department of Nuclear Energy, VTT Technical Research Centre of Finland Ltd., Kivimiehentie 3, 02044 VTT, Espoo, Finland
| | - Tuula Kajolinna
- Department of Mobility and Transport, VTT Technical Research Centre of Finland Ltd., Tietotie 4c, 02044 VTT, Espoo, Finland
| |
Collapse
|
56
|
Xiang Y, Luettich K, Martin F, Battey JND, Trivedi K, Neau L, Wong ET, Guedj E, Dulize R, Peric D, Bornand D, Ouadi S, Sierro N, Büttner A, Ivanov NV, Vanscheeuwijck P, Hoeng J, Peitsch MC. Discriminating Spontaneous From Cigarette Smoke and THS 2.2 Aerosol Exposure-Related Proliferative Lung Lesions in A/J Mice by Using Gene Expression and Mutation Spectrum Data. FRONTIERS IN TOXICOLOGY 2022; 3:634035. [PMID: 35295134 PMCID: PMC8915865 DOI: 10.3389/ftox.2021.634035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
Mice, especially A/J mice, have been widely employed to elucidate the underlying mechanisms of lung tumor formation and progression and to derive human-relevant modes of action. Cigarette smoke (CS) exposure induces tumors in the lungs; but, non-exposed A/J mice will also develop lung tumors spontaneously with age, which raises the question of discriminating CS-related lung tumors from spontaneous ones. However, the challenge is that spontaneous tumors are histologically indistinguishable from the tumors occurring in CS-exposed mice. We conducted an 18-month inhalation study in A/J mice to assess the impact of lifetime exposure to Tobacco Heating System (THS) 2.2 aerosol relative to exposure to 3R4F cigarette smoke (CS) on toxicity and carcinogenicity endpoints. To tackle the above challenge, a 13-gene gene signature was developed based on an independent A/J mouse CS exposure study, following by a one-class classifier development based on the current study. Identifying gene signature in one data set and building classifier in another data set addresses the feature/gene selection bias which is a well-known problem in literature. Applied to data from this study, this gene signature classifier distinguished tumors in CS-exposed animals from spontaneous tumors. Lung tumors from THS 2.2 aerosol-exposed mice were significantly different from those of CS-exposed mice but not from spontaneous tumors. The signature was also applied to human lung adenocarcinoma gene expression data (from The Cancer Genome Atlas) and discriminated cancers in never-smokers from those in ever-smokers, suggesting translatability of our signature genes from mice to humans. A possible application of this gene signature is to discriminate lung cancer patients who may benefit from specific treatments (i.e., EGFR tyrosine kinase inhibitors). Mutational spectra from a subset of samples were also utilized for tumor classification, yielding similar results. “Landscaping” the molecular features of A/J mouse lung tumors highlighted, for the first time, a number of events that are also known to play a role in human lung tumorigenesis, such as Lrp1b mutation and Ros1 overexpression. This study shows that omics and computational tools provide useful means of tumor classification where histopathological evaluation alone may be unsatisfactory to distinguish between age- and exposure-related lung tumors.
Collapse
Affiliation(s)
- Yang Xiang
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - James N D Battey
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Keyur Trivedi
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Laurent Neau
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Ee Tsin Wong
- Philip Morris International R&D, Philip Morris International Research Laboratories Pte. Ltd., Singapore, Singapore
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Remi Dulize
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Dariusz Peric
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - David Bornand
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Sonia Ouadi
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
57
|
Heluany CS, Scharf P, Schneider AH, Donate PB, Dos Reis Pedreira Filho W, de Oliveira TF, Cunha FQ, Farsky SHP. Toxic mechanisms of cigarette smoke and heat-not-burn tobacco vapor inhalation on rheumatoid arthritis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151097. [PMID: 34695477 DOI: 10.1016/j.scitotenv.2021.151097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Tobacco combustion exposure worsens rheumatoid arthritis (RA). Non-combustible tobacco devices, as heat-not-burn tobacco (HNBT), are emerging as harm reduction to smokers by releasing nicotine and lower combustible tobacco products. Nevertheless, HNBT toxicity remains unclear. Hence, here we investigated the impacts of the tobacco combustible product (cigarette smoke; CS) or HNBT vapor exposures on antigen-induced arthritis (AIA) in C57BL/6 mice. Animals were exposed to airflow, HNBT vapor, or CS during 1 h/twice a day, under the Health Canada Intense (HCI) smoking regime, between days 14 to 20 after the first immunization. At day 21, 16 h after the last exposures, mice were i.a. challenged and the AIA effects were evaluated 24 h later. CS- or HNBT-exposed mice presented equivalent blood nicotine levels. CS exposure worsened articular symptoms, pulmonary inflammation, and expression of lung metallothioneins. Nevertheless, CS or HNBT exposures reduced lymphoid organs' cellularity, splenocyte proliferation and IL-2 secretion. Additional in vitro CS or HNBT exposures confirmed the harmful effects on splenocytes, which were partially mediated by the activation of nicotine/α7nAchR pathway. Associated, data demonstrate the toxic mechanisms of CS or HNBT inhalation at HCI regime on RA, and highlight that further investigations are fundamental to assure the toxicity of emerging tobacco products on the immune system during specific challenges.
Collapse
Affiliation(s)
- Cintia Scucuglia Heluany
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Pablo Scharf
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | | | - Paula Barbim Donate
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | | | - Tiago Franco de Oliveira
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil.
| |
Collapse
|
58
|
Kim SCJ, Friedman TC. A New Ingenious Enemy: Heat-Not-Burn Products. Tob Use Insights 2022; 15:1179173X221076419. [PMID: 35237081 PMCID: PMC8883376 DOI: 10.1177/1179173x221076419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/11/2022] [Indexed: 11/21/2022] Open
Abstract
While cigarette smoking is still a major source of morbidity and mortality, e-cigarette usage is skyrocketing, and the tobacco industry is finding new ways to market nicotine. With updated published research highlighting the dangers of cigarette smoking and now vaping, the industry has been developing new techniques and devices that circumvent this research to hook users on tobacco and nicotine. The FDA allowed Philip Morris International (PMI) to sell their heat not burn tobacco products known as iQOS in 2019. By 2019, 49 countries had permitted the sale of iQOS. This commentary summarizes the recent research on heat not burn cigarettes, also known as heated tobacco products and their effects on public policy. We urge policy makers to consider the research published regarding these new products and prevent the widespread use of these products that will harm public health.
Collapse
Affiliation(s)
- Samuel CJ Kim
- Department of Internal Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA, USA
- Friends Research Institute, Cerritos, CA, USA
| | - Theodore C Friedman
- Department of Internal Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA, USA
- Friends Research Institute, Cerritos, CA, USA
| |
Collapse
|
59
|
Simms L, Yu F, Palmer J, Rudd K, Sticken ET, Wieczorek R, Chapman F, Czekala L, Stevenson M, O’Connell G. Use of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes to Predict the Cardiotoxicity Potential of Next Generation Nicotine Products. FRONTIERS IN TOXICOLOGY 2022; 4:747508. [PMID: 35295225 PMCID: PMC8915889 DOI: 10.3389/ftox.2022.747508] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Combustible cigarette smoking is an established risk factor for cardiovascular disease. By contrast, the cardiotoxicity potential of non-combustible next generation nicotine products (NGPs), which includes heated tobacco products (HTPs) and electronic vaping products (EVPs), and how this compares relative to combustible cigarettes is currently an area of scientific exploration. As such, there is a need for a rapid screening assay to assess this endpoint. The Cardio quickPredict is a metabolomics biomarker-based assay that uses human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) to screen for potential structural and functional cardiac toxicants based on the changes of four metabolites, lactic acid, arachidonic acid, thymidine, and 2'-deoxycytidine. The study aims were to investigate the cardiotoxicity potential of NGPs compared to cigarettes, in addition to nicotine. To accomplish this, hiPSC-CM were exposed to smoke or aerosol bubbled PBS samples: reference cigarette (1R6F); three variants of HTP; and three EVP variants. The 1R6F bPBS was the most active, having cardiotoxic potential at 0.3-0.6% bPBS (0.4-0.9 μg/mL nicotine), followed by HTP, which displayed cardiotoxic potential at a 10 times higher concentration, 3.3% bPBS (4.1 μg/mL nicotine). Both 1R6F and HTP bPBS (at 10-fold higher concentration than 1R6F) affected all four predictive metabolites, whereas none of the EVP bPBS samples were active in the assay up to the maximal concentration tested (10% bPBS). Nicotine tested on its own was predicted to have cardiotoxic potential at concentrations greater than 80 μg/mL, which is higher than expected physiological levels associated with combustible cigarette smoking. The application of this rapid screening assay to NGP research and the associated findings adds to the weight-of-evidence indicating that NGPs have a tobacco harm reduction potential when compared to combustible cigarettes. Additionally, this technique was shown to be sensitive and robust for the assessment of different NGPs and may be considered as part of a larger overall scientific framework for NGP assessments.
Collapse
Affiliation(s)
- Liam Simms
- Imperial Brands PLC, Bristol, United Kingdom
| | - Fan Yu
- Imperial Brands PLC, Bristol, United Kingdom
| | - Jessica Palmer
- Stemina Biomarker Discovery Inc., Madison, WI, United States
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Alarabi AB, Lozano PA, Khasawneh FT, Alshbool FZ. The effect of emerging tobacco related products and their toxic constituents on thrombosis. Life Sci 2022; 290:120255. [PMID: 34953893 PMCID: PMC9118784 DOI: 10.1016/j.lfs.2021.120255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Although conventional cigarette smoking is declining, emerging tobacco related products (ETRPs) are currently gaining ground, especially among the youth. These products include electronic cigarettes, waterpipes/hookah, cigars/cigarillo, smokeless tobacco, and heat-not-burn cigarettes. The observed increase in the use of ETRPs is multifactorial and complex but appears to be mainly driven by efforts from the major tobacco companies to reinvent themselves, and present more appealing and allegedly safe(r) tobacco products. However, it is becoming apparent that these products produce substantial amounts of toxic chemicals, many of which have been shown to exert negative health effects, including in the context of the cardiovascular system. Thus, there has been research efforts, albeit limited in general, to characterize the health impact of these products on occlusive/thrombotic cardiovascular diseases (CVD). In this review, we will discuss the potential impact of ETRPs on thrombosis-based CVD. Specifically, we will review how these products and the major chemicals they produce and/or emit can trigger key players in the process of thrombosis, namely inflammation, oxidative stress, platelets, coagulation, and the vascular endothelium, and the relationship between these effects.
Collapse
Affiliation(s)
- Ahmed B Alarabi
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA
| | - Patricia A Lozano
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA.
| | - Fatima Z Alshbool
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA.
| |
Collapse
|
61
|
Wen Z, Gu X, Tang X, Li X, Pang Y, Hu Q, Wang J, Zhang L, Liu Y, Zhang W. Time-resolved online analysis of the gas- and particulate-phase of cigarette smoke generated by a heated tobacco product using vacuum ultraviolet photoionization mass spectrometry. Talanta 2022; 238:123062. [PMID: 34801915 DOI: 10.1016/j.talanta.2021.123062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022]
Abstract
We present a vacuum ultraviolet (VUV) lamp-based photoionization time-of-flight (TOF) mass spectrometer coupled with a capillary inlet and an aerodynamic lens to online analyze the chemical compositions of the gas- and particulate-phase of cigarette smoke of a heated tobacco product (HTP). Both phase compositions of the fresh cigarette smoke, without dilution and pretreatment, are softly photoionized and their mass spectra are measured with a time resolution of 1 s. It is shown that the gas-phase compositions with low mass are volatile organic compounds (VOCs), and the particulate-phase compositions are also clearly identified and cover the full mass range of the mass spectrometer. The time- or puff-by-puff resolved dynamic data are obtained for each species and provide abundant information to unravel the chemistry of the HTP smoke. In addition, the present results show that besides thermal vaporization, a couple of chemical reactions including pyrolysis and degradation have also occurred in the HTP smoking process, although its operation temperature is less than 350 °C. Even if not done here, this study paves the way to analyze the gas- and particulate-phase chemical compositions of a complex system in real time, like the cigarette smoke presented here, by using advanced soft ionization mass spectrometry.
Collapse
Affiliation(s)
- Zuoying Wen
- Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Xuejun Gu
- Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Xiaofeng Tang
- Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
| | - Xiangyu Li
- China National Tobacco Quality Supervision & Test Centre, Zhengzhou, 450001, Henan, China
| | - Yongqiang Pang
- China National Tobacco Quality Supervision & Test Centre, Zhengzhou, 450001, Henan, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Centre, Zhengzhou, 450001, Henan, China.
| | - Jian Wang
- Key Laboratory of Combustion and Pyrolysis, China Tobacco Anhui Industrial Co, Ltd, Hefei, 230088, Anhui, China
| | - Long Zhang
- Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
| |
Collapse
|
62
|
Nishimoto-Kusunose S, Sawa M, Inaba Y, Ushiyama A, Ishii K, Hattori K, Ogasawara Y. Exposure to aerosol extract from heated tobacco products causes a drastic decrease of glutathione and protein carbonylation in human lung epithelial cells. Biochem Biophys Res Commun 2022; 589:92-99. [PMID: 34896781 DOI: 10.1016/j.bbrc.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022]
Abstract
Heated tobacco products (HTPs) are an emerging class of tobacco goods that claim to have lower health risks than those of smoking combustible tobacco products. In this study, we exposed human lung epithelial cell lines to extracts prepared from HTP aerosols and combustible cigarette smoke to compare cytotoxicity. We focused on the effects of aldehydes present in the aerosols of HTPs at levels close to those in combustible cigarette smoke. Significant toxicity was confirmed for the HTP extract, albeit to a lesser extent than that with the combustible cigarette extract. When redox balance was evaluated by the oxidative loss of low-molecular-weight thiols in the cells, we found that total glutathione (GSH) contents and low-molecular-weight thiol levels were significantly decreased after exposure to the aerosol extract of HTPs. These results indicated that GSH is rapidly consumed during the detoxification of xenobiotics, such as aldehydes from tobacco extracts. Accordingly, exposure to the aerosol extract of HTPs resulted in the enhanced carbonylation of many proteins. In a simple comparison, the results for HTPs were significantly different from those obtained with combustible cigarette smoke, suggesting reduced toxicity of HTPs. However, we found significant and harmful effects after exposing lung epithelial cells to the aerosol extract of HTPs. Thus, a further comprehensive study is needed to clarify the lung damage induced via the long-term inhalation of aerosols from HTPs.
Collapse
Affiliation(s)
- S Nishimoto-Kusunose
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, Japan
| | - M Sawa
- Department of Environmental Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Y Inaba
- Department of Environmental Health, National Institute of Public Health. Minami, Wako-shi, Saitama, 351-0197, Japan
| | - A Ushiyama
- Department of Environmental Health, National Institute of Public Health. Minami, Wako-shi, Saitama, 351-0197, Japan
| | - K Ishii
- Department of Environmental Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - K Hattori
- Department of Environmental Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Y Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
63
|
Ohmomo H, Harada S, Komaki S, Ono K, Sutoh Y, Otomo R, Umekage S, Hachiya T, Katanoda K, Takebayashi T, Shimizu A. DNA Methylation Abnormalities and Altered Whole Transcriptome Profiles after Switching from Combustible Tobacco Smoking to Heated Tobacco Products. Cancer Epidemiol Biomarkers Prev 2022; 31:269-279. [PMID: 34728466 PMCID: PMC9398167 DOI: 10.1158/1055-9965.epi-21-0444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/29/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The use of heated tobacco products (HTP) has increased exponentially in Japan since 2016; however, their effects on health remain a major concern. METHODS Tsuruoka Metabolome Cohort Study participants (n = 11,002) were grouped on the basis of their smoking habits as never smokers (NS), past smokers (PS), combustible tobacco smokers (CS), and HTP users for <2 years. Peripheral blood mononuclear cells were collected from 52 participants per group matched to HTP users using propensity scores, and DNA and RNA were purified from the samples. DNA methylation (DNAm) analysis of the 17 smoking-associated DNAm biomarker genes (such as AHRR, F2RL3, LRRN3, and GPR15), as well as whole transcriptome analysis, was performed. RESULTS Ten of the 17 genes were significantly hypomethylated in CS and HTP users compared with NS, among which AHRR, F2RL3, and RARA showed intermediate characteristics between CS and NS; nonetheless, AHRR expression was significantly higher in CS than in the other three groups. Conversely, LRRN3 and GPR15 were more hypomethylated in HTP users than in NS, and GPR15 expression was markedly upregulated in all the groups when compared with that in NS. CONCLUSIONS HTP users (switched from CS <2 years) display abnormal DNAm and transcriptome profiles, albeit to a lesser extent than the CS. However, because the molecular genetic effects of long-term HTP use are still unknown, long-term molecular epidemiologic studies are needed. IMPACT This study provides new insights into the molecular genetic effects on DNAm and transcriptome profiles in HTP users who switched from CS.
Collapse
Affiliation(s)
- Hideki Ohmomo
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Sei Harada
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shohei Komaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Kanako Ono
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Yoichi Sutoh
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Ryo Otomo
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - So Umekage
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Tsuyoshi Hachiya
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Kota Katanoda
- Division of Cancer Statistics Integration, National Cancer Center Research Institute, Chuo, Tokyo, Japan
| | - Toru Takebayashi
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan.,Corresponding Author: Atsushi Shimizu, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate 028-3694, Japan. Phone: 81-19-651-5110, ext. 5473; E-mail:
| |
Collapse
|
64
|
Enomoto Y, Imai R, Nanjo K, Fukai Y, Ishikawa K, Kotaki M. Comparison of the effects of three types of heating tobacco system and conventional cigarettes on indoor air quality. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-021-04896-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract
Environmental tobacco smoke (ETS) from conventional cigarettes is reported to affect indoor air quality (IAQ) in various real indoor environments. Recently, Japan Tobacco Inc. introduced three types of tobacco product that are heated rather than combusted. These comprise one direct heating tobacco system and two in-direct heating tobacco systems. In this study, the impact of using these products on IAQ was evaluated in an environmentally controlled chamber. Two environmental conditions, simulating restaurant and residential spaces, were examined. Under the same conditions, cigarette smoking and the presence of people only were used as positive and negative controls, respectively. The indoor air concentrations of 48 constituents (tobacco-specific nitrosamines, carbonyls, volatile organic compounds, total volatile organic compounds, polycyclic aromatic hydrocarbon, polycyclic aromatic amines, mercury, metals, ETS markers, propylene glycol, glycerol, carbon monoxide, carbon dioxide, suspended particle matter, ammonia, and nitrogen oxides) were measured. Compared with the presence of people, the concentrations of some constituents were actually increased when using heating tobacco products under both environmental conditions, simulating restaurant and residential spaces. However, the constituent concentrations were lower than those obtained by cigarette smoking, except for propylene glycol and glycerol, and below the exposure limits for constituents in air, as defined by air quality guidelines or regulations. Based on these data, the use of heating tobacco systems in appropriate indoor environments has less impacts compared to conventional cigarettes.
Article Highlights
We measured the indoor air concentrations of chemical constituents generated when using three heating tobacco systems with different heating mechanisms in two environment conditions simulating restaurant and residential spaces (positive control: when smoking cigarettes, negative control: the presence of people only).
In the measurement and analysis method used this study, it was possible to find not only that the air concentration generated when using the heating tobacco systems in this study were considerably lower than that when smoking cigarettes, but also the differences of the concentrations between heating tobacco systems with different heating mechanisms.
We showed some constituents which actually increased the air concentrations when using heating tobacco systems compared with the presence of people only.
Collapse
|
65
|
Dalrymple A, McEwan M, Brandt M, Bielfeldt S, Bean E, Moga A, Coburn S, Hardie G. A novel clinical method to measure skin staining reveals activation of skin damage pathways by cigarette smoke. Skin Res Technol 2022; 28:162-170. [PMID: 34758171 PMCID: PMC9299119 DOI: 10.1111/srt.13108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Long-term use of cigarettes can result in localised staining and aging of smokers' skin. The use of tobacco heating products (THPs) and electronic cigarettes (ECs) has grown on a global scale; however, the long-term effect of these products' aerosols on consumers' skin is unknown. This pilot clinical study aimed to determine whether THP or EC aerosol exposure results in skin staining or activation of biomarkers associated with oxidative stress. MATERIALS AND METHODS Eight areas were identified on the backs of 10 subjects. Two areas were used for air control, and two areas exposed to 32-puffs of cigarette smoke (CS), THP or EC aerosols, which were delivered to the skin using a 3-cm diameter exposure chamber and smoke engine. Skin colour was measured using a Chromameter. Squalene (SQ), SQ monohydroperoxide (SQOOH) and malondialdehyde (MDA) levels were measured in sebum samples by mass spectrometry and catalase colorimetry. RESULTS CS exposure significantly increased skin staining, SQOOH and MDA levels and SQOOH/SQ ratio. THP and EC values were significantly lower than CS; EC values being comparable to air control. THP values were comparable to EC and air control at all endpoints, apart from skin staining. SQ and catalase levels did not change with exposure. CONCLUSIONS CS stained skin and activated pathways known to be associated with skin damage. THPs and ECs produced significantly lower values, suggesting they could offer hygiene and cosmetic benefits for consumers who switch exclusively from smoking cigarettes. Further studies are required to assess longer-term effects of ECs and THPs on skin function.
Collapse
Affiliation(s)
| | | | - Marianne Brandt
- proDERMInstitut für Angewandte Dermatologische ForschungHamburgGermany
| | - Stephan Bielfeldt
- proDERMInstitut für Angewandte Dermatologische ForschungHamburgGermany
| | | | | | | | | |
Collapse
|
66
|
Wang H, Chen H, Huang L, Han S, Wang L, Li S, Liu M, Zhang M, Fu Y, Tian Y, Liu T, Shi Z, Hou H, Hu Q. Novel Solvent-Free Extraction Method for Analyzing Tobacco Heating Product Aerosols: An Analytical and In Vitro Toxicological Five-Way Product Comparison. Chem Res Toxicol 2021; 34:2460-2470. [PMID: 34747590 DOI: 10.1021/acs.chemrestox.1c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Harmful and potentially harmful constituents (HPHCs) in tobacco smoke are thought to be responsible for the increased health risks. Tobacco heating products (THPs) heat tobacco instead of burning it to achieve significantly fewer toxicants than conventional cigarettes. To assess the toxicity of THP aerosols, it is often desirable to extract the main constituents using a solvent method. In this study, we developed a high-speed centrifugal method for extracting the total particulate matter (TPM) from THPs to quantitatively compare the toxicity of different THPs and conventional cigarettes. Its TPM extraction efficiency exceeded 85%, and the primary aerosol components and typical HPHCs were comparable to those of the solvent method. The TPMs extracted from five THPs were subjected to 14 in vitro toxicology assessments, and the results were compared with those of a 3R4F reference cigarette. Physical separation can improve biases from solvent selectivity and potential interactions between solvent and aerosol constituents. By eliminating solvent influence, the extraction method could achieve high-dose exposures, enabling the toxicity comparison of different THPs. The relative toxicity of the THPs differed under different dosage units, including the TPM concentration, nicotine equivalent, and puff number.
Collapse
Affiliation(s)
- Hongjuan Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Long Huang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Shulei Han
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Lulu Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Shigang Li
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Min Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Manying Zhang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Yaning Fu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Yushan Tian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Tong Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Zhihao Shi
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| |
Collapse
|
67
|
Camacho OM, Hill A, Fiebelkorn S, Williams A, Murphy J. Investigating the Health Effects of 3 Coexisting Tobacco-Related Products Using System Dynamics Population Modeling: An Italian Population Case Study. Front Public Health 2021; 9:700473. [PMID: 34869141 PMCID: PMC8634955 DOI: 10.3389/fpubh.2021.700473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
With the proliferation of tobacco products, there might be a need for more complex models than current two-product models. We have developed a three-product model able to represent interactions between three products in the marketplace. We also investigate if using several implementations of two-product models could provide sufficient information to assess 3 coexisting products. Italy is used as case-study with THPs and e-cigarettes as the products under investigation. We use transitions rates estimated for THPs in Japan and e-cigarettes in the USA to project what could happen if the Italian population were to behave as the Japanese for THP or USA for e-cigarettes. Results suggest that three-product models may be hindered by data availability while two product models could miss potential synergies between products. Both, THP and E-Cigarette scenarios, led to reduction in life-years lost although the Japanese THP scenario reductions were 3 times larger than the USA e-cigarette projections.
Collapse
Affiliation(s)
| | - Andrew Hill
- Ventana Systems UK Ltd., Salisbury, United Kingdom
| | | | - Aaron Williams
- British American Tobacco, R&D, Southampton, United Kingdom
| | - James Murphy
- British American Tobacco, R&D, Southampton, United Kingdom
| |
Collapse
|
68
|
Choi S, Lee K, Park SM. Combined Associations of Changes in Noncombustible Nicotine or Tobacco Product and Combustible Cigarette Use Habits With Subsequent Short-Term Cardiovascular Disease Risk Among South Korean Men: A Nationwide Cohort Study. Circulation 2021; 144:1528-1538. [PMID: 34601948 DOI: 10.1161/circulationaha.121.054967] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The associations of changes in noncombustible nicotine or tobacco product (NNTP) and combustible cigarette (CC) use habits with subsequent cardiovascular disease (CVD) risk are still unclear. METHODS The study population consisted of 5 159 538 adult men who underwent health screening examinations during both the first (2014-2015) and second (2018) health screening periods from the Korean National Health Insurance Service database. All participants were divided into continual CC-only smokers, CC and NNTP users, recent (<5 years) CC quitters without NNTP use, recent CC quitters with NNTP use, long-term (≥5 years) CC quitters without NNTP use, long-term CC quitters with NNTP use, and never smokers. Propensity score matching analysis was conducted to further compare CVD risk among CC quitters according to NNTP use. Starting from the second health screening date, participants were followed up until the date of CVD event, death, or December 31, 2019, whichever came earliest. Multivariable Cox proportional hazards regression was used to determine the adjusted hazard ratios (aHRs) and 95% CIs for CVD risk according to changes in NNTP and CC smoking habits. RESULTS Compared with continual CC-only smokers, CC and NNTP users (aHR, 0.83 [95% CI, 0.79-0.88]) and initial CC smokers who quit CCs and switched to NNTP use only (recent CC quitters with NNTP use, aHR, 0.81 [95% CI, 0.78-0.84]) had lower risk for CVD. After propensity score matching, recent CC quitters with NNTP use (aHR, 1.31 [95% CI, 1.01-1.70]) had higher risk for CVD than recent CC quitters without NNTP use. Similarly, compared with long-term CC quitters without NNTP use, long-term CC quitters with NNTP use (aHR, 1.70 [95% CI, 1.07-2.72]) had higher CVD risk. CONCLUSIONS Switching to NNTP use among initial CC smokers was associated with lower CVD risk than continued CC smoking. On CC cessation, NNTP use was associated with higher CVD risk than CC quitting without NNTPs. Compared with CC smokers who quit without NNTP use, CC quitters who use NNTPs may be at higher future CVD risk.
Collapse
Affiliation(s)
- Seulggie Choi
- Department of Biomedical Sciences (S.C., S.M.P.), Seoul National University College of Medicine, South Korea
| | - Kiheon Lee
- Department of Family Medicine (K.L., S.M.P.), Seoul National University College of Medicine, South Korea
- Department of Family Medicine, Seoul National University Bundang Hospital, South Korea (K.L.)
| | - Sang Min Park
- Department of Biomedical Sciences (S.C., S.M.P.), Seoul National University College of Medicine, South Korea
- Department of Family Medicine (K.L., S.M.P.), Seoul National University College of Medicine, South Korea
- Department of Family Medicine, Seoul National University Hospital, South Korea (S.M.P.)
| |
Collapse
|
69
|
Vivarelli F, Canistro D, Cirillo S, Elias RJ, Granata S, Mussoni M, Burattini S, Falcieri E, Turrini E, Fimognari C, Buschini A, Lazzaretti M, Beghi S, Girotti S, Sangiorgi S, Bolelli L, Ghini S, Ferri EN, Fagiolino I, Franchi P, Lucarini M, Mercatante D, Rodriguez-Estrada MT, Lorenzini A, Marchionni S, Gabriele M, Longo V, Paolini M. Unburned Tobacco Cigarette Smoke Alters Rat Ultrastructural Lung Airways and DNA. Nicotine Tob Res 2021; 23:2127-2134. [PMID: 34036368 DOI: 10.1093/ntr/ntab108] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Recently, the Food and Drug Administration authorized the marketing of IQOS Tobacco Heating System as a Modified Risk Tobacco Product based on an electronic heat-not-burn technology that purports to reduce the risk. METHODS Sprague-Dawley rats were exposed in a whole-body mode to IQOS aerosol for 4 weeks. We performed the chemical characterization of IQOS mainstream and we studied the ultrastructural changes in trachea and lung parenchyma of rats exposed to IQOS stick mainstream and tissue pro-inflammatory markers. We investigated the reactive oxygen species amount along with the markers of tissue and DNA oxidative damage. Moreover, we tested the putative genotoxicity of IQOS mainstream through Ames and alkaline Comet mutagenicity assays. RESULTS Here, we identified irritating and carcinogenic compounds including aldehydes and polycyclic aromatic hydrocarbons in the IQOS mainstream as sign of incomplete combustion and degradation of tobacco, that lead to severe remodelling of smaller and largest rat airways. We demonstrated that IQOS mainstream induces lung enzymes that activate carcinogens, increases tissue reactive radical concentration; promotes oxidative DNA breaks and gene level DNA damage; and stimulates mitogen activated protein kinase pathway which is involved in the conventional tobacco smoke-induced cancer progression. CONCLUSIONS Collectively, our findings reveal that IQOS causes grave lung damage and promotes factors that increase cancer risk. IMPLICATIONS IQOS has been proposed as a safer alternative to conventional cigarettes, due to depressed concentration of various harmful constituents typical of traditional tobacco smoke. However, its lower health risks to consumers have yet to be determined. Our findings confirm that IQOS mainstream contains pyrolysis and thermogenic degradation by-products, the same harmful constituents of traditional cigarette smoke, and, for the first time, we show that it causes grave lung damage and promotes factors that increase cancer risk in the animal model.
Collapse
Affiliation(s)
- Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna,Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna,Italy
| | - Silvia Cirillo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna,Italy
| | - Ryan J Elias
- Department of Food Science, College of Agricultural Sciences, Pennsylvania State University, University Park, PA, USA
| | - Silvia Granata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna,Italy
| | - Matilde Mussoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna,Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Elisabetta Falcieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mirca Lazzaretti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sofia Beghi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Stefano Girotti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna,Italy
| | - Stefano Sangiorgi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna,Italy
| | - Luca Bolelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna,Italy
| | - Severino Ghini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna,Italy
| | - Elida Nora Ferri
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna,Italy
| | | | - Paola Franchi
- Department of Chemistry "G. Ciamician," Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marco Lucarini
- Department of Chemistry "G. Ciamician," Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Dario Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University di Bologna, Bologna, Italy
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University di Bologna, Bologna, Italy
- Inter-Departmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum-University of Bologna, Cesena, Italy
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna,Italy
| | - Silvia Marchionni
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna,Italy
| | - Morena Gabriele
- Department of Agricultural Biology and Biotechnology, CNR, Pisa, Italy
| | - Vincenzo Longo
- Department of Agricultural Biology and Biotechnology, CNR, Pisa, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna,Italy
| |
Collapse
|
70
|
Amorós-Pérez A, Cano-Casanova L, Román-Martínez MDC, Lillo-Ródenas MÁ. Comparison of particulate matter emission and soluble matter collected from combustion cigarettes and heated tobacco products using a setup designed to simulate puffing regimes. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
71
|
Kyriakos CN, Ahmad A, Chang K, Filippidis FT. Price differentials of tobacco products: A cross-sectional analysis of 79 countries from the six WHO regions. Tob Induc Dis 2021; 19:80. [PMID: 34720795 PMCID: PMC8519342 DOI: 10.18332/tid/142550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Increased taxation is one of the most effective tobacco control measures. Price differentials across tobacco product types may undermine the effectiveness of taxation policies by providing the option to switch to cheaper products rather than to quit. The aim of this study was to use commercial data to compare prices and price differentials of both cigarette and non-cigarette products across countries from all geographical regions. METHODS We analyzed 6920 price data points (i.e. product brands) from Euromonitor Passport 2016 for 12 types of tobacco products across 79 countries from the six WHO regions: Africa (n=5), Eastern Mediterranean (n=6), Europe (n=39), the Americas (n=15), South-East Asia (n=3), and Western Pacific (n=12). For each product and country, a price differential was computed as the percentage of minimum price to the median. RESULTS Median cigarette prices (US$) were highest in Western Pacific countries (4.00; range: 0.80-16.20) and European countries (3.80; range: 0.80-14.00), but lowest in African countries (2.00; range: 0.80-2.20). The medians of cigarette price differentials were largest in the Eastern Mediterranean (48.33%) and African regions (50.00%), but smallest in Europe (82.35%). Pipe tobacco and fine-cut tobacco were generally less expensive than cigarettes while cigars were the most expensive. However, there were wide variations in prices and price differentials across regions and tobacco products. CONCLUSIONS We found substantial variations in prices and price differentials between countries and world regions across tobacco products, likely reflecting differences in taxation policies and structures. Findings identify types of tobacco products in specific geographical regions where price differentials are highest, thereby highlighting areas where taxation policies need improvement, for example through implementing specific excise taxes.
Collapse
Affiliation(s)
- Christina N. Kyriakos
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Aulia Ahmad
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Kiara Chang
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Filippos T. Filippidis
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
72
|
Phillips-Waller A, Przulj D, Pesola F, Smith KM, Hajek P. Nicotine Delivery and User Ratings of IQOS Heated Tobacco System Compared With Cigarettes, Juul, and Refillable E-Cigarettes. Nicotine Tob Res 2021; 23:1889-1894. [PMID: 33983450 PMCID: PMC8496472 DOI: 10.1093/ntr/ntab094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/11/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Reduced-risk nicotine products are more likely to replace smoking if they match cigarettes in nicotine delivery and user satisfaction. AIMS AND METHODS We examined the nicotine delivery profile and user ratings of IQOS heated tobacco system and compared it with own brand cigarettes (OBC), Juul, and refillable e-cigarettes (EC).Participants (N = 22) who were daily vapers smoking <1 cigarette per day on average, attended after overnight abstinence from smoking and vaping, to test at separate sessions OBC, IQOS, and Juul. Eight participants also tested two refillable EC using e-liquid with 20 mg/mL nicotine. At each session, a baseline blood sample was taken before participants used the product ad libitum for 5 minutes. Further samples were taken at 2, 4, 6, 8, 10, and 30 minutes. Maximum nicotine concentration (Cmax), time to Cmax (Tmax), and nicotine delivered over 30 minutes (AUC0->30) were calculated. Participants rated their urge to smoke and product characteristics. RESULTS IQOS delivered less nicotine than OBC (AUC0->30: z = -2.73, p = .006), and than Juul (AUC0->30: z = -3.08, p = .002; Cmax: z = -2.65, p = .008), and received less favorable ratings than Juul (effect on urges to smoke: z = -3.23, p = .001; speed of urge relief: z = -2.75, p = .006; recommendation to friends: z = -2.45, p = .014). Compared with refillable EC, IQOS delivered nicotine faster (Tmax: z = -2.37, p = .018), but received less favorable overall ratings (recommended to friends: z = -2.32, p = .021). CONCLUSIONS IQOS' pharmacokinetic profile suggests that it may be less effective than Juul for smoking cessation, but at least as effective as refillable EC; although participants, who were experienced vapers rather than IQOS users, preferred refillable EC. IMPLICATIONS Because IQOS provided less efficient nicotine delivery than cigarettes and Juul in this sample, and also had a weaker effect on urges to smoke than Juul, it could be less helpful than Juul in assisting such dual users, and possibly smokers generally, to switch to an alternative product. IQOS, however, provided nicotine faster than refillable EC products, although participants preferred EC.
Collapse
Affiliation(s)
| | - Dunja Przulj
- Health and Lifestyle Research Unit, Queen Mary University of London, London, UK
| | - Francesca Pesola
- Health and Lifestyle Research Unit, Queen Mary University of London, London, UK
| | - Katie Myers Smith
- Health and Lifestyle Research Unit, Queen Mary University of London, London, UK
| | - Peter Hajek
- Health and Lifestyle Research Unit, Queen Mary University of London, London, UK
| |
Collapse
|
73
|
Targeted Characterization of the Chemical Composition of JUUL Systems Aerosol and Comparison with 3R4F Reference Cigarettes and IQOS Heat Sticks. SEPARATIONS 2021. [DOI: 10.3390/separations8100168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aerosol constituent yields have been reported from a wide range of electronic nicotine delivery systems. No comprehensive study has been published on the aerosol constituents generated from the JUUL system. Targeted analyses of 53 aerosol constituents from the four JUUL products currently on the US market (Virginia Tobacco and Menthol flavored e-liquids in both 5.0% and 3.0% nicotine concentration by weight) was performed using non-intense and intense puffing regimens. All measurements were conducted by an ISO 17025 accredited contract research organization. JUUL product aerosol constituents were compared to published values for the 3R4F research cigarette and IQOS Regular and Menthol heated tobacco products. Across the four JUUL products and two puffing regimes, only 10/53 analytes were quantifiable, including only two carbonyls (known propylene glycol or glycerol degradants). The remaining analytes were primary ingredients, nicotine degradants and water. Average analyte reductions (excluding primary ingredients and water) for all four JUUL system aerosols tested were greater than 98% lower than 3R4F mainstream smoke, and greater than 88% lower than IQOS aerosol. In summary, chemical characterization and evaluation of JUUL product aerosols demonstrates a significant reduction in toxicants when compared to mainstream cigarette smoke from 3R4F reference cigarettes or aerosols from IQOS-heated tobacco products.
Collapse
|
74
|
Poussin C, van der Toorn M, Scheuner S, Piault R, Kondylis A, Savioz R, Dulize R, Peric D, Guedj E, Maranzano F, Merg C, Morelli M, Egesipe AL, Johne S, Majeed S, Pak C, Schneider T, Schlage WK, Ivanov NV, Peitsch MC, Hoeng J. Systems toxicology study reveals reduced impact of heated tobacco product aerosol extract relative to cigarette smoke on premature aging and exacerbation effects in aged aortic cells in vitro. Arch Toxicol 2021; 95:3341-3359. [PMID: 34313809 PMCID: PMC8448694 DOI: 10.1007/s00204-021-03123-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
Aging and smoking are major risk factors for cardiovascular diseases (CVD). Our in vitro study compared, in the context of aging, the effects of the aerosol of Tobacco Heating System 2.2 (THS; an electrically heated tobacco product) and 3R4F reference cigarette smoke (CS) on processes that contribute to vascular pathomechanisms leading to CVD. Young and old human aortic smooth muscle cells (HAoSMC) were exposed to various concentrations of aqueous extracts (AE) from 3R4F CS [0.014-0.22 puffs/mL] or THS aerosol [0.11-1.76 puffs/mL] for 24 h. Key markers were measured by high-content imaging, transcriptomics profiling and multianalyte profiling. In our study, in vitro aging increased senescence, DNA damage, and inflammation and decreased proliferation in the HAoSMCs. At higher concentrations of 3R4F AE, young HAoSMCs behaved similarly to aged cells, while old HAoSMCs showed additional DNA damage and apoptosis effects. At 3R4F AE concentrations with the maximum effect, the THS AE showed no significant effect in young or old HAoSMCs. It required an approximately ten-fold higher concentration of THS AE to induce effects similar to those observed with 3R4F. These effects were independent of nicotine, which did not show a significant effect on HAoSMCs at any tested concentration. Our results show that 3R4F AE accelerates aging in young HAoSMCs and exacerbates the aging effect in old HAoSMCs in vitro, consistent with CS-related contributions to the risk of CVD. Relative to 3R4F AE, the THS AE showed a significantly reduced impact on HAoSMCs, suggesting its lower risk for vascular SMC-associated pathomechanisms leading to CVD.
Collapse
Affiliation(s)
- Carine Poussin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Marco van der Toorn
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Sophie Scheuner
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Romain Piault
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Rebecca Savioz
- Consultants in Science Sàrl, Biopole, Route de la Corniche 4, 1066, Epalinges, Switzerland
| | - Rémi Dulize
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Dariusz Peric
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Fabio Maranzano
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Celine Merg
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Moran Morelli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Anne-Laure Egesipe
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Stéphanie Johne
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Shoaib Majeed
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Claudius Pak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, 51429, Bergisch Gladbach, Germany
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| |
Collapse
|
75
|
Horinouchi T, Miwa S. Comparison of cytotoxicity of cigarette smoke extract derived from heat-not-burn and combustion cigarettes in human vascular endothelial cells. J Pharmacol Sci 2021; 147:223-233. [PMID: 34507631 DOI: 10.1016/j.jphs.2021.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
The present study compared the properties of mainstream smoke generated from heat-not-burn (HNB) cigarettes and a combustion cigarette (hi-lite™ brand). Three types of cigarette heating devices were used to generate cigarette smoke at different heating temperatures [Ploom S™ (200 °C), glo™ (240 °C), and IQOS™ (300-350 °C)]. Mainstream smoke was generated using the following puffing regimen: volume, 55 mL; duration, 3 s; and interval, 30 s. The rank order of particulate phase (nicotine and tar) amounts trapped on a Cambridge filter was Ploom S < glo < IQOS < hi-lite. Heated cigarette-derived smoke extract (hCSE) from the devices except for Ploom S, and burned CSE (bCSE) decreased mitochondrial metabolic activity (glo < IQOS < hi-lite) in human vascular endothelial cells. Furthermore, the cytotoxicity was reduced by removing the particulate phase from the mainstream smoke. Endothelial nitric oxide synthase activity was reduced by nicotine- and tar-free CSE of IQOS and hi-lite (IQOS < hi-lite), but not Ploom S and glo. These inhibitory effects were diminished by removing the carbonyl compounds from the mainstream smoke. These results indicated that the cytotoxicity of hCSE was lower than that of bCSE in vascular endothelial cells.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Soichi Miwa
- Toyooka General Hospital, 1094 Tobera, Toyooka, Hyogo, 668-8501, Japan
| |
Collapse
|
76
|
Investigation of Volatile Organic Compounds and Benzo[a]pyrene Contents in the Aerosols of Cigarettes and IQOS Tobacco Heating System Using High-Performance Gas Chromatography/Mass Spectrometry. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00898-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
77
|
Chen H, Chen X, Shen Y, Yin X, Liu F, Liu L, Yao J, Chu Q, Wang Y, Qi H, Timko MP, Fang W, Fan L. Signaling pathway perturbation analysis for assessment of biological impact of cigarette smoke on lung cells. Sci Rep 2021; 11:16715. [PMID: 34408184 PMCID: PMC8373939 DOI: 10.1038/s41598-021-95938-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure to cigarette smoke (CS) results in injury to the epithelial cells of the human respiratory tract and has been implicated as a causative factor in the development of chronic obstructive pulmonary disease and lung cancers. The application of omics-scale methodologies has improved the capacity to understand cellular signaling processes underlying response to CS exposure. We report here the development of an algorithm based on quantitative assessment of transcriptomic profiles and signaling pathway perturbation analysis (SPPA) of human bronchial epithelial cells (HBEC) exposed to the toxic components present in CS. HBEC were exposed to CS of different compositions and for different durations using an ISO3308 smoking regime and the impact of exposure was monitored in 2263 signaling pathways in the cell to generate a total effect score that reflects the quantitative degree of impact of external stimuli on the cells. These findings support the conclusion that the SPPA algorithm provides an objective, systematic, sensitive means to evaluate the biological impact of exposures to CS of different compositions making a powerful comparative tool for commercial product evaluation and potentially for other known or potentially toxic environmental smoke substances.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.,Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Xi Chen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.,Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Yifei Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinxin Yin
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Fangjie Liu
- Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Lu Liu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Jie Yao
- Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Qinjie Chu
- Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Yaqin Wang
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hongyan Qi
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Michael P Timko
- Department of Biology and Public Health Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| | - Weijia Fang
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Longjiang Fan
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China. .,Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China. .,Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
78
|
Wong ET, Luettich K, Krishnan S, Wong SK, Lim WT, Yeo D, Büttner A, Leroy P, Vuillaume G, Boué S, Hoeng J, Vanscheeuwijck P, Peitsch MC. Reduced Chronic Toxicity and Carcinogenicity in A/J Mice in Response to Life-Time Exposure to Aerosol From a Heated Tobacco Product Compared With Cigarette Smoke. Toxicol Sci 2021; 178:44-70. [PMID: 32780830 PMCID: PMC7657344 DOI: 10.1093/toxsci/kfaa131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We conducted an inhalation study, in accordance with Organisation for Economic Co-operation and Development Test Guideline 453, exposing A/J mice to tobacco heating system (THS) 2.2 aerosol or 3R4F reference cigarette smoke (CS) for up to 18 months to evaluate chronic toxicity and carcinogenicity. All exposed mice showed lower thymus and spleen weight, blood lymphocyte counts, and serum lipid concentrations than sham mice, most likely because of stress and/or nicotine effects. Unlike THS 2.2 aerosol-exposed mice, CS-exposed mice showed increased heart weight, changes in red blood cell profiles and serum liver function parameters. Similarly, increased pulmonary inflammation, altered lung function, and emphysematous changes were observed only in CS-exposed mice. Histopathological changes in other respiratory tract organs were significantly lower in the THS 2.2 aerosol-exposed groups than in the CS-exposed group. Chronic exposure to THS 2.2 aerosol also did not increase the incidence or multiplicity of bronchioloalveolar adenomas or carcinomas relative to sham, whereas CS exposure did. Male THS 2.2 aerosol-exposed mice had a lower survival rate than sham mice, related to an increased incidence of urogenital issues that appears to be related to congenital factors rather than test item exposure. The lower impact of THS 2.2 aerosol exposure on tumor development and chronic toxicity is consistent with the significantly reduced levels of harmful and potentially harmful constituents in THS 2.2 aerosol relative to CS. The totality of the evidence from this study further supports the risk reduction potential of THS 2.2 for lung diseases in comparison with cigarettes.
Collapse
Affiliation(s)
- Ee Tsin Wong
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore 117406, Singapore
| | - Karsta Luettich
- Department of Life Sciences, Systems Toxicology, PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Subash Krishnan
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore 117406, Singapore
| | - Sin Kei Wong
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore 117406, Singapore
| | - Wei Ting Lim
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore 117406, Singapore
| | - Demetrius Yeo
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore 117406, Singapore
| | | | - Patrice Leroy
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore 117406, Singapore
| | - Grégory Vuillaume
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore 117406, Singapore
| | - Stéphanie Boué
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore 117406, Singapore
| | - Julia Hoeng
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore 117406, Singapore
| | - Patrick Vanscheeuwijck
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore 117406, Singapore
| | - Manuel C Peitsch
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore 117406, Singapore
| |
Collapse
|
79
|
Titz B, Sewer A, Luettich K, Wong ET, Guedj E, Nury C, Schneider T, Xiang Y, Trivedi K, Vuillaume G, Leroy P, Büttner A, Martin F, Ivanov NV, Vanscheeuwijck P, Hoeng J, Peitsch MC. Respiratory Effects of Exposure to Aerosol From the Candidate Modified-Risk Tobacco Product THS 2.2 in an 18-Month Systems Toxicology Study With A/J Mice. Toxicol Sci 2021; 178:138-158. [PMID: 32780831 PMCID: PMC7657339 DOI: 10.1093/toxsci/kfaa132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Smoking cessation is the most effective measure for reducing the risk of smoking-related diseases. However, switching to less harmful products (modified-risk tobacco products [MRTP]) can be an alternative to help reduce the risk for adult smokers who would otherwise continue to smoke. In an 18-month chronic carcinogenicity/toxicity study in A/J mice (OECD Test Guideline 453), we assessed the aerosol of Tobacco Heating System 2.2 (THS 2.2), a candidate MRTP based on the heat-not-burn principle, compared with 3R4F cigarette smoke (CS). To capture toxicity- and disease-relevant mechanisms, we complemented standard toxicology endpoints with in-depth systems toxicology analyses. In this part of our publication series, we report on integrative assessment of the apical and molecular exposure effects on the respiratory tract (nose, larynx, and lungs). Across the respiratory tract, we found changes in inflammatory response following 3R4F CS exposure (eg, antimicrobial peptide response in the nose), with both shared and distinct oxidative and xenobiotic responses. Compared with 3R4F CS, THS 2.2 aerosol exerted far fewer effects on respiratory tract histology, including adaptive tissue changes in nasal and laryngeal epithelium and inflammation and emphysematous changes in the lungs. Integrative analysis of molecular changes confirmed the substantially lower impact of THS 2.2 aerosol than 3R4F CS on toxicologically and disease-relevant molecular processes such as inflammation, oxidative stress responses, and xenobiotic metabolism. In summary, this work exemplifies how apical and molecular endpoints can be combined effectively for toxicology assessment and further supports findings on the reduced respiratory health risks of THS 2.2 aerosol.
Collapse
Affiliation(s)
- Bjoern Titz
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Ee Tsin Wong
- Philip Morris International Research Laboratories Pte. Ltd, Singapore 117406
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Catherine Nury
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | | | - Yang Xiang
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | | | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | | | - Florian Martin
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | | | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
80
|
Comprehensive Air Quality Assessment of the Tobacco Heating System 2.2 under Simulated Indoor Environments. ATMOSPHERE 2021. [DOI: 10.3390/atmos12080989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite the growing popularity of heated tobacco products, there are few comprehensive studies on their environmental aerosols. Therefore, the impact of the Tobacco Heating System 2.2 (THS 2.2) on indoor air quality was evaluated on the basis of a comprehensive list of 31 airborne constituents along with targeted screening of the gas–vapor and particulate phases of the environmental aerosol. The assessments were conducted at three ventilation rates. Indoor use of THS 2.2 increased the levels of nicotine, acetaldehyde, glycerin, and (if mentholated products were used) menthol relative to background levels, with a corresponding increase in total volatile organic compounds (TVOC) values. Moreover, a temporary increase in ultrafine particles was observed when two or more tobacco sticks were used simultaneously or with a short time lapse between usages, but the concentrations returned to close to background levels almost immediately. This is because THS 2.2 generates an aerosol of liquid droplets, which evaporate quickly. Nicotine, acetaldehyde, glycerin, and TVOC levels were measured in the low μg/m3 range and were below the existing guideline limits. A comparison of airborne constituent levels during indoor THS 2.2 use with emissions from combustion products and common everyday activities revealed a substantially lower impact of THS 2.2 on the indoor environment.
Collapse
|
81
|
Matassa R, Cattaruzza MS, Sandorfi F, Battaglione E, Relucenti M, Familiari G. Direct imaging evidences of metal inorganic contaminants traced into cigarettes. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125092. [PMID: 33858086 DOI: 10.1016/j.jhazmat.2021.125092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/20/2020] [Accepted: 01/06/2021] [Indexed: 05/14/2023]
Abstract
Today, environmental health research on toxicological adverse effects of metal-inorganic materials diffused by cigarettes represents a new challenge for assessing new health risks directly related to the critical chemical-size features of the particles. Therefore, morpho-chemical analyses of hazardous particles become critical in response to the distinctive assumptions about the origin, evolution, and coexisting phases. Here, we report a detailed investigation through direct microscopy imaging of metal-inorganic contaminants for one traditional and two heat-not-burn commercial cigarettes of three different brands. Chemical-size studies revealed the critical presence of heavy metal-inorganic nanostructured microparticles on both paper and filter components of the cigarette, before and after smoking. The direct experimental imaging evidenced on how hazardous particles evolved in mass-size forming coexisting multi-phases of large agglomerate because of the persistence and accumulative effect of the heating puffing. The estimated porosity of the unsuitable engineered filters validated the allowed migration of micrometric pollutants independently from their intrinsic size-shape property. Furthermore, the inappropriate design of the filters made it an adverse sponge reservoir capable of collecting all possible hazardous chemical agents potentially toxic. These substantial results strongly support experimentally the tremendous effect of the smoke capable of transporting and manipulating a high amount of elusive particles, as a particles heat carrier.
Collapse
Affiliation(s)
- Roberto Matassa
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy.
| | - Maria Sofia Cattaruzza
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Filippo Sandorfi
- Department of Hygiene and Public Health, Alma Mater Studiorum University of Bologna, via San Giacomo 12, 40126 Bologna, Italy
| | - Ezio Battaglione
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy
| |
Collapse
|
82
|
Ikonomidis I, Vlastos D, Kostelli G, Kourea K, Katogiannis K, Tsoumani M, Parissis J, Andreadou I, Alexopoulos D. Differential effects of heat-not-burn and conventional cigarettes on coronary flow, myocardial and vascular function. Sci Rep 2021; 11:11808. [PMID: 34083663 PMCID: PMC8175445 DOI: 10.1038/s41598-021-91245-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
We compared the effects of Heat-not-Burn cigarette (HNBC) to those of tobacco cigarette (Tcig), on myocardial, coronary and arterial function as well as on oxidative stress and platelet activation in 75 smokers. In the acute study, 50 smokers were randomised into smoking a single Tcig or a HNBC and after 60 min were crossed-over to the alternate smoking. For chronic phase, 50 smokers were switched to HNBC and were compared with an external group of 25 Tcig smokers before and after 1 month. Exhaled carbon monoxide (CO), pulse wave velocity (PWV), malondialdehyde (MDA) and thromboxane B2 (TxB2) were assessed in the acute and chronic study. Global longitudinal strain (GLS), myocardial work index (GWI), wasted myocardial work (GWW), coronary flow reserve (CFR), total arterial compliance (TAC) and flow-mediated dilation (FMD) were assessed in the chronic study. Acute HNBC smoking caused a smaller increase of PWV than Tcig (change 1.1 vs 0.54 m/s, p < 0.05) without change in CO and biomarkers in contrast to Tcig. Compared to Tcig, switching to HNBC for 1-month improved CO, FMD, CFR, TAC, GLS, GWW, MDA, TxB2 (differences 10.42 ppm, 4.3%, 0.98, 1.8 mL/mmHg, 2.35%, 19.72 mmHg%, 0.38 nmol/L and 45 pg/mL respectively, p < 0.05). HNBCs exert a less detrimental effect on vascular and cardiac function than tobacco cigarettes. Trial registration Registered on https://clinicaltrials.gov/ (NCT03452124, 02/03/2018).
Collapse
Affiliation(s)
- Ignatios Ikonomidis
- 2nd Cardiology Department, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece.
| | - Dimitrios Vlastos
- Department of Cardiac Surgery, Royal Brompton Hospital, Imperial College, London, UK
| | - Gavriela Kostelli
- 2nd Cardiology Department, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece
| | - Kallirhoe Kourea
- 2nd Cardiology Department, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece
| | - Konstantinos Katogiannis
- 2nd Cardiology Department, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece
| | - Maria Tsoumani
- Department of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, School of Pharmacy, Athens, Greece
| | - John Parissis
- 2nd Cardiology Department, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece
| | - Ioanna Andreadou
- Department of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, School of Pharmacy, Athens, Greece
| | - Dimitrios Alexopoulos
- 2nd Cardiology Department, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece
| |
Collapse
|
83
|
Sibul F, Burkhardt T, Kachhadia A, Pilz F, Scherer G, Scherer M, Pluym N. Identification of biomarkers specific to five different nicotine product user groups: Study protocol of a controlled clinical trial. Contemp Clin Trials Commun 2021; 22:100794. [PMID: 34189337 PMCID: PMC8219643 DOI: 10.1016/j.conctc.2021.100794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/09/2021] [Accepted: 05/23/2021] [Indexed: 01/03/2023] Open
Abstract
Background Assessing biomarker profiles in various body fluids is of large value to discern between the sole use of nicotine products. In particular, the assessment of the product compliance is required for long-term clinical studies. The objective of this study was the identification of biomarkers and biomarker patterns in body fluids, to distinguish between combustibles, heated tobacco products, electronic cigarettes, oral tobacco and oral/dermal nicotine products used for nicotine replacement therapy (NRT), as well as a control group of non-users. Methods A controlled, single-center study was conducted with 60 healthy subjects, divided into 6 groups (5 nicotine product user groups and one non-user group) based on their sole use of the products of choice. The subjects were confined for 76 h, during which, free and uncontrolled use of the products was provided. Sample collections were performed according to the study time schedule provided in Table 2. The primary outcome will be validated through analysis of the collected biospecimens (urine, blood, saliva, exhaled breath and exhaled breath condensate) by means of untargeted omics approaches (i.e. exposomics, breathomics and adductomics). Secondary outcome will include established biomarker quantification methods to allow for the identification of typical biomarker patterns. Statistical analysis tools will be used to specifically discriminate different product use categories. Results/Conclusions The clinical trial was successfully completed in May 2020, resulting in sample management and preparations for the quantitative and qualitative analyses. This work will serve as a solid basis to discern between biomarker profiles of different nicotine product user groups. The knowledge collected during this research will be required to develop prototype diagnostic tools that can reliably assess the differences and evaluate possible health risks of various nicotine products.
Collapse
Affiliation(s)
- Filip Sibul
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Therese Burkhardt
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Alpeshkumar Kachhadia
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Fabian Pilz
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Gerhard Scherer
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Max Scherer
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Nikola Pluym
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| |
Collapse
|
84
|
Heide J, Adam TW, Jacobs E, Wolter JM, Ehlert S, Walte A, Zimmermann R. Puff-resolved analysis and selected quantification of chemicals in the gas phase of E-Cigarettes, Heat-not-Burn devices and conventional cigarettes using single photon ionization time-of-flight mass spectrometry (SPI-TOFMS): A comparative study. Nicotine Tob Res 2021; 23:2135-2144. [PMID: 33993304 DOI: 10.1093/ntr/ntab091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 05/14/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION A wide array of alternative nicotine delivery devices (ANDD) has been developed and they are often described as less harmful than combustible cigarettes. This work compares the chemical emissions of three ANDD in comparison to cigarette smoke. All the tested ANDD are characterized by not involving combustion of tobacco. METHOD Single photon ionization time-of-flight mass spectrometry (SPI-TOFMS) is coupled to a linear smoking machine, which allows a comprehensive, online analysis of the gaseous phase of the ANDD aerosol and the conventional cigarette smoke (CC). The following devices were investigated in this study: a tobacco cigarette with a glowing piece of coal as a heating source, an electric device for heating tobacco and a first-generation electronic cigarette. Data obtained from a standard 2R4F research cigarette are taken as a reference. RESULTS The puff-by-puff profile of all products was recorded. The ANDD show a substantial reduction or complete absence of known harmful and potentially harmful substances compared to the CC. In addition, tar substances (i.e. semivolatile and low volatile aromatic and phenolic compounds) are formed to a much lower extent. Nicotine, however, is supplied in comparable amounts except for the investigated electronic cigarette. CONCLUSIONS The data shows that consumers switching from CC to ANDD are exposed to lower concentrations of harmful and potentially harmful substances. However, toxicological and epidemiological studies must deliver conclusive results if these reduced exposures are beneficial for users. IMPLICATION The comparison of puff-resolved profiles of emissions from different tobacco products, traditional and alternative, may help users switch to lower emission products. Puff-resolved comparison overcomes technical changes, use modes between products and may help in their regulation.
Collapse
Affiliation(s)
- J Heide
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - T W Adam
- Joint Mass Spectrometry Centre, Cooperation Group "Comprehensive Molecular Analytics", Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Bundeswehr University Munich, Neubiberg, Germany
| | - E Jacobs
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - J-M Wolter
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - S Ehlert
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany.,Photonion GmbH, Schwerin, Germany
| | - A Walte
- Photonion GmbH, Schwerin, Germany
| | - R Zimmermann
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany.,Joint Mass Spectrometry Centre, Cooperation Group "Comprehensive Molecular Analytics", Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
85
|
Haswell LE, Smart D, Jaunky T, Baxter A, Santopietro S, Meredith S, Camacho OM, Breheny D, Thorne D, Gaca MD. The development of an in vitro 3D model of goblet cell hyperplasia using MUC5AC expression and repeated whole aerosol exposures. Toxicol Lett 2021; 347:45-57. [PMID: 33892128 DOI: 10.1016/j.toxlet.2021.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Goblet cell hyperplasia and overproduction of airway mucin are characteristic features of the lung epithelium of smokers and COPD patients. Tobacco heating products (THPs) are a potentially less risky alternative to combustible cigarettes, and through continued use solus THPs may reduce smoking-related disease risk. Using the MucilAir™ in vitro lung model, a 6-week feasibility study was conducted investigating the effect of repeated cigarette smoke (1R6F), THP aerosol and air exposure. Tissues were exposed to nicotine-matched whole aerosol doses 3 times/week. Endpoints assessed were dosimetry, tight-junction integrity, cilia beat frequency (CBF) and active area (AA), cytokine secretion and airway mucin MUC5AC expression. Comparison of incubator and air exposed controls indicated exposures did not have a significant effect on the transepithelial electrical resistance (TEER), CBF and AA of the tissues. Cytokine secretion indicated clear differences in secretion patterns in response to 1R6F and THP exposure. 1R6F exposure resulted in a significant decrease in the TEER and AA (p=0.000 and p=0.000, respectively), and an increase in MUC5AC positive cells (p=0.002). Repeated THP exposure did not result in a significant change in MUC5AC positive cells. This study demonstrates repeated cigarette smoke whole aerosol exposure can induce these morphological changes in vitro.
Collapse
Affiliation(s)
- Linsey E Haswell
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK.
| | - David Smart
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Tomasz Jaunky
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Andrew Baxter
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | | | - Stuart Meredith
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Oscar M Camacho
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Damien Breheny
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - David Thorne
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Marianna D Gaca
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
86
|
St Helen G, Benowitz NL, Ko J, Jacob P, Gregorich SE, Pérez-Stable EJ, Murphy SE, Hecht SS, Hatsukami DK, Donny EC. Differences in exposure to toxic and/or carcinogenic volatile organic compounds between Black and White cigarette smokers. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:211-223. [PMID: 31406274 PMCID: PMC7012700 DOI: 10.1038/s41370-019-0159-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/23/2019] [Indexed: 06/01/2023]
Abstract
OBJECTIVE It is unclear why Black smokers in the United States have elevated risk of some tobacco-related diseases compared to White smokers. One possible causal mechanism is differential intake of tobacco toxicants, but results across studies are inconsistent. Thus, we examined racial differences in biomarkers of toxic volatile organic compounds (VOCs) present in tobacco smoke. METHOD We analyzed baseline data collected from 182 Black and 184 White adult smokers who participated in a randomized clinical trial in 2013-2014 at 10 sites across the United States. We examined differences in urinary levels of ten VOC metabolites, total nicotine equivalents (TNE), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), controlling for covariates such as cigarettes per day (CPD), as well as differences in VOCs per TNE to assess the extent to which tobacco exposure, and not metabolic factors, accounted for racial differences. RESULTS Concentration of metabolites of acrolein, acrylonitrile, ethylene oxide, and methylating agents were significantly higher in Blacks compared to Whites when controlled for covariates. Other than the metabolite of methylating agents, VOCs per TNE did not differ between Blacks and Whites. Concentrations of TNE/CPD and VOCs/CPD were significantly higher in Blacks. Menthol did not contribute to racial differences in VOC levels. CONCLUSIONS For a given level of CPD, Black smokers likely take in higher levels of acrolein, acrylonitrile, and ethylene oxide than White smokers. Our findings are consistent with Blacks taking in more nicotine and toxicants per cigarette smoked, which may explain their elevated disease risk relative to other racial groups.
Collapse
Affiliation(s)
- Gideon St Helen
- Clinical Pharmacology Research Program, Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of Medicine, University of California, San Francisco, CA, USA.
- Center for Tobacco Control Research and Education (CTCRE), University of California, San Francisco, CA, USA.
| | - Neal L Benowitz
- Clinical Pharmacology Research Program, Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of Medicine, University of California, San Francisco, CA, USA
- Center for Tobacco Control Research and Education (CTCRE), University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Jennifer Ko
- Clinical Pharmacology Research Program, Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of Medicine, University of California, San Francisco, CA, USA
| | - Peyton Jacob
- Clinical Pharmacology Research Program, Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of Medicine, University of California, San Francisco, CA, USA
- Center for Tobacco Control Research and Education (CTCRE), University of California, San Francisco, CA, USA
| | - Steven E Gregorich
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Eliseo J Pérez-Stable
- Division of Intramural Research, National Heart, Lung and Blood Institute and Office of the Director, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Dorothy K Hatsukami
- Masonic Cancer Center, Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Eric C Donny
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
87
|
Alberti S, Sotiropoulou M, Fernández E, Solomou N, Ferretti M, Psillakis E. UV-254 degradation of nicotine in natural waters and leachates produced from cigarette butts and heat-not-burn tobacco products. ENVIRONMENTAL RESEARCH 2021; 194:110695. [PMID: 33400945 DOI: 10.1016/j.envres.2020.110695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/20/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Nicotine is an important emerging contaminant widely detected in water resources. The main nicotine sources are human excretions from users and leaching from discarded tobacco product waste, which represents the most commonly littered item in urban areas and coasts. In this study, the UV254 photolytical fate of nicotine in natural water and leachates produced from conventional cigarettes (CCs) and the new generation heat-not-burn (HnBs) tobacco products is examined for the first time. The effect of UV254 irradiation on nicotine depletion in ultrapure water was initially studied. The reaction was pseudo first-order with respect to nicotine concentration at low concentrations and shifted to lower order at higher concentrations, an effect associated to absorption saturation. Although nicotine removal was fast, only 9.5% of the total organic carbon was removed after irradiation due to the formation of by-products. The chemical structures of six photo-products were derived by means of liquid and gas chromatography coupled to mass spectrometry. The photodegradation kinetics was found to depend on pH and faster kinetics were recorded when the monoprotonated form of nicotine was dominant (pH = 5-8). The presence of humic acids was found to slightly delay kinetics as they competed with nicotine for lamp irradiance, whereas the presence of salt had no effect on the direct photolysis of nicotine. Direct photolysis studies were also performed using natural waters. Compared to ultra-pure water, photodegradation was found to proceed slightly slower in river water, in similar kinetics in seawater, and relatively faster in rain water. The later was assumed to be due to the lower pH compared to the rest of the natural water tested. Leachates from used HnBs and smoked CCs were also submitted to UV254 irradiation and direct photolysis was found to proceed fast despite the high complexity of these matrices. Nonetheless, the total organic carbon in the system remained the same after irradiation due to the abundance of organics and photo-products formed. We take advantage of the present investigations and report the leaching behavior of nicotine from HnBs and CCs. Among others, we found that in HnBs ~70% of the total and bioavailable nicotine content remains in the tobacco sticks after operation and this percentage drops to 15% in CCs due to the reduction in mass after smoking. This finding demonstrated the importance of properly disposing tobacco product waste to prevent nicotine leaching in water bodies.
Collapse
Affiliation(s)
- Stefano Alberti
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Technical University of Crete, 73100, Chania, Crete, Greece; Dipartimento di Chimica e Chimica Industriale, Università Degli Studi di Genova, Via Dodecaneso 31, 16146, Genova, Italy
| | - Maria Sotiropoulou
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Technical University of Crete, 73100, Chania, Crete, Greece
| | - Elena Fernández
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Technical University of Crete, 73100, Chania, Crete, Greece
| | - Nicoleta Solomou
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Technical University of Crete, 73100, Chania, Crete, Greece
| | - Maurizio Ferretti
- Dipartimento di Chimica e Chimica Industriale, Università Degli Studi di Genova, Via Dodecaneso 31, 16146, Genova, Italy
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Technical University of Crete, 73100, Chania, Crete, Greece.
| |
Collapse
|
88
|
Pouly S, Ng WT, Benzimra M, Soulan A, Blanc N, Zanetti F, Picavet P, Baker G, Haziza C. Effect of Switching to the Tobacco Heating System Versus Continued Cigarette Smoking on Chronic Generalized Periodontitis Treatment Outcome: Protocol for a Randomized Controlled Multicenter Study. JMIR Res Protoc 2021; 10:e15350. [PMID: 33459599 PMCID: PMC7850905 DOI: 10.2196/15350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 04/30/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Smoking is a significant risk factor for periodontal disease and tooth loss, as shown in several clinical studies comparing smokers and nonsmokers. Although only a few longitudinal studies have assessed the outcome of periodontal disease after smoking cessation, they indicated that recovery after nonsurgical treatment was more successful in those who had quit smoking. As part of tobacco harm reduction strategies, substituting cigarettes with alternative, less harmful tobacco products is an approach complementary to cessation for smokers who would otherwise continue to smoke. The Tobacco Heating System (THS), developed by Philip Morris International (commercialized as IQOS), is part of the heat-not-burn product category. The IQOS device electrically heats tobacco instead of burning it, at much lower temperatures than cigarettes, thereby producing substantially lower levels of harmful and potentially harmful constituents, while providing the nicotine, taste, ritual, and a sensory experience that closely parallel those of cigarettes. Phillip Morris International has published the results from a broad clinical assessment program, which was established to scientifically substantiate the harm reduction potential of the THS among adult healthy smokers switching to the THS. The program is now progressing toward including adult smokers with smoking-related diseases. OBJECTIVE The goal of this study is to demonstrate favorable changes of periodontal endpoints in response to mechanical periodontal therapy in patients with generalized chronic periodontitis who completely switched to THS use compared with continued cigarette smoking. METHODS This is a randomized controlled two-arm parallel-group multicenter Japanese study conducted in patients with chronic generalized periodontitis who switch from cigarettes to THS compared with smokers continuing to smoke cigarettes for 6 months. The patients were treated with mechanical periodontal therapy as per standard of care in Japan. The primary objective of the study is to demonstrate the beneficial effect of switching to THS use compared with continued cigarette smoking on pocket depth (PD) reduction in all sites with an initial PD≥4 mm. The secondary objectives include evaluation of other periodontal parameters (eg, clinical attachment level or gingival inflammation) and overall oral health status upon switching to THS. Safety was monitored throughout the study. RESULTS In total, 172 subjects were randomized to the cigarette (n=86) or THS (n=86) groups, and all 172 completed the study. The conduct phase of the study is completed, while data cleaning and analyses are ongoing. CONCLUSIONS This study is the first to test a heat-not-burn tobacco product in smokers with an already established disease. The results should further strengthen the evidence that switching to THS can significantly reduce the risk of smoking-related diseases if favorable changes in the evolution of chronic generalized periodontitis after mechanical therapy are found when compared with continued cigarette smoking. TRIAL REGISTRATION ClinicalTrials.gov NCT03364751; https://clinicaltrials.gov/ct2/show/NCT03364751. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/15350.
Collapse
Affiliation(s)
| | - Wee Teck Ng
- Philip Morris Products SA, Neuchâtel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Dusautoir R, Zarcone G, Verriele M, Garçon G, Fronval I, Beauval N, Allorge D, Riffault V, Locoge N, Lo-Guidice JM, Anthérieu S. Comparison of the chemical composition of aerosols from heated tobacco products, electronic cigarettes and tobacco cigarettes and their toxic impacts on the human bronchial epithelial BEAS-2B cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123417. [PMID: 32763707 DOI: 10.1016/j.jhazmat.2020.123417] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
The electronic cigarettes (e-cigs) and more recently the heated tobacco products (HTP) provide alternatives for smokers as they are generally perceived to be less harmful than conventional cigarettes. However, it is crucial to compare the health risks of these different emergent devices, in order to determine which product should be preferred to substitute cigarette. The present study aimed to compare the composition of emissions from HTP, e-cigs and conventional cigarettes, regarding selected harmful or potentially harmful compounds, and their toxic impacts on the human bronchial epithelial BEAS-2B cells. The HTP emitted less polycyclic aromatic hydrocarbons and carbonyls than the conventional cigarette. However, amounts of these compounds in HTP aerosols were still higher than in e-cig vapours. Concordantly, HTP aerosol showed reduced cytotoxicity compared to cigarette smoke but higher than e-cig vapours. HTP and e-cig had the potential to increase oxidative stress and inflammatory response, in a manner similar to that of cigarette smoke, but after more intensive exposures. In addition, increasing e-cig power impacted levels of certain toxic compounds and related oxidative stress. This study provides important data necessary for risk assessment by demonstrating that HTP might be less harmful than tobacco cigarette but considerably more harmful than e-cig.
Collapse
Affiliation(s)
- Romain Dusautoir
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France.
| | - Gianni Zarcone
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France.
| | - Marie Verriele
- IMT Lille Douai, Univ. Lille, SAGE, F-59000, Lille, France.
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France.
| | | | - Nicolas Beauval
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France.
| | - Delphine Allorge
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France.
| | | | - Nadine Locoge
- IMT Lille Douai, Univ. Lille, SAGE, F-59000, Lille, France.
| | - Jean-Marc Lo-Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France.
| | - Sébastien Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France.
| |
Collapse
|
90
|
Queloz S, Etter JF. A survey of users of the IQOS tobacco vaporizer: perceived dependence and perceived effects on cigarette withdrawal symptoms. J Addict Dis 2020; 39:208-214. [PMID: 33336625 DOI: 10.1080/10550887.2020.1847994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Tobacco vaporizers are devices that heat tobacco without burning it. There is currently a scarcity of studies about the addictiveness of tobacco vaporizers or their effects on cigarette withdrawal symptoms. GOALS To assess the perceived dependence of users of tobacco vaporizers and the perceived effects of these products on cigarette withdrawal symptoms. METHODS Enrollment of participants through the internet from 2016 to 2018. Participants were self-selected visitors to an anti-addiction website, current and past users of tobacco vaporizers aged ≥18. RESULTS We included 139 users of IQOS tobacco vaporizers. All participants were current (49.6%) or former cigarette smokers at the time when they began to use the tobacco vaporizer. Among the 135 current users, the median dependence on vaporizers was 80 on a scale from 0-100 (25th and 75th percentiles: 50 and 90), and 63.6% reported being somewhat to totally afraid of becoming dependent on the vaporizer. Half (51%) reported that they were less dependent on vaporizers than on combustible cigarettes, 43.8% were equally dependent on both products and 5.2% were more dependent on vaporizers than on cigarettes. Only one cigarette withdrawal symptom was reported by participants, "craving" for combustible cigarettes, and among respondents who experienced craving, 83.9% found that the IQOS vaporizer relieved it "a lot" to "totally". CONCLUSIONS In this self-selected online sample of IQOS users, the perceived dependence on this tobacco vaporizer was relatively high and almost two thirds of respondents were afraid of becoming dependent on IQOS. Most participants perceived that IQOS relieved the craving to smoke combustible cigarettes.
Collapse
Affiliation(s)
- Sébastien Queloz
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-François Etter
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
91
|
Lavrynenko O, Titz B, Dijon S, Santos DD, Nury C, Schneider T, Guedj E, Szostak J, Kondylis A, Phillips B, Ekroos K, Martin F, Peitsch MC, Hoeng J, Ivanov NV. Ceramide ratios are affected by cigarette smoke but not heat-not-burn or e-vapor aerosols across four independent mouse studies. Life Sci 2020; 263:118753. [PMID: 33189821 DOI: 10.1016/j.lfs.2020.118753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
AIMS Smoking is an important risk factor for the development of chronic obstructive pulmonary disease and cardiovascular diseases. This study aimed to further elucidate the role of ceramides, as a key lipid class dysregulated in disease states. MAIN METHODS In this article we developed and validated LC-MS/MS method for ceramides (Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0) and Cer(d18:1/24:1(15Z)) for the absolute quantification. We deployed it together with proteomics and transcriptomic analysis to assess the effects of cigarette smoke (CS) from the reference cigarette as well as aerosols from heat-not-burn (HnB) tobacco and e-vapor products in apolipoprotein E-deficient (ApoE-/-) mice over several time points. KEY FINDINGS In the lungs, CS exposure substantially elevated the ratios of Cer(d18:1/24:0) and Cer(d18:1/24:1) to Cer(d18:1/18:0) in two independent ApoE-/- mouse inhalation studies. Data from previous studies, in both ApoE-/- and wild-type mice, further confirmed the reproducibility of this finding. Elevation of these ceramide ratios was also observed in plasma/serum, the liver, and-for the Cer(d18:1/24:1(15Z)) to Cer(d18:1/18:0) ratio-the abdominal aorta. Also, the levels of acid ceramidase (Asah1) and glucocerebrosidase (Gba)-lysosomal enzymes involved in the hydrolysis of glucosylceramides-were consistently elevated in the lungs after CS exposure. In contrast, exposure to HnB tobacco product and e-vapor aerosols did not induce significant changes in the ceramide profiles or associated enzymes. SIGNIFICANCE Our work in mice contributes to the accumulating evidence on the importance of ceramide ratios as biologically relevant markers for respiratory disorders, adding to their already demonstrated role in cardiovascular disease risk assessment in humans.
Collapse
Affiliation(s)
- Oksana Lavrynenko
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sophie Dijon
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Daniel Dos Santos
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Catherine Nury
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Blaine Phillips
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, 117406, Singapore
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Irisviksvägen 31D, 02230 Esbo, Finland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
92
|
GC × GC-TOFMS and chemometrics approach for comparative study of volatile compound release by tobacco heating system as a function of temperature. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
93
|
Sager TM, Umbright CM, Mustafa GM, Yanamala N, Leonard HD, McKinney WG, Kashon ML, Joseph P. Tobacco Smoke Exposure Exacerbated Crystalline Silica-Induced Lung Toxicity in Rats. Toxicol Sci 2020; 178:375-390. [PMID: 32976597 PMCID: PMC7825013 DOI: 10.1093/toxsci/kfaa146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Smoking may modify the lung response to silica exposure including cancer and silicosis. Nevertheless, the precise role of exposure to tobacco smoke (TS) on the lung response to crystalline silica (CS) exposure and the underlying mechanisms need further clarification. The objectives of the present study were to determine the role of TS on lung response to CS exposure and the underlying mechanism(s). Male Fischer 344 rats were exposed by inhalation to air, CS (15 mg/m3, 6 h/day, 5 days), TS (80 mg/m3, 3 h/day, twice weekly, 6 months), or CS (15 mg/m3, 6 h/day, 5 days) followed by TS (80 mg/m3, 3 h/day, twice weekly, 6 months). The rats were euthanized 6 months and 3 weeks following initiation of the first exposure and the lung response was assessed. Silica exposure resulted in significant lung toxicity as evidenced by lung histological changes, enhanced neutrophil infiltration, increased lactate dehydrogenase levels, enhanced oxidant production, and increased cytokine levels. The TS exposure alone had only a minimal effect on these toxicity parameters. However, the combined exposure to TS and CS exacerbated the lung response, compared with TS or CS exposure alone. Global gene expression changes in the lungs correlated with the lung toxicity severity. Bioinformatic analysis of the gene expression data demonstrated significant enrichment in functions, pathways, and networks relevant to the response to CS exposure which correlated with the lung toxicity detected. Collectively our data demonstrated an exacerbation of CS-induced lung toxicity by TS exposure and the molecular mechanisms underlying the exacerbated toxicity.
Collapse
Affiliation(s)
- Tina M Sager
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Christina M Umbright
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Gul Mehnaz Mustafa
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Naveena Yanamala
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Howard D Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Walter G McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Pius Joseph
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| |
Collapse
|
94
|
Kim YH, An YJ, Shin JW. Carbonyl Compounds Containing Formaldehyde Produced from the Heated Mouthpiece of Tobacco Sticks for Heated Tobacco Products. Molecules 2020; 25:E5612. [PMID: 33260680 PMCID: PMC7730480 DOI: 10.3390/molecules25235612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/03/2022] Open
Abstract
Diverse harmful compounds can be emitted during the heating of tobacco sticks for heated tobacco products (HTPs). In this study, the generation of harmful compounds from the filter, instead of tobacco in tobacco sticks, was confirmed. The heat of a heated tobacco product device can be transferred to the tobacco stick filter, resulting in the generation of harmful compounds from the heated filter. Since the heating materials (tobacco consumable) of the tobacco sticks evaluated in this study were different depending on the brand, the harmful compounds emitted from the heated tobacco stick filters were examined by focusing on the carbonyl compounds, using three different tobacco stick parts. Acetaldehyde and propionaldehyde exhibited the highest concentrations in HTP aerosols produced by heating the tobacco consumable (conventional case) (63.5 ± 18.4 µg/stick and 1.71 ± 0.123 µg/stick, respectively). The aerosols produced by heating tobacco stick filters had higher formaldehyde and acrolein concentrations (0.945 ± 0.214 µg/stick and 0.519 ± 0.379 µg/stick) than the aerosols generated from heated tobacco consumable (0.641 ± 0.092 µg/stick and 0.220 ± 0.102 µg/stick). As such, formaldehyde and acrolein were produced by heating small parts of the mouthpiece of a tobacco stick, regardless of the heated tobacco product brand. In addition, acetone was only detected in the aerosols generated from heated filters (0.580 ± 0.305 µg/stick). Thus, safety evaluations of heated tobacco products should include considerations of the harmful compounds generated by heating tobacco stick mouthpieces for heated tobacco products in addition to those found in heated tobacco product aerosols.
Collapse
Affiliation(s)
- Yong-Hyun Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup 56212, Korea;
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
| | - Young-Ji An
- Department of Toxicology Evaluation, Konyang University, Daejeon 35365, Korea;
| | - Jae-Won Shin
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup 56212, Korea;
| |
Collapse
|
95
|
van der Plas A, Pouly S, Blanc N, Haziza C, de La Bourdonnaye G, Titz B, Hoeng J, Ivanov NV, Taranu B, Heremans A. Impact of switching to a heat-not-burn tobacco product on CYP1A2 activity. Toxicol Rep 2020; 7:1480-1486. [PMID: 33204648 PMCID: PMC7649435 DOI: 10.1016/j.toxrep.2020.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/18/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022] Open
Abstract
Background Cigarette smoking induces cytochrome P450 1A2 (CYP1A2) expression and activity, while smoking cessation normalizes the levels of this enzyme. The aim of this publication is to summarize the data on CYP1A2 gene expression and activity in preclinical and clinical studies on the Tobacco Heating System (THS), currently marketed as IQOS® with HEETs®, and to summarize the potential effects on CYP1A2 to be expected upon switching to reduced-risk products (RRPs). Methods We summarized PMI’s preclinical and clinical data on the effects of switching from cigarette smoking to THS. Results Data from four preclinical mouse and rat studies showed that, upon either cessation of cigarette smoke exposure or switching to THS exposure, the upregulation of CYP1A2 observed with exposure to cigarette smoke reverted close to fresh-air levels. Data from four clinical studies yielded similar results on CYP1A2 activity within a time frame of five days. Furthermore, the effects of switching to THS were similar to those seen after smoking cessation. Conclusions Because smoking cessation and switching to either electronic cigarettes or THS seem to have similar effects on CYP1A2 activity, the same measures taken for patients treated with narrow therapeutic index drugs that are metabolized by CYP1A2 and who quit smoking should be recommended for those switching to RRPs.
Collapse
Affiliation(s)
- Angela van der Plas
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sandrine Pouly
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nicolas Blanc
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Christelle Haziza
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | | | - Bjorn Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Brindusa Taranu
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Annie Heremans
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
96
|
The use of human induced pluripotent stem cells to screen for developmental toxicity potential indicates reduced potential for non-combusted products, when compared to cigarettes. Curr Res Toxicol 2020; 1:161-173. [PMID: 34345845 PMCID: PMC8320631 DOI: 10.1016/j.crtox.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/16/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
Effective in vitro strategies are required to predict early developmental toxicity. devTOXqP is a metabolomics biomarker assay using iPSCs. Sample smoke/aerosol captured in bPBS, was tested up to 10% concentration. Cigarettes & HTP bPBS extracts were predicted as potentially developmentally toxic. HYB & EVP aerosols were not predicted as having developmentally toxic potential in devTOXqP.
devTOX quickPredict (devTOXqP) is a metabolomics biomarker-based assay that utilises human induced pluripotent stem (iPS) cells to screen for potential early stage embryonic developmental toxicity in vitro. Developmental toxicity potential is assessed based on the assay endpoint of the alteration in the ratio of key unrelated biomarkers, ornithine and cystine (o/c). This work aimed to compare the developmental toxicity potential of tobacco-containing and tobacco-free non-combustible nicotine products to cigarette smoke. Smoke and aerosol from test articles were produced using a Vitrocell VC10 smoke/aerosol exposure system and bubbled into phosphate buffered saline (bPBS). iPS cells were exposed to concentrations of up to 10% bPBS. Assay sensitivity was assessed through a spiking study with a known developmental toxicant, all-trans-retinoic acid (ATRA), in combination with cigarette smoke extract. The bPBS extracts of reference cigarettes (1R6F and 3R4F) and a heated tobacco product (HTP) were predicted to have the potential to induce developmental toxicity, in this screening assay. The bPBS concentration at which these extracts exceeded the developmental toxicity threshold was 0.6% (1R6F), 1.3% (3R4F), and 4.3% (HTP) added to the cell media. Effects from cigarette smoke and HTP aerosol were driven largely by cytotoxicity, with the cell viability and o/c ratio dose–response curves crossing the developmental toxicity thresholds at very similar concentrations of added bPBS. The hybrid product and all the electronic cigarette (e-cigarette) aerosols were not predicted to be potential early developmental toxicants, under the conditions of this screening assay.
Collapse
Key Words
- ATRA, All-trans-retinoic acid
- CDC, Centers for Disease Control and Prevention
- COT, United Kingdom Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment
- CV, coefficient of variation
- Cigarettes
- DART, developmental and reproductive toxicity
- DNPH, 2,4-dinitrophenylhydrazine
- Developmental toxicity
- E-cigarettes
- ECVAM, European Center for the Validation of Alternative Methods
- EPA, United States Environmental Protection Agency
- EVP, electronic vapour product
- FDR, false discovery rate
- HPHCs, Harmful and Potentially Harmful Constituents
- HPLC-DAD, high-performance liquid chromatography with a diode-array detector
- HTP, heated tobacco product
- HYB, hybrid product
- Human induced pluripotent stem cells
- ISO, International Organization for Standardisation
- ISTD, internal standard
- In vitro reproduction assay
- LC-MS/MS, liquid chromatography with tandem mass spectrometry
- LOQ, limit of quantification
- ND, No effect was detected within the exposure range tested
- NHS, United Kingdom National Health Service
- NICE, National Institute for Health and Care Excellence
- Nicotine
- ODC, ornithine decarboxylase
- OECD, Organisation for Economic Co-operation and Development
- PBS, phosphate buffered saline
- PG/VG, propylene glycol/vegetable glycerine
- POD, point of difference
- Q-TOF, Quadrupole Time-of-Flight
- ROS, reactive oxygen species
- TP, cell viability toxicity potential concentration
- TT21C, toxicity testing in the 21st century
- UPLC-HRMS, ultra-high performance liquid chromatography coupled high resolution mass spectrometry
- bPBS, bubbled phosphate buffered saline
- dTP, developmental toxicity potential concentration
- dTT, developmental toxicity threshold
- devTOXqP, devTOX quickPredict
- e-cigarettes, electronic cigarettes
- iPS cells, induced pluripotent stem cells
- nAChRs, nicotinic acetylcholine receptors
- o/c, ornithine/cystine ratio
Collapse
|
97
|
Hirn C, Kanemaru Y, Stedeford T, Paschke T, Baskerville-Abraham I. Comparative and cumulative quantitative risk assessments on a novel heated tobacco product versus the 3R4F reference cigarette. Toxicol Rep 2020; 7:1502-1513. [PMID: 33209587 PMCID: PMC7658373 DOI: 10.1016/j.toxrep.2020.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Novel tobacco products that heat rather than burn tobacco (heated tobacco products or HTPs) have been shown to produce lower levels of harmful and potentially harmful constituents than conventional combusted cigarettes. The present study uses a quantitative risk assessment approach to compare non-cancer and cancer risk estimates for emissions generated by an HTP with smoke from a reference cigarette (3R4F). Fifty-four analytes were evaluated from the HTP aerosol and the 3R4F cigarette smoke. Emissions were generated using the ISO and the Health Canada Intense smoking regimes. The measured values were extrapolated to define a conservative exposure assumption for per day use and lifetime use based on an estimated maximum usage level of 400 puffs per day i.e., approximately 8 HTP tobacco capsules or 40 combustible cigarettes. Non-cancer and cancer risk estimates were calculated using these exposure assumptions for individual and per health outcome domains based on toxicological reference values derived by regulatory and/or public health agencies. The results of this assessment showed a reduction of non-cancer and cancer risk estimates by more than 90 % for the HTP versus the 3R4F cigarette, regardless of the smoking regime.
Collapse
Affiliation(s)
| | | | | | - Thilo Paschke
- Scientific and Regulatory Affairs, JT International SA, Geneva, Switzerland
| | | |
Collapse
|
98
|
Bishop E, Breheny D, Hewitt K, Taylor M, Jaunky T, Camacho OM, Thorne D, Gaça M. Evaluation of a high-throughput in vitro endothelial cell migration assay for the assessment of nicotine and tobacco delivery products. Toxicol Lett 2020; 334:110-116. [PMID: 32707277 DOI: 10.1016/j.toxlet.2020.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
Endothelial cell migration is a critical process in the maintenance of healthy blood vessels. Impaired endothelial migration is reportedly associated with the development of cardiovascular diseases. Here, we report on the development of a 96-well in vitro endothelial migration assay for the purpose of comparative toxicological assessment of a novel THP relative to cigarette smoke, to be able to rapidly inform regulatory decision making. Uniform scratches were induced in confluent human umbilical vein endothelial cells using the 96-pin wound maker and exposed to 3R4F cigarette or THP aqueous extracts (AqE). Endothelial migration was recorded over 24 h, and the rate of wound closure calculated using mean relative wound density rather than migration rate as previously reported. This self-normalising parameter accounts for starting wound size, by comparing the density of the scratch to the outer region at each time-point. Furthermore, wound width acceptance criteria was defined to further increase the sensitivity of the assay. 3R4F and THP AqE samples were tested at comparable nicotine concentrations. 3R4F showed significant cytotoxicity and inhibition of wound healing whereas THP AqE did not show any response in either endpoint. This 96-well endothelial migration assay was suitably sensitive to distinguish combustible cigarette and THP test articles.
Collapse
Affiliation(s)
- Emma Bishop
- British American Tobacco, R&D, Southampton, SO15 8TL, UK.
| | - Damien Breheny
- British American Tobacco, R&D, Southampton, SO15 8TL, UK
| | | | - Mark Taylor
- British American Tobacco, R&D, Southampton, SO15 8TL, UK
| | - Tomasz Jaunky
- British American Tobacco, R&D, Southampton, SO15 8TL, UK
| | | | - David Thorne
- British American Tobacco, R&D, Southampton, SO15 8TL, UK
| | - Marianna Gaça
- British American Tobacco, R&D, Southampton, SO15 8TL, UK
| |
Collapse
|
99
|
Bozhilova S, Baxter A, Bishop E, Breheny D, Thorne D, Hodges P, Gaça M. Optimization of aqueous aerosol extract (AqE) generation from e-cigarettes and tobacco heating products for in vitro cytotoxicity testing. Toxicol Lett 2020; 335:51-63. [PMID: 33091563 DOI: 10.1016/j.toxlet.2020.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/22/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Electronic cigarettes (e-cigarettes) and tobacco heating products (THPs) have reduced yields of toxicants and have recently emerged as a potentially safer alternative to combustible cigarettes. To understand if reduced toxicant exposure is associated with reductions in biological responses, there is a need for high-quality pre-clinical in vitro studies. Here, we investigated the cytotoxic response of human umbilical vein endothelial cells to conventional cigarette aqueous aerosol extracts (AqE) and highly concentrated AqEs from e-cigarettes (two generations of atomisers) and THPs (two variants). All AqE samples were generated by a standardized methodology and characterized for nicotine, propylene glycol and vegetable glycerol. The cigarette AqE caused a maximum 100 ± 0.00 % reduction in cell viability at 35 % dose (2.80 puffs) as opposed to 96.63 ± 2.73 % at 50 % (20 puffs) and 99.85 ± 0.23 % at 75 % (30 puffs) for the two THP variants (glo Bright Tobacco, glo Rich Tobacco), and 99.07 ± 1.61 % at the neat ePen2.0 e-cigarette (200 puffs). The AqE of the remaining e-cigarettes either resulted in an incomplete dose-response or did not elicit any response. The methods utilized were suitably sensitive to not only differentiate between cigarette, THP and e-cigarette aerosols but also to distinguish between products within each product category.
Collapse
Affiliation(s)
- Stela Bozhilova
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK.
| | - Andrew Baxter
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Emma Bishop
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Damien Breheny
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - David Thorne
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Paul Hodges
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Marianna Gaça
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
100
|
Rodrigo G, Jaccard G, Tafin Djoko D, Korneliou A, Esposito M, Belushkin M. Cancer potencies and margin of exposure used for comparative risk assessment of heated tobacco products and electronic cigarettes aerosols with cigarette smoke. Arch Toxicol 2020; 95:283-298. [PMID: 33025067 PMCID: PMC7811518 DOI: 10.1007/s00204-020-02924-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022]
Abstract
Health risk associated with the use of combustible cigarettes is well characterized and numerous epidemiological studies have been published for many years. Since more than a decade, innovative non-combusted tobacco products have emerged like heated tobacco products (HTP) or electronic cigarettes (EC). Long-term effects of these new products on health remain, however, unknown and there is a need to characterize associated potential health risks. The time dedicated to epidemiological data generation (at least 20 to 40 years for cancer endpoint), though, is not compatible with innovative development. Surrogates need, therefore, to be developed. In this work, non-cancer and cancer risks were estimated in a range of HTP and commercial combustible cigarettes based upon their harmful and potentially harmful constituent yields in aerosols and smoke, respectively. It appears that mean lifetime cancer risk values were decreased by more than one order of magnitude when comparing HTPs and commercial cigarettes, and significantly higher margin of exposure for non-cancer risk was observed for HTPs when compared to commercial cigarettes. The same approach was applied to two commercial ECs. Similar results were also found for this category of products. Despite uncertainties related to the factors used for the calculations and methodological limitations, this approach is valuable to estimate health risks associated to the use of innovative products. Moreover, it acts as predictive tool in absence of long-term epidemiological data. Furthermore, both cancer and non-cancer risks estimated for HTPs and ECs highlight the potential of reduced risk for non-combusted products when compared to cigarette smoking.
Collapse
Affiliation(s)
- Gregory Rodrigo
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000, Neuchâtel, Switzerland
| | - Guy Jaccard
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000, Neuchâtel, Switzerland.
| | - Donatien Tafin Djoko
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000, Neuchâtel, Switzerland
| | - Alexandra Korneliou
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000, Neuchâtel, Switzerland
| | - Marco Esposito
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000, Neuchâtel, Switzerland
| | - Maxim Belushkin
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000, Neuchâtel, Switzerland
| |
Collapse
|