51
|
Hu J, Zhang C, Li X, Du X. An Electrochemical Sensor Based on Chalcogenide Molybdenum Disulfide-Gold-Silver Nanocomposite for Detection of Hydrogen Peroxide Released by Cancer Cells. SENSORS 2020; 20:s20236817. [PMID: 33260678 PMCID: PMC7730666 DOI: 10.3390/s20236817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Hydrogen peroxide (H2O2) as a crucial signal molecule plays a vital part in the growth and development of various cells under normal physiological conditions. The development of H2O2 sensors has received great research interest because of the importance of H2O2 in biological systems and its practical applications in other fields. In this study, a H2O2 electrochemical sensor was constructed based on chalcogenide molybdenum disulfide-gold-silver nanocomposite (MoS2-Au-Ag). Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) were utilized to characterize the nanocomposites, and the electrochemical performances of the obtained sensor were assessed by two electrochemical detection methods: cyclic voltammetry and chronoamperometry. The results showed that the MoS2-Au-Ag-modified glassy carbon electrode (GCE) has higher sensitivity (405.24 µA mM-1 cm-2), wider linear detection range (0.05-20 mM) and satisfactory repeatability and stability. Moreover, the prepared sensor was able to detect the H2O2 discharge from living tumor cells. Therefore, this study offers a platform for the early diagnosis of cancer and other applications in the fields of biology and biomedicine.
Collapse
Affiliation(s)
| | | | | | - Xin Du
- Correspondence: ; Tel.: +86-136-5640-1019
| |
Collapse
|
52
|
Wang L, Li Y, Zhao L, Qi Z, Gou J, Zhang S, Zhang JZ. Recent advances in ultrathin two-dimensional materials and biomedical applications for reactive oxygen species generation and scavenging. NANOSCALE 2020; 12:19516-19535. [PMID: 32966498 DOI: 10.1039/d0nr05746k] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene and graphene-like two-dimensional (2D) nanomaterials, such as black phosphorus (BP), transition metal carbides/carbonitrides (MXene) and transition metal dichalcogenides (TMD), have been extensively studied in recent years due to their unique physical and chemical properties. With atomic-scale thickness, these 2D materials and their derivatives can react with ROS and even scavenge ROS in the dark. With excellent biocompatibility and biosafety, they show great application potential in the antioxidant field and ROS detection for diagnosis. They can also generate ROS under light and be applied in antibacterial, photodynamic therapy (PDT), and other biomedical fields. Understanding the degradation mechanism of 2D nanomaterials by ROS generated under ambient conditions is crucial to developing air stable devices and expanding their application ranges. In this review, we summarize recent advances in 2D materials with a focus on the relationship between their intrinsic structure and the ROS scavenging or generating ability. We have also highlighted important guidelines for the design and synthesis of highly efficient ROS scavenging or generating 2D materials along with their biomedical applications.
Collapse
Affiliation(s)
- Lifeng Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
53
|
Afifah NN, Diantini A, Intania R, Abdulah R, Barliana MI. Genetic Polymorphisms and the Efficacy of Platinum-Based Chemotherapy: Review. Pharmgenomics Pers Med 2020; 13:427-444. [PMID: 33116759 PMCID: PMC7549502 DOI: 10.2147/pgpm.s267625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022] Open
Abstract
Previous studies have indicated that genetic variations in individuals may result in changes in gene expression and amino acids. The effect of these changes may lead to different responses to platinum-based chemotherapy. A vast response rate interval and a short survival rate indicate that the efficacy and efficiency of the selection of chemotherapy have not been optimized. This article aims to illustrate the potential relationship of various genetic polymorphisms in response to platinum-based chemotherapy for several types of cancer. This review was conducted using articles from the last three- and five-year periods (2014-2019) that use gene polymorphism and its relationship to the efficacy of platinum-based chemotherapy as their theme. A total of 26 out of 488 relevant articles were included based on specific criteria. Through various mechanisms, genes, including ERCC1, ERCC2/XPD, XPC, XPA, XRCC1, APE-1, PARP1, OGG1, ABCC2, MRP, GSTP1, GSTM1, GSTT1, MATE1, and OCT2, have been associated with patient response to platinum-based chemotherapy. We conclude that genetic polymorphism analysis is recommended for the management of cancer so that each patient can be administered therapy based on his or her genetic profile to achieve an effective and efficient outcome.
Collapse
Affiliation(s)
- Nadiya Nurul Afifah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Ajeng Diantini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Ruri Intania
- Dr. H.A. Rotinsulu Lung Hospital, Bandung, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Melisa I Barliana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
54
|
Chai YL, Gao ZB, Li Z, He LL, Yu F, Yu SC, Wang J, Tian YM, Liu LE, Wang YL, Wu YJ. A novel fluorescent nanoprobe that based on poly(thymine) single strand DNA-templated copper nanocluster for the detection of hydrogen peroxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118546. [PMID: 32505107 DOI: 10.1016/j.saa.2020.118546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a label-free fluorescence nanoprobe is constructed based on poly(thymine) single strand DNA-templated Copper nanocluster (denote as: T-CuNCs) for the detection of hydrogen peroxide. In the assay, the fluorescent T-CuNCs will generate though the reaction of Cu2+, poly(thymine) and sodium ascorbate. However, the hydroxyl radical (.OH) will generated in the presence of H2O2, which is able to induced the oxidative lesions of poly(thymine) single chain DNA and lead to the poly(thymine) being splitted into shorter or single oligonucleotide fragments and lose the ability to template the fluorescent T-CuNCs again. Therefore, H2O2 can be detected by monitoring the fluorescence strength change of T-CuNCs. The experimental results show that the fluorescence intensity change of T-CuNCs has fantastic linearity versus H2O2 concentration in the range of 1-30 μM (R2 = 0.9947) and 30-80 μM (R2 = 0.9972) with the limit of detection (LOD) as low as 0.5 μM (S/N = 3). More important, the fluorescent nanoprobe was also successfully utilized on the detection of H2O2 in serum samples. Therefore, a label-free, costless and effective fluorescence method has been established for the detection of H2O2, the intrinsic properties of the nanoprobe endow its more potential applications in chemical and biological study.
Collapse
Affiliation(s)
- Yi-Lin Chai
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zi-Bo Gao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhuang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Lei-Liang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Song-Cheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jia Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yong-Mei Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Li-E Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yi-Lin Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Yong-Jun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
55
|
Chandan G, Kumar C, Verma MK, Satti NK, Saini AK, Saini RV. Datura stramonium essential oil composition and it's immunostimulatory potential against colon cancer cells. 3 Biotech 2020; 10:451. [PMID: 33062579 DOI: 10.1007/s13205-020-02438-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/12/2020] [Indexed: 12/24/2022] Open
Abstract
The current study deals with the investigation of the antioxidant, anti-inflammatory and immunomodulatory properties of the essential oil from Datura stramonium leaves (D. oil). The GC-MS analysis showed that the dominant compounds present in the D. oil were neophytadiene (Phytol acetate) (10.76%), β-damascenone (9.67%), and β- eudesmol (7.2%). D. oil exhibited in vitro scavenging potential of free radicals by DPPH and ABTS assays (IC50 values 71.35 ±1.06 μg/ml and 61.01 ± 1.07 μg/ml, respectively). We found that D. oil decreased the nitric oxide production in LPS-stimulated J774A.1 cells by 52.43% without affecting their cell viability. D. oil was found to stimulate the proliferation of human peripheral blood mononuclear cells (PBMC) and, also enhanced the secretion of IL-2, IFN-γ and TNF-α. Furthermore, D. oil treatment of PBMC induced the expression of CD3, CD8, and CD56 and intracellular granulysin levels in the immune cells. The treatment of human lymphocytes by D. oil enhanced their ability to kill colon cancer cells HCT-116 (51.09 ± 7.5%) and SW620 (48.57 ± 8.08%) at 20:1 (effector: target ratio). Moreover, these activated lymphocytes cause target cell death by reactive oxygen species and by damaging mitochondrial membrane potential of these cells. Taken together, the current findings showed D. oil as immunotherapeutic agent which can be used for colon cancer treatment.
