51
|
Fritzius T, Moelling K. Akt- and Foxo1-interacting WD-repeat-FYVE protein promotes adipogenesis. EMBO J 2008; 27:1399-410. [PMID: 18388859 DOI: 10.1038/emboj.2008.67] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 03/06/2008] [Indexed: 02/08/2023] Open
Abstract
We have previously identified a protein, consisting of seven WD-repeats, forming a putative beta-propeller, and an FYVE domain, ProF, which is highly expressed in 3T3-L1 cells, a cell line that can be differentiated into adipocytes. We recently found ProF to interact with the kinases Akt and protein kinase Czeta. Here we demonstrate that ProF is a positive regulator of adipogenesis. Knockdown of ProF by RNA interference leads to decreased adipocyte differentiation. This is shown by reduced lipid accumulation, decreased expression of the differentiation markers PPARgamma and C/EBPalpha, and reduced glucose uptake in differentiated cells. Furthermore, ProF overexpression leads to increased adipogenesis. ProF binds to the transcription factor Foxo1 (Forkhead box O1), a negative regulator of insulin action and adipogenesis, and facilitates the phosphorylation and thus inactivation of Foxo1 by Akt. Additionally, dominant-negative Foxo1 restores adipogenesis in ProF knockdown cells. Thus, ProF modulates Foxo1 phosphorylation by Akt, promoting adipocyte differentiation. Furthermore, ProF might be involved in metabolic disorders such as diabetes.
Collapse
Affiliation(s)
- Thorsten Fritzius
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
52
|
Song XM, Hresko RC, Mueckler M. Identification of amino acid residues within the C terminus of the Glut4 glucose transporter that are essential for insulin-stimulated redistribution to the plasma membrane. J Biol Chem 2008; 283:12571-85. [PMID: 18305115 DOI: 10.1074/jbc.m800838200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Glut4 glucose transporter undergoes complex insulin-regulated subcellular trafficking in adipocytes. Much effort has been expended in an attempt to identify targeting motifs within Glut4 that direct its subcellular trafficking, but an amino acid motif responsible for the targeting of the transporter to insulin-responsive intracellular compartments in the basal state or that is directly responsible for its insulin-stimulated redistribution to the plasma membrane has not yet been delineated. In this study we define amino acid residues within the C-terminal cytoplasmic tail of Glut4 that are essential for its insulin-stimulated translocation to the plasma membrane. The residues were identified based on sequence similarity (LXXLXPDEXD) between cytoplasmic domains of Glut4 and the insulin-responsive aminopeptidase (IRAP). Alteration of this putative targeting motif (IRM, insulin-responsive motif) resulted in the targeting of the bulk of the mutant Glut4 molecules to dispersed membrane vesicles that lacked detectable levels of wild-type Glut4 in either the basal or insulin-stimulated states and completely abolished the insulin-stimulated translocation of the mutant Glut4 to the plasma membrane in 3T3L1 adipocytes. The bulk of the dispersed membrane vesicles containing the IRM mutant did not contain detectable levels of any subcellular marker tested. A fraction of the total IRM mutant was also detected in a wild-type Glut4/Syntaxin 6-containing perinuclear compartment. Interestingly, mutation of the IRM sequence did not appreciably alter the subcellular trafficking of IRAP. We conclude that residues within the IRM are critical for the targeting of Glut4, but not of IRAP, to insulin-responsive intracellular membrane compartments in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Xiao Mei Song
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
53
|
Karlsson HKR, Zierath JR. Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochem Biophys 2007; 48:103-13. [PMID: 17709880 DOI: 10.1007/s12013-007-0030-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/29/2022]
Abstract
Insulin increases glucose uptake and metabolism in skeletal muscle by signal transduction via protein phosphorylation cascades. Insulin action on signal transduction is impaired in skeletal muscle from Type 2 diabetic subjects, underscoring the contribution of molecular defects to the insulin resistant phenotype. This review summarizes recent work to identify downstream intermediates in the insulin signaling pathways governing glucose homeostasis, in an attempt to characterize the molecular mechanism accounting for skeletal muscle insulin resistance in Type 2 diabetes. Furthermore, the effects of pharmaceutical treatment of Type 2 diabetic patients on insulin signaling and glucose uptake are discussed. The identification and characterization of pathways governing insulin action on glucose metabolism will facilitate the development of strategies to improve insulin sensitivity in an effort to prevent and treat Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Håkan K R Karlsson
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
54
|
Funaki M, Benincasa K, Randhawa PK. Peptide rescues GLUT4 recruitment, but not GLUT4 activation, in insulin resistance. Biochem Biophys Res Commun 2007; 360:891-6. [PMID: 17631270 DOI: 10.1016/j.bbrc.2007.06.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 06/29/2007] [Indexed: 11/30/2022]
Abstract
Insulin-stimulated GLUT4 recruitment to the plasma membrane is impaired in insulin resistance. We recently reported that a cell permeable phosphoinositide-binding peptide induces GLUT4 recruitment as potently as insulin, but does not activate GLUT4 to initiate glucose uptake. Here we investigated whether the peptide-induced GLUT4 recruitment is intact in insulin resistance. The expression levels of GLUT1 and GLUT4 were unaffected by chronically treating 3T3-L1 adipocytes with insulin. GLUT4 recruitment by acute insulin stimulation after chronic insulin treatment was significantly reduced, but was fully restored by the peptide treatment. However, subsequent acute insulin stimulation to activate GLUT4 failed to increase glucose uptake in peptide-pretreated cells. Insulin-stimulated GLUT1 recruitment was unaffected by the peptide pretreatment. These results suggest that the GLUT4 recruitment signal caused by the peptide is intact in insulin resistance, but GLUT4 activation that occurs subsequent to recruitment is not rescued by the peptide treatment.
Collapse
Affiliation(s)
- Makoto Funaki
- Department of Physiology, Institute for Medicine & Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
55
|
Miller EJ, Li J, Sinusas KM, Holman GD, Young LH. Infusion of a biotinylated bis-glucose photolabel: a new method to quantify cell surface GLUT4 in the intact mouse heart. Am J Physiol Endocrinol Metab 2007; 292:E1922-8. [PMID: 17341550 DOI: 10.1152/ajpendo.00170.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose uptake in the heart is mediated by specific glucose transporters (GLUTs) present on cardiomyocyte cell surface membranes. Metabolic stress and insulin both increase glucose transport by stimulating the translocation of glucose transporters from intracellular storage vesicles to the cell surface. Isolated perfused transgenic mouse hearts are commonly used to investigate the molecular regulation of heart metabolism; however, current methods to quantify cell surface glucose transporter content in intact mouse hearts are limited. Therefore, we developed a novel technique to directly assess the cell surface content of the cardiomyocyte glucose transporter GLUT4 in perfused mouse hearts, using a cell surface impermeant biotinylated bis-glucose photolabeling reagent (bio-LC-ATB-BGPA). Bio-LC-ATB-BGPA was infused through the aorta and cross-linked to cell surface GLUTs. Bio-LC-ATB-BGPA-labeled GLUT4 was recovered from cardiac membranes by streptavidin isolation and quantified by immunoblotting. Bio-LC-ATB-BGPA-labeling of GLUT4 was saturable and competitively inhibited by d-glucose. Stimulation of glucose uptake by insulin in the perfused heart was associated with parallel increases in bio-LC-ATB-BGPA-labeling of cell surface GLUT4. Bio-LC-ATB-BGPA also labeled cell surface GLUT1 in the perfused heart. Thus, photolabeling provides a novel approach to assess cell surface glucose transporter content in the isolated perfused mouse heart and may prove useful to investigate the mechanisms through which insulin, ischemia, and other stimuli regulate glucose metabolism in the heart and other perfused organs.
Collapse
Affiliation(s)
- Edward J Miller
- Department of Internal Medicine, Yale University School of Medicine, FMP 3, 333 Cedar St., New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
56
|
Jeyaraj S, Boehmer C, Lang F, Palmada M. Role of SGK1 kinase in regulating glucose transport via glucose transporter GLUT4. Biochem Biophys Res Commun 2007; 356:629-35. [PMID: 17382906 DOI: 10.1016/j.bbrc.2007.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 11/19/2022]
Abstract
Insulin stimulates glucose transport into muscle and fat cells by enhancing GLUT4 abundance in the plasma membrane through activation of phosphatidylinositol 3-kinase (PI3K). Protein kinase B (PKB) and PKCzeta are known PI3K downstream targets in the regulation of GLUT4. The serum- and glucocorticoid-inducible kinase SGK1 is similarly activated by insulin and capable to regulate cell surface expression of several metabolite transporters. In this study, we evaluated the putative role of SGK1 in the modulation of GLUT4. Coexpression of the kinase along with GLUT4 in Xenopus oocytes stimulated glucose transport. The enhanced GLUT4 activity was paralleled by increased transporter abundance in the plasma membrane. Disruption of the SGK1 phosphorylation site on GLUT4 ((S274A)GLUT4) abrogated the stimulating effect of SGK1. In summary, SGK1 promotes glucose transporter membrane abundance via GLUT4 phosphorylation at Ser274. Thus, SGK1 may contribute to the insulin and GLUT4-dependent regulation of cellular glucose uptake.
Collapse
|
57
|
Niu W, Ishiki M, Bilan PJ, Yao Z. Glucose transporter 4 can be inserted in the membrane without exposing its catalytic site for photolabeling from the medium. ACTA ACUST UNITED AC 2007; 50:147-54. [PMID: 17447020 DOI: 10.1007/s11427-007-0026-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 09/14/2006] [Indexed: 12/25/2022]
Abstract
Insulin stimulates the production of PI(3,4,5)P(3) in muscle cells, and this is required to stimulate GLUT4 fusion with the plasma membrane. Introduction of exogenous PI(3,4,5)P(3) to muscle cells recapitulates insulin's effects on GLUT4 fusion with the plasma membrane, but not glucose uptake. This study aims to explore the mechanism behind this difference. In L6-GLUT4myc muscle cells, the availability of the GLUT4 intracellular C-terminus and extracellular myc epitopes for immunoreactivity on plasma membrane lawns was detected with the corresponding antibody. The availability of the active site of GLUT4 from extracellular medium was assessed by affinity photolabeling with the cell impermeant compound Bio-LC-ATB-BMPA. 100 nmol/L insulin and 10 mumol/L PI(3,4,5)P(3) caused myc signal gain on the plasma membrane lawns by 1.64-fold and 1.58-fold over basal, respectively. Insulin, but not PI(3,4,5)P(3), increased photolabeling of GLUT4 and immunolabeling with C-terminus antibody by 2.47-fold and 2.04-fold over basal, respectively. Upon insulin stimulation, the C-terminus signal gain was greater than myc signal gain (2.04-fold vs. 1.64-fold over basal, respectively) in plasma membrane lawns. These results indicate that (i) PI(3,4,5)P(3) does not make the active site of GLUT4 available from the extracellular surface despite causing GLUT4 fusion with the plasma membrane; (ii) the availability of the active site of GLUT4 from the extracellular medium and availability of the C-terminus from the cytosolic site are correlated; (iii) in addition to stimulating GLUT4 translocation, insulin stimulation displaces a protein which masks the GLUT4 C-terminus. We propose that a protein which masks the C-terminus also prevents the active site from being available for photolabelling and possibly glucose uptake after treatment with PI(3,4,5)P(3).
Collapse
Affiliation(s)
- WenYan Niu
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China.
| | | | | | | |
Collapse
|
58
|
Thong FSL, Bilan PJ, Klip A. The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic. Diabetes 2007; 56:414-23. [PMID: 17259386 DOI: 10.2337/db06-0900] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin-dependent phosphorylation of Akt target AS160 is required for GLUT4 translocation. Insulin and platelet-derived growth factor (PDGF) (Akt activators) or activation of conventional/novel (c/n) protein kinase C (PKC) and 5' AMP-activated protein kinase (AMPK) all promote a rise in membrane GLUT4 in skeletal muscle and cultured cells. However, the downstream effectors linking these pathways to GLUT4 traffic are unknown. Here we explore the hypothesis that AS160 is a molecular link among diverse signaling cascades converging on GLUT4 translocation. PDGF and insulin increased AS160 phosphorylation in CHO-IR cells. Stimuli that activate c/n PKC or AMPK also elevated AS160 phosphorylation. We therefore examined if these signaling pathways engage AS160 to regulate GLUT4 traffic in muscle cells. Nonphosphorylatable AS160 (4P-AS160) virtually abolished the net surface GLUT4myc gains elicited by insulin, PDGF, K(+) depolarization, or 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside but partly, yet significantly, inhibited the effects of 4-phorbol-12-myristate-13-acetate. However, the hypertonicity or 2,4-dinitrophenol-dependent gains in surface GLUT4myc were unaffected by 4P-AS160. RK-AS160 (GTPase-activating protein [GAP] inactive) or 4PRK-AS160 (GAP inactive, nonphosphorylatable) had no effect on surface GLUT4myc elicited by all stimuli. Collectively, these results indicate that activation of Akt, c/n PKC, or alpha2-AMPK intersect at AS160 to regulate GLUT4 traffic, as well as highlight the potential of AS160 as a therapy target to increase muscle glucose uptake.
Collapse
Affiliation(s)
- Farah S L Thong
- Programme in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|
59
|
Geiger PC, Han DH, Wright DC, Holloszy JO. How muscle insulin sensitivity is regulated: testing of a hypothesis. Am J Physiol Endocrinol Metab 2006; 291:E1258-63. [PMID: 16835397 DOI: 10.1152/ajpendo.00273.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle contractions induce an increase in glucose transport. The acute effect of muscle contractions on glucose transport is independent of insulin and reverses rapidly after cessation of exercise. As the acute increase in glucose transport reverses, a marked increase in the sensitivity of muscle to insulin occurs. The mechanism for this phenomenon is unknown. We hypothesize that an increase in insulin sensitivity is a general phenomenon that occurs during reversal of an increase in cell surface GLUT4 induced by any stimulus, not just exercise. To test this hypothesis, epitrochlearis, rat soleus, and flexor digitorum brevis muscles were incubated for 30 min with a maximally effective insulin concentration (1.0 mU/ml). Muscles were allowed to recover for 3 h in the absence of insulin. Muscles were then exposed to 60 microU/ml insulin for 30 min followed by measurement of glucose transport. Preincubation with 1.0 mU/ml insulin resulted in an approximately 2-fold greater increase in glucose transport 3.5 h later in response to 60 microU/ml insulin than that which occurred in control muscles treated with 60 microU/ml insulin. Pretreatment of muscles with combined maximal insulin and exercise stimuli greatly amplified the increase in insulin sensitivity. The increases in glucose transport were paralleled by increases in cell surface GLUT4. We conclude that stimulation of glucose transport by any agent is followed by an increase in sensitivity of glucose transport to activation that is mediated by translocation of more GLUT4 to the cell surface.
Collapse
Affiliation(s)
- Paige C Geiger
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
60
|
Takenouchi N, Jones KS, Lisinski I, Fugo K, Yao K, Cushman SW, Ruscetti FW, Jacobson S. GLUT1 is not the primary binding receptor but is associated with cell-to-cell transmission of human T-cell leukemia virus type 1. J Virol 2006; 81:1506-10. [PMID: 17108050 PMCID: PMC1797527 DOI: 10.1128/jvi.01522-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GLUT1 has recently been suggested to be a binding receptor for human T-cell leukemia virus type 1 (HTLV-1). We used a novel, short-term assay to define the role of GLUT1 in cell-to-cell transmission. Although increasing cell surface levels of GLUT1 enhanced HTLV-I transfer, efficient virus spread correlated largely with heparan sulfate proteoglycan (HSPG) expression on target cells. Moreover, since activated CD4+ T cells and cord blood lymphocytes that are susceptible to HTLV-1 infection expressed undetectable levels of surface GLUT1, these results indicate that GLUT1 and HSPGs are important for efficient cell-to-cell transmission of HTLV-1 but raise concerns on the role of GLUT1 as the HTLV-1 primary binding receptor.
Collapse
Affiliation(s)
- Norihiro Takenouchi
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20982, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Eyster CA, Duggins QS, Gorbsky GJ, Olson AL. Microtubule network is required for insulin signaling through activation of Akt/protein kinase B: evidence that insulin stimulates vesicle docking/fusion but not intracellular mobility. J Biol Chem 2006; 281:39719-27. [PMID: 17068336 DOI: 10.1074/jbc.m607101200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microtubule network has been shown to be required for insulin-dependent GLUT4 redistribution; however, the precise molecular function has not been elucidated. In this article, we used fluorescence recovery after photobleaching (FRAP) to evaluate the role of microtubules in intracellular GLUT4 vesicle mobility. A comparison of the rate of fluorescence recovery (t((1/2))), and the maximum fluorescence recovered (F(max)) was made between basal and insulin-treated cells with or without nocodazole treatment to disrupt microtubules. We found that intracellular mobility of fluorescently tagged GLUT4 (HA-GLUT4-GFP) was high in basal cells. Mobility was not increased by insulin treatment. Basal mobility was dependent upon an intact microtubule network. Using a constitutively active Akt to signal GLUT4 redistribution, we found that microtubule-based GLUT4 vesicle mobility was not obligatory for GLUT4 plasma membrane insertion. Our findings suggest that microtubules organize the insulin-signaling complex and provide a surface for basal mobility of GLUT4 vesicles. Our data do not support an obligatory requirement for long range microtubule-based movement of GLUT4 vesicles for insulin-mediated GLUT4 redistribution to the cell surface. Taken together, these findings suggest a model in which insulin signaling targets membrane docking and/or fusion rather than GLUT4 trafficking to the cell surface.
Collapse
Affiliation(s)
- Craig A Eyster
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
62
|
Jones KS, Fugo K, Petrow-Sadowski C, Huang Y, Bertolette DC, Lisinski I, Cushman SW, Jacobson S, Ruscetti FW. Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 use different receptor complexes to enter T cells. J Virol 2006; 80:8291-302. [PMID: 16912281 PMCID: PMC1563841 DOI: 10.1128/jvi.00389-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies using adherent cell lines have shown that glucose transporter-1 (GLUT-1) can function as a receptor for human T-cell leukemia virus type 1 (HTLV). In primary CD4(+) T cells, heparan sulfate proteoglycans (HSPGs) are required for efficient entry of HTLV-1. Here, the roles of HSPGs and GLUT-1 in HTLV-1 and HTLV-2 Env-mediated binding and entry into primary T cells were studied. Examination of the cell surface of activated primary T cells revealed that CD4(+) T cells, the primary target of HTLV-1, expressed significantly higher levels of HSPGs than CD8(+) T cells. Conversely, CD8(+) T cells, the primary target of HTLV-2, expressed GLUT-1 at dramatically higher levels than CD4(+) T cells. Under these conditions, the HTLV-2 surface glycoprotein (SU) binding and viral entry were markedly higher on CD8(+) T cells while HTLV-1 SU binding and viral entry were higher on CD4(+) T cells. Binding studies with HTLV-1/HTLV-2 SU recombinants showed that preferential binding to CD4(+) T cells expressing high levels of HSPGs mapped to the C-terminal portion of SU. Transfection studies revealed that overexpression of GLUT-1 in CD4(+) T cells increased HTLV-2 entry, while expression of HSPGs on CD8(+) T cells increased entry of HTLV-1. These studies demonstrate that HTLV-1 and HTLV-2 differ in their T-cell entry requirements and suggest that the differences in the in vitro cellular tropism for transformation and in vivo pathobiology of these viruses reflect different interactions between their Env proteins and molecules on CD4(+) and CD8(+) T cells involved in entry.
Collapse
Affiliation(s)
- Kathryn S Jones
- Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Funaki M, DiFransico L, Janmey PA. PI 4,5-P2 stimulates glucose transport activity of GLUT4 in the plasma membrane of 3T3-L1 adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:889-99. [PMID: 16828894 PMCID: PMC3118463 DOI: 10.1016/j.bbamcr.2006.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/08/2006] [Accepted: 05/09/2006] [Indexed: 12/16/2022]
Abstract
Insulin-stimulated glucose uptake through GLUT4 plays a pivotal role in maintaining normal blood glucose levels. Glucose transport through GLUT4 requires both GLUT4 translocation to the plasma membrane and GLUT4 activation at the plasma membrane. Here we report that a cell-permeable phosphoinositide-binding peptide, which induces GLUT4 translocation without activation, sequestered PI 4,5-P2 in the plasma membrane from its binding partners. Restoring PI 4,5-P2 to the plasma membrane after the peptide treatment increased glucose uptake. No additional glucose transporters were recruited to the plasma membrane, suggesting that the increased glucose uptake was attributable to GLUT4 activation. Cells overexpressing phosphatidylinositol-4-phosphate 5-kinase treated with the peptide followed by its removal exhibited a higher level of glucose transport than cells stimulated with a submaximal level of insulin. However, only cells treated with submaximal insulin exhibited translocation of the PH-domains of the general receptor for phosphoinositides (GRP1) to the plasma membrane. Thus, PI 4,5-P2, but not PI 3,4,5-P3 converted from PI 4,5-P2, induced GLUT4 activation. Inhibiting F-actin remodeling after the peptide treatment significantly impaired GLUT4 activation induced either by PI 4,5-P2 or by insulin. These results suggest that PI 4,5-P2 in the plasma membrane acts as a second messenger to activate GLUT4, possibly through F-actin remodeling.
Collapse
Affiliation(s)
- Makoto Funaki
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, 1080 Vagelos Research Laboratories, 3340 Smith Walk, Philadelphia, 19104, USA.
| | | | | |
Collapse
|
64
|
Yan Q, Hruz PW. Direct comparison of the acute in vivo effects of HIV protease inhibitors on peripheral glucose disposal. J Acquir Immune Defic Syndr 2006; 40:398-403. [PMID: 16280693 PMCID: PMC1360159 DOI: 10.1097/01.qai.0000176654.97392.c7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The clinical use of HIV protease inhibitors (PIs) is associated with the development of peripheral insulin resistance. The incidence and degree of impaired glucose tolerance observed in treated patients vary considerably between drugs, however. To compare the ability of HIV PIs to alter peripheral glucose disposal acutely in a genetically identical model system at therapeutically relevant drug levels, healthy lean male rats previously naive to PI exposure were given ritonavir, amprenavir, lopinavir/ritonavir (4:1), or atazanavir by continuous intravenous infusion to achieve steady state drug levels of 10 or 25 muM rapidly. Under euglycemic hyperinsulinemic clamp conditions, a dose-dependent reduction in the peripheral glucose disposal rate (Rd) was observed with all the PIs except atazanavir. The rank order of sensitivity was ritonavir, lopinavir, and then amprenavir. Changes in skeletal muscle and heart 2-deoxyglucose (2-DOG) uptake correlated with reductions in Rd. All 3 of these PIs also produced significant reductions in 2-DOG uptake into primary rat adipocytes in vitro. Atazanavir had no effect on glucose uptake in vitro or in vivo. The in vivo potency of PIs to impair peripheral glucose disposal acutely correlates with the degree of insulin resistance observed in HIV-infected patients receiving these drugs. Preclinical testing of novel candidate PIs in a rodent model system may be useful in identifying the future risk of altering glucose homeostasis.
Collapse
Affiliation(s)
- Qingyun Yan
- From the Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Paul W. Hruz
- From the Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
65
|
Coward RJM, Welsh GI, Yang J, Tasman C, Lennon R, Koziell A, Satchell S, Holman GD, Kerjaschki D, Tavaré JM, Mathieson PW, Saleem MA. The human glomerular podocyte is a novel target for insulin action. Diabetes 2005; 54:3095-102. [PMID: 16249431 DOI: 10.2337/diabetes.54.11.3095] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microalbuminuria is significant both as the earliest stage of diabetic nephropathy and as an independent cardiovascular risk factor in nondiabetic subjects, in whom it is associated with insulin resistance. The link between disorders of cellular insulin metabolism and albuminuria has been elusive. Here, we report using novel conditionally immortalized human podocytes in vitro and human glomeruli ex vivo that the podocyte, the principal cell responsible for prevention of urinary protein loss, is insulin responsive and able to approximately double its glucose uptake within 15 min of insulin stimulation. Conditionally immortalized human glomerular endothelial cells do not respond to insulin, suggesting that insulin has a specific effect on the podocyte in the glomerular filtration barrier. The insulin response of the podocyte occurs via the facilitative glucose transporters GLUT1 and GLUT4, and this process is dependent on the filamentous actin cytoskeleton. Insulin responsiveness in this key structural component of the glomerular filtration barrier may have central relevance for understanding of diabetic nephropathy and for the association of albuminuria with states of insulin resistance.
Collapse
Affiliation(s)
- Richard J M Coward
- Academic and Children's Renal Unit, University of Bristol, Southmead Hospital, Bristol, UK BS10 5NB
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Antonescu CN, Huang C, Niu W, Liu Z, Eyers PA, Heidenreich KA, Bilan PJ, Klip A. Reduction of insulin-stimulated glucose uptake in L6 myotubes by the protein kinase inhibitor SB203580 is independent of p38MAPK activity. Endocrinology 2005; 146:3773-81. [PMID: 15947002 DOI: 10.1210/en.2005-0404] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin increases glucose uptake through translocation of the glucose transporter GLUT4 to the plasma membrane. We previously showed that insulin activates p38MAPK, and inhibitors of p38MAPKalpha and p38MAPKbeta (e.g. SB203580) reduce insulin-stimulated glucose uptake without affecting GLUT4 translocation. This observation suggested that insulin may increase GLUT4 activity via p38alpha and/or p38beta. Here we further explore the possible participation of p38MAPK through a combination of molecular strategies. SB203580 reduced insulin stimulation of glucose uptake in L6 myotubes overexpressing an SB203580-resistant p38alpha (drug-resistant p38alpha) but barely affected phosphorylation of the p38 substrate MAPK-activated protein kinase-2. Expression of dominant-negative p38alpha or p38beta reduced p38MAPK phosphorylation by 70% but had no effect on insulin-stimulated glucose uptake. Gene silencing via isoform-specific small interfering RNAs reduced expression of p38alpha or p38beta by 60-70% without diminishing insulin-stimulated glucose uptake. SB203580 reduced photoaffinity labeling of GLUT4 by bio-LC-ATB-BMPA only in the insulin-stimulated state. Unless low levels of p38MAPK suffice to regulate glucose uptake, these results suggest that the inhibition of insulin-stimulated glucose transport by SB203580 is likely not mediated by p38MAPK. Instead, changes experienced by insulin-stimulated GLUT4 make it susceptible to inhibition by SB203580.
Collapse
Affiliation(s)
- C N Antonescu
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Koumanov F, Jin B, Yang J, Holman GD. Insulin signaling meets vesicle traffic of GLUT4 at a plasma-membrane-activated fusion step. Cell Metab 2005; 2:179-89. [PMID: 16154100 DOI: 10.1016/j.cmet.2005.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/14/2005] [Accepted: 08/16/2005] [Indexed: 11/21/2022]
Abstract
A hypothesis that accounts for most of the available literature on insulin-stimulated GLUT4 translocation is that insulin action controls the access of GLUT4 vesicles to a constitutively active plasma-membrane fusion process. However, using an in vitro fusion assay, we show here that fusion is not constitutively active. Instead, the rate of fusion activity is stimulated 8-fold by insulin. Both the magnitude and time course of stimulated in vitro fusion recapitulate the cellular insulin response. Fusion is cell cytoplasm and SNARE dependent but does not require cell cytoskeleton. Furthermore, insulin activation of the plasma-membrane fraction of the fusion reaction is the essential step in regulation. Akt from the cytoplasm fraction is required for fusion. However, the participation of Akt in the stimulation of in vitro fusion is dependent on its in vitro recruitment onto the insulin-activated plasma membrane.
Collapse
|
68
|
Blencowe A, Hayes W. Development and application of diazirines in biological and synthetic macromolecular systems. SOFT MATTER 2005; 1:178-205. [PMID: 32646075 DOI: 10.1039/b501989c] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many different reagents and methodologies have been utilised for the modification of synthetic and biological macromolecular systems. In addition, an area of intense research at present is the construction of hybrid biosynthetic polymers, comprised of biologically active species immobilised or complexed with synthetic polymers. One of the most useful and widely applicable techniques available for functionalisation of macromolecular systems involves indiscriminate carbene insertion processes. The highly reactive and non-specific nature of carbenes has enabled a multitude of macromolecular structures to be functionalised without the need for specialised reagents or additives. The use of diazirines as stable carbene precursors has increased dramatically over the past twenty years and these reagents are fast becoming the most popular photophors for photoaffinity labelling and biological applications in which covalent modification of macromolecular structures is the basis to understanding structure-activity relationships. This review reports the synthesis and application of a diverse range of diazirines in macromolecular systems.
Collapse
Affiliation(s)
- Anton Blencowe
- School of Chemistry, The University of Reading, Whiteknights, Reading, Berkshire, UKRG6 6AD.
| | - Wayne Hayes
- School of Chemistry, The University of Reading, Whiteknights, Reading, Berkshire, UKRG6 6AD.
| |
Collapse
|
69
|
Kondapaka SB, Zarnowski M, Yver DR, Sausville EA, Cushman SW. 7-hydroxystaurosporine (UCN-01) inhibition of Akt Thr308 but not Ser473 phosphorylation: a basis for decreased insulin-stimulated glucose transport. Clin Cancer Res 2005; 10:7192-8. [PMID: 15534092 DOI: 10.1158/1078-0432.ccr-04-0772] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
7-hydroxystaurosporine (UCN-01) infused for 72 hours by continuous i.v. infusion induced insulin resistance during phase I clinical trials. To understand the mechanism for this observation, we examined the effect of UCN-01 on insulin-stimulated glucose transport activity with 3-O-methylglucose in isolated rat adipose cells. UCN-01 inhibits glucose transport activity in a dose-dependent manner at all insulin concentrations. At the clinically relevant concentration of 0.25 mumol/L UCN-01, glucose transport is inhibited 66, 29, and 26% at insulin concentrations of 10, 50, and 100,000 (100K) microunits/mL respectively, thus shifting the dose-response curve to the right. Increasing concentrations of UCN-01 up to 2.5 mumol/L progressively shift the insulin dose-response curve even further. As Akt is known to mediate in part action initiated at the insulin receptor, we also studied the effect of UCN-01 on Akt activation in whole-cell homogenates of these cells. Decreased glucose transport activity directly parallels decreased Akt Thr308 phosphorylation in both an insulin and UCN-01 dose-dependent manner, whereas Akt Ser473 phosphorylation is inhibited only at the lowest insulin concentration, and then, only modestly. UCN-01 also inhibits insulin-induced Thr308 but not Ser473 phosphorylation of Akt associated with the plasma membranes and low-density microsomes and inhibits translocation of GLUT4 from low-density microsomes to plasma membranes as expected from the glucose transport activity measurements. These data suggest that UCN-01 induces clinical insulin resistance by blocking Akt activation and subsequent GLUT4 translocation in response to insulin, and this effect appears to occur by inhibiting Thr308 phosphorylation even in the face of almost completely unaffected Ser473 phosphorylation.
Collapse
Affiliation(s)
- Sudhir B Kondapaka
- Developmental Therapeutics Program, National Cancer Institute, and Experimental Diabetes, National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
70
|
Bazuine M, Carlotti F, Rabelink MJWE, Vellinga J, Hoeben RC, Maassen JA. The p38 mitogen-activated protein kinase inhibitor SB203580 reduces glucose turnover by the glucose transporter-4 of 3T3-L1 adipocytes in the insulin-stimulated state. Endocrinology 2005; 146:1818-24. [PMID: 15665038 DOI: 10.1210/en.2004-1347] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Insulin induces a profound increase in glucose uptake in 3T3-L1 adipocytes through the activity of the glucose transporter-4 (GLUT4). Apart from GLUT4 translocation toward the plasma membrane, there is also an insulin-induced p38 MAPK-dependent step involved in the regulation of glucose uptake. Consequently, treatment with the p38 MAPK inhibitor SB203580 reduces insulin-induced glucose uptake by approximately 30%. Pretreatment with SB203580 does not alter the apparent K(m) of GLUT4-mediated glucose uptake but reduces the maximum velocity by approximately 30%. Insulin-induced GLUT4 translocation and exposure of the transporter to the extracellular environment was not altered by pretreatment with SB203580, as evidenced by a lack of effect of the inhibitor on the amount of GLUT4 present in the plasma membrane, as assessed by subcellular fractionation, the amount of GLUT4 that is able to undergo biotinylation on intact adipocytes and the level of extracellular exposure of an ectopically expressed GLUT-green fluorescence protein construct with a hemagglutinin tag in its first extracellular loop. In contrast, labeling of GLUT4 after insulin stimulation by a membrane-impermeable, mannose moiety-containing, photoaffinity-labeling agent [2-N-4(1-azido-2,2,2-trifluoroethyl)benzoyl-1,3-bis(d-mannose-4-yloxy)-2-propylamine] that binds to the extracellular glucose acceptor domain was markedly reduced by SB203580, although photolabeling with this compound in the absence of insulin was unaffected by SB203580. These data suggest that SB203580 affects glucose turnover by the insulin-responsive GLUT4 transporter in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Merlijn Bazuine
- Signal Transduction Laboratory, Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, P.O. Box 9503, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
71
|
Morii T, Ohno Y, Hirose H, Kawabe H, Ogata T, Hirao K, Eguchi T, Maruyama T, Kanno Y, Hayashi M, Saito I, Saruta T. Cellular insulin resistance in Epstein-Barr virus-transformed lymphoblasts from young insulin-resistant Japanese men. Metabolism 2005; 54:370-5. [PMID: 15736115 DOI: 10.1016/j.metabol.2004.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The metabolic syndrome is characterized by a blunted insulin-mediated glucose uptake in various cell types. We compared the glucose uptake characteristics of Epstein-Barr virus (EBV)-transformed lymphoblasts obtained from young men with vs without metabolic and cardiovascular evidence of metabolic syndrome. From a population of 218 men, 20- to 25-year-old, 10 men with a systolic blood pressure (BP) > or =130 mm Hg and family history of hypertension were assigned to a high BP (HBP) group, and 10 with a BP < or =110 mm Hg, and no family history of hypertension was assigned to a low BP (LBP) group. Multiple clinical and metabolic characteristics were examined in both groups and compared. Peripheral lymphocytes from HBP and LBP subjects were EBV-transformed, and the glucose transporter (Glut)-mediated glucose uptake from each group was compared in lymphoblasts. Body mass index, fasting glucose, immunoreactive insulin, insulin resistance index based on a homeostasis model assessment (HOMA-R), and total and low-density lipoprotein cholesterol were significantly higher in the HBP than the LBP subgroup (whole-body insulin resistance). Baseline Glut-mediated and Glut-mediated insulin-stimulated glucose uptake by lymphoblasts from the HBP group were significantly lower than by lymphoblasts from the LBP group (cellular insulin resistance). The net increment in Glut-mediated glucose uptake by insulin was inversely correlated with HOMA-R. In conclusion, cellular insulin resistance in EBV-transformed lymphoblasts is associated with young Japanese subjects with HBP. The net increment in Glut-mediated glucose uptake by insulin in lymphoblasts may be a useful intermediate phenotype to study genetic aspects of the metabolic syndrome.
Collapse
Affiliation(s)
- Toshiyuki Morii
- Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Yang J, Holman GD. Insulin and Contraction Stimulate Exocytosis, but Increased AMP-activated Protein Kinase Activity Resulting from Oxidative Metabolism Stress Slows Endocytosis of GLUT4 in Cardiomyocytes. J Biol Chem 2005; 280:4070-8. [PMID: 15557332 DOI: 10.1074/jbc.m410213200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Stimulations of glucose transport produced by insulin action, contraction, or through a change in cell energy status are mediated by separate signaling pathways. These are the wortmannin-sensitive phosphatidylinositol 3-kinase pathway leading to the intermediate Akt and the wortmannin-insensitive AMP-activated protein kinase (AMPK) pathway. Electrical stimulation of cardiomyocytes produced a rapid, insulin-like, wortmannin-sensitive stimulation of glucose transport activity, but this occurred without extensive activation of Akt. Although AMPK phosphorylation was increased by contraction, this response was not wortmannin-inhibitable and consequently did not correlate with the wortmannin sensitivity of the transport stimulation. Oxidative metabolism stress due to hypoxia or treatment with oligomycin led to increased AMPK activity with a corresponding increase in glucose transport activity. We show here that these separate signaling pathways converge on GLUT4 trafficking at separate steps. The rate of exocytosis of GLUT4 was rapidly stimulated by insulin, but insulin treatment did not alter the endocytosis rate. Like insulin stimulation, electrical stimulation of contraction led to a stimulation of GLUT4 exocytosis without any marked change in endocytosis. By contrast, after oxidative metabolism stress, no stimulation of GLUT4 exocytosis occurred; instead, this treatment led to a reduction in GLUT4 endocytosis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | |
Collapse
|
73
|
Hertel J, Struthers H, Horj CB, Hruz PW. A structural basis for the acute effects of HIV protease inhibitors on GLUT4 intrinsic activity. J Biol Chem 2004; 279:55147-52. [PMID: 15496402 PMCID: PMC1403823 DOI: 10.1074/jbc.m410826200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus (HIV) protease inhibitors (PIs) act as reversible noncompetitive inhibitors of GLUT4 with binding affinities in the low micromolar range and are known to contribute to alterations in glucose homeostasis during treatment of HIV infection. As aspartyl protease inhibitors, these compounds all possess a core peptidomimetic structure together with flanking hydrophobic moieties. To determine the molecular basis for GLUT4 inhibition, a family of related oligopeptides containing structural elements found in PIs was screened for their ability to inhibit 2-deoxyglucose transport in primary rat adipocytes. The peptide oxybenzylcarbonyl-His-Phe-Phe-O-ethyl ester (zHFFe) was identified as a potent inhibitor of zero-trans glucose flux with a K(i) of 26 mum. Similar to PIs, transport inhibition by this peptide was acute, noncompetitive, and reversible. Within a Xenopus oocyte expression system, zHFFe acutely and reversibly inhibited GLUT4-mediated glucose uptake, whereas GLUT1 activity was unaffected at concentrations as high as 1 mm. The related photoactivatable peptide zHFF-p-benzoylphenylalanine-[(125)I]Tyr-O-ethyl ester selectively labeled GLUT4 in rat adipocytes and indinavir effectively protected against photolabeling. Furthermore, GLUT4 bound to a peptide affinity column containing the zHFF sequence and was eluted by indinavir. These data establish a structural basis for PI effects on GLUT4 activity and support the direct binding of PIs to the transport protein as the mechanism for acute inhibition of insulin-stimulated glucose uptake.
Collapse
Affiliation(s)
- Johann Hertel
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
74
|
Funaki M, Randhawa P, Janmey PA. Separation of insulin signaling into distinct GLUT4 translocation and activation steps. Mol Cell Biol 2004; 24:7567-77. [PMID: 15314166 PMCID: PMC507006 DOI: 10.1128/mcb.24.17.7567-7577.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
GLUT4 (glucose transporter 4) plays a pivotal role in insulin-induced glucose uptake to maintain normal blood glucose levels. Here, we report that a cell-permeable phosphoinositide-binding peptide induced GLUT4 translocation to the plasma membrane without inhibiting IRAP (insulin-responsive aminopeptidase) endocytosis. However, unlike insulin treatment, the peptide treatment did not increase glucose uptake in 3T3-L1 adipocytes, indicating that GLUT4 translocation and activation are separate events. GLUT4 activation can occur at the plasma membrane, since insulin was able to increase glucose uptake with a shorter time lag when inactive GLUT4 was first translocated to the plasma membrane by pretreating the cells with this peptide. Inhibition of phosphatidylinositol (PI) 3-kinase activity failed to inhibit GLUT4 translocation by the peptide but did inhibit glucose uptake when insulin was added following peptide treatment. Insulin, but not the peptide, stimulated GLUT1 translocation. Surprisingly, the peptide pretreatment inhibited insulin-induced GLUT1 translocation, suggesting that the peptide treatment has both a stimulatory effect on GLUT4 translocation and an inhibitory effect on insulin-induced GLUT1 translocation. These results suggest that GLUT4 requires translocation to the plasma membrane, as well as activation at the plasma membrane, to initiate glucose uptake, and both of these steps normally require PI 3-kinase activation.
Collapse
Affiliation(s)
- Makoto Funaki
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, 1080 Vagelos Research Laboratories, 3340 Smith Walk, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
75
|
Carvalho E, Schellhorn SE, Zabolotny JM, Martin S, Tozzo E, Peroni OD, Houseknecht KL, Mundt A, James DE, Kahn BB. GLUT4 overexpression or deficiency in adipocytes of transgenic mice alters the composition of GLUT4 vesicles and the subcellular localization of GLUT4 and insulin-responsive aminopeptidase. J Biol Chem 2004; 279:21598-605. [PMID: 14985357 DOI: 10.1074/jbc.m312269200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The majority of GLUT4 is sequestered in unique intracellular vesicles in the absence of insulin. Upon insulin stimulation GLUT4 vesicles translocate to, and fuse with, the plasma membrane. To determine the effect of GLUT4 content on the distribution and subcellular trafficking of GLUT4 and other vesicle proteins, adipocytes of adipose-specific, GLUT4-deficient (aP2-GLUT4-/-) mice and adipose-specific, GLUT4-overexpressing (aP2-GLUT4-Tg) mice were studied. GLUT4 amount was reduced by 80-95% in aP2-GLUT4-/- adipocytes and increased approximately 10-fold in aP2-GLUT4-Tg adipocytes compared with controls. Insulin-responsive aminopeptidase (IRAP) protein amount was decreased 35% in aP2-GLUT4-/- adipocytes and increased 45% in aP2-GLUT4-Tg adipocytes. VAMP2 protein was also decreased by 60% in aP2-GLUT4-/- adipocytes and increased 2-fold in aP2-GLUT4-Tg adipocytes. IRAP and VAMP2 mRNA levels were unaffected in aP2-GLUT4-Tg, suggesting that overexpression of GLUT4 affects IRAP and VAMP2 protein stability. The amount and subcellular distribution of syntaxin4, SNAP23, Munc-18c, and GLUT1 were unchanged in either aP2-GLUT4-/- or aP2-GLUT4-Tg adipocytes, but transferrin receptor was partially redistributed to the plasma membrane in aP2-GLUT4-Tg adipocytes. Immunogold electron microscopy revealed that overexpression of GLUT4 in adipocytes increased the number of GLUT4 molecules per vesicle nearly 2-fold and the number of GLUT4 and IRAP-containing vesicles per cell 3-fold. In addition, the proportion of cellular GLUT4 and IRAP at the plasma membrane in unstimulated aP2-GLUT4-Tg adipocytes was increased 4- and 2-fold, respectively, suggesting that sequestration of GLUT4 and IRAP is saturable. Our results show that GLUT4 overexpression or deficiency affects the amount of other GLUT4-vesicle proteins including IRAP and VAMP2 and that GLUT4 sequestration is saturable.
Collapse
Affiliation(s)
- Eugenia Carvalho
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Zierath JR, Kawano Y. The effect of hyperglycaemia on glucose disposal and insulin signal transduction in skeletal muscle. Best Pract Res Clin Endocrinol Metab 2003; 17:385-98. [PMID: 12962692 DOI: 10.1016/s1521-690x(03)00040-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Skeletal muscle is an important tissue for the proper maintenance of glucose homeostasis as it accounts for the major portion of glucose disposal following infusion or ingestion of glucose. Thus, cellular mechanisms regulating glucose uptake in skeletal muscle have a major impact on whole-body glucose homeostasis. Glucose transport into skeletal muscle is a rate-limiting step for glucose utilization under physiological conditions and a site of insulin resistance in patients with non-insulin-dependent diabetes mellitus (NIDDM). Defects in insulin signalling have been coupled to impaired glucose uptake in skeletal muscle from NIDDM patients. Although the exact aetiology is unclear, genetic and environmental (high-energy diets combined with a sedentary lifestyle) factors contribute to the onset of NIDDM. Furthermore, hyperglycaemia is linked with insulin resistance. This chapter will consider mechanisms for glucose disposal in skeletal muscle, potential sites of insulin resistance in skeletal muscle in NIDDM patients and the impact of hyperglycaemia on insulin action.
Collapse
Affiliation(s)
- Juleen R Zierath
- Department of Surgical Sciences, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4, II, SE-171 77 Stockholm, Sweden.
| | | |
Collapse
|
77
|
Al-Khalili L, Cartee GD, Krook A. RNA interference-mediated reduction in GLUT1 inhibits serum-induced glucose transport in primary human skeletal muscle cells. Biochem Biophys Res Commun 2003; 307:127-32. [PMID: 12849991 DOI: 10.1016/s0006-291x(03)01124-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using RNA interference (RNAi), we specifically down-regulate protein expression in differentiated human skeletal myotube cultures. Serum stimulation of myotubes increases glucose uptake. Using a sensitive photolabeling technique, we demonstrate that this increase in glucose uptake is accompanied by increased cell-surface content of glucose transporter (GLUT) 1. Using RNAi, we specifically reduce GLUT1 mRNA and protein expression, leading to inhibition of serum-mediated increase in glucose transport. Thus, we demonstrate the utility of RNAi in a primary human differentiated cell system, and apply this methodology to demonstrate that serum-mediated increase in glucose transport in human skeletal muscle cells is dependent on GLUT1.
Collapse
Affiliation(s)
- Lubna Al-Khalili
- Department of Surgical Science, Karolinska Institute, S-171 77, Stockholm, Sweden
| | | | | |
Collapse
|
78
|
Pereira LO, Francischi RPD, Lancha Jr. AH. Obesidade: hábitos nutricionais, sedentarismo e resistência à insulina. ACTA ACUST UNITED AC 2003. [DOI: 10.1590/s0004-27302003000200003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A obesidade já é considerada uma epidemia mundial independente de condições econômicas e sociais. O risco aumentado de mortalidade e morbidade associado à obesidade tem sido alvo de muitos estudos que tentam elucidar os aspectos da síndrome X como conseqüência da obesidade. Esta síndrome é caracterizada por algumas doenças metabólicas, como resistência à insulina, hipertensão, dislipidemia. Está bem estabelecido que fatores genéticos têm influência neste aumento dos casos de obesidade. No entanto, o aumento significativo nos casos de obesidade nos últimos 20 anos dificilmente poderia ser explicado por mudanças genéticas que tenham ocorrido neste espaço de tempo. Sendo assim, os principais fatores envolvidos no desenvolvimento da obesidade têm sido relacionados com fatores ambientais, como ingestão alimentar inadequada e redução no gasto calórico diário. Na tentativa de desencadear obesidade em animais e permitir o estudo desta doença de maneira mais completa, diversos modelos experimentais de obesidade têm sido desenvolvidos. Ainda que não possam ser considerados exatamente iguais aos modelos de obesidade humana, são de grande valor no estudo dos diversos aspectos que contribuem para este excessivo acúmulo de adiposidade e suas conseqüências.
Collapse
|
79
|
Abstract
This historical review describes the research on the regulation of glucose transport in skeletal muscle conducted in my laboratory and in collaboration with a number of colleagues in other laboratories. This research includes studies of stimulation of glucose transport, GLUT4 translocation, and GLUT4 expression by exercise/muscle contractions, the role of Ca(2+) in these processes, and the interactions between the effects of exercise and insulin. Among the last are the additive effects of insulin and contractions on glucose transport and GLUT4 translocation and the increases in muscle insulin sensitivity and responsiveness induced by exercise.
Collapse
Affiliation(s)
- John O Holloszy
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
80
|
|
81
|
Kandror KV. A long search for Glut4 activation. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:PE5. [PMID: 12582199 DOI: 10.1126/stke.2003.169.pe5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Insulin stimulates glucose transport in its target cells by translocation of the glucose transporter isoform 4 (Glut4) from an intracellular storage pool to the plasma membrane. A large body of evidence indicates that activity of Glut4 at the plasma membrane may vary. Recent findings suggest that p38 MAPK may be involved in regulation of the intrinsic activity of the transporter.
Collapse
|
82
|
Konrad D, Bilan PJ, Nawaz Z, Sweeney G, Niu W, Liu Z, Antonescu CN, Rudich A, Klip A. Need for GLUT4 activation to reach maximum effect of insulin-mediated glucose uptake in brown adipocytes isolated from GLUT4myc-expressing mice. Diabetes 2002; 51:2719-26. [PMID: 12196464 DOI: 10.2337/diabetes.51.9.2719] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is a need to understand whether the amount of GLUT4 at the cell surface determines the extent of glucose uptake in response to insulin. Thus, we created a heterozygous mouse expressing modest levels of myc-tagged GLUT4 (GLUT4myc) in insulin-sensitive tissues under the control of the human GLUT4 promoter. Insulin stimulated 2-deoxyglucose uptake 6.5-fold in isolated brown adipocytes. GLUT1 did not contribute to the insulin response. The stimulation by insulin was completely blocked by wortmannin and partly (55 +/- 2%) by the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. Insulin increased surface exposure of GLUT4myc twofold (determined by fluorescent or enzyme-linked myc immunodetection in intact adipocytes). Such increase was completely blocked by wortmannin but insensitive to SB203580. Insulin increased the kinase activity of the p38 MAPK beta-isoform 1.9-fold without affecting p38-alpha. In summary, the GLUT4myc mouse is a promising model for measuring GLUT4 translocation in intact primary cells. It affords direct comparison between GLUT4 translocation and glucose uptake in similar cell preparations, allowing one to study the regulation of GLUT4 activity. Using this animal model, we found that stimulation of glucose uptake into brown adipocytes involves both GLUT4 translocation and activation.
Collapse
Affiliation(s)
- Daniel Konrad
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Hashimoto M, Yang J, Hatanaka Y, Sadakane Y, Nakagomi K, Holman GD. Improvement in the properties of 3-phenyl-3-trifluoromethyldiazirine based photoreactive bis-glucose probes for GLUT4 following substitution on the phenyl ring. Chem Pharm Bull (Tokyo) 2002; 50:1004-6. [PMID: 12130867 DOI: 10.1248/cpb.50.1004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed two novel 3-phenyl-3-trifluoromethyldiazirinyl bis-glucose derivatives to investigate the properties of the adipocyte glucose transporter GLUT4. These compounds were substituted by electron-withdrawing (iodo and nitro) groups on the aromatic ring of 3-phenyl-3-trifluoromethyldiazirine photophore and were found to be more photosensitive than compounds without such substituents. The compounds were used as inhibitors of insulin-stimulated glucose transport activity in order to assess half-maximal inhibition or relative affinity values for GLUT4. The affinities were found to be 60-130 times higher than the parent compound D-glucose. Because of the increased photo-reactivity and high affinity these compounds will be useful in studies directed at further elucidation of GLUT4 function.
Collapse
|
84
|
Keller SR, Davis AC, Clairmont KB. Mice deficient in the insulin-regulated membrane aminopeptidase show substantial decreases in glucose transporter GLUT4 levels but maintain normal glucose homeostasis. J Biol Chem 2002; 277:17677-86. [PMID: 11884418 DOI: 10.1074/jbc.m202037200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The insulin-regulated aminopeptidase (IRAP) is a zinc-dependent membrane aminopeptidase. It is the homologue of the human placental leucine aminopeptidase. In fat and muscle cells, IRAP colocalizes with the insulin-responsive glucose transporter GLUT4 in intracellular vesicles and redistributes to the cell surface in response to insulin, as GLUT4 does. To address the question of the physiological function of IRAP, we generated mice with a targeted disruption of the IRAP gene (IRAP-/-). Herein, we describe the characterization of these mice with regard to glucose homeostasis and regulation of GLUT4. Fed and fasted blood glucose and insulin levels in the IRAP-/- mice were normal. Whereas IRAP-/- mice responded to glucose administration like control mice, they exhibited an impaired response to insulin. Basal and insulin-stimulated glucose uptake in extensor digitorum longus muscle, and adipocytes isolated from IRAP-/- mice were decreased by 30-60% but were normal for soleus muscle from male IRAP-/- mice. Total GLUT4 levels were diminished by 40-85% in the IRAP-/- mice in the different muscles and in adipocytes. The relative distribution of GLUT4 in subcellular fractions of basal and insulin-stimulated IRAP-/- adipocytes was the same as in control cells. We conclude that IRAP-/- mice maintain normal glucose homeostasis despite decreased glucose uptake into muscle and fat cells. The absence of IRAP does not affect the subcellular distribution of GLUT4 in adipocytes. However, it leads to substantial decreases in GLUT4 expression.
Collapse
Affiliation(s)
- Susanna R Keller
- University of Virginia, Department of Internal Medicine/Division of Endocrinology, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
85
|
Murata H, Hruz PW, Mueckler M. Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations. AIDS 2002; 16:859-63. [PMID: 11919487 DOI: 10.1097/00002030-200204120-00005] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To determine the relative sensitivities of glucose transporter isoforms to the protease inhibitor indinavir and to determine the kinetic mechanism of indinavir-mediated Glut4 isoform inhibition. METHODS The rate of 2-deoxyglucose uptake was measured in Xenopus laevis oocytes heterologously expressing mammalian Glut isoforms. 2-Deoxyglucose uptake was also measured in 3T3-L1 fibroblasts, 3T3-L1 adipocytes, and primary rat adipocytes. RESULTS The sensitivity to inhibition by indinavir among the Glut isoforms as assayed in the X. laevis oocyte system was as follows in decreasing order: Glut4 >> Glut2 > Glut3 > Glut1 approximately Glut8. 2-Deoxyglucose uptake measurements in insulin-stimulated primary rat adipocytes indicated a non-competitive mode of transport inhibition by indinavir under zero-trans conditions with a KI of 15 microM. CONCLUSIONS Indinavir appears to be a relatively selective inhibitor of the Glut4 isoform. As the concentration required to significantly inhibit insulin-stimulated glucose uptake in primary rat adipocytes is well within the physiologic range achieved in therapy, we conclude that direct inhibition of Glut4 contributes to the insulin resistance observed in patients receiving this drug.
Collapse
Affiliation(s)
- Haruhiko Murata
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
86
|
Yang J, Hodel A, Holman GD. Insulin and isoproterenol have opposing roles in the maintenance of cytosol pH and optimal fusion of GLUT4 vesicles with the plasma membrane. J Biol Chem 2002; 277:6559-66. [PMID: 11751852 DOI: 10.1074/jbc.m108610200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Insulin treatment of rat adipocytes increases both cytoplasmic alkalinity and glucose transport activity. Both processes are blocked by the phosphatidylinositol 3-kinase inhibitor wortmannin. Isoproterenol pre-treatment reverses the alkalinizing effects of insulin and leads to attenuation of insulin-stimulated glucose transport activity and exposure of GLUT4 to photolabeling reagents at the cell surface. These effects of isoproterenol are mimicked by acid loading and are reversed by cell-alkalinizing conditions. However, neither isoproterenol nor acid loading alters the total level of GLUT4 at the plasma membrane as revealed by Western blotting of plasma membrane fractions or immunodetection of GLUT4 in plasma membrane lawns. GLUT4 is therefore occluded from participation in glucose transport catalysis by a pH-sensitive process. To examine the kinetics of trafficking that lead to these changes in cell surface GLUT4 occlusion, we have utilized a new biotinylated photolabel, GP15. This reagent has a 70-atom spacer between the biotin and the photolabeling diazirine group, and this allows quenching of the surface signal of biotinylated GLUT4 by extracellular avidin. The rates of GLUT4 internalization are only slightly altered by isoproterenol or acidification, mainly due to reduced recycling over long internalization times. By contrast, insulin stimulation of GLUT4 exocytosis is slowed by isoproterenol or acidification pre-treatments. Biphasic time courses are evident, with an initial burst of exposure at the cell surface followed by a slow phase. It is hypothesized that the burst kinetics are a consequence of a two-phase fusion reaction that is rapid in the presence of insulin but slowed by cytosol acidification.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | |
Collapse
|
87
|
Abstract
Glucose transport, the rate limiting step in glucose metabolism in skeletal muscle, is mediated by insulin-sensitive glucose transporter 4 (GLUT4) and can be activated in skeletal muscle by two separate and distinct signalling pathways: one stimulated by insulin and the second by muscle contractions. Skeletal muscle is the principal tissue responsible for insulin-stimulated glucose disposal and thus the major site of peripheral insulin resistance. Impaired glucose transport in skeletal muscle leads to impaired whole body glucose uptake, and contributes to the pathogenesis of Type 2 diabetes mellitus. A combination of genetic and environmental factors is likely to contribute to the pathogenesis of Type 2 diabetes mellitus; however, the primary defect is still unknown. Intense efforts are underway to define the molecular mechanisms that regulate glucose metabolism in insulin sensitive tissues. This review will present our current understanding of mechanisms regulating glucose transport in skeletal muscle in humans. Elucidation of the pathways involved in the regulation of glucose homeostasis will offer insight into the pathogenesis of insulin resistance and Type 2 diabetes mellitus and may lead to the identification of biochemical entry points for drug intervention to improve glucose homeostasis.
Collapse
Affiliation(s)
- H A Koistinen
- Department of Clinical Physiology, Karolinska Hospital, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
88
|
Klip A, Marette A. Regulation of Glucose Transporters by Insulin and Exercise: Cellular Effects and Implications for Diabetes. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
89
|
Agote M, Goya L, Ramos S, Alvarez C, Gavete ML, Pascual-Leone AM, Escrivá F. Glucose uptake and glucose transporter proteins in skeletal muscle from undernourished rats. Am J Physiol Endocrinol Metab 2001; 281:E1101-9. [PMID: 11595669 DOI: 10.1152/ajpendo.2001.281.5.e1101] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Undernutrition in rats impairs secretion of insulin but maintains glucose normotolerance, because muscle tissue presents an increased insulin-induced glucose uptake. We studied glucose transporters in gastrocnemius muscles from food-restricted and control anesthetized rats under basal and euglycemic hyperinsulinemic conditions. Muscle membranes were prepared by subcellular fractionation in sucrose gradients. Insulin-induced glucose uptake, estimated by a 2-deoxyglucose technique, was increased 4- and 12-fold in control and food-restricted rats, respectively. Muscle insulin receptor was increased, but phosphotyrosine-associated phosphatidylinositol 3-kinase activity stimulated by insulin was lower in undernourished rats, whereas insulin receptor substrate-1 content remained unaltered. The main glucose transporter in the muscle, GLUT-4, was severely reduced albeit more efficiently translocated in response to insulin in food-deprived rats. GLUT-1, GLUT-3, and GLUT-5, minor isoforms in skeletal muscle, were found increased in food-deprived rats. The rise in these minor glucose carriers, as well as the improvement in GLUT-4 recruitment, is probably insufficient to account for the insulin-induced increase in the uptake of glucose in undernourished rats, thereby suggesting possible changes in other steps required for glucose metabolism.
Collapse
Affiliation(s)
- M Agote
- Instituto de Bioquímica, Centro Mixto Consejo Superior Investigaciones Científicas Universidad Complutense de Madrid, Facultad Farmacia, Universidad Complutense, Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
90
|
Dawson K, Aviles-Hernandez A, Cushman SW, Malide D. Insulin-regulated trafficking of dual-labeled glucose transporter 4 in primary rat adipose cells. Biochem Biophys Res Commun 2001; 287:445-54. [PMID: 11554749 DOI: 10.1006/bbrc.2001.5620] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In isolated rat adipose cells, physiologically relevant insulin target cells, glucose transporter 4 (GLUT4) subcellular trafficking can be assessed by transfection of exofacially HA-tagged GLUT4. To simultaneously visualize the transfected GLUT4, we fused GFP with HA-GLUT4. With the resulting chimeras, GFP-HA-GLUT4 and HA-GLUT4-GFP, we were able to visualize for the first time the cell-surface localization, total expression, and intracellular distribution of GLUT4 in a single cell. Confocal microscopy reveals that the intracellular proportions of both GFP-HA-GLUT4 and HA-GLUT4-GFP are properly targeted to the insulin-responsive aminopeptidase-positive vesicles. Dynamic studies demonstrate close similarities in the trafficking kinetics between the two constructs and with native GLUT4. However, while the basal subcellular distribution of HA-GLUT4-GFP and the response to insulin are indistinguishable from those of HA-GLUT4 and endogenous GLUT4, most of the GFP-HA-GLUT4 is targeted to the plasma membrane with little further insulin response. Thus, HA-GLUT4-GFP will be useful to study GLUT4 trafficking in vivo while GFP on the N-terminus interferes with intracellular retention.
Collapse
Affiliation(s)
- K Dawson
- Experimental Diabetes, Metabolism, and Nutrition Section, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, Maryland 20892-0842, USA
| | | | | | | |
Collapse
|
91
|
Bogan JS, McKee AE, Lodish HF. Insulin-responsive compartments containing GLUT4 in 3T3-L1 and CHO cells: regulation by amino acid concentrations. Mol Cell Biol 2001; 21:4785-806. [PMID: 11416153 PMCID: PMC87167 DOI: 10.1128/mcb.21.14.4785-4806.2001] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2000] [Accepted: 04/17/2001] [Indexed: 01/14/2023] Open
Abstract
In fat and muscle, insulin stimulates glucose uptake by rapidly mobilizing the GLUT4 glucose transporter from a specialized intracellular compartment to the plasma membrane. We describe a method to quantify the relative proportion of GLUT4 at the plasma membrane, using flow cytometry to measure a ratio of fluorescence intensities corresponding to the cell surface and total amounts of a tagged GLUT4 reporter in individual living cells. Using this assay, we demonstrate that both 3T3-L1 and CHO cells contain intracellular compartments from which GLUT4 is rapidly mobilized by insulin and that the initial magnitude and kinetics of redistribution to the plasma membrane are similar in these two cell types when they are cultured identically. Targeting of GLUT4 to a highly insulin-responsive compartment in CHO cells is modulated by culture conditions. In particular, we find that amino acids regulate distribution of GLUT4 to this kinetically defined compartment through a rapamycin-sensitive pathway. Amino acids also modulate the magnitude of insulin-stimulated translocation in 3T3-L1 adipocytes. Our results indicate a novel link between glucose and amino acid metabolism.
Collapse
Affiliation(s)
- J S Bogan
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
92
|
Mueckler M. Insulin resistance and the disruption of Glut4 trafficking in skeletal muscle. J Clin Invest 2001; 107:1211-3. [PMID: 11375407 PMCID: PMC209305 DOI: 10.1172/jci13020] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- M Mueckler
- Department of Cell Biology and Physiology, Washington University School of Medicine, Box 8228, St. Louis, Missouri 63110, USA.
| |
Collapse
|
93
|
Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, Macara IG, Pessin JE, Saltiel AR. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 2001; 410:944-8. [PMID: 11309621 DOI: 10.1038/35073608] [Citation(s) in RCA: 428] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The stimulation of glucose uptake by insulin in muscle and adipose tissue requires translocation of the GLUT4 glucose transporter protein from intracellular storage sites to the cell surface. Although the cellular dynamics of GLUT4 vesicle trafficking are well described, the signalling pathways that link the insulin receptor to GLUT4 translocation remain poorly understood. Activation of phosphatidylinositol-3-OH kinase (PI(3)K) is required for this trafficking event, but it is not sufficient to produce GLUT4 translocation. We previously described a pathway involving the insulin-stimulated tyrosine phosphorylation of Cbl, which is recruited to the insulin receptor by the adapter protein CAP. On phosphorylation, Cbl is translocated to lipid rafts. Blocking this step completely inhibits the stimulation of GLUT4 translocation by insulin. Here we show that phosphorylated Cbl recruits the CrkII-C3G complex to lipid rafts, where C3G specifically activates the small GTP-binding protein TC10. This process is independent of PI(3)K, but requires the translocation of Cbl, Crk and C3G to the lipid raft. The activation of TC10 is essential for insulin-stimulated glucose uptake and GLUT4 translocation. The TC10 pathway functions in parallel with PI(3)K to stimulate fully GLUT4 translocation in response to insulin.
Collapse
Affiliation(s)
- S H Chiang
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Olson AL, Trumbly AR, Gibson GV. Insulin-mediated GLUT4 translocation is dependent on the microtubule network. J Biol Chem 2001; 276:10706-14. [PMID: 11278355 DOI: 10.1074/jbc.m007610200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The GLUT4 facilitative glucose transporter is recruited to the plasma membrane by insulin. This process depends primarily on the exocytosis of a specialized pool of vesicles containing GLUT4 in their membranes. The mechanism of GLUT4 vesicle exocytosis in response to insulin is not understood. To determine whether GLUT4 exocytosis is dependent on intact microtubule network, we measured insulin-mediated GLUT4 exocytosis in 3T3-L1 adipocytes in which the microtubule network was depolymerized by pretreatment with nocodazole. Insulin-mediated GLUT4 translocation was inhibited by more than 80% in nocodazole-treated cells. Phosphorylation of insulin receptor substrate 1 (IRS-1), activation of IRS-1 associated phosphatidylinositide 3-kinase, and phosphorylation of protein kinase B/Akt-1 were not inhibited by nocodazole treatment indicating that the microtubule network was not required for proximal insulin signaling. An intact microtubule network is specifically required for insulin-mediated GLUT4 translocation since nocodazole treatment did not affect insulin-mediated GLUT1 translocation or adipsin secretion. By using in vitro microtubule binding, we demonstrated that both GLUT4 vesicles and IRS-1 bind specifically to microtubules, implicating microtubules in both insulin signaling and GLUT4 translocation. Vesicle binding to microtubules was not mediated through direct binding of GLUT4 or insulin-responsive aminopeptidase to microtubules. A model microtubule-dependent translocation of GLUT4 is proposed.
Collapse
Affiliation(s)
- A L Olson
- Department of Biochemistry and Molecular Biology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.
| | | | | |
Collapse
|
95
|
Hashimoto M, Hatanaka Y, Yang J, Dhesi J, Holman GD. Synthesis of biotinylated bis(D-glucose) derivatives for glucose transporter photoaffinity labelling. Carbohydr Res 2001; 331:119-27. [PMID: 11322726 DOI: 10.1016/s0008-6215(01)00025-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New diazirine based bis-glucose derivatives for tagging glucose transporters have been synthesised. These included two biotinylated compounds linked either by an aminocaproate or by a cleavable dithiol link. These compounds have been derivatised via a key skeleton compound that can be easily used for introduction of additional tags. Studies on the erythrocyte glucose transporter (GLUT1) and the insulin-stimulated adipose cell transporter (GLUT4) have revealed the biotinylated photoreactive bis-glucose compounds are effective labelling reagents.
Collapse
Affiliation(s)
- M Hashimoto
- Department of Biology and Biochemistry, University of Bath, Claverton Down, UK
| | | | | | | | | |
Collapse
|
96
|
Yu ZW, Burén J, Enerbäck S, Nilsson E, Samuelsson L, Eriksson JW. Insulin can enhance GLUT4 gene expression in 3T3-F442A cells and this effect is mimicked by vanadate but counteracted by cAMP and high glucose--potential implications for insulin resistance. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1535:174-85. [PMID: 11342006 DOI: 10.1016/s0925-4439(00)00097-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED It is well-established that high levels of cAMP or glucose can produce insulin resistance. The aim of this study was to characterize the interaction between these agents and insulin with respect to adipose tissue/muscle glucose transporter isoform (glucose transporter 4, GLUT4) gene regulation in cultured 3T3-F442A adipocytes and to further elucidate the GLUT4-related mechanisms in insulin resistance. Insulin (10(4) microU/ml) treatment for 16 h clearly increased GLUT4 mRNA level in cells cultured in medium containing 5.6 mM glucose but not in cells cultured in medium with high glucose (25 mM). 8-Bromo-cAMP (1 or 4 mM) or N(6)-monobutyryl cAMP, a hydrolyzable and a non-hydrolyzable cAMP analog, respectively, markedly decreased the GLUT4 mRNA level irrespective of glucose concentrations. In addition, these cAMP analogs also inhibited the upregulating effect of insulin on GLUT4 mRNA level. Interestingly, the tyrosine phosphatase inhibitor vanadate (1-50 microM) clearly increased GLUT4 mRNA level in a time- and concentration-dependent manner. Furthermore, cAMP-induced inhibition of the insulin effect was also prevented by vanadate. In parallel to the effects on GLUT4 gene expression, both insulin, vanadate and cAMP produced similar changes in cellular GLUT4 protein content and cAMP impaired the effect of insulin to stimulate (14)C-deoxyglucose uptake. In contrast, insulin, vanadate or cAMP did not alter insulin receptor (IR) mRNA or the cellular content of IR protein. IN CONCLUSION (1) Both insulin and vanadate elicit a stimulating effect on GLUT4 gene expression in 3T3-F442A cells, but a prerequisite is that the surrounding glucose concentration is low. (2) Cyclic AMP impairs the insulin effect on GLUT4 gene expression, but this is prevented by vanadate, probably by enