51
|
Abstract
Research on glycosphingolipids has advanced with the finding of their involvement in sphingolipidoses, blood group- and differentiation-related antigens, and receptors for bacteria and viruses. Recently, the molecular cloning of genes for the synthesis of glycosphingolipids has been performed extensively, and mice without sugar transferase-genes have been generated. These transferase-null mice have shown that the complex carbohydrate structures of glycosphingolipids are not essential for the embryogenesis, morphogenesis or development of animals, but that the accumulation of an intermediate, such as GM3 or ceramide, causes significant failure of neural development in knockout mice as to the GM2, GD3 and GlcCer synthase genes. On the other hand, the nonreducing terminal carbohydrates in either glycosphingolipids or glycoproteins have been confirmed to be related to carbohydrate-mediated phenomena using the same gene-manipulation technique, indicating that glycosphingolipids are some of the carriers for functionally important carbohydrates. Glycosphingolipids are certainly small molecules with hydrophobic ceramides, which carry both donor and acceptor groups of the hydrogen-bonding region with the potential ability to interact with several proteins on the raft structure in biomembranes, and their dynamic movement in the membranes was revealed by the flip-flop regulation of their synthesis in the Golgi apparatus and the transformation-associated alteration in the reactivity of the carbohydrate moiety with several ligands. Thus, research on the functional significance of glycosphingolipids should be carried out again regarding their physicochemical properties.
Collapse
Affiliation(s)
- Masao Iwamori
- Laboratory of Biochemistry, Department of Life Science, Faculty of Science and Technology, Kinki University
| |
Collapse
|
52
|
Gu J, Taniguchi N. Potential of N-glycan in cell adhesion and migration as either a positive or negative regulator. Cell Adh Migr 2008; 2:243-5. [PMID: 19262156 DOI: 10.4161/cam.2.4.6748] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glycosylation is one of the most abundant posttranslational modification reactions, and nearly half of all known proteins in eukaryotes are glycosylated. In fact, changes in oligosaccharide structure (glycan) are associated with many physiological and pathological events, including cell adhesion, migration, cell growth, cell differentiation and tumor invasion. Glycosylation reactions are catalyzed by the action of glycosyltransferases, which add sugar chains to various complex carbohydrates such as glycoproteins, glycolipids and proteoglycans. Functional glycomics, which uses sugar remodeling by glycosyltransferases, is a promising tool for the characterization of glycan functions. Here, we will focus on the positive and negative regulation of biological functions of integrins by the remodeling of N-glycans with N-acetylglucosaminyltransferase III (GnT-III) and N-acetylglucosaminyltransferase V (GnT-V), which catalyze branched N-glycan formations, bisecting GlcNAc and beta1,6 GlcNAc, respectively. Typically, integrins are modified by GnT-III, which inhibits cell migration and cancer metastasis. In contrast, integrins modified by GnT-V promote cell migration and cancer invasion.
Collapse
Affiliation(s)
- Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan.
| | | |
Collapse
|
53
|
|
54
|
Zhao YY, Takahashi M, Gu JG, Miyoshi E, Matsumoto A, Kitazume S, Taniguchi N. Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci 2008; 99:1304-10. [PMID: 18492092 PMCID: PMC11158068 DOI: 10.1111/j.1349-7006.2008.00839.x] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 03/25/2008] [Indexed: 01/27/2023] Open
Abstract
Glycosylation is one of the most common post-translational modification reactions and nearly half of all known proteins in eukaryotes are glycosylated. In fact, changes in oligosaccharide structures are associated with many physiological and pathological events, including cell growth, migration, differentiation, tumor invasion, host-pathogen interactions, cell trafficking, and transmembrane signaling. Emerging roles of glycan functions have been highly attractive to scientists in various fields of life science as they open a field, "Functional Glycomics", that is a comprehensive study of the glycan structures in relation to functions. In particular, the N-glycans of signaling molecules including receptors or adhesion molecules are considered to be involved in cellular functions. This review will focus on the roles of glycosyltransferases involved in the biosynthesis of N-glycan branching and identification of cell surface receptors as their target proteins. We also suggest that the modulation of N-glycans of those receptors alters their important functions such as cell signaling and cell adhesion which are implicated in cancer invasion and metastasis.
Collapse
Affiliation(s)
- Yan-Yang Zhao
- Department of Disease Glycomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
55
|
Liu Y, Pan D, Bellis SL, Song Y. Effect of altered glycosylation on the structure of the I-like domain of β1 integrin: A molecular dynamics study. Proteins 2008; 73:989-1000. [DOI: 10.1002/prot.22126] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
56
|
Pawelek JM, Chakraborty AK. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 2008; 8:377-86. [PMID: 18385683 DOI: 10.1038/nrc2371] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The causes of metastasis remain elusive despite vast information on cancer cells. We posit that cancer cell fusion with macrophages or other migratory bone marrow-derived cells (BMDCs) provides an explanation. BMDC-tumour hybrids have been detected in numerous animal models and recently in human cancer. Molecular studies indicate that gene expression in such hybrids reflects a metastatic phenotype. Should BMDC-tumour fusion be found to underlie invasion and metastasis in human cancer, new approaches for therapy would surely follow.
Collapse
Affiliation(s)
- John M Pawelek
- Department of Dermatology and the Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-08059, USA.
| | | |
Collapse
|
57
|
Zhao Y, Sato Y, Isaji T, Fukuda T, Matsumoto A, Miyoshi E, Gu J, Taniguchi N. Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J 2008; 275:1939-48. [PMID: 18384383 DOI: 10.1111/j.1742-4658.2008.06346.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycosylation is one of the most common post-translational modifications, and approximately 50% of all proteins are presumed to be glycosylated in eukaryotes. Branched N-glycans, such as bisecting GlcNAc, beta-1,6-GlcNAc and core fucose (alpha-1,6-fucose), are enzymatic products of N-acetylglucosaminyltransferase III, N-acetylglucosaminyltransferase V and alpha-1,6-fucosyltransferase, respectively. These branched structures are highly associated with various biological functions of cell adhesion molecules, including cell adhesion and cancer metastasis. E-cadherin and integrins, bearing N-glycans, are representative adhesion molecules. Typically, both are glycosylated by N-acetylglucosaminyltransferase III, which inhibits cell migration. In contrast, integrins glycosylated by N-acetylglucosaminyltransferase V promote cell migration. Core fucosylation is essential for integrin-mediated cell migration and signal transduction. Collectively, N-glycans on adhesion molecules, especially those on E-cadherin and integrins, play key roles in cell-cell and cell-extracellular matrix interactions, thereby affecting cancer metastasis.
Collapse
Affiliation(s)
- Yanyang Zhao
- Department of Biochemistry, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
58
|
RTX cytotoxins recognize beta2 integrin receptors through N-linked oligosaccharides. Proc Natl Acad Sci U S A 2008; 105:5355-60. [PMID: 18375764 DOI: 10.1073/pnas.0711400105] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bordetella pertussis adenylate cyclase (AC) toxin-hemolysin (Hly) (CyaA, ACT, or AC-Hly) is a cytotoxin of the RTX (repeat in toxin) family. It delivers into target cells an AC domain that catalyzes uncontrolled conversion of ATP to cAMP, a key signaling molecule subverting phagocyte functions. CyaA utilizes a heavily N-glycosylated beta(2) integrin receptor CD11b/CD18 (alpha(M)beta(2), Mac-1, or CR3). We show that deglycosylation of cell surface proteins by glycosidase treatment, or inhibition of protein N-glycosylation by tunicamycin, ablates CyaA binding and penetration of CD11b-expressing cells. Furthermore, binding of CyaA to cells was strongly inhibited in the presence of free saccharides occurring as building units of integrin oligosaccharide complex, whereas saccharides absent from integrin oligosaccharide chains failed to inhibit CyaA binding to CD11b/CD18-expressing cells. CyaA, hence, selectively recognized sugar residues of N-linked oligosaccharides of integrins. Moreover, glycosylation of CD11a/CD18, another receptor of the beta(2) integrin family, was also essential for cytotoxic action of other RTX cytotoxins, the leukotoxin of Aggregatibacter actinomycetemcomitans (LtxA) and the Escherichia coli alpha-Hly (HlyA). These results show that binding and killing of target cells by CyaA, LtxA, and HlyA depends on recognition of N-linked oligosaccharide chains of beta(2) integrin receptors. This sets a new paradigm for action of RTX cytotoxins.
Collapse
|
59
|
Luo Y, Gourmala C, Dong D, Barbault F, Fan B, Hu Y, Zhang Y. First synthesis of two deoxy Lewisx pentaosyl glycosphingolipids. Glycoconj J 2007; 25:335-44. [DOI: 10.1007/s10719-007-9077-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 08/27/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
|
60
|
Wang X, Gu J, Miyoshi E, Honke K, Taniguchi N. Phenotype changes of Fut8 knockout mouse: core fucosylation is crucial for the function of growth factor receptor(s). Methods Enzymol 2007; 417:11-22. [PMID: 17132494 DOI: 10.1016/s0076-6879(06)17002-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alpha1,6-fucosyltransferase (Fut8) catalyzes the transfer of a fucose residue to N-linked oligosaccharides on glycoproteins by means of an alpha1,6-linkage to form core fucosylation in mammals. In mice, disruption of Fut8 induces severe growth retardation, early death during postnatal development, and emphysema-like changes in the lung. A marked dysregulation of TGF-beta1 receptor activation and signaling in Fut8-null mice lung results in overexpression of matrix metalloproteinases (MMPs), such as MMP12 and MMP13, and a down-regulation of extracellular matrix (ECM) proteins such as elastin, which contributes to the destructive emphysema-like phenotype observed in Fut8-null mice. Furthermore, therapeutic administration of exogenous TGF-beta1 rescued the null mice from the emphysema-like phenotype. On the other hand, absence of Fut8 on EGF or PDGF receptor results in down-regulation of the receptor-mediated signaling, which is a plausible factor that may be responsible for the growth retardation. Reintroduction of the Fut8 gene to Fut8-null cells potentially rescued these receptor-mediated signaling impaired in null cells. Collectively, these results suggest that core fucosylation is crucial for growth factor receptors such as TGF-beta1 and EGF receptor-mediated biological functions.
Collapse
Affiliation(s)
- Xiangchun Wang
- Department of Biochemistry, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | |
Collapse
|
61
|
Guo HB, Randolph M, Pierce M. Inhibition of a specific N-glycosylation activity results in attenuation of breast carcinoma cell invasiveness-related phenotypes: inhibition of epidermal growth factor-induced dephosphorylation of focal adhesion kinase. J Biol Chem 2007; 282:22150-62. [PMID: 17537730 DOI: 10.1074/jbc.m611518200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in the expression of glycosyltransferases that branch N-linked glycans can alter the function of several types of cell surface receptors and a glucose transporter. To study in detail the mechanisms by which aberrant N-glycosylation caused by altered N-acetylglucosaminyltransferase V(GnT-V, GnT-Va, and Mgat5a) expression can regulate the invasiveness-related phenotypes found in some carcinomas, we utilized specific small interfering RNA (siRNA) to selectively knock down GnT-V expression in the highly metastatic and invasive human breast carcinoma cell line, MDA-MB231. Knockdown of GnT-V by siRNA expression had no effect on epidermal growth factor receptor expression levels but lowered expression of N-linked beta(1,6)-branching on epidermal growth factor receptor, as expected. Compared with control cells, knockdown of GnT-V caused significant inhibition of the morphological changes and cell detachment from matrix that is normally seen after stimulation with epidermal growth factor (EGF). Decreased expression of GnT-V caused a marked inhibition of EGF-induced dephosphorylation of focal adhesion kinase (FAK), consistent with the lack of cell morphology changes in the cells expressing GnT-V siRNA. The attenuation of EGF-mediated phosphorylation and activation of the tyrosine phosphatase SHP-2 was dramatically observed in GnT-V knockdown cells, and these effects could be rescued by reintroduction of GnT-V into these cells, indicating that reduced EGF-mediated activation of SHP-2 was GnT-V related. Concomitantly, knockdown of GnT-V caused reduced EGF-mediated ERK signaling and tumor cell invasiveness-related phenotypes, including effects on actin rearrangement and cell motility. No changes in EGF binding were observed, however, after knockdown of GnT-V. Our results demonstrate that decreased GnT-V activity due to siRNA expression in human breast carcinoma cells resulted in an inhibition of EGF-stimulated SHP-2 activation and, consequently, caused attenuation of the dephosphorylation of FAK induced by EGF. These effects suppressed EGF-mediated downstream signaling and invasiveness-related phenotypes and suggest GnT-V as a potential therapeutic target.
Collapse
Affiliation(s)
- Hua-Bei Guo
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
62
|
André S, Sanchez-Ruderisch H, Nakagawa H, Buchholz M, Kopitz J, Forberich P, Kemmner W, Böck C, Deguchi K, Detjen KM, Wiedenmann B, von Knebel Doeberitz M, Gress TM, Nishimura SI, Rosewicz S, Gabius HJ. Tumor suppressor p16INK4a--modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells. FEBS J 2007; 274:3233-56. [PMID: 17535296 DOI: 10.1111/j.1742-4658.2007.05851.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Expression of the tumor suppressor p16(INK4a) after stable transfection can restore the susceptibility of epithelial tumor cells to anoikis. This property is linked to increases in the expression and cell-surface presence of the fibronectin receptor. Considering its glycan chains as pivotal signals, we assumed an effect of p16(INK4a) on glycosylation. To test this hypothesis for human Capan-1 pancreatic carcinoma cells, we combined microarray for selected glycosyltransferase genes with 2D chromatographic glycan profiling and plant lectin binding. Major differences between p16-positive and control cells were detected. They concerned expression of beta1,4-galactosyltransferases (down-regulation of beta1,4-galactosyltransferases-I/V and up-regulation of beta1,4-galactosyltransferase-IV) as well as decreased alpha2,3-sialylation of O-glycans and alpha2,6-sialylation of N-glycans. The changes are compatible with increased beta(1)-integrin maturation, subunit assembly and binding activity of the alpha(5)beta(1)-integrin. Of further functional relevance in line with our hypothesis, we revealed differential reactivity towards endogenous lectins, especially galectin-1. As a result of reduced sialylation, the cells' capacity to bind galectin-1 was enhanced. In parallel, the level of transcription of the galectin-1 gene increased conspicuously in p16(INK4a)-positive cells, and even figured prominently in a microarray on 1996 tumor-associated genes and in proteomic analysis. The cells therefore gain optimal responsiveness. The correlation between genetically modulated galectin-1 levels and anoikis rates in engineered transfectants inferred functional significance. To connect these findings to the fibronectin receptor, galectin-1 was shown to be co-immunoprecipitated. We conclude that p16(INK4a) orchestrates distinct aspects of glycosylation that are relevant for integrin maturation and reactivity to an endogenous effector as well as the effector's expression. This mechanism establishes a new aspect of p16(INK4a) functionality.
Collapse
Affiliation(s)
- Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Sano K, Asanuma-Date K, Arisaka F, Hattori S, Ogawa H. Changes in glycosylation of vitronectin modulate multimerization and collagen binding during liver regeneration. Glycobiology 2007; 17:784-94. [PMID: 17369286 DOI: 10.1093/glycob/cwm031] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Elucidating the mechanisms and factors regulating multimerization is biologically important in order to modulate the biological activities of functional proteins, especially adhesive proteins in the extracellular matrix (ECM). Vitronectin (VN) is a multifunctional glycoprotein present in plasma and ECM. Linkage of cellular adhesion and fibrinolysis by VN plays an essential role during tissue remodeling. Our previous study determined that the collagen-binding activity of VN was markedly enhanced with the decreased glycosylation during liver regeneration. This study demonstrated how alternations of glycans modulate the biological activity of VN. Human and rat VNs were used because of their similarities in structure and activities. The binding affinity of human VN to immobilized collagen was shown to be higher at pH 4.5 than at 7.5, at 37 degrees C than at 4 degrees C. Sedimentation velocity studies indicated that the greater the multimerization of human VN, the better it bound to collagen. The results indicate that the collagen binding of VN was modulated through its multimerization. Stepwise trimming of glycan with various exoglycosidases increased both the multimer size and the collagen binding of human VN, indicating that they are modulated by changes in glycosylation. The multimer sizes of VN purified from plasma of partially hepatectomized (PH) rats and sham-operated (SH) rats increased by about 45 and 31%, respectively, compared with those of nonoperated (NO) rats. In accordance with this, PH-VN exhibited remarkably enhanced collagen binding than SH-VN and NO-VN on surface plasmon resonance. In the PH rat sera, the multimer VN was increased in both amount and size compared with those in SH- and NO-sera. The results demonstrate that glycan alterations during tissue remodeling induce increased multimerization state to enhance the biological activity of VN.
Collapse
Affiliation(s)
- Kotone Sano
- Graduate school of Humanities and Sciences and The Glycoscience Institute, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610 Japan
| | | | | | | | | |
Collapse
|
64
|
Shen X, Hong MS, Moss J, Vaughan M. BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein, is required for correct glycosylation and function of integrin beta1. Proc Natl Acad Sci U S A 2007; 104:1230-5. [PMID: 17227842 PMCID: PMC1783117 DOI: 10.1073/pnas.0610535104] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycosylation of beta1 integrin (beta1) in the Golgi complex has been related to its function in multiple cell processes, e.g., invasiveness, matrix adhesion, and migration. Brefeldin A-inhibited guanine nucleotide-exchange proteins (BIG) 1 and BIG2 activate human ADP-ribosylation factors (ARF) 1 and ARF3 by catalyzing the replacement of ARF-bound GDP with GTP to regulate Golgi vesicular transport. We show here a requirement for BIG1 (but not BIG2) in glycosylation and function of beta1. In HepG2 cells treated for 48 or 72 h with BIG1, but not BIG2, siRNA, both the amount and electrophoretic mobility of the initially 130-kDa beta1 were increased. BIG1 content had risen by 48 h after removal of BIG1 siRNA, and the faster-migrating, aberrant 130-kDa beta1 was not seen. Peptide N-glycosidase F, but not endoglycosidase H, digestion converted all beta1 to an approximately 85-kDa (core protein) form. By electron microscopy, Golgi membranes in BIG1-depleted cells were less sharply defined than those in mock or BIG2 siRNA-treated cells, with more vesicle-like structures at the transface. Amounts of active RhoA-GTP also were decreased in such cells and restored by overexpression of HA-BIG1. Aberrant beta1 was present on the cell surface, but its function in cell spreading, adhesion, and migration was impaired. By immunofluorescence microscopy, BIG1 siRNA-treated cells showed less spreading and concentration of beta1 at the cell surface. These results indicate a previously unrecognized role for BIG1 in the glycosylation of beta1 by Golgi enzymes, which is critical for its function in developmental and other vital cell processes.
Collapse
Affiliation(s)
- Xiaoyan Shen
- *Pulmonary-Critical Care Medicine Branch
- To whom correspondence may be addressed at:
National Institutes of Health, Building 10, Room 5N307, MSC 1434, Bethesda, MD 20892-1434. E-mail:
or
| | - Myoung-Soon Hong
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joel Moss
- *Pulmonary-Critical Care Medicine Branch
| | - Martha Vaughan
- *Pulmonary-Critical Care Medicine Branch
- To whom correspondence may be addressed at:
National Institutes of Health, Building 10, Room 5N307, MSC 1434, Bethesda, MD 20892-1434. E-mail:
or
| |
Collapse
|
65
|
Wang L, Liang Y, Li Z, Cai X, Zhang W, Wu G, Jin J, Fang Z, Yang Y, Zha X. Increase in β1-6 GlcNAc branching caused byN-acetylglucosaminyltransferase V directs integrin β1 stability in human hepatocellular carcinoma cell line SMMC-7721. J Cell Biochem 2007; 100:230-41. [PMID: 16924681 DOI: 10.1002/jcb.21071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, an enzymatic inactive mutant of GnT-V (delta cGnT-V) was constructed and transfected in SMMC 7721 cell line. Integrin beta1 in delta cGnT-V transfectants (delta c-7721) showed attenuation of the number of beta1-6 GlcNAc branching, whereas those in wtGnT-V transfectants (wt-7721) presented a beta1-6 GlcNAc-rich pattern. High integrin beta1 expression was observed in wt-7721 compared with mock cells (7721 cell transfected with the vector pcDNA3), while transfection of delta cGnT-V decreased the integrin beta1 expression, despite of no significant changes on integrin beta1 mRNA level in these cell lines. Pulse-chase experiment showed that Integrin beta1 in delta c-7721 was prone to quick degradation and its half-life was less than 3 h, on the contrary, the alleviating degradation of beta1 subunit was observed in wt-7721 where the beta1 subunit half-life was about 16 h, meanwhile, the degradation rate of beta1 subunit in mock cells was in between, about 10 h. More effective in promoting cell migration toward fibronectin and invasion through Matrigel was observed in wt-7721 while this was almost suppressed in delta c-7721. Our results suggest that the addition of beta1-6 GlcNAc branching caused more fully glycosylated mature form on integrin beta1 and inhibited beta1 protein degradation. Glycosylation caused by GnT-V directs integrin beta1 stability and more delivery to plasma membrane, subsequently promotes Fn-based cell migration and invasion.
Collapse
Affiliation(s)
- Liying Wang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Yoon SJ, Nakayama KI, Hikita T, Handa K, Hakomori SI. Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci U S A 2006; 103:18987-91. [PMID: 17142315 PMCID: PMC1748164 DOI: 10.1073/pnas.0609281103] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Indexed: 11/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) at membrane microdomains plays an essential role in the growth control of epidermal cells, including cancer cells derived therefrom. Ligand-dependent activation of EGFR tyrosine kinase is known to be inhibited by ganglioside GM3, but to a much lesser degree by other glycosphingolipids. However, the mechanism of the inhibitory effect of GM3 on EGFR tyrosine kinase has been ambiguous. The mechanism is now defined by binding of N-linked glycan having multiple GlcNAc termini to GM3 through carbohydrate-to-carbohydrate interaction, based on the following data: (i) EGFR (molecular mass, approximately 170 kDa) has N-linked glycan with GlcNAc termini, as probed by mAb (J1) or lectin (GS-II); (ii) GS-II-bound EGFR also bound to anti-EGFR Ab as well as to GM3-coated beads; (iii) GM3 inhibitory effect on EGFR tyrosine kinase was abrogated in vitro by coincubation with glycan having multiple GlcNAc termini and in cell culture in situ incubated with the same glycan; and (iv) cells treated with swainsonine, which increased expression of complex-type and hybrid-type glycans with GlcNAc termini, displayed higher inhibition of EGFR kinase by GM3 than swainsonine-untreated control cells. A similar effect was observed with 1-deoxymannojirimycin, which increased hybrid-type structure in addition to major accumulation of high mannose-type glycan. These findings indicate that N-linked glycan with GlcNAc termini linked to EGFR is the target to interact with GM3, causing inhibition of EGF-induced EGFR tyrosine kinase.
Collapse
Affiliation(s)
- Seon-Joo Yoon
- *Pacific Northwest Research Institute and University of Washington, Seattle, WA 98122
| | - Ken-ichi Nakayama
- Institute of General Industrial Research, Takamatsu, Kagawa 761-0395, Japan; and
| | - Toshiyuki Hikita
- *Pacific Northwest Research Institute and University of Washington, Seattle, WA 98122
- Department of Pediatrics, Teikyo University School of Medicine, Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Kazuko Handa
- *Pacific Northwest Research Institute and University of Washington, Seattle, WA 98122
| | - Sen-itiroh Hakomori
- *Pacific Northwest Research Institute and University of Washington, Seattle, WA 98122
| |
Collapse
|
67
|
Isaji T, Sato Y, Zhao Y, Miyoshi E, Wada Y, Taniguchi N, Gu J. N-Glycosylation of the β-Propeller Domain of the Integrin α5 Subunit Is Essential for α5β1 Heterodimerization, Expression on the Cell Surface, and Its Biological Function. J Biol Chem 2006; 281:33258-67. [PMID: 16959765 DOI: 10.1074/jbc.m607771200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-glycosylation of integrin alpha5beta1 is thought to play crucial roles in cell spreading, cell migration, ligand binding, and dimer formation, but the underlying mechanism remains unclear. To investigate the importance of the N-glycans of this integrin in detail, sequential site-directed mutagenesis was carried out to remove single or combined putative N-glycosylation sites on the alpha5 integrin. Removal of the putative N-glycosylation sites on the beta-propeller, Thigh, Calf-1, or Calf-2 domains of the alpha5 subunit resulted in a decrease in molecular weight compared with the wild type, suggesting that all of these domains contain attached N-glycans. Importantly, the absence of N-glycosylation sites (sites 1-5) on the beta-propeller resulted in the persistent association of integrin subunit with calnexin in the endoplasmic reticulum, which subsequently blocked heterodimerization and its expression on the cell surface. Interestingly, the activities for cell spreading and migration for the alpha5 subunit carrying only three potential N-glycosylation sites (3-5 sites) on the beta-propeller were comparable with those of the wild type. In contrast, mutation of these three sites resulted in a significant decrease in cell spreading as well as functional expression, although the total expression level of the Delta3-5 mutant on the cell surface was comparable with that of wild type. Furthermore, we found that site 5 is a most important site for its expression on the cell surface, whereas the S5 mutant did not show any biological functions. Taken together, this study reveals for the first time that the N-glycosylation on the beta-propeller domain of the alpha5 subunit is essential for heterodimerization and biological functions of alpha5beta1 integrin and might also be useful for studies of the molecular structure.
Collapse
Affiliation(s)
- Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | | | | | | | | | | | | |
Collapse
|
68
|
Reddy BVVG, Kalraiya RD. Sialilated β1,6 branched N-oligosaccharides modulate adhesion, chemotaxis and motility of melanoma cells: Effect on invasion and spontaneous metastasis properties. Biochim Biophys Acta Gen Subj 2006; 1760:1393-402. [PMID: 16806716 DOI: 10.1016/j.bbagen.2006.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 04/13/2006] [Accepted: 05/09/2006] [Indexed: 11/30/2022]
Abstract
B16BL6 cells, selected specifically for invasive characteristics from B16F10 mouse melanoma cells, displayed greater ability to metastasize to lungs and produced larger colonies than the parent cells, when injected intravenously. When the two cell lines were compared for surface beta1,6-branched N-oligosaccharides by flow cytometry using Leuco-Phyto-Heam-Agglutinin, B16BL6 were found to express significantly higher levels. Inhibition of the oligosaccharide expression, by treatment of the cells with swainsonine or antisense-N-acetyl glucosaminyl-transferase-V, significantly reduced metastasis and invasion (>50%). Further, inhibition of oligosaccharides on the molecules like beta1 integrin (one of the major carriers) caused 30-45% reduction in their adherence to extra-cellular-matrix components especially collagen IV and laminin, and chemotaxis towards fibronectin and matrigel. The inhibition also decreased haptotaxis by approximately 50% to fibronectin but surprisingly was enhanced towards laminin by approximately 75%. The cells on which the expression of these oligosaccharides was inhibited failed to exhibit the characteristic spontaneous metastasis and adhesion properties of B16BL6 cells. In none of the cases, however, the secretion of matrix-metallo-proteases correlated with oligosaccharide expression. Sialylation of surface oligosaccharides was found to be accompanied by even higher motility and adherence to the substrates. These results strongly support an important role of cell surface beta1,6-linked N-oligosaccharides, especially the sialylated derivatives, in the processes that influence invasion and metastasis.
Collapse
Affiliation(s)
- B V V G Reddy
- Biochemistry and Cell Biology, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410 208, India
| | | |
Collapse
|
69
|
Lee I, Guo HB, Kamar M, Abbott K, Troupe K, Lee JK, Alvarez-Manilla G, Pierce M. N-acetylglucosaminyltranferase VB expression enhances beta1 integrin- dependent PC12 neurite outgrowth on laminin and collagen. J Neurochem 2006; 97:947-56. [PMID: 16606368 DOI: 10.1111/j.1471-4159.2006.03785.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
N-acetylglucosaminyltransferase VB (GnT-VB, -IX) is a newly discovered glycosyltransferase expressed exclusively in high levels in neuronal tissue during early development. Its homolog, GnT-V, is expressed in many tissues and modulates cell-cell and cell-matrix adhesion. The ability of GnT-VB to regulate cell-matrix interactions was initially investigated using the rat pheochromocytoma PC12 neurite outgrowth model. PC12 cells stably transfected with GnT-VB consistently showed an enhanced rate of nerve growth factor (NGF)-induced neurite outgrowth on collagen and laminin substrates. Levels of TrkA receptor phosphorylation and downstream ERK activation induced by NGF were not influenced by GnT-VB expression. No significant difference was observed in the rate of neurite outgrowth when cells were cultured on non-coated culture dishes, indicating that integrin-ECM interaction is required for the stimulatory effects. Neurite outgrowth induced by manganese-dependent activation of beta1 integrin on collagen and laminin substrates, however, showed a significant increase in neurite length for the PC12/GnT-VB cells, compared with control cells, suggesting that the enhancement is most likely mediated by alteration of beta1 integrin-ECM interaction by GnT-VB. These results demonstrate that GnT-VB expression can modulate the rate of neurite outgrowth by affecting beta1 integrin-ECM interaction.
Collapse
Affiliation(s)
- Intaek Lee
- The Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, the University of Georgia, Athens, Georgia 30602-4712, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Litynska A, Przybylo M, Pochec E, Kremser E, Hoja-Lukowicz D, Sulowska U. Does glycosylation of melanoma cells influence their interactions with fibronectin? Biochimie 2006; 88:527-34. [PMID: 16380202 DOI: 10.1016/j.biochi.2005.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 10/26/2005] [Accepted: 10/28/2005] [Indexed: 01/07/2023]
Abstract
Cell surface integrins, especially those binding to fibronectin (FN), participate in processes of tumor cell invasion and metastasis. Changes in glycosylation of cell surface adhesion proteins are often associated with malignant transformation of cells. In this study we examined the influence of swainsonine (SW) on adhesion, wound healing and haptotactic migration on FN, comparing the responses of different human melanoma cell lines: primary WM35 and metastatic WM9, WM239 and A375. We also examined the role of alpha subunits in adhesion to FN. All of the antibodies inhibited adhesion to FN but with different efficiencies depending on the cell line. Adhesion was mediated mainly by integrin alpha(5)beta(1) (WM9, A375), alpha(3)beta(1) (WM35, A375, WM239). Scratch wound repair was significantly faster on FN-coated wells than on plastic for all cells except for WM9. A375 and WM9 had the greatest migration ability, both expressing the highest level of alpha(5)beta(1) integrin. It seems very likely that adhesion to FN can be accomplished by many different integrins, but for effective migration alpha(5)beta(1) integrin is responsible. Only A375 and WM239 cell lines reacted to SW treatment. In the presence of SW WM239 and A375 cells had 70% and 40% increased adhesion to FN, and their migration was decreased 40% and 50%, respectively. Interestingly, although most of the cell lines share a common profile of integrins, each line interacted with FN differently. They differed mainly in the repertoire of integrins used for adhesion, and in the manner in which glycosylation affected these processes. The influence of SW was observed in two metastatic cell lines indicating the contribution of glycosylation status to the progression of melanoma. The lack of reaction to SW in WM9 cells may suggest that there is a threshold in the expression level of the highly branched N-glycans that may influence the adhesion and migration properties of the cell.
Collapse
Affiliation(s)
- A Litynska
- Department of Animal Physiology, Institute of Zoology, 6 Ingardena Street, 30-060 Kraków, Poland
| | | | | | | | | | | |
Collapse
|
71
|
Yasuda J, Eguchi H, Fujiwara N, Ookawara T, Kojima S, Yamaguchi Y, Nishimura M, Fujimoto J, Suzuki K. Reactive oxygen species modify oligosaccharides of glycoproteins in vivo: a study of a spontaneous acute hepatitis model rat (LEC rat). Biochem Biophys Res Commun 2006; 342:127-34. [PMID: 16480686 DOI: 10.1016/j.bbrc.2006.01.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 01/25/2006] [Indexed: 11/16/2022]
Abstract
The Long-Evans Cinnamon (LEC) rat, an animal model of Wilson's disease, spontaneously develops hepatitis as the result of abnormal copper accumulation in liver. The findings of this study show that copper, hydrogen peroxide, and lipid peroxides accumulate to drastically high levels in LEC rat serum in acute hepatitis but not chronic hepatitis. The effect of these reactive oxygen species (ROS) on oligosaccharides of glycoproteins in the LEC rat serum was examined. Lectin blot and lectin ELISA analyses showed that sialic acid and galactose residues of serum glycoproteins including transferrin were decreased in acute hepatitis. Further analyses of oligosaccharide structures of transferrin demonstrated that di-sialylated and asialo-agalacto biantennary sugar chains, but not tri-sialylated sugar chain, exist on transferrin in the acute hepatitis rats. In addition, treatment of non-hepatitis rat serum with copper ions and hydrogen peroxide decreased tri-sialylated sugar chain of the normal transferrin and increased di-sialylated and asialo-agalacto biantennary sugar chains. This is the first evidence to show that ROS result in the cleavage of oligosaccharides of glycoproteins in vivo, and indicate this cleavage of oligosaccharides may contribute the development of acute hepatitis.
Collapse
Affiliation(s)
- Jun Yasuda
- Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Siddiqui SF, Pawelek J, Handerson T, Lin CY, Dickson RB, Rimm DL, Camp RL. Coexpression of beta1,6-N-acetylglucosaminyltransferase V glycoprotein substrates defines aggressive breast cancers with poor outcome. Cancer Epidemiol Biomarkers Prev 2006; 14:2517-23. [PMID: 16284372 DOI: 10.1158/1055-9965.epi-05-0464] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Beta1,6-n-acetylglucosaminyltransferase-V (GnT-V) catalyzes the addition of complex oligosaccharide side chains to glycoproteins, regulating the expression and function of several proteins involved in tumor metastasis. We analyzed the expression of five cell-surface glycoprotein substrates of GnT-V, matriptase, beta1-integrin, epidermal growth factor receptor, lamp-1, and N-cadherin, on a tissue microarray cohort of 670 breast carcinomas with 30-year follow-up. Phaseolus vulgaris leukocytic phytohemagglutinin (LPHA), a lectin specific for beta1,6-branched oligosaccharides, was used to assay GnT-V activity. Our results show a high degree of correlation of the LPHA staining with matriptase, lamp-1, and N-cadherin expressions, but not with epidermal growth factor receptor or beta1-integrin expressions. In addition, many of the GnT-V substrate proteins exhibited strong coassociations. Elevated levels of GnT-V substrates were correlated with various markers of tumor progression, including positive node status, large tumor size, estrogen receptor negativity, HER2/neu overexpression, and high nuclear grade. Furthermore, LPHA and matriptase showed significant association with disease-related survival. Unsupervised hierarchical clustering of the GnT-V substrate protein expression and LPHA revealed two distinct clusters: one with higher expression of all markers and poor patient outcome and one with lower expression and good outcome. These clusters showed independent prognostic value for disease-related survival when compared with traditional markers of tumor progression. Our results indicate that GnT-V substrate proteins represent a unique subset of coexpressed tumor markers associated with aggressive disease.
Collapse
Affiliation(s)
- Summar F Siddiqui
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520-8023, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Wang X, Gu J, Ihara H, Miyoshi E, Honke K, Taniguchi N. Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem 2005; 281:2572-7. [PMID: 16316986 DOI: 10.1074/jbc.m510893200] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha1,6-Fucosyltransferase (Fut8) catalyzes the transfer of a fucose residue to N-linked oligosaccharides on glycoproteins via an alpha1,6-linkage to form core fucosylation in mammals. We recently found that disruption of the Fut8 gene induces severe growth retardation and early postnatal death. To investigate the molecular mechanism involved, we have established embryonic fibroblasts of Fut8+/+ and Fut8-/-, derived from wild-type and Fut8-null mice, respectively. Interestingly, the epidermal growth factor (EGF)-induced phosphorylation levels of the EGF receptor (EGFR) were substantially blocked in Fut8-/- cells, compared with Fut8+/+ cells, while there are no significant changes in the total activities of tyrosine phosphatase for phosphorylated EGFR between two cells. The inhibition of EGFR phosphorylation was completely restored by re-introduction of the Fut8 gene to Fut8-/- cells. Consistent with this, EGFR-mediated JNK or ERK activation was significantly suppressed in Fut8-/- cells. Finally, we found that the core fucosylation of N-glycans is required for the binding of the EGF to its receptor, whereas no effect was observed for the expression levels of EGFR on the cell surface. Collectively, these results strongly suggest that core fucosylation is essential for EGF receptor-mediated biological functions.
Collapse
Affiliation(s)
- Xiangchun Wang
- Department of Biochemistry, Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
74
|
Yanagisawa M, Taga T, Nakamura K, Ariga T, Yu RK. Characterization of glycoconjugate antigens in mouse embryonic neural precursor cells. J Neurochem 2005; 95:1311-20. [PMID: 16219035 DOI: 10.1111/j.1471-4159.2005.03452.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuronal and glial cells organizing the central nervous system (CNS) are generated from common neural precursor cells (NPCs) during neural development. However, the expression of cell-surface glycoconjugates that are crucial for determining the properties and biological function of these cells at different stages of development has not been clearly defined. In this study, we investigated the expression of several stage-specific glycoconjugate antigens, including several b-series gangliosides GD3, 9-O-acetyl GD3, GT1b and GQ1b, stage-specific embryonic antigen-1 (SSEA-1) and HNK-1, in mouse embryonic NPCs employing immunocytochemistry and flow cytometry. In addition, several of these antigens were positively identified by chemical means for the first time. We further showed that the SSEA-1 immunoreactivity was contributed by both glycoprotein and glycolipid antigens, and that of HNK-1 was contributed only by glycoproteins. Functionally, SSEA-1 may participate in migration of the cells from neurospheres in an NPC cell culture system, and the effect could be repressed by anti-SSEA-1 antibody. Based on this observation, we identified beta1 integrin as one of the SSEA-1 carrier glycoproteins. Our data thus provide insights into the functional role of certain glycoconjugate antigens in NPCs during neural development.
Collapse
Affiliation(s)
- Makoto Yanagisawa
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
75
|
Kobata A, Amano J. Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol 2005; 83:429-39. [PMID: 16033539 DOI: 10.1111/j.1440-1711.2005.01351.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most secretory and membrane-bound proteins produced by mammalian cells contain covalently linked sugar chains. Alterations of the sugar chain structures of glycoproteins have been found to occur in various tumours. Because the sugar chains of glycoproteins are essential for the maintenance of the ordered social behaviour of differentiated cells in multicellular organisms, alterations to the sugar chains are the molecular basis of abnormal social behaviours in tumour cells, such as invasion into the surrounding tissues and metastasis. In this review, the structure and enzymatic basis of typical alterations of the N-linked sugar chains, which are found in various tumours, are introduced. These data are useful for devising diagnostic methods and immunotherapies for the clinical treatment of tumours. Three beta-N-acetylglucosaminyltransferases, GnT-III, -IV and -V, play roles in the structural alteration of the complex-type sugar chains in various tumours. In addition, transcriptional changes in various glycosyltransferases, together with the transporters of sugar nucleotides and sulfate, which are responsible for the formation of the outer chain moieties of complex-type sugar chains, are the keys to inducing the alterations.
Collapse
|
76
|
Mitsuzuka K, Handa K, Satoh M, Arai Y, Hakomori S. A specific microdomain ("glycosynapse 3") controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J Biol Chem 2005; 280:35545-53. [PMID: 16103120 DOI: 10.1074/jbc.m505630200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cell motility is highly dependent on the organization and function of microdomains composed of integrin, proteolipid/tetraspanin CD9, and ganglioside (Ono, M., Handa, K., Sonnino, S., Withers, D. A., Nagai, H., and Hakomori, S. (2001) Biochemistry 40, 6414-6421; Kawakami, Y., Kawakami, K., Steelant, W. F. A., Ono, M., Baek, R. C., Handa, K., Withers, D. A., and Hakomori, S. (2002) J. Biol. Chem. 277, 34349-34358), later termed "glycosynapse 3" (Hakomori, S., and Handa, K. (2002) FEBS Lett. 531, 88-92, 2002). Human bladder cancer cell lines KK47 (noninvasive and nonmetastatic) and YTS1 (highly invasive and metastatic), both derived from transitional bladder epithelia, are very similar in terms of integrin composition and levels of tetraspanin CD9. Tetraspanin CD82 is absent in both. The major difference is in the level of ganglioside GM3, which is several times higher in KK47 than in YTS1. We now report that the GM3 level reflects glycosynapse function as follows: (i) a stronger interaction of integrin alpha3 with CD9 in KK47 than in YTS1; (ii) conversion of benign, low motility KK47 to invasive, high motility cells by depletion of GM3 by P4 (D-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol) treatment or by knockdown of CD9 by the RNA interference method; (iii) reversion of high motility YTS1 to low motility phenotype like that of KK47 by exogenous GM3 addition, whereby the alpha3-to-CD9 interaction was enhanced; (iv) low GM3 level activated c-Src in YTS1 or in P4-treated KK47, and high GM3 level by exogenous addition caused Csk translocation into glycosynapse, with subsequent inhibition of c-Src activation; (v) inhibition of c-Src by "PP2" in YTS1 greatly reduced cell motility. Thus, GM3 in glycosynapse 3 plays a dual role in defining glycosynapse 3 function. One is by modulating the interaction of alpha3 with CD9; the other is by activating or inhibiting the c-Src activity, possibly through Csk translocation. High GM3 level decreases tumor cell motility/invasiveness, whereas low GM3 level enhances tumor cell motility/invasiveness. Oncogenic transformation and its reversion can be explained through the difference in glycosynapse organization.
Collapse
Affiliation(s)
- Koji Mitsuzuka
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | | | | | | | | |
Collapse
|
77
|
Sato T, Takahashi M, Kawado T, Takayama E, Furukawa K. Effect of staurosporine on N-glycosylation and cell adhesion to fibronectin of SW480 human colorectal adenocarcinoma cells. Eur J Pharm Sci 2005; 25:221-7. [PMID: 15911217 DOI: 10.1016/j.ejps.2005.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 01/11/2005] [Accepted: 02/18/2005] [Indexed: 01/03/2023]
Abstract
As N-glycosylation of tumor cell surface proteins affects metastasis of the cells, it was considered that the suppression of metastasis by staurosporine, a protein kinase C inhibitor, is partly caused by changes in N-glycosylation. To examine this possibility, we studied the glycosylation of membrane proteins of SW480 human colorectal adenocarcinoma cells before and after treatment with staurosporine by lectin blot analysis. The results showed that the reactivity of leuko-agglutinating phytohemagglutinin and Datura stramonium agglutinin, both of which bind to highly branched N-linked oligosaccharides characteristic of cancer cells, decreases significantly in the staurosporine-treated cells. In accordance with this, the gene expression of the N-acetylglucosaminyltransferase V, which synthesizes the GlcNAcbeta1-->6 branch of highly branched N-linked oligosaccharides decreased by 30-40% in the drug-treated cells. Since a decrease in the lectin binding was found in several glycoproteins including fibronectin (FN)-receptor, effect of the changes in N-glycosylation of the cells on cell adhesion to FN-matrix was examined. The results showed that the number of cells attached to FN-matrix increases upon treatment of the cells with staurosporine, indicating that the change of N-glycosylation of the FN-receptor promotes cell adhesion to the extracellular matrix, which may lead to the suppression of metastasis of cancer cells.
Collapse
Affiliation(s)
- Takeshi Sato
- Department of Biosignal Research, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | | | | | | | | |
Collapse
|
78
|
Toledo MS, Suzuki E, Handa K, Hakomori S. Effect of ganglioside and tetraspanins in microdomains on interaction of integrins with fibroblast growth factor receptor. J Biol Chem 2005; 280:16227-34. [PMID: 15710618 DOI: 10.1074/jbc.m413713200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional interaction ("cross-talk") of integrins with growth factor receptors has become increasingly clear as a basic mechanism in cell biology, defining cell growth, adhesion, and motility. However, no studies have addressed the microdomains in which such interaction takes place nor the effect of gangliosides and tetraspanins (TSPs) on such interaction. Growth of human embryonal WI38 fibroblasts is highly dependent on fibroblast growth factor (FGF) and its receptor (FGFR), stably associated with ganglioside GM3 and TSPs CD9 and CD81 in the ganglioside-enriched microdomain. Adhesion and motility of these cells are mediated by laminin-5 ((LN5) and fibronectin (FN) through alpha3beta1 and alpha5beta1 integrin receptors, respectively. When WI38 cells or its transformant VA13 cells were adhered to LN5 or FN, alpha3beta1 or alpha5beta1 were stimulated, giving rise to signaling to activate FGFR through tyrosine phosphorylation and inducing cell proliferation under serum-free conditions without FGF addition. Types and intensity of signaling during the time course differed significantly depending on the type of integrin stimulated (alpha3beta1 versus alpha5beta1), and on cell type (WI38 versus VA13). Such effect of cross-talk between integrins and FGFR was influenced strongly by the change of GM3 and TSPs. (i) GM3 depletion by P4 caused enhanced tyrosine phosphorylation of FGFR and Akt followed by MAPK activation, without significant change of ceramide level. GM3 depletion also caused enhanced co-immunoprecipitation of FGFR with alpha3/alpha5/beta1 and of these integrins with CD9/CD81. (ii) LN5- or FN-dependent proliferation of both WI38 and VA13 was strongly enhanced by GM3 depletion and by CD9/CD81 knockdown by siRNA. Thus, integrin-FGFR cross-talk is strongly influenced by GM3 and/or TSPs within the ganglioside-enriched microdomain.
Collapse
Affiliation(s)
- Marcos S Toledo
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | | | | | | |
Collapse
|
79
|
Przybyło M, Lityńska A, Pocheć E. Different adhesion and migration properties of human HCV29 non-malignant urothelial and T24 bladder cancer cells: role of glycosylation. Biochimie 2005; 87:133-42. [PMID: 15760705 DOI: 10.1016/j.biochi.2004.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 12/14/2004] [Indexed: 11/22/2022]
Abstract
In tumour cells, alterations in cellular glycosylation may play a key role in their metastatic behaviour. This study used cell lines having very different behaviour in vivo: HCV29 non-malignant transitional epithelium and T24 bladder transitional cell carcinoma. These differences in behaviour might be due in part to differences in cellular glycosylation patterns. Glycan chain analysis of their glycoproteins was performed with the use of specific lectins. The functional role of carbohydrates was studied by treating these cells with swainsonine, an inhibitor of Golgi alpha-mannosidase II, and in vitro adhesion and migration assays. The adhesion of swainsonine-treated HCV29 and T24 cells was increased on fibronectin and type IV collagen by 1.5- and 2-fold, respectively, whereas adhesion on laminin was virtually unchanged after swainsonine-treatment in HCV29 cells and was increased in T24 cells. Swainsonine treatment reduced the rate of T24 cell migration by 20%. We concluded that beta1-6 branched tri- and tetraantennary complex-type glycans have an important function in adhesion and migration in the studied cell lines. These data support the view that oligosaccharides are involved in several steps of the metastatic process.
Collapse
Affiliation(s)
- M Przybyło
- Department of Animal Physiology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland.
| | | | | |
Collapse
|
80
|
Kim EYL, Gronewold C, Chatterjee A, von der Lieth CW, Kliem C, Schmauser B, Wiessler M, Frei E. Oligosaccharide Mimics Containing Galactose and Fucose Specifically Label Tumour Cell Surfaces and Inhibit Cell Adhesion to Fibronectin. Chembiochem 2005; 6:422-31. [PMID: 15651048 DOI: 10.1002/cbic.200400092] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
With the aim of establishing a versatile and easy synthesis of branched saccharides for biological applications, we used molecular-dynamics simulations to model Lewis(y) to two classes of di- or triantennary saccharide mimetics. One set of mimetics was based on 1,3,5-tris(hydroxymethyl)cyclohexane (TMC) as the core, the other on furan, and both were derivatised with galactose and/or fucose. The TMC-based saccharides were biotinylated, while the furan disaccharides were treated with maleimide-activated biotin in a Diels-Alder fashion to yield oxazatricyclodecanes (OTDs). These were then assayed as cell-surface labels in human colon (SW480 and CaCo-2), liver (PLC), Glia (U333 CG 343) and ovary (SKOV-3) tumour cell lines. Discrete staining patterns were observed in all cells, usually at one or two poles of the cells, particularly with the asymmetric 3-beta-L-fucopyranosyloxymethyl-4-beta-D-galactopyranosyloxymethyl-OTD. Normal SV40-transformed fibroblasts (SV80) showed no staining. Adhesion of the highly metastatic mouse melanoma line B16 F10 to fibronectin was inhibited by 80 % by the TMC-digalactoside and by 30 % by 3,4-bis-(beta-D-galactopyranosyloxymethyl)furan. None of the saccharide mimetics inhibited the adhesion of the less metastatic B16 F1 line. Migration of B16 F10 cells through Matrigel was greatly inhibited by the TMC-digalactoside and weakly inhibited by the TMC-trigalactoside. The saccharide mimetics that had shown the best structural agreements with the terminal saccharides of Lewis(y) in the molecular dynamics simulation were also the most biologically potent compounds; this underlines the predictive nature of molecular dynamics simulations. The use of the non-saccharide cores enabled us to adapt spacer lengths and terminal saccharides to optimise the structures to bind more avidly to cell-surface lectins.
Collapse
Affiliation(s)
- Evelyn Y-L Kim
- Molecular Toxicology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Ethier M, Krokhin O, Ens W, Standing KG, Wilkins JA, Perreault H. Global and site-specific detection of human integrin alpha 5 beta 1 glycosylation using tandem mass spectrometry and the StrOligo algorithm. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:721-727. [PMID: 15702487 DOI: 10.1002/rcm.1844] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glycans are oligosaccharides associated with proteins, and are known to confer specific functions and conformations on glycoproteins. As protein tridimensional structures are related to function, the study of glycans and their impact on protein folding can provide important information to the field of proteomics. The subdiscipline of glycomics (or glycoproteomics) is rapidly growing in importance as glycans in proteins have shown to be involved in protein-protein or protein-(drug, virus, antibody) interactions. Glycomics studies most often aim at identifying glycosylation sites, and thus are performed on deglycosylated proteins resulting in loss of site-specific details concerning the glycosylation. In order to obtain such details by mass spectrometry (MS), either whole glycoproteins must be digested and analyzed as mixtures of peptides and glycopeptides, or glycans must be isolated from glycopeptide fractions and analyzed as pools. This article describes parallel experiments involving both approaches, designed to take advantage of the StrOligo algorithm functionalities with the aim of characterizing glycosylation microheterogeneity on a specific site. A hybrid quadrupole-quadrupole-time-of-flight (QqTOF) instrument equipped with a matrix-assisted laser desorption/ionization (MALDI) source was used. Glycosylation of alpha 5 beta 1 subunits of human integrin was studied to test the methodology. The sample was divided in two aliquots, and glycans from the first aliquot were released enzymatically, labelled with 2-aminobenzamide, and identified using tandem mass spectrometry (MS/MS) and the StrOligo program. The other aliquot was digested with trypsin and the resulting peptides separated by reversed-phase high-performance liquid chromatography (HPLC). A specific collected fraction was then analyzed by MS before and after glycan release. These spectra allowed, by comparison, detection of a glycopeptide (several glycoforms) and elucidation of peptide sequence. Compositions of glycans present were proposed, and identification of possible glycan structures was conducted using MS/MS and StrOligo.
Collapse
Affiliation(s)
- Martin Ethier
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
82
|
Lee I, Skinner MA, Guo HB, Sujan A, Pierce M. Expression of the Vacuolar H+-ATPase 16-kDa Subunit Results in the Triton X-100-insoluble Aggregation of β1 Integrin and Reduction of Its Cell Surface Expression. J Biol Chem 2004; 279:53007-14. [PMID: 15466867 DOI: 10.1074/jbc.m405717200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar H(+)-ATPase functions as a vacuolar proton pump and is responsible for acidification of intracellular compartments such as the endoplasmic reticulum, Golgi, lysosomes, and endosomes. Previous reports have demonstrated that a 16-kDa subunit (16K) of vacuolar H(+)-ATPase via one of its transmembrane domains, TMD4, strongly associates with beta(1) integrin, affecting beta(1) integrin N-linked glycosylation and inhibiting its function as a matrix adhesion receptor. Because of this dramatic inhibition of beta(1) integrin-mediated HEK-293 cell motility by 16K expression, we investigated the mechanism by which 16 kDa was having this effect. Using HT1080 cells whose alpha(5)beta(1) integrin-mediated adhesion to fibronectin has been extensively studied, the expression of 16 kDa also resulted in reduced cell spreading on fibronectin-coated substrates. A pulse-chase study of beta(1) integrin biosynthesis indicated that 16K expression down-regulated the level of the 110-kDa biosynthetic form of beta(1) integrin (premature form) and, consequently, the level of the 130-kDa form of beta(1) integrin (mature form). Further experiments showed that the normal levels of association between the premature beta(1) integrin form and calnexin were significantly decreased by the expression of either 16 kDa or TMD4. Expression of 16 kDa also resulted in a Triton X-100-insoluble aggregation of an unusual 87-kDa form of beta(1) integrin. Interestingly, both Western blotting and a pulse-chase experiment showed co-immunoprecipitation of calnexin and 16K. These results indicate that 16K expression inhibits beta(1) integrin surface expression and spreading on matrix by a novel mechanism that results in reduced levels of functional beta(1) integrin.
Collapse
Affiliation(s)
- Intaek Lee
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30605, USA
| | | | | | | | | |
Collapse
|
83
|
Clément M, Rocher J, Loirand G, Le Pendu J. Expression of sialyl-Tn epitopes on beta1 integrin alters epithelial cell phenotype, proliferation and haptotaxis. J Cell Sci 2004; 117:5059-69. [PMID: 15383613 DOI: 10.1242/jcs.01350] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sialyl-Tn (STn) is a tumor-associated carbohydrate antigen overexpressed in various carcinomas. To obtain its expression, murine carcinoma cells were transfected with the cDNA encoding ST6GalNAc I, a glycosyltransferase that acts exclusively on O-glycans. Overexpression of this enzyme led to the expected expression of cell surface STn epitopes. Surprisingly, the transfectants (STn+ cells) presented dramatic morphological changes and altered behavior. These STn+ cells lost the epithelial appearance of parental cells, became larger, more elongated and presented disorganized actin stress fibers. Additionally, their proliferation was impaired and their ability to migrate on fibronectin and hyaluronic acid was severely reduced. By contrast their adhesion on fibronectin remained unchanged. The major glycoprotein carrying the STn epitope was shown to be the integrin beta1 subunit. Anti-STn antibodies could restore migration of STn+ cells on fibronectin. A constitutively active permeant form of RhoA (TAT-RhoA(Val-14)) also restored motility on fibronectin of STn+ cells as well as a parental STn-cellular phenotype. These observations indicate that overexpression of ST6GalNAc I leads to a major change of the O-glycosylation of the integrin beta1 chain which in turn impairs the integrin-mediated signalling and leads to major alterations in morphology and cell behavior.
Collapse
Affiliation(s)
- Monique Clément
- INSERM U601, Institut de Biologie, 9 quai Moncousu, 44093 Nantes CEDEX, France.
| | | | | | | |
Collapse
|
84
|
Hakomori S. Carbohydrate-to-carbohydrate interaction in basic cell biology: a brief overview. Arch Biochem Biophys 2004; 426:173-81. [PMID: 15158668 DOI: 10.1016/j.abb.2004.02.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/23/2004] [Indexed: 11/19/2022]
|
85
|
Bellis SL. Variant glycosylation: an underappreciated regulatory mechanism for β1 integrins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1663:52-60. [PMID: 15157607 DOI: 10.1016/j.bbamem.2004.03.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 03/24/2004] [Accepted: 03/31/2004] [Indexed: 01/07/2023]
Abstract
Although it has been known for many years that beta1 integrins undergo differential glycosylation in accordance with changes in cell phenotype, the potential role of N-glycosylation as a modulator of integrin function has received little attention. One reason for the relatively limited interest in this topic likely relates to the fact that much of the prior research was correlative in nature. However, new results now bolster the hypothesis that there is a causal relationship between variant glycosylation and altered integrin activity. In this review, the evidence for variant glycosylation as a regulatory mechanism for beta1 integrins are summarized, with particular emphasis on: (1). outlining the instances in which cell phenotypic variation is associated with differential beta1 glycosylation, (2). describing the specific alterations in glycan structure that accompany phenotypic changes and (3). presenting potential mechanisms by which variant glycosylation might regulate integrin function.
Collapse
Affiliation(s)
- Susan L Bellis
- Department of Physiology and Biophysics, University of Alabama at Birmingham, MCLM 982A, 1918 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
86
|
Isaji T, Gu J, Nishiuchi R, Zhao Y, Takahashi M, Miyoshi E, Honke K, Sekiguchi K, Taniguchi N. Introduction of Bisecting GlcNAc into Integrin α5β1 Reduces Ligand Binding and Down-regulates Cell Adhesion and Cell Migration. J Biol Chem 2004; 279:19747-54. [PMID: 14998999 DOI: 10.1074/jbc.m311627200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme beta1,4-N-acetylglucosaminyltransferase III (GnT-III) catalyzes the addition of a bisecting GlcNAc residue to glycoproteins, resulting in a modulation in biological function. Our previous studies showed that the transfection of the GnT-III gene into B16 melanoma cells results in a suppression of invasive ability and lung colonization. The suppression has been postulated to be due to an increased level of E-cadherin expression on the cell surface, which in turn leads to the up-regulation of cell-cell adhesion. In this study, we report on the effects of overexpression of GnT-III on cell-matrix adhesion. The overexpression of GnT-III, but not that of an enzymatic inactive GnT-III (D323A), inhibits cell spreading and migration on fibronectin, a specific ligand for integrin alpha(5)beta(1), and the focal adhesion kinase phosphorylation. E(4)-PHA lectin blot analyses showed that the levels of bisecting GlcNAc structures on the integrin alpha(5) subunit as well as alpha(2) and alpha(3) subunits immunoprecipitated from GnT-III transfectants were substantially increased. In addition, the affinity of the binding of integrin alpha(5)beta(1) to fibronectin was significantly reduced by the introduction of the bisecting GlcNAc, to the alpha(5) subunit. These findings suggest that the modification of N-glycan of integrin by GnT-III inhibits its ligand binding ability, subsequently leading to the down-regulation of integrin-mediated signaling.
Collapse
Affiliation(s)
- Tomoya Isaji
- Department of Biochemistry, Osaka University Graduate School of Medicine, B1, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Dawson G, Moskal JR, Dawson SA. Transfection of 2,6 and 2,3‐sialyltransferase genes and GlcNAc‐transferase genes into human glioma cell line U‐373 MG affects glycoconjugate expression and enhances cell death. J Neurochem 2004; 89:1436-44. [PMID: 15189346 DOI: 10.1111/j.1471-4159.2004.02435.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human glioma cell line U-373 MG expresses CMP-NeuAc : Galbeta1,3GlcNAc alpha2,3-sialyltransferase [EC No. 2.4.99.6] (alpha2,3ST), UDP-GlcNAc : beta-d-mannoside beta1,6-N-acetylglucosaminyltransferase V [EC 2.4.1.155] (GnT-V) and UDP-GlcNAc3: beta-d-mannoside beta1,4-N-acetylglucosaminyltransferase III [EC 2.4.1.144] (GnT-III) but not CMP-NeuAc : Galbeta1,4GlcNAc alpha2,6-sialyltransferase [EC 2.4.99.1] (alpha2,6ST) under normal culture conditions. We have previously shown that transfection of the alpha2,6ST gene into U-373 cells replaced alpha2,3-linked sialic acids with alpha2,6 sialic acids, resulting in a marked inhibition of glioma cell invasivity and a significant reduction in adhesivity. We now show that U-373 cells, which are typically highly resistant to cell death induced by chemotherapeutic agents (< 10% death in 18 h), become more sensitive to apoptosis following overexpression of these four glycoprotein glycosyltransferases. U-373 cell viability showed a three-fold decrease (from 20 to 60% cell death) following treatment with staurosporine, C2-ceramide or etoposide, when either alpha2,6ST and GnT-V genes were stably overexpressed. Even glycosyltransferases typically raised in cancer cells, such as alpha2,3ST and GnT-III, were able to decrease viability two-fold (from 20 to 40% cell death) following stable overexpression. The increased susceptibility of glycosyltransferase-transfected U-373 cells to pro-apoptotic drugs was associated with increased ceramide levels in Rafts, increased caspase-3 activity and increased DNA fragmentation. In contrast, the same glycosyltransferase overexpression protected U-373 cells against a different class of apoptotic drugs, namely the phosphatidylinositol 3-kinase inhibitor LY294002. Thus altered surface protein glycosylation of a human glioblastoma cell line can lead to lowered resistance to chemotherapeutic agents.
Collapse
Affiliation(s)
- G Dawson
- Department of Pediatrics MC 4068, University of Chicago School of Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
88
|
Mytar B, Wołoszyn M, Szatanek R, Baj-Krzyworzeka M, Siedlar M, Ruggiero I, Wieckiewicz J, Zembala M. Tumor cell-induced deactivation of human monocytes. J Leukoc Biol 2003; 74:1094-101. [PMID: 12960282 DOI: 10.1189/jlb.0403140] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although blood monocytes exhibit significant cytotoxic activity against tumor cells, the function of tumor infiltrating macrophages (TIM) is depressed in cancer patients. This study addresses the question of how the antitumor response of human monocytes, assessed by production of cytokines (tumor necrosis factor alpha, TNF; IL-10; IL-12p40) and cytotoxicity, is altered by exposure to cancer cells. Tumor cell--pre-exposed monocytes restimulated with tumor cells showed significantly decreased production of TNF, IL-12, increased IL-10 (mRNA and release) and inhibition of IL-1 receptor-associated kinase-1 (IRAK-1) expression. This down-regulation of cytokine production was selective, as the response of pre-exposed monocytes to lipopolysaccharide (LPS) was unaffected. Treatment of tumor cell--pre-exposed monocytes with hyaluronidase (HAase) improved their depressed production of TNF, while HAase-treated cancer cells did not cause monocyte dysfunction. The response of hyaluronan (HA)--pre-exposed monocytes to stimulation with tumor cells was also inhibited. Cytotoxic activity of monocytes pretreated with cancer cells was also decreased. This study shows that tumor cells selectively deactivate monocytes and suggests that tumor cell-derived HA by blocking CD44 on monocytes inhibits their antitumor response. These observations may provide some explanation for the depressed function of TIM in human malignancy.
Collapse
Affiliation(s)
- Bozenna Mytar
- Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Cracow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Pocheć E, Lityńska A, Amoresano A, Casbarra A. Glycosylation profile of integrin α3β1 changes with melanoma progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2003; 1643:113-23. [PMID: 14654234 DOI: 10.1016/j.bbamcr.2003.10.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycosylation of integrins has been implicated in the modulation of their function. Characterisation of carbohydrate moieties of alpha(3) and beta(1) subunits from non-metastatic (WM35) and metastatic (A375) human melanoma cell lines was carried out on peptide-N-glycosidase F-released glycans using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). beta(1) integrin subunit from both cell lines displayed tri- and tetraantennary oligosaccharides complex type glycans, but only in A375 cell line was the sialylated tetraantennary complex type glycan (Hex(7)HexNAc(6)FucSia(4)) present. In contrast, only alpha(3) subunit from metastatic cells possessed beta1-6 branched structures. Our data indicate that the beta(1) and alpha(3) subunits expressed by the metastatic A375 cell line carry beta1-6 branched structures, suggesting that these cancer-associated glycan chains may modulate tumor cell adhesion by affecting the ligand binding properties of alpha(3)beta(1) integrin. In direct ligand binding assays, alpha(3)beta(1) integrin from both cell lines binds strongly to fibronectin and to much lesser degree to placental laminin. No binding to collagen IV was observed. Enzymatic removal of sialic acid residues from purified alpha(3)beta(1) integrin stimulates its adhesion to all examined ECM proteins. Our data suggest that the glycosylation profile of alpha(3)beta(1) integrin in human melanoma cells correlates with the acquisition of invasive capacity during melanoma progression.
Collapse
Affiliation(s)
- Ewa Pocheć
- Institute of Zoology, Jagiellonian University, R. Ingardena 6, 30-060 Cracow, Poland
| | | | | | | |
Collapse
|
90
|
Seales EC, Jurado GA, Singhal A, Bellis SL. Ras oncogene directs expression of a differentially sialylated, functionally altered β1 integrin. Oncogene 2003; 22:7137-45. [PMID: 14562042 DOI: 10.1038/sj.onc.1206834] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intense investigation has centered on understanding the regulation of integrin cell adhesion receptors. In the present study, we propose that variant N-glycosylation represents an important mechanism for regulation of beta1, but not beta3 or beta5 integrins. We find that expression of oncogenic ras in HD3 colonocytes causes increased alpha2-6 sialylation of beta1 integrins, whereas expression of dominant-negative ras induces decreased alpha2-6 sialylation, relative to cells with wild-type ras. In contrast, neither beta3 nor beta5 integrins are alpha2-6 sialylated, regardless of the state of ras activation. Results from RT-PCR analyses suggest that differential integrin sialylation is due to a ras-dependent alteration in the expression of ST6Gal I, the enzyme that adds alpha2-6-linked sialic acids. Cells that express differentially sialylated beta1 integrins exhibit altered adhesion to collagen I (a beta1 ligand), but not to vitronectin (a beta3 or beta5 ligand). Similarly, the enzymatic removal of cell surface sialic acids from control cells alters binding to collagen, but not to vitronectin. Finally, using a cell-free receptor/ligand-binding assay, we show that purified, desialylated alpha1beta1 integrins have diminished collagen-binding capability, providing strong evidence that sialic acids play a causal role in regulating beta1 integrin function.
Collapse
Affiliation(s)
- Eric Clinton Seales
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
91
|
Guo P, Zhang Y, Zhao JH, Wang LY, Guo HB, Zhang XY, Chen HL. Regulation on the expression and N-glycosylation of integrins by N-acetylglucosaminyltransferase V. Biochem Biophys Res Commun 2003; 310:619-26. [PMID: 14521956 DOI: 10.1016/j.bbrc.2003.09.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The expressions of integrin alpha5, beta1, and alpha6 were studied in H7721 cells by means of flow cytometric and RT-PCR method after transfected with sense and antisense cDNA of N-acetylglucosaminyltransferase V (GnT-V). The transfected cells were characterized by Northern blot. It was found that the order of expression from high to low was beta1>alpha5>alpha6. Transfection of sense GnT-V up-regulated alpha5 and alpha6, but not beta1 subunit, while antisense GnT-V down-regulated alpha5 and beta1, but not alpha6. The alterations of surface integrin subunits were quite compatible with the changes of their mRNAs. Using enzyme-labeled lectin analysis, it was shown that alpha5 subunit contained only C(2)C(2) biantennary N-glycan, which was not regulated by sense and antisense GnT-V. In contrast, beta1 subunit contained both biantennary and tri-/tetra-antennary N-glycans with GlcNAcbeta1,6Manalpha1,6-branch, and the latter was up- and down-regulated by the sense and antisense GnT-V, respectively. Therefore, the amount of biantennary N-glycans on beta1 subunit, but not the integrin protein, was correlated to the cell adhesion to fibronectin and laminin, which was reduced and elevated in the sense and antisense GnT-V-transfected cells, respectively, as we previously reported.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
92
|
Kawakami Y, Kawakami K, Steelant WFA, Ono M, Baek RC, Handa K, Withers DA, Hakomori S. Tetraspanin CD9 is a "proteolipid," and its interaction with alpha 3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility. J Biol Chem 2002; 277:34349-58. [PMID: 12068006 DOI: 10.1074/jbc.m200771200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GM3 ganglioside inhibits tetraspanin CD9-facilitated cell motility in various cell lines (Ono, M., Handa, K., Sonnino, S., Withers, D. A., Nagai, H., and Hakomori, S. (2001) Biochemistry 40, 6414-6421). We now report the following: (i) CD9 has the novel feature of being soluble in chloroform/methanol, and classifiable as "proteolipid"; (ii) CD9 and alpha(3) integrin were concentrated together in the low-density glycolipid-enriched microdomain (GEM) of ldlD/CD9 cells, and the alpha(3) expression ratio (value for cells grown under +Gal condition divided by the value for cells grown under -Gal condition) in GEM of ldlD/CD9 cells was higher than that in control ldlD/moc cells, suggesting that CD9 recruits alpha(3) in GEM under +Gal condition, whereby GM3 is present. (iii) Chemical levels of alpha(3) and CD9 in the total extract or membrane fractions from cells grown under +Gal versus -Gal condition were nearly identical, whereas alpha(3) expressed at the cell surface, probed by antibody binding in flow cytometry, was higher under -Gal than +Gal condition. These results suggest that GM3 synthesized under +Gal condition promotes interaction of alpha(3) with CD9, which restricts alpha(3) binding to its antibody. A concept of the alpha(3)/CD9 interaction promoted by GM3 was further supported by (i) co-immunoprecipitation of CD9 and alpha(3) under +Gal but not -Gal condition, (ii) enhanced co-immunoprecipitation of CD9 and alpha(3) when GM3 was added exogenously to cells under -Gal condition, and (iii) the co-localization images of CD9 with alpha(3) and of GM3 with CD9 in fluorescence laser scanning confocal microscopy. Based on the promotion of alpha(3)/CD9 interaction by GM3 and the status of laminin-5 as a true ligand for alpha(3), the laminin-5/alpha(3)-dependent motility of ldlD/CD9 cells was found to be greatly enhanced under -Gal condition, but strongly inhibited under +Gal condition. Such a motility difference under +Gal versus -Gal condition was not observed for ldlD/moc cells. The inhibitory effect observed in ldlD/CD9 cells under +Gal condition was reversed upon addition of anti-alpha(3) antibody and is therefore based on interaction between alpha(3), CD9, and GM3 in GEM.
Collapse
Affiliation(s)
- Yasushi Kawakami
- Division of Biomembrane Research, Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122-4327, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Semel AC, Seales EC, Singhal A, Eklund EA, Colley KJ, Bellis SL. Hyposialylation of integrins stimulates the activity of myeloid fibronectin receptors. J Biol Chem 2002; 277:32830-6. [PMID: 12091385 DOI: 10.1074/jbc.m202493200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite numerous reports suggesting that beta(1) integrin receptors undergo differential glycosylation, the potential role of N-linked carbohydrates in modulating integrin function has been largely ignored. In the present study, we find that beta(1) integrins are differentially glycosylated during phorbol ester (PMA)-stimulated differentiation of myeloid cells along the monocyte/macrophage lineage. PMA treatment of two myeloid cell lines, U937 and THP-1, induces a down-regulation in expression of the ST6Gal I sialyltransferase. Correspondingly, the beta(1) integrin subunit becomes hyposialylated, suggesting that the beta(1) integrin is a substrate for this enzyme. The expression of hyposialylated beta(1) integrin isoforms is temporally correlated with enhanced binding of myeloid cells to fibronectin, and, importantly, fibronectin binding is inhibited when the Golgi disrupter, brefeldin A, is used to block the expression of the hyposialylated form. Consistent with the observation that cells with hyposialylated integrins are more adhesive to fibronectin, we demonstrate that the enzymatic removal of sialic acid residues from purified alpha(5)beta(1) integrins stimulates fibronectin binding by these integrins. These data support the hypothesis that unsialylated beta(1) integrins are more adhesive to fibronectin, although desialylation of alpha(5) subunits could also contribute to increased fibronectin binding. Collectively our results suggest a novel mechanism for regulation of the beta(1) integrin family of cell adhesion receptors.
Collapse
Affiliation(s)
- Alexis C Semel
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
Physically distinguishable microdomains associated with various functional membrane proteins are one of the major current topics in cell biology. Glycosphingolipids present in such microdomains have been used as "markers;" however, the functional role of glycosyl epitopes in microdomains has received little attention. In this review, I have tried to summarize the evidence that glycosyl epitopes in microdomains mediate cell adhesion and signal transduction events that affect cellular phenotypes. Molecular assemblies that perform such functions are hereby termed "glycosynapse" in analogy to "immunological synapse," the membrane assembly of immunocyte adhesion and signaling. Three types of glycosynapses are so far distinguishable: (i) Glycosphingolipids organized with cytoplasmic signal transducers and proteolipid tetraspanin with or without growth factor receptors; (ii) transmembrane mucin-type glycoproteins with clustered O-linked glycoepitopes for cell adhesion and associated signal transducers at lipid domain; and (iii) N-glycosylated transmembrane adhesion receptors complexed with tetraspanin and gangliosides, as typically seen with the integrin-tetraspanin-ganglioside complex. The possibility is discussed that glycosynapses give rise to a high degree of diversity and complexity of phenotypes.
Collapse
|
95
|
Fieger CB, Emig-Vollmer S, Petri T, Gräfe M, Gohlke M, Debus N, Semmler W, Tauber R, Volz B. The adhesive properties of recombinant soluble L-selectin are modulated by its glycosylation. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1524:75-85. [PMID: 11078961 DOI: 10.1016/s0304-4165(00)00143-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The leukocyte adhesion molecule L-selectin, which mediates the initial steps of leukocyte attachment to vascular endothelium, is intensely glycosylated. Different glycoforms of L-selectin are expressed on different leukocyte subsets and differences in L-selectin glycosylation appear to be correlated with the leukocyte's ability to attach to different endothelial targets. In the present study we addressed the question whether glycosylation of L-selectin influences L-selectin-ligand interactions. To obtain different glycoforms of L-selectin, recombinant proteins were expressed both in the baby hamster kidney (BHK) cell line and in the human myelogenous cell line K562, resulting in sL-sel[BHK] or sL-sel[K562], respectively. The glycosylation characteristics of the purified proteins were determined. The most striking differences in glycosylation were seen in the terminal sialylation. Each of the two proteins carried sialic acids in the alpha 2-3 position, while alpha 2-6-bound sialic acids were found exclusively on sL-sel[K562]. To investigate their adhesive properties, both recombinant sL-selectins were used in cell adhesion assays and interactions with the ligands present on various hematopoietic cell lines or activated human cardiac microvascular endothelial cells were examined. The binding capacity of sL-sel[K562] was about 1.6 fold higher compared to sL-sel[BHK] under static as well as under flow conditions. These findings indicate that the terminal sialylation pattern of L-selectin modulates its binding characteristics.
Collapse
Affiliation(s)
- C B Fieger
- Institut für Klinische Chemie und Pathobiochemie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Nadanaka S, Sato C, Kitajima K, Katagiri K, Irie S, Yamagata T. Occurrence of oligosialic acids on integrin alpha 5 subunit and their involvement in cell adhesion to fibronectin. J Biol Chem 2001; 276:33657-64. [PMID: 11418585 DOI: 10.1074/jbc.m011100200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin alpha(5)beta(1), a major fibronectin receptor, functions in a wide variety of biological phenomena. We have found that alpha 2-8-linked oligosialic acids with 5 < or = degree of polymerization (DP) < or = 7 occur on integrin alpha(5) subunit of the human melanoma cell line G361. The integrin alpha(5) subunit immunoprecipitated with anti-integrin alpha(5) antibody reacted with the monoclonal antibody 12E3, which recognizes oligo/polysialic acid with DP > or = 5 but not with the polyclonal antibody H.46 recognizing oligo/polysialic acid with DP > or = 8. The occurrence of oligosialic acids was further demonstrated by fluorometric C(7)/C(9) analysis on the immunopurified integrin alpha(5) subunit. Oligosialic acids were also found in the alpha(5) subunit of several other human cells such as foreskin fibroblast and chronic erythroleukemia K562 cells. These results suggest the ubiquitous modification with unique oligosialic acids occurs on the alpha(5) subunit of integrin alpha(5)beta(1). The adhesion of human melanoma G361 cells to fibronectin was mainly mediated by integrin alpha(5)beta(1). Treatment of cells with sialidase from Arthrobacter ureafaciens cleaving alpha 2-3-, alpha 2-6-, and alpha 2-8-linked sialic acids inhibited adhesion to fibronectin. On the other hand, N-acetylneuraminidase II, which cleaves alpha 2-3 and alpha 2-6 but not alpha 2-8 linkages, showed no inhibitory activity. After the loss of oligosialic acids, integrin alpha(5)beta(1) failed to bind to fibronectin-conjugated Sepharose, indicating that the oligosialic acid on the alpha(5) subunit of integrin alpha(5)beta(1) plays important roles in cell adhesion to fibronectin.
Collapse
Affiliation(s)
- S Nadanaka
- Nippi Research Institute of Biomatrix, 1-1-1 Senju-Midori-cho, Adachi-ku, Tokyo 120-8601, Japan.
| | | | | | | | | | | |
Collapse
|
97
|
Wang XQ, Sun P, O'Gorman M, Tai T, Paller AS. Epidermal growth factor receptor glycosylation is required for ganglioside GM3 binding and GM3-mediated suppression [correction of suppresion] of activation. Glycobiology 2001; 11:515-22. [PMID: 11447130 DOI: 10.1093/glycob/11.7.515] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gangliosides are able to bind to the epidermal growth factor receptor and inhibit its activation, but the mechanism of this inhibition is unknown. To address the role of receptor carbohydrates in facilitating interaction with gangliosides, we examined the ability of GM3 to bind the deglycosylated receptor and inhibit its autophosphorylation. Flow cytometry studies demonstrated that deglycosylation of the receptor did not affect its ability to be transported to the cell membrane. In contrast with the native (fully glycosylated) receptor, GM3 did not coimmunoprecipitate with the deglycosylated receptor. Using a novel colorimetric bead binding assay, GM3 was shown to bind well to the immunoprecipitated native receptor but not at all to the deglycosylated receptor. Finally, the addition of GM3 to cells with deglycosylated epidermal growth factor receptors did not result in significant further inhibition of autophosphorylation of the receptor, despite a 10-fold decrease in phosphorylation of the native epidermal growth factor receptor by 200 microM GM3. These studies suggest that ganglioside affects epidermal growth factor receptor activity through a direct interaction that requires receptor glycosylation, and contribute to our understanding of the role of gangliosides in cell membrane function.
Collapse
Affiliation(s)
- X Q Wang
- Department of Pediatrics, Children's Memorial Hospital, Institute for Education and Research, Northwestern University Medical School, 2300 Children's Plaza, Chicago, IL 60614, USA
| | | | | | | | | |
Collapse
|
98
|
Wang X, Sun P, Al-Qamari A, Tai T, Kawashima I, Paller AS. Carbohydrate-carbohydrate binding of ganglioside to integrin alpha(5) modulates alpha(5)beta(1) function. J Biol Chem 2001; 276:8436-44. [PMID: 11118433 DOI: 10.1074/jbc.m006097200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gangliosides GT1b and GD3, components of keratinocyte membranes, inhibit keratinocyte adhesion to fibronectin. Although ganglioside sialylation is known to be important, the mechanism of inhibition is unknown. Using purified insect recombinant alpha(5) and beta(1) proteins and alpha(5)beta(1) integrin from lysed keratinocyte-derived SCC12 cells, we have shown that GT1b and GD3 inhibit the binding of alpha(5)beta(1) to fibronectin. Co-immunoprecipitation of GT1b and alpha(5)beta(1) from SCC12 cells and direct binding of GT1b and GD3 to affinity-purified alpha(5)beta(1) from SCC12 cells and insect recombinant alpha(5)beta(1), particularly the alpha(5) subunit, further suggest interaction between ganglioside and alpha(5)beta(1). The carbohydrate moieties of integrin appear to be critical since gangliosides are unable to bind deglycosylated forms of alpha(5)beta(1) from SCC12 and insect cells or poorly glycosylated recombinant alpha(5)beta(1) from Escherichia coli cells. The GT1b-alpha(5)beta(1) interaction is inhibited by concanavalin A, suggesting that GT1b binds to mannose structures in alpha(5)beta(1). The preferential binding of GT1b to high mannose rather than reduced mannose ovalbumin further implicates the binding of GT1b to mannose structures. These data provide evidence that highly sialylated gangliosides regulate alpha(5)beta(1)-mediated adhesion of epithelial cells to fibronectin through carbohydrate-carbohydrate interactions between GT1b and the alpha(5) subunit of alpha(5)beta(1) integrin.
Collapse
Affiliation(s)
- X Wang
- Departments of Pediatrics and Dermatology, Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, Illinois 60614, USA
| | | | | | | | | | | |
Collapse
|
99
|
Pretzlaff RK, Xue VW, Rowin ME. Sialidase treatment exposes the beta1-integrin active ligand binding site on HL60 cells and increases binding to fibronectin. CELL ADHESION AND COMMUNICATION 2001; 7:491-500. [PMID: 11051459 DOI: 10.3109/15419060009040306] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The migration of neutrophils from the circulation to areas of inflammation is the result of the sequential activation of multiple cellular adhesion molecules. beta1-Integrins are cell surface glycoproteins and the class of adhesion molecules responsible for binding to the extracellular matrix. The goal of this study was to determine the contribution of glycosylation, specifically the presence of sialic acid, to beta1-integrin adhesion in a neutrophil model. beta1-Integrins on differentiated HL60 cells were remodeled by treatment with the exoglycosidases, sialidase and beta-galactosidase. beta1-Integrin activity was determined by measuring adherence to the extracellular matrix protein fibronectin. The expression of beta1-integrins, beta2-integrins and activated beta1-integrins was determined by flow cytometry. Remodeling of beta1-integrins by treatment with sialidase increased adhesion by greater than 1,000%. Flow cytometric analysis of remodeled beta1-integrins demonstrated an increased expression of the activated beta1-integrin, but only minor increases in the expression of total beta1- and beta2-integrins. We postulate that glycosidase treatment increases adhesion and expression of activated beta1-integrins by exposure of the normally hidden ligand-binding site. The glycosylation of beta1-integrins on neutrophils may act to hide the ligand-binding site in unstimulated cells thereby contributing to the affinity modulation observed in neutrophil beta1-integrin function.
Collapse
Affiliation(s)
- R K Pretzlaff
- Division of Critical Care Medicine, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
100
|
Ono M, Handa K, Withers DA, Hakomori S. Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: a preliminary note on functional alpha3, alpha5-CD82 glycosylation complex in ldlD 14 cells. Biochem Biophys Res Commun 2000; 279:744-50. [PMID: 11162423 DOI: 10.1006/bbrc.2000.4030] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Laminin (LN)- or fibronectin (FN)-dependent adhesion in Krieger's ldlD 14 (D14) cells is enhanced significantly in the presence vs absence, of galactose (Gal), whereas LN- or FN-induced haptotactic cell motility is barely affected unless cells express CD82 by its gene transfection (cells termed D14/CD82). The effect of CD82 on LN- or FN-induced motility is based on its ability to associate with alpha3 or alpha5 integrin to form a complex associated with a low-density lipid membrane domain (termed GEM or GSD). Complex formation is greatly affected by N-glycosylation of both integrin and CD82, as well as by concurrent GM3 ganglioside synthesis. The effect of glycosylation on alpha5-CD82 complex was also studied in D14 cells expressing mutant CD82, defective in all three N-glycosylation sites. LN-induced motility was greatly inhibited, whereas FN-induced motility was enhanced, with complete N-glycosylation in D14/CD82 cells in Gal-added medium, whereby alpha5-CD82 complex formation did not occur or occurred at a minimal level. Both LN- and FN-induced motility were inhibited when N-glycosylation was impaired, or N-glycosylation of CD82 was deleted, whereby alpha5-CD82 complex formation occurred strongly. Thus, glycosylation profoundly affects interaction of integrin with CD82, leading to significant inhibition or promotion of cell motility.
Collapse
Affiliation(s)
- M Ono
- Pacific Northwest Research Institute, 720 Broadway, Seattle, Washington 98122-4327, USA
| | | | | | | |
Collapse
|