Collapse
Affiliation(s)
- Gourav Chandan
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, H.P 173229 India
| | - Chetan Kumar
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - M K Verma
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - N K Satti
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - Adesh K Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Reena V Saini
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, H.P 173229 India
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| |
Collapse
|
56
|
Xia F, Shi Q, Nan Z. Facile synthesis of Cu-CuFe 2O 4 nanozymes for sensitive assay of H 2O 2 and GSH. Dalton Trans 2020; 49:12780-12792. [PMID: 32959837 DOI: 10.1039/d0dt02395g] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Artificial enzymes have drawn substantial research interest from the scientific community due to their advantages over natural enzymes. However, majority of artificial enzymes exhibit low affinity towards H2O2, which means that a high H2O2 concentration is needed for the oxidation of a substrate such as 3,3',5,5'-tetramethylbenzidine (TMB) to blue-colored oxTMB. With this concern, Cu-CuFe2O4 was facilely synthesized, wherein, Cu0 accelerates the redox capacity of Cu-CuFe2O4 as well as the electron transfer between CuFe2O4 and H2O2. These materials induce excellent activity as a peroxidase. Cu-CuFe2O4 shows high affinity towards H2O2 with lower Michaelis-Menten constant (Km) than the reported values for ferrites and Horseradish enzyme (HRP). Moreover, it took only 5 min to detect hydrogen peroxide (H2O2) and glutathione (GSH) through a colorimetric assay using Cu-CuFe2O4. Compared with CuFe2O4, the limit of detection (LOD) is about 90-fold lower for H2O2 using Cu-CuFe2O4. In addition, Cu-CuFe2O4 shows high stability as a nanozyme. Thus, the mechanism of the peroxidase-like nanozyme Cu-CuFe2O4 is proposed.
Collapse
Affiliation(s)
- Fan Xia
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002 Yangzhou, People's Republic of China.
| | - Qiaofang Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002 Yangzhou, People's Republic of China.
| | - Zhaodong Nan
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002 Yangzhou, People's Republic of China.
| |
Collapse
|
57
|
Wu J, Huang H, Huang Q, Qiu R, Huang M, Meng D. A functional variant rs1464938 in the promoter of fibroblast growth factor 12 is associated with an increased risk of bladder transitional cell carcinoma. Cytokine 2020; 136:155294. [PMID: 32950810 DOI: 10.1016/j.cyto.2020.155294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/01/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Increasing evidence shows that inflammation plays critical roles in the tumorigenesis of bladder cancer. Fibroblast growth factor 12 (FGF12), a kind of inflammatory cytokine, is located in the region of 3q28 that has been demonstrated to be a bladder cancer risk locus by genome wide association study (GWAS). In this study, we aimed to investigate the association of GWAS signal rs710521 and rs884309 and rs1464938 in the promoter of FGF12 with the risk of bladder transitional cell carcinoma (TCC). The polymorphisms were analyzed by using a Taqman assay in 331 TCC patients and 516 age-, gender-, and ethnicity-matched controls. The expression levels of FGF12 mRNA were examined in TCC and non-cancerous normal tissues by using quantitative real-time PCR and the luciferase activity was determined by using the Dual-Luciferase Assay System. The rs1464938 AA genotype and A allele were associated with a significantly increased risk of TCC (AA vs. GG: adjusted OR = 2.54, 95% CI, 1.49-4.35, P < 0.001; AA vs. AG/GG: adjusted OR = 2.25, 95% CI, 1.36-3.71, P = 0.002; A vs. G: adjusted OR = 1.44, 95% CI, 1.15-1.80, P = 0.001, respectively). Haplotype analysis showed that rs884309G- rs1464938A haplotype was associated with an increased risk of TCC (OR = 1.61, 95% CI, 1.23-2.11, P = 0.001). Functional analysis showed that the rs1464938 AG/AA genotypes exhibited higher levels of FGF12 mRNA in TCC tissues and the rs1464938 A allele enhanced FGF12 promoter activity (P < 0.05). These findings suggest that the rs1464938 A allele at the 3q28 locus contribute to the development of TCC by regulating FGF12 expression levels.
Collapse
Affiliation(s)
- Jun Wu
- Department of Urinary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Huawu Huang
- Department of Urinary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| | - Qun Huang
- Department of Urinary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Rong Qiu
- Department of Urinary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Minyu Huang
- Department of Urinary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Dongdong Meng
- Department of Urinary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| |
Collapse
|
58
|
A high-performance amperometric sensor based on a monodisperse Pt–Au bimetallic nanoporous electrode for determination of hydrogen peroxide released from living cells. Mikrochim Acta 2020; 187:499. [DOI: 10.1007/s00604-020-04480-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/04/2020] [Indexed: 12/30/2022]
|
59
|
Nitrative DNA damage in lung epithelial cells exposed to indium nanoparticles and indium ions. Sci Rep 2020; 10:10741. [PMID: 32612147 PMCID: PMC7329867 DOI: 10.1038/s41598-020-67488-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/06/2020] [Indexed: 12/22/2022] Open
Abstract
Indium compounds have been widely used in manufacturing displays of mobile phones, computers and televisions. However, inhalation exposure to indium compounds causes interstitial pneumonia in exposed workers and lung cancer in experimental animals. 8-Nitroguanine (8-nitroG) is a mutagenic DNA lesion formed under inflammatory conditions and may participate in indium-induced carcinogenesis. In this study, we examined 8-nitroG formation in A549 cultured human lung epithelial cells treated with indium compounds, including nanoparticles of indium oxide (In2O3) and indium-tin oxide (ITO), and indium chloride (InCl3). We performed fluorescent immunocytochemistry to examine 8-nitroG formation in indium-exposed A549 cells. All indium compounds significantly increased 8-nitroG formation in A549 cells at 5 ng/ml after 4 h incubation. 8-NitroG formation was largely reduced by 1400 W, methyl-β-cyclodextrin (MBCD) and monodansylcadaverine (MDC), suggesting the involvement of nitric oxide synthase and endocytosis. 8-NitroG formation in A549 cells was also largely suppressed by small interfering RNA (siRNA) for high-mobility group box-1 (HMGB1), receptor for advanced glycation and end products (AGER, RAGE) and Toll-like receptor 9 (TLR9). These results suggest that indium compounds induce inflammation-mediated DNA damage in lung epithelial cells via the HMGB1-RAGE-TLR9 pathway. This mechanism may contribute to indium-induced genotoxicity in the respiratory system.
Collapse
|
60
|
Yan Y, Liu L, Li C, Yang Z, Yi T, Hua J. A NIR fluorescent probe based on phenazine with a large Stokes shift for the detection and imaging of endogenous H 2O 2 in RAW 264.7 cells. Analyst 2020; 145:4196-4203. [PMID: 32501463 DOI: 10.1039/d0an00153h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogen peroxide (H2O2), one of the reactive oxygen species (ROS), plays vital roles in diverse physiological processes. Thus, herein, to improve the signal-to-noise ratio, a new near-infrared region (NIR) fluorophore (PCN) based on reduced phenazine was developed. PCN was further designed as a "turn on" fluorescent probe (PCN-BP) for the detection of H2O2 by introducing p-boratebenzyl. After H2O2 was added, the p-boratebenzyl group in PCN-BP was oxidized to p-hydroxy benzyl; it then self-departed, forming PCN, which displayed 24-fold NIR emission at 680 nm with a large Stokes shift (more than 200 nm). This probe presented an excellent linear relation with the concentration of H2O2 and good selectivity to various ions, ROS and biothiols; thus, it can be utilized as a colorimetric and fluorescence turn-on probe. More importantly, the probe was also employed for the exogenous and endogenous imaging of H2O2 in RAW 264.7 cells.
Collapse
Affiliation(s)
- Yongchao Yan
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | | | | | | | | | | |
Collapse
|
61
|
Huang SH, Lin YC, Tung CW. Identification of Time-Invariant Biomarkers for Non-Genotoxic Hepatocarcinogen Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124298. [PMID: 32560183 PMCID: PMC7345770 DOI: 10.3390/ijerph17124298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/12/2022]
Abstract
Non-genotoxic hepatocarcinogens (NGHCs) can only be confirmed by 2-year rodent studies. Toxicogenomics (TGx) approaches using gene expression profiles from short-term animal studies could enable early assessment of NGHCs. However, high variance in the modulation of the genes had been noted among exposure styles and datasets. Expanding from our previous strategy in identifying consensus biomarkers in multiple experiments, we aimed to identify time-invariant biomarkers for NGHCs in short-term exposure styles and validate their applicability to long-term exposure styles. In this study, nine time-invariant biomarkers, namely A2m, Akr7a3, Aqp7, Ca3, Cdc2a, Cdkn3, Cyp2c11, Ntf3, and Sds, were identified from four large-scale microarray datasets. Machine learning techniques were subsequently employed to assess the prediction performance of the biomarkers. The biomarker set along with the Random Forest models gave the highest median area under the receiver operating characteristic curve (AUC) of 0.824 and a low interquartile range (IQR) variance of 0.036 based on a leave-one-out cross-validation. The application of the models to the external validation datasets achieved high AUC values of greater than or equal to 0.857. Enrichment analysis of the biomarkers inferred the involvement of chronic inflammatory diseases such as liver cirrhosis, fibrosis, and hepatocellular carcinoma in NGHCs. The time-invariant biomarkers provided a robust alternative for NGHC prediction.
Collapse
Affiliation(s)
- Shan-Han Huang
- Ph. D. Program in Toxicology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-H.H.); (Y.-C.L.)
| | - Ying-Chi Lin
- Ph. D. Program in Toxicology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-H.H.); (Y.-C.L.)
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Wei Tung
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 35053, Taiwan
- Correspondence:
| |
Collapse
|
62
|
Halappanavar S, van den Brule S, Nymark P, Gaté L, Seidel C, Valentino S, Zhernovkov V, Høgh Danielsen P, De Vizcaya A, Wolff H, Stöger T, Boyadziev A, Poulsen SS, Sørli JB, Vogel U. Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale. Part Fibre Toxicol 2020; 17:16. [PMID: 32450889 PMCID: PMC7249325 DOI: 10.1186/s12989-020-00344-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Toxicity testing and regulation of advanced materials at the nanoscale, i.e. nanosafety, is challenged by the growing number of nanomaterials and their property variants requiring assessment for potential human health impacts. The existing animal-reliant toxicity testing tools are onerous in terms of time and resources and are less and less in line with the international effort to reduce animal experiments. Thus, there is a need for faster, cheaper, sensitive and effective animal alternatives that are supported by mechanistic evidence. More importantly, there is an urgency for developing alternative testing strategies that help justify the strategic prioritization of testing or targeting the most apparent adverse outcomes, selection of specific endpoints and assays and identifying nanomaterials of high concern. The Adverse Outcome Pathway (AOP) framework is a systematic process that uses the available mechanistic information concerning a toxicological response and describes causal or mechanistic linkages between a molecular initiating event, a series of intermediate key events and the adverse outcome. The AOP framework provides pragmatic insights to promote the development of alternative testing strategies. This review will detail a brief overview of the AOP framework and its application to nanotoxicology, tools for developing AOPs and the role of toxicogenomics, and summarize various AOPs of relevance to inhalation toxicity of nanomaterials that are currently under various stages of development. The review also presents a network of AOPs derived from connecting all AOPs, which shows that several adverse outcomes induced by nanomaterials originate from a molecular initiating event that describes the interaction of nanomaterials with lung cells and involve similar intermediate key events. Finally, using the example of an established AOP for lung fibrosis, the review will discuss various in vitro tests available for assessing lung fibrosis and how the information can be used to support a tiered testing strategy for lung fibrosis. The AOPs and AOP network enable deeper understanding of mechanisms involved in inhalation toxicity of nanomaterials and provide a strategy for the development of alternative test methods for hazard and risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | - Sybille van den Brule
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Turku, Finland
| | - Laurent Gaté
- Institut National de Recherche et de Sécurité, Vandoeuvre-lès-Nancy, France
| | - Carole Seidel
- Institut National de Recherche et de Sécurité, Vandoeuvre-lès-Nancy, France
| | - Sarah Valentino
- Institut National de Recherche et de Sécurité, Vandoeuvre-lès-Nancy, France
| | - Vadim Zhernovkov
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | | | - Andrea De Vizcaya
- Departamento de Toxicologia, CINVESTAV-IPN, Ciudad de México, Mexico
- Sabbatical leave at Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Henrik Wolff
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tobias Stöger
- Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München - German, Oberschleißheim, Germany
| | - Andrey Boyadziev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark.
- DTU Health Tech, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
63
|
Koolaji N, Shammugasamy B, Schindeler A, Dong Q, Dehghani F, Valtchev P. Citrus Peel Flavonoids as Potential Cancer Prevention Agents. Curr Dev Nutr 2020; 4:nzaa025. [PMID: 32391511 PMCID: PMC7199889 DOI: 10.1093/cdn/nzaa025] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/11/2019] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Citrus fruit and in particular flavonoid compounds from citrus peel have been identified as agents with utility in the treatment of cancer. This review provides a background and overview regarding the compounds found within citrus peel with putative anticancer potential as well as the associated in vitro and in vivo studies. Historical studies have identified a number of cellular processes that can be modulated by citrus peel flavonoids including cell proliferation, cell cycle regulation, apoptosis, metastasis, and angiogenesis. More recently, molecular studies have started to elucidate the underlying cell signaling pathways that are responsible for the flavonoids' mechanism of action. These growing data support further research into the chemopreventative potential of citrus peel extracts, and purified flavonoids in particular. This critical review highlights new research in the field and synthesizes the pathways modulated by flavonoids and other polyphenolic compounds into a generalized schema.
Collapse
Affiliation(s)
- Nooshin Koolaji
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| | - Balakrishnan Shammugasamy
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
- Bioengineering & Molecular Medicine, The Children's Hospital at Westmead, Sydney, Australia
| | - Qihan Dong
- School of Science and Health, Western Sydney University, Sydney, Australia
- Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, University of Sydney, Sydney, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| |
Collapse
|
64
|
Piotrowski I, Kulcenty K, Suchorska W. Interplay between inflammation and cancer. Rep Pract Oncol Radiother 2020; 25:422-427. [PMID: 32372882 PMCID: PMC7191124 DOI: 10.1016/j.rpor.2020.04.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/20/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-promoting inflammation is one of the hallmarks of cancer. It has been shown that cancer development is strongly influenced by both chronic and acute inflammation process. Progress in research on inflammation revealed a connection between inflammatory processes and neoplastic transformation, the progression of tumour, and the development of metastases and recurrences. Moreover, the tumour invasive procedures (both surgery and biopsy) affect the remaining tumour cells by increasing their survival, proliferation and migration. One of the concepts explaining this phenomena is an induction of a wound healing response. While in normal tissue it is necessary for tissue repair, in tumour tissue, induction of adaptive and innate immune response related to wound healing, stimulates tumour cell survival, angiogenesis and extravasation of circulating tumour cells. It has become evident that certain types of immune response and immune cells can promote tumour progression more than others. In this review, we focus on current knowledge on carcinogenesis and promotion of cancer growth induced by inflammatory processes.
Collapse
Key Words
- ANGPTL4, angiopoietin-like 4
- CDH1, cadherin 1
- COX, cyclooxygenase
- Cancer
- EMT, epithelail to mesenchymal transition
- EP, receptor - prostaglandin receptor
- GI, gastrointensinal cancer
- IL-6, interleukin 6
- Inflammation
- MPO, myeloperoxidase
- NADPH, nicotynamide adenine dinucleotide phosphate hydrogen
- NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NK, natural killer cells
- NO, nitric oxide
- NSAIDs, non-steroidal anti-inflammatory drugs
- PGE2, prostaglandin E2
- PTHrP, parathyroid hormone related protein
- RNS, reactive nitrogen species
- ROS, reactive oxigen species
- STAT3, signal transducer and activator of transcription 3
- TGF-β, transforming growth factor β
- TGFBRII, transforming growth factor, beta receptor II
- TNF-α, tumour necrosis factor α
- TNFR1, Tumor necrosis factor receptor 1
- TNFR2, Tumor necrosis factor receptor 2
- Tumor reccurence
- VEGF, vascular endothelail growth factor
- bFGF, fibroblast growth factor
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Igor Piotrowski
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznań, Poland.,Department of Electroradiology, University of Medical Sciences, Garbary 15 Street, 61-866 Poznań, Poland
| | - Katarzyna Kulcenty
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznań, Poland.,Department of Electroradiology, University of Medical Sciences, Garbary 15 Street, 61-866 Poznań, Poland
| | - Wiktoria Suchorska
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznań, Poland.,Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznań, Poland
| |
Collapse
|
65
|
Lu J, Zhang H, Li S, Guo S, Shen L, Zhou T, Zhong H, Wu L, Meng Q, Zhang Y. Oxygen-Vacancy-Enhanced Peroxidase-like Activity of Reduced Co3O4 Nanocomposites for the Colorimetric Detection of H2O2 and Glucose. Inorg Chem 2020; 59:3152-3159. [DOI: 10.1021/acs.inorgchem.9b03512] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jitao Lu
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Haowen Zhang
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Sheng Li
- Weifang Traditional Chinese Hospital, Weifang 261061, China
| | - Shanshan Guo
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Li Shen
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Tingting Zhou
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Hua Zhong
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lu Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Qingguo Meng
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Yuexing Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
66
|
Wang C, Wang Y, Wang G, Huang C, Jia N. A new mitochondria-targeting fluorescent probe for ratiometric detection of H2O2 in live cells. Anal Chim Acta 2020; 1097:230-237. [DOI: 10.1016/j.aca.2019.11.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/16/2019] [Accepted: 11/06/2019] [Indexed: 01/20/2023]
|
67
|
Jeelani R, Chatzicharalampous C, Kohan-Ghadr HR, Bai D, Morris RT, Sliskovic I, Awonuga A, Abu-Soud HM. Hypochlorous acid reversibly inhibits caspase-3: a potential regulator of apoptosis. Free Radic Res 2020; 54:43-56. [DOI: 10.1080/10715762.2019.1694675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Roohi Jeelani
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Charalampos Chatzicharalampous
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - David Bai
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert T. Morris
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | - Inga Sliskovic
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Awoniyi Awonuga
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Microbiology, Immunology and Biochemistry and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
68
|
Salk JJ, Kennedy SR. Next-Generation Genotoxicology: Using Modern Sequencing Technologies to Assess Somatic Mutagenesis and Cancer Risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:135-151. [PMID: 31595553 PMCID: PMC7003768 DOI: 10.1002/em.22342] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 05/09/2023]
Abstract
Mutations have a profound effect on human health, particularly through an increased risk of carcinogenesis and genetic disease. The strong correlation between mutagenesis and carcinogenesis has been a driving force behind genotoxicity research for more than 50 years. The stochastic and infrequent nature of mutagenesis makes it challenging to observe and to study. Indeed, decades have been spent developing increasingly sophisticated assays and methods to study these low-frequency genetic errors, in hopes of better predicting which chemicals may be carcinogens, understanding their mode of action, and informing guidelines to prevent undue human exposure. While effective, widely used genetic selection-based technologies have a number of limitations that have hampered major advancements in the field of genotoxicity. Emerging new tools, in the form of enhanced next-generation sequencing platforms and methods, are changing this paradigm. In this review, we discuss rapidly evolving sequencing tools and technologies, such as error-corrected sequencing and single cell analysis, which we anticipate will fundamentally reshape the field. In addition, we consider a variety emerging applications for these new technologies, including the detection of DNA adducts, inference of mutational processes based on genomic site and local sequence contexts, and evaluation of genome engineering fidelity, as well as other cutting-edge challenges for the next 50 years of environmental and molecular mutagenesis research. Environ. Mol. Mutagen. 61:135-151, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Jesse J. Salk
- Department of Medicine, Division of Medical OncologyUniversity of Washington School of MedicineSeattleWashington
- TwinStrand BiosciencesSeattleWashington
| | - Scott R. Kennedy
- Department of PathologyUniversity of WashingtonSeattleWashington
| |
Collapse
|
69
|
Li D, Deconda D, Li A, Habr F, Cao W. Effect of Proton Pump Inhibitor Therapy on NOX5, mPGES1 and iNOS expression in Barrett's Esophagus. Sci Rep 2019; 9:16242. [PMID: 31700071 PMCID: PMC6838155 DOI: 10.1038/s41598-019-52800-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023] Open
Abstract
Acid reflux may contribute to the progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA). However, it is not clear whether the molecular changes present in BE patients are reversible after proton pump inhibitor (PPI) treatment. In this study we examined whether PPI treatment affects NOX5, microsomal prostaglandin E synthase (mPGES)-1 and inducible nitric oxide synthase (iNOS) expression. We found that NADPH oxidase 5 (NOX5), mPGES-1 and iNOS were significantly increased in BE mucosa. One-month PPI treatment significantly decreased NOX5, mPGES1 and iNOS. In BAR-T cells, NOX5 mRNA and p16 promoter methylation increased after pulsed acid treatment in a time-dependent manner. Four or eight-week-acid induced increase in NOX5 mRNA, NOX5 protein and p16 methylation may be reversible. Twelve-week acid treatment also significantly increased NOX5, mPGES1 and iNOS mRNA expression. However, twelve-week-acid-induced changes only partially restored or did not recover at all after the cells were cultured at pH 7.2 for 8 weeks. We conclude that NOX5, mPGES1 and iNOS may be reversible after PPI treatment. Short-term acid-induced increase in NOX5 expression and p16 methylation might be reversible, whereas long-term acid-induced changes only partially recovered 8 weeks after removal of acid treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | | | - Aihua Li
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Fadlallah Habr
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA.
| | - Weibiao Cao
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA. .,Department of Pathology, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
70
|
A boronic acid based intramolecular charge transfer probe for colorimetric detection of hydrogen peroxide. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
71
|
Kobliakov VA. The Mechanisms of Regulation of Aerobic Glycolysis (Warburg Effect) by Oncoproteins in Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2019; 84:1117-1128. [DOI: 10.1134/s0006297919100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
72
|
Kou Y, Koag MC, Lee S. Promutagenicity of 8-Chloroguanine, A Major Inflammation-Induced Halogenated DNA Lesion. Molecules 2019; 24:molecules24193507. [PMID: 31569643 PMCID: PMC6804246 DOI: 10.3390/molecules24193507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation is closely associated with cancer development. One possible mechanism for inflammation-induced carcinogenesis is DNA damage caused by reactive halogen species, such as hypochlorous acid, which is released by myeloperoxidase to kill pathogens. Hypochlorous acid can attack genomic DNA to produce 8-chloro-2′-deoxyguanosine (ClG) as a major lesion. It has been postulated that ClG promotes mutagenic replication using its syn conformer; yet, the structural basis for ClG-induced mutagenesis is unknown. We obtained crystal structures and kinetics data for nucleotide incorporation past a templating ClG using human DNA polymerase β (polβ) as a model enzyme for high-fidelity DNA polymerases. The structures showed that ClG formed base pairs with incoming dCTP and dGTP using its anti and syn conformers, respectively. Kinetic studies showed that polβ incorporated dGTP only 15-fold less efficiently than dCTP, suggesting that replication across ClG is promutagenic. Two hydrogen bonds between syn-ClG and anti-dGTP and a water-mediated hydrogen bond appeared to facilitate mutagenic replication opposite the major halogenated guanine lesion. These results suggest that ClG in DNA promotes G to C transversion mutations by forming Hoogsteen base pairing between syn-ClG and anti-G during DNA synthesis.
Collapse
Affiliation(s)
- Yi Kou
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| | - Myong-Chul Koag
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| |
Collapse
|
73
|
A taurine-functionalized 3D graphene-based foam for electrochemical determination of hydrogen peroxide. Talanta 2019; 208:120356. [PMID: 31816730 DOI: 10.1016/j.talanta.2019.120356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023]
Abstract
We present a synthesis approach of taurine-functionalized graphene foam (a-NSGF) using hydrothermal reduction, freeze-drying and high temperature annealing. The higher temperature in annealing allowed the N/S atoms of taurine enter into the graphene lattice, which improves its electrocatalytic activity greatly. The a-NSGF consisting of taurine that modified into 3D layers of graphene and endow is of the rapid sensitive to hydrogen peroxide (H2O2). The electrode using a-NSGF modification reveals highly sensitive and stable towards the concentration change of H2O2 due to the stable 3D structure and good electrical conductivity of a-NSGF. A linear correlation between H2O2 concentration and the electrochemical signal is found to be in a range from 1.5 to 300 μM and the correlation coefficient is R2 = 0.999. The modified electrode has been applied in the determination of H2O2 in rain samples and the results have been compared with the China National Standard Method. The recoveries range from 94.6% to 106.7%. These results show that the proposed sensor is promising for the development of novel electrochemical sensing for H2O2 determination.
Collapse
|
74
|
Shadpour P, Zamani M, Aghaalikhani N, Rashtchizadeh N. Inflammatory cytokines in bladder cancer. J Cell Physiol 2019; 234:14489-14499. [PMID: 30779110 DOI: 10.1002/jcp.28252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/29/2018] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
The presence of inflammatory cells and their products in the tumor microenvironment plays a crucial role in the pathogenesis of a tumor. Releasing the cytokines from a host in response to infection and inflammation can inhibit tumor growth and progression. However, tumor cells can also respond to the host cytokines with increasing the growth/invasion/metastasis. Bladder cancer (BC) is one of the most common cancers in the world. The microenvironment of a bladder tumor has been indicated to be rich in growth factors/inflammatory cytokines that can induce the tumor growth/progression and also suppress the immune system. On the contrary, modulate of the cancer progression has been shown following upregulation of the cytokines-related pathways that suggested the cytokines as potential therapeutic targets. In this study, we provide a summary of cytokines that are involved in BC formation/regression with both inflammatory and anti-inflammatory properties. A more accurate understanding of tumor microenvironment creates favorable conditions for cytokines targeting to treat BC.
Collapse
Affiliation(s)
- Pejman Shadpour
- Hasheminejad Kidney Center (HKC), Hospital Management Research Center (HMRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mojtaba Zamani
- Department of Agronomy and Plant Breeding, School of Agriculture, University of Tehran, Karaj, Iran
| | - Nazi Aghaalikhani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadereh Rashtchizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
75
|
Taher AT, Mostafa Sarg MT, El-Sayed Ali NR, Hilmy Elnagdi N. Design, synthesis, modeling studies and biological screening of novel pyrazole derivatives as potential analgesic and anti-inflammatory agents. Bioorg Chem 2019; 89:103023. [DOI: 10.1016/j.bioorg.2019.103023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/19/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
|
76
|
Deng Y, Chen H, Tao X, Cao F, Trépout S, Ling J, Li MH. Oxidation-Sensitive Polymersomes Based on Amphiphilic Diblock Copolypeptoids. Biomacromolecules 2019; 20:3435-3444. [DOI: 10.1021/acs.biomac.9b00713] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yangwei Deng
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
| | - Hui Chen
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Xinfeng Tao
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fangyi Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
| | - Sylvain Trépout
- Institut Curie, INSERM U1196 and CNRS UMR9187, 91405 Orsay Cedex, France
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
| | - Min-Hui Li
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, 100029 Beijing, China
| |
Collapse
|
77
|
The anti-invasive activity of Robinia pseudoacacia L. and Amorpha fruticosa L. on breast cancer MDA-MB-231 cell line. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00257-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
78
|
Sundermann EE, Hussain MA, Moore DJ, Horvath S, Lin DTS, Kobor MS, Levine A. Inflammation-related genes are associated with epigenetic aging in HIV. J Neurovirol 2019; 25:853-865. [PMID: 31286441 DOI: 10.1007/s13365-019-00777-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022]
Abstract
Chronic inflammation is characteristic of both HIV and aging ("inflammaging") and may contribute to the accelerated aging observed in people living with HIV (PLWH). We examined whether three inflammation-related single-nucleotide polymorphisms (SNPs) were risk factors for accelerated aging and HIV-associated, non-AIDS (HANA) conditions among PLWH. We examined 155 postmortem cases with HIV (mean age = 47.3, 81% male, 68% self-reported White) from the National NeuroAIDS Tissue Consortium who had pre-mortem neurobehavioral/medical/virologic data and epigenomic data from occipital cortex tissue. Accelerated aging was measured according to the Epigenetic Clock; an aging biomarker based on DNA methylation levels. Past or current age-associated HANA conditions including cerebrovascular, liver and kidney disease, chronic obstructive pulmonary disease, cancer, and diabetes were determined via self-report. Epigenetic Aging Z-scores and likelihood of past/current HANA conditions were compared between major allele homozygotes and minor allele carriers for each SNP (IL-6 - 174G>C, IL-10 - 592C>A, TNF-α - 308 G>A) separately. Analyses were adjusted for relevant demographic/clinical factors. Epigenetic aging (e.g., higher Z-scores) was significantly greater in IL-6 C allele carriers (p = .002) and IL-10 CC homozygotes (p = .02) compared to other genotype groups. The likelihood of any past/current HANA condition did not differ by IL-10 genotype but was 3.36 times greater in IL-6 C allele carriers versus others (OR = 3.36, 95%CI = 1.09-10.34, p = .03). TNF-α genotype was not associated with epigenetic aging or HANA conditions. IL-6 and IL-10 SNPs may help to identify PLWH who are at high risk for accelerated aging. These insights into pathophysiological pathways may inform interventional approaches to treat rapid aging among PLWH.
Collapse
Affiliation(s)
- Erin E Sundermann
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Mariam A Hussain
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Ct, San Diego, CA, 92120, USA
| | - David J Moore
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Steven Horvath
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - David T S Lin
- The Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Michael S Kobor
- The Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Andrew Levine
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
79
|
Lou Y, Guo Z, Zhu Y, Kong M, Zhang R, Lu L, Wu F, Liu Z, Wu J. Houttuynia cordata Thunb. and its bioactive compound 2-undecanone significantly suppress benzo(a)pyrene-induced lung tumorigenesis by activating the Nrf2-HO-1/NQO-1 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:242. [PMID: 31174565 PMCID: PMC6556055 DOI: 10.1186/s13046-019-1255-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
Abstract
Background Lung cancer remains the most common cause of cancer-related deaths, with a high incidence and mortality in both sexes worldwide. Chemoprevention has been the most effective strategy for lung cancer prevention. Thus, exploring novel and effective candidate agents with low toxicity for chemoprevention is essential and urgent. Houttuynia cordata Thunb. (Saururaceae) (H. cordata), which is a widely used herbal medicine and is also popularly consumed as a healthy vegetable, exhibits anti-inflammatory, antioxidant and antitumor activity. However, the chemopreventive effect of H. cordata against benzo(a)pyrene (B[a]P)-initiated lung tumorigenesis and the underlying mechanism remain unclear. Methods A B[a]P-stimulated lung adenocarcinoma animal model in A/J mice in vivo and a normal lung cell model (BEAS.2B) in vitro were established to investigate the chemopreventive effects of H. cordata and its bioactive compound 2-undecanone against lung tumorigenesis and to clarify the underlying mechanisms. Results H. cordata and 2-undecanone significantly suppressed B[a]P-induced lung tumorigenesis without causing obvious systemic toxicity in mice in vivo. Moreover, H. cordata and 2-undecanone effectively decreased B[a]P-induced intracellular reactive oxygen species (ROS) overproduction and further notably protected BEAS.2B cells from B[a]P-induced DNA damage and inflammation by significantly inhibiting phosphorylated H2A.X overexpression and interleukin-1β secretion. In addition, H. cordata and 2-undecanone markedly activated the Nrf2 pathway to induce the expression of the antioxidative enzymes heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO-1). Nrf2 silencing by transfection with Nrf2 siRNA markedly decreased the expression of HO-1 and NQO-1 to diminish the reductions in B[a]P-induced ROS overproduction, DNA damage and inflammation mediated by H. cordata and 2-undecanone. Conclusions H. cordata and 2-undecanone could effectively activate the Nrf2-HO-1/NQO-1 signaling pathway to counteract intracellular ROS generation, thereby attenuating DNA damage and inflammation induced by B[a]P stimulation and playing a role in the chemoprevention of B[a]P-induced lung tumorigenesis. These findings provide new insight into the pharmacological action of H. cordata and indicate that H. cordata is a novel candidate agent for the chemoprevention of lung cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1255-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanmei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Zhenzhen Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yuanfeng Zhu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Muyan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Rongrong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China
| | - Feichi Wu
- Hunan Zhengqing Pharmaceutical Group Limited, Huaihua, 418005, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China.
| | - Jinjun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
80
|
Liu Y, Jiao C, Lu W, Zhang P, Wang Y. Research progress in the development of organic small molecule fluorescent probes for detecting H 2O 2. RSC Adv 2019; 9:18027-18041. [PMID: 35520548 PMCID: PMC9064630 DOI: 10.1039/c9ra02467k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Hydrogen peroxide (H2O2), as an important signaling molecule during biological metabolism, is a key member of the reactive oxygen species (ROS) family. The excess of H2O2 will lead to oxidative stress, which is a crucial factor in the production of various ROS-related diseases. In order to study the diverse biological roles of H2O2 in cells and animal tissues, many methods have been developed to detect H2O2. Recently, fluorescence imaging has attracted more and more attention because of its high sensitivity, simple operation, experimental feasibility, and real-time online monitoring. Based on the response group, this study will review the research progress on hydrogen peroxide and summarizes the mechanisms, actualities and prospects of fluorescent probes for H2O2.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Chunpeng Jiao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Wenjuan Lu
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Pingping Zhang
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Yanfeng Wang
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| |
Collapse
|
81
|
Peng Y, Hu M, Lu Q, Tian Y, He W, Chen L, Wang K, Pan S. Flavonoids derived from Exocarpium Citri Grandis inhibit LPS-induced inflammatory response via suppressing MAPK and NF-κB signalling pathways. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2018.1550056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Ying Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Mengjun Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Qi Lu
- Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, People’s Republic of China
| | - Yan Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Wanying He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Liang Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Kexing Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
82
|
Ali I, Khan SN, Chatzicharalampous C, Bai D, Abu-Soud HM. Catalase prevents myeloperoxidase self-destruction in response to oxidative stress. J Inorg Biochem 2019; 197:110706. [PMID: 31103890 DOI: 10.1016/j.jinorgbio.2019.110706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/17/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022]
Abstract
Catalase (CAT) and myeloperoxiase (MPO) are heme-containing enzymes that have attracted attention for their role in the etiology of numerous respiratory disorders such as cystic fibrosis, bronchial asthma, and acute hypoxemic respiratory failure. However, information regarding the interrelationship and competition between the two enzymes, free iron accumulation, and decreased levels of non-enzymatic antioxidants at sites of inflammation is still lacking. Myeloperoxidase catalyzes the generation of hypochlorous acid (HOCl) from the reaction of hydrogen peroxide (H2O2) and chloride (Cl-). Self-generated HOCl has recently been proposed to auto-inhibit MPO through a mechanism that involves MPO heme destruction. Here, we investigate the interplay of MPO, HOCl, and CAT during catalysis, and explore the crucial role of MPO inhibitors and HOCl scavengers in protecting the catalytic site from protein modification of both enzymes against oxidative damage mediated by HOCl. We showed that CAT not only competes with MPO for H2O2 but also scavenges HOCl. The protective role provided by CAT versus the damaging effect provided by HOCl depends in part on the ratio between MPO/CAT and the affinity of the enzymes towards H2O2 versus HOCl. The severity of such damaging effects mainly depends on the ratio of HOCl to enzyme heme content. In addition to its effect in mediating protein modification and aggregation, HOCl oxidatively destroys the catalytic sites of the enzymes, which contain porphyrin rings and iron. Thus, modulation of MPO/CAT activities may be a fundamental feature of catalysis, and functions to down-regulate HOCl synthesis and prevent hemoprotein heme destruction and/or protein modification.
Collapse
Affiliation(s)
- Iyad Ali
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA; Department of Biochemistry and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 7, Palestine
| | - Sana N Khan
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | | | - David Bai
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
83
|
O'Connor PJ, Alonso-Amelot ME, Roberts SA, Povey AC. The role of bracken fern illudanes in bracken fern-induced toxicities. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 782:108276. [PMID: 31843140 DOI: 10.1016/j.mrrev.2019.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/29/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022]
Abstract
Bracken fern is carcinogenic when fed to domestic and laboratory animals inducing bladder and ileal tumours and is currently classified as a possible human carcinogen by IARC. The carcinogenic illudane, ptaquiloside (PTQ) was isolated from bracken fern and is widely assumed to be the major bracken carcinogen. However, several other structurally similar illudanes are found in bracken fern, in some cases at higher levels than PTQ and so may contribute to the overall toxicity and carcinogenicity of bracken fern. In this review, we critically evaluate the role of illudanes in bracken fern induced toxicity and carcinogenicity, the mechanistic basis of these effects including the role of DNA damage, and the potential for human exposure in order to highlight deficiencies in the current literature. Critical gaps remain in our understanding of bracken fern induced carcinogenesis, a better understanding of these processes is essential to establish whether bracken fern is also a human carcinogen.
Collapse
Affiliation(s)
- P J O'Connor
- Centre for Occupational and Environmental Health, Centre for Epidemiology, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - M E Alonso-Amelot
- Chemical Ecology Group, Faculty of Sciences, University of Los Andes, Mérida 5101, Venezuela
| | - S A Roberts
- Centre for Biostatistics, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - A C Povey
- Centre for Occupational and Environmental Health, Centre for Epidemiology, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK.
| |
Collapse
|
84
|
Mahmoud YK, Abdelrazek HMA. Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed Pharmacother 2019; 115:108783. [PMID: 31060003 DOI: 10.1016/j.biopha.2019.108783] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Recently, there is growing interest in the natural bioactive components having anticancer activity. Thymoquinone (TQ), the principle active constituent of black seed (Nigella sativa), has promising properties including anticancer and chemosensitizing peculiarities. The anticancer power of TQ is accomplished by several aspects; including promotion of apoptosis, arrest of cell cycle and ROS generation. In addition, it boosts the immune system and lessens the side effects associated with traditional anticancer therapy. TQ also controls angiogenesis and cancer metastasis. This review focuses on the potential aspects and mechanisms by which TQ acquires its actions.
Collapse
Affiliation(s)
- Yasmina K Mahmoud
- Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba M A Abdelrazek
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
85
|
Stingl K, Koraimann G. Prokaryotic Information Games: How and When to Take up and Secrete DNA. Curr Top Microbiol Immunol 2019. [PMID: 29536355 DOI: 10.1007/978-3-319-75241-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Besides transduction via bacteriophages natural transformation and bacterial conjugation are the most important mechanisms driving bacterial evolution and horizontal gene spread. Conjugation systems have evolved in eubacteria and archaea. In Gram-positive and Gram-negative bacteria, cell-to-cell DNA transport is typically facilitated by a type IV secretion system (T4SS). T4SSs also mediate uptake of free DNA in Helicobacter pylori, while most transformable bacteria use a type II secretion/type IV pilus system. In this chapter, we focus on how and when bacteria "decide" that such a DNA transport apparatus is to be expressed and assembled in a cell that becomes competent. Development of DNA uptake competence and DNA transfer competence is driven by a variety of stimuli and often involves intricate regulatory networks leading to dramatic changes in gene expression patterns and bacterial physiology. In both cases, genetically homogeneous populations generate a distinct subpopulation that is competent for DNA uptake or DNA transfer or might uniformly switch into competent state. Phenotypic conversion from one state to the other can rely on bistable genetic networks that are activated stochastically with the integration of external signaling molecules. In addition, we discuss principles of DNA uptake processes in naturally transformable bacteria and intend to understand the exceptional use of a T4SS for DNA import in the gastric pathogen H. pylori. Realizing the events that trigger developmental transformation into competence within a bacterial population will eventually help to create novel and effective therapies against the transmission of antibiotic resistances among pathogens.
Collapse
Affiliation(s)
- Kerstin Stingl
- National Reference Laboratory for Campylobacter, Department Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria.
| |
Collapse
|
86
|
Xu C, Qian Y. A selenamorpholine-based redox-responsive fluorescent probe for targeting lysosome and visualizing exogenous/endogenous hydrogen peroxide in living cells and zebrafish. J Mater Chem B 2019; 7:2714-2721. [PMID: 32255004 DOI: 10.1039/c8tb03010c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A simple selenamorpholine-based fluorescent probe has been designed and synthesized using a combination of selenamorpholine and a BODIPY fluorophore. BODIPY-Se has a low pKa value of 4.78 because of the selenamorpholine unit, which is beneficial for the probe to detect the lysosome. BODIPY-Se can turn on partial fluorescence only in lysosomes, due to a PET-inhibited process of protonation of selenamorpholine. In addition, the selenamorpholine unit of BODIPY-Se could selectively react with H2O2 through a redox reaction, leading to the alteration of the valence state of selenium from Se(ii) to Se(iv) and an additional PET-inhibited process. When BODIPY-Se tracked H2O2 in lysosomes, the two PET-inhibited processes would obviously amplify the fluorescence signal in living cells and in vivo. The probe could also detect the redox cycles between H2O2 and GSH continuously. Using confocal fluorescence imaging, the fluorescence localization of lysosomes demonstrated that BODIPY-Se could successfully target lysosomes. The probe could not only detect exogenous/endogenous H2O2 in living cells, but could also realize real-time monitoring of H2O2 in cancer cells and zebrafish. The results proved that BODIPY-Se is a promising fluorescent probe in biological applications.
Collapse
Affiliation(s)
- Chao Xu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | | |
Collapse
|
87
|
El Shobaky A, Abbas M, Raouf R, Zakaria MM, Ali-El-Dein B. Effect of pathogenic bacteria on reliability of CK-19, CK-20 and UPII as bladder cancer genetic markers: A molecular biology study. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2015.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmed El Shobaky
- Botany Department, Faculty of Science, Mansoura University, Egypt
| | - Mohamed Abbas
- Botany Department, Faculty of Science, Mansoura University, Egypt
| | - Romaila Raouf
- Urology and Nephrology Center, Mansoura University, Egypt
| | | | | |
Collapse
|
88
|
Liu F, Lin Z, Jin Q, Wu Q, Yang C, Chen HJ, Cao Z, Lin DA, Zhou L, Hang T, He G, Xu Y, Xia W, Tao J, Xie X. Protection of Nanostructures-Integrated Microneedle Biosensor Using Dissolvable Polymer Coating. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4809-4819. [PMID: 30628778 DOI: 10.1021/acsami.8b18981] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Real-time transdermal biosensing provides a direct route to quantify biomarkers or physiological signals of local tissues. Although microneedles (MNs) present a mini-invasive transdermal technique, integration of MNs with advanced nanostructures to enhance sensing functionalities has rarely been achieved. This is largely due to the fact that nanostructures present on MNs surface could be easily destructed due to friction during skin insertion. In this work, we reported a dissolvable polymer-coating technique to protect nanostructures-integrated MNs from mechanical destruction during MNs insertion. After penetration into the skin, the polymer could readily dissolve by interstitial fluids so that the superficial nanostructures on MNs could be re-exposed for sensing purpose. To demonstrate this technique, metallic and resin MNs decorated with vertical ZnO nanowires (vNWs) were employed as an example. Dissolvable poly(vinyl pyrrolidone) was spray-coated on the vNW-MNs surface as a protective layer, which effectively protected the superficial ZnO NWs when MNs penetrated the skin. Transdermal biosensing of H2O2 biomarker in skin tissue using the polymer-protecting MNs sensor was demonstrated both ex vivo and in vivo. The results indicated that polymer coating successfully preserved the sensing functionalities of the MNs sensor after inserting into the skin, whereas the sensitivity of the MN sensor without a coating protection was significantly compromised by 3-folds. This work provided unique opportunities of protecting functional nanomodulus on MNs surface for minimally invasive transdermal biosensing.
Collapse
Affiliation(s)
- Fanmao Liu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital , Sun Yat-sen University , 510080 Guangzhou , China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Zhihong Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Quanchang Jin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Qianni Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center , Sun Yat-sen University , 510060 Guangzhou , China
| | - Chengduan Yang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital , Sun Yat-sen University , 510080 Guangzhou , China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Zihan Cao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Di-An Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Lingfei Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Tian Hang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Yonghang Xu
- School of Materials Science and Energy Engineering , Foshan University , 528000 Foshan , China
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital , Sun Yat-sen University , 510080 Guangzhou , China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital , Sun Yat-sen University , 510080 Guangzhou , China
| | - Xi Xie
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital , Sun Yat-sen University , 510080 Guangzhou , China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| |
Collapse
|
89
|
Zheng C, Jin X, Li Y, Mei J, Sun Y, Xiao M, Zhang H, Zhang Z, Zhang GJ. Sensitive Molybdenum Disulfide Based Field Effect Transistor Sensor for Real-time Monitoring of Hydrogen Peroxide. Sci Rep 2019; 9:759. [PMID: 30679538 PMCID: PMC6345991 DOI: 10.1038/s41598-018-36752-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/27/2018] [Indexed: 01/01/2023] Open
Abstract
A reliable and highly sensitive hydrogen peroxide (H2O2) field effect transistor (FET) sensor is reported, which was constructed by using molybdenum disulfide (MoS2)/reduced graphene oxide (RGO). In this work, we prepared MoS2 nanosheets by a simple liquid ultrasonication exfoliation method. After the RGO-based FET device was fabricated, MoS2 was assembled onto the RGO surface for constructing MoS2/RGO FET sensor. The as-prepared FET sensor showed an ultrahigh sensitivity and fast response toward H2O2 in a real-time monitoring manner with a limit of detection down to 1 pM. In addition, the constructed sensor also exhibited a high specificity toward H2O2 in complex biological matrix. More importantly, this novel biosensor was capable of monitoring of H2O2 released from HeLa cells in real-time. So far, this is the first report of MoS2/RGO based FET sensor for electrical detection of signal molecules directly from cancer cells. Hence it is promising as a new platform for the clinical diagnosis of H2O2-related diseases.
Collapse
Affiliation(s)
- Chao Zheng
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, 430065, P. R. China.,Department of Medical Laboratory, The Central Hospital of Wuhan,Tongji Medical College, Huazhong University of Science and Technology, Shengli Street Jiang'an District No.26, Wuhan, 430014, P. R. China
| | - Xin Jin
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, 430065, P. R. China
| | - Yutao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, 430065, P. R. China.
| | - Junchi Mei
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, 430065, P. R. China
| | - Yujie Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, 430065, P. R. China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, P. R. China
| | - Hong Zhang
- Teaching and Research Office of Forensic Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, 430065, P. R. China
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, P. R. China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, 430065, P. R. China.
| |
Collapse
|
90
|
Hatanaka M, Wakabayashi T. Theoretical study of lanthanide-based in vivo luminescent probes for detecting hydrogen peroxide. J Comput Chem 2019; 40:500-506. [PMID: 30414197 DOI: 10.1002/jcc.25737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 11/06/2022]
Abstract
The 4f-4f emissions from lanthanide trication (Ln3+ ) complexes are widely used in bioimaging probes. The emission intensity from Ln3+ depends on the surroundings, and thus, the design of appropriate photo-antenna ligands is indispensable. In this study, we focus on two probes for detecting hydrogen peroxide, for which emission intensities from Tb3+ are enhanced chemo-selectively by the H2 O2 -mediated oxidation of ligands. To understand the mechanism, the Gibbs free energy profiles of the ground and excited states related to emission and quenching are computed by combining our approximation-called the energy shift method-and density functional theory. The different emission intensities are mainly attributed to different activation barriers for excitation energy transfer from the ligand-centered triplet (T1) to the Tb3+ -centered excited state. Additionally, quenching from T1 to the ground state via intersystem crossing was inhibited by intramolecular hydrogen bonds only in the highly emissive Tb3+ complexes. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Miho Hatanaka
- Institute for Research Initiatives, Division for Research Strategy, Graduate School of Science and Technology, Data Science Center, Nara Institute of Science and Technology, Nara, 630-0192, Japan.,PRESTO, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Tomonari Wakabayashi
- Graduate School of Science and Engineering, Kindai University, Osaka, 577-8502, Japan
| |
Collapse
|
91
|
Davies MJ, Schiesser CH. 1,4-Anhydro-4-seleno-d-talitol (SeTal): a remarkable selenium-containing therapeutic molecule. NEW J CHEM 2019. [DOI: 10.1039/c9nj02185j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,4-Anhydro-4-seleno-d-talitol is an exceptional selenium-containing small molecule with significant therapeutic potential; its beneficial actions firmly establish a new therapeutic paradigm in which selenium plays a central role.
Collapse
Affiliation(s)
- Michael J. Davies
- Department of Biomedical Sciences, University of Copenhagen
- Denmark
- Seleno Therapeutics Pty. Ltd
- Australia
| | | |
Collapse
|
92
|
Zhou JX, Tang LN, Yang F, Liang FX, Wang H, Li YT, Zhang GJ. MoS 2/Pt nanocomposite-functionalized microneedle for real-time monitoring of hydrogen peroxide release from living cells. Analyst 2018; 142:4322-4329. [PMID: 29068445 DOI: 10.1039/c7an01446e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This work describes the adaptive use of a conventional stainless steel acupuncture needle as the electrode substrate for construction of a molybdenum disulfide (MoS2) and platinum nanoparticles (PtNPs) layer-modified microneedle sensor for real-time monitoring of hydrogen peroxide (H2O2) release from living cells. To construct the nanocomposite-functionalized microneedle, the needle surface was first coated with a gold film by ion sputtering to enhance the conductivity. Subsequently, an electrochemical deposition method was successfully employed to deposit MoS2 nanosheet and Pt nanoparticles on the needle tip as the sensing interface. Electrochemical study demonstrated that the MoS2/PtNPs nanocomposite-modified needle exhibited excellent catalytic performance and low over-potential toward the reduction of H2O2. Not only did the microneedle achieve a wide linear range from 1 to 100 μmol L-1 with a limit of detection down to 0.686 μmol L-1, but it also realized the highly specific detection of H2O2. Owing to these remarkable analytical advantages, the prepared microneedle was applied to determine H2O2 release from living cells with satisfactory results. The MoS2/PtNPs nanocomposite-functionalized microneedle sensor is simple and affordable, and can serve as a promising electrochemical nonenzymatic sensing platform. Moreover, this superfine needle sensor shows great potential for real-time monitoring of reactive oxygen species in vivo with minimal damage.
Collapse
Affiliation(s)
- Jin-Xiu Zhou
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, PR China.
| | | | | | | | | | | | | |
Collapse
|
93
|
Manju V, Vusa CSR, Arumugam P, Berchmans S. Modulating Metal-Free and Non-Enzymatic Electrocatalytic Activity of sp 2
Carbons Towards H 2
O 2
Reduction by a Facile and Low-Temperature Electrochemical Approach. ChemElectroChem 2018. [DOI: 10.1002/celc.201801232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Venkatesan Manju
- Council of scientific and industrial research; Central electrochemical research institute; Karaikudi- 630003 India
- Academy of scientific and innovative research; Karaikudi- 630003 India
| | - Chiranjeevi S. R. Vusa
- Council of scientific and industrial research; Central electrochemical research institute; Karaikudi- 630003 India
| | - Palaniappan Arumugam
- Council of scientific and industrial research; Central electrochemical research institute; Karaikudi- 630003 India
- Academy of scientific and innovative research; Karaikudi- 630003 India
| | - Sheela Berchmans
- Council of scientific and industrial research; Central electrochemical research institute; Karaikudi- 630003 India
- Academy of scientific and innovative research; Karaikudi- 630003 India
| |
Collapse
|
94
|
Luminescent, stabilized and environmentally friendly [EuW 10O 36] 9--Chitosan films for sensitive detection of hydrogen peroxide. Carbohydr Polym 2018; 200:560-566. [PMID: 30177199 DOI: 10.1016/j.carbpol.2018.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022]
Abstract
Fabrications and applications of luminescent films have been an interesting and important challenge within the realm of academia and industry. Herein, a novel fluorescence-based strategy for the H2O2 detection has been developed by fabrication of stabilized, thin, transparent, and luminescent films composed of europium-containing polyoxometalates (Eu-POM) and environmentally friendly chitosan (CS) via a facile solution casting approach. In comparison with pure Eu-POM, enhanced fluorescent properties are obtained from the as-prepared Eu-POM/CS films in terms of prolonged fluorescence lifetime and a remarkable fluorescent quenching effect in the presence of hydrogen peroxide (H2O2). The fluorescence intensity of Eu-POM/CS films exhibits a linear correlation in response to the H2O2 concentration over a wide range of 1.1-66 μM, with a detection limit of 0.11 μM. Furthermore, the fluorescent films display a high detection selectivity which are capable of differentiating hydrogen peroxide (H2O2) from the interfering species, such as sugars, l-amino acids, and other metabolites. All these advances towards the development of Eu-POM/CS films open up new applications for luminescent films, but most importantly, they can help in the far-reaching technological implementations of a simple, cost-effective method for the detection of H2O2 in many fields.
Collapse
|
95
|
Sk M, Banesh S, Trivedi V, Biswas S. Selective and Sensitive Sensing of Hydrogen Peroxide by a Boronic Acid Functionalized Metal-Organic Framework and Its Application in Live-Cell Imaging. Inorg Chem 2018; 57:14574-14581. [PMID: 30407802 DOI: 10.1021/acs.inorgchem.8b02240] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new boronic acid functionalized Zr(IV) metal-organic framework having the capability of sensing H2O2 in live cells is reported. The Zr-MOF bears a UiO-66 structure and contains 2-boronobenzene-1,4-dicarboxylic acid (BDC-B(OH)2) as a framework linker. The activated Zr-UiO-66-B(OH)2 compound (called 1') is highly selective for the fluorogenic detection of H2O2 in HEPES buffer at pH 7.4, even in the presence of interfering ROS (ROS = reactive oxygen species) and other biologically relevant analytes. The fluorescent probe was found to display extraordinary sensitivity for H2O2 (detection limit 0.015 μM) in HEPES buffer, which represents a lower value in comparison to those of the MOF probes documented so far for sensing H2O2 using other analytical methods. Taking advantage of its high selectivity and sensitivity for H2O2 in HEPES buffer, the probe was successfully employed for the imaging of intracellular H2O2. Imaging studies with MDAMB-231 cells revealed the emergence of bright blue fluorescence after loading with probe 1' and subsequent treatment with H2O2 solution.
Collapse
Affiliation(s)
- Mostakim Sk
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , Assam , India
| | - Sooram Banesh
- Malaria Research Group, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati 781039 Assam , India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati 781039 Assam , India
| | - Shyam Biswas
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , Assam , India
| |
Collapse
|
96
|
Usman M, Volpi EV. DNA damage in obesity: Initiator, promoter and predictor of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:23-37. [PMID: 30454680 DOI: 10.1016/j.mrrev.2018.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/29/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
Epidemiological evidence linking obesity with increased risk of cancer is steadily growing, although the causative aspects underpinning this association are only partially understood. Obesity leads to a physiological imbalance in the regulation of adipose tissue and its normal functioning, resulting in hyperglycaemia, dyslipidaemia and inflammation. These states promote the generation of oxidative stress, which is exacerbated in obesity by a decline in anti-oxidant defence systems. Oxidative stress can have a marked impact on DNA, producing mutagenic lesions that could prove carcinogenic. Here we review the current evidence for genomic instability, sustained DNA damage and accelerated genome ageing in obesity. We explore the notion of genotoxicity, ensuing from systemic oxidative stress, as a key oncogenic factor in obesity. Finally, we advocate for early, pre-malignant assessment of genome integrity and stability to inform surveillance strategies and interventions.
Collapse
Affiliation(s)
- Moonisah Usman
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Emanuela V Volpi
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| |
Collapse
|
97
|
Ni Y, Liu H, Dai D, Mu X, Xu J, Shao S. Chromogenic, Fluorescent, and Redox Sensors for Multichannel Imaging and Detection of Hydrogen Peroxide in Living Cell Systems. Anal Chem 2018; 90:10152-10158. [PMID: 30058328 DOI: 10.1021/acs.analchem.7b04435] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogen peroxide (H2O2) is an important reactive oxygen species (ROS). Maintaining the H2O2 concentration at a normal level is critical to achieve the normal physiological activities of cells, which otherwise might trigger various diseases. Therefore, it is necessary to develop new and practical multisignaling sensors for both visualization of intracellular H2O2 and accurate detection of extracellular H2O2. In this paper, a novel multichannel signaling fluorescence-electrochemistry combined probe 1 (FE-H2O2) is presented for imaging and detection of H2O2 in living cell systems. In our design, the probe FE-H2O2 consists of a H2O2 reaction site and 4-ferrocenyl(vinyl)pyridine unit which affords chromogenic, fluorescent, and electrochemical signals. These structural motifs yield a combined chromogenic, fluorescent, and redox sensor in a single molecule. Probe FE-H2O2 showed a "Turn-On" fluorescence response to H2O2, which can be used for monitoring intracellular H2O2 in vivo. Furthermore, the electrochemical response of probe FE-H2O2 was decreased after the addition of H2O2, which can be applied for accurate detection of H2O2 released from living cells. When the fluorescence imaging method is combined with electrochemical analysis technology, it is hopeful that the well-designed multimodule probe can serve as a practical tool for understanding the metabolism and homeostasis of H2O2 in a complex biological system.
Collapse
Affiliation(s)
- Yue Ni
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Hong Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
| | - Di Dai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
| | - Xiqiong Mu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
| | - Jian Xu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
| | - Shijun Shao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
| |
Collapse
|
98
|
Huang W, Sunami Y, Kimura H, Zhang S. Applications of Nanosheets in Frontier Cellular Research. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E519. [PMID: 30002280 PMCID: PMC6070807 DOI: 10.3390/nano8070519] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023]
Abstract
Several types of nanosheets, such as graphene oxide (GO) nanosheet, molybdenum disulfide (MoS₂) and poly(l-lactic acid) (PLLA) nanosheets, have been developed and applied in vitro in cellular research over the past decade. Scientists have used nanosheet properties, such as ease of modification and flexibility, to develop new cell/protein sensing/imaging techniques and achieve regulation of specific cell functions. This review is divided into three main parts based on the application being examined: nanosheets as a substrate, nanosheets as a sensitive surface, and nanosheets in regenerative medicine. Furthermore, the applications of nanosheets are discussed, with two subsections in each section, based on their effects on cells and molecules. Finally, the application prospects of nanosheets in cellular research are summarized.
Collapse
Affiliation(s)
- Wenjing Huang
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yuta Sunami
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
- Department of Mechanical Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
| | - Hiroshi Kimura
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
- Department of Mechanical Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
| | - Sheng Zhang
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
- Division of Biomedical Engineering, Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
99
|
Yang X, Cheng X, Song H, Ma J, Pan P, Elzatahry AA, Su J, Deng Y. 3D Interconnected Mesoporous Alumina with Loaded Hemoglobin as a Highly Active Electrochemical Biosensor for H 2 O 2. Adv Healthc Mater 2018; 7:e1800149. [PMID: 29582579 DOI: 10.1002/adhm.201800149] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 12/23/2022]
Abstract
Alumina is one of the most common and stable metal oxides in nature, which has been developed as a novel adsorbent in enrichment of biomolecules due to its excellent affinity to phosphor or amino groups. In this study, ordered mesoporous alumina (OMA) with interconnected mesopores and surface acidic property is synthesized through a solvent evaporation induced co-assembly process using poly(ethylene oxide)-b-polystyrene (PEO-b-PS) diblock copolymer as a template and aluminium acetylacetonate (Al(acac)3 ) as the aluminium source. The pore size (12.1-19.7 nm), pore window size (3.5-9.0 nm) and surface acidity (0.092-0.165 mmol g-1 ) can be precisely adjusted. The highly porous structure endows the OMA materials with high hemoglobin (Hb) immobilization capacity (170 mg g-1 ). The obtained Hb@OMA composite is used as an electrocatalyst of biosensor for convienet and fast detection of hydrogen peroxide (H2 O2 ) with a low H2 O2 detection limit of 1.7 × 10-8 m and a wide linear range of 2.5 × 10-8 to 5.0 × 10-5 m. Moreover, the Hb@OMA sensors show a good performance in real time detection of H2 O2 released from Homo sapiens bone osteosarcoma, indicating their potential application in complex biological processes.
Collapse
Affiliation(s)
- Xuanyu Yang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials iChEM Fudan University Shanghai 200433 China
| | - Xiaowei Cheng
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials iChEM Fudan University Shanghai 200433 China
| | - Hongyuan Song
- Department of Ophthalmology Changhai Hospital Second Military Medical University Shanghai 200433 China
| | - Junhao Ma
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials iChEM Fudan University Shanghai 200433 China
| | - Panpan Pan
- Department of Ophthalmology Changhai Hospital Second Military Medical University Shanghai 200433 China
| | - Ahmed A. Elzatahry
- Materials Science and Technology Program College of Arts and Sciences Qatar University Doha 2713 Qatar
| | - Jiacan Su
- Department of Ophthalmology Changhai Hospital Second Military Medical University Shanghai 200433 China
| | - Yonghui Deng
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials iChEM Fudan University Shanghai 200433 China
- State Key Lab of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
| |
Collapse
|
100
|
Chang J, Li H, Hou T, Duan W, Li F. Paper-based fluorescent sensor via aggregation induced emission fluorogen for facile and sensitive visual detection of hydrogen peroxide and glucose. Biosens Bioelectron 2018; 104:152-157. [DOI: 10.1016/j.bios.2018.01.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/23/2017] [Accepted: 01/04/2018] [Indexed: 01/22/2023]
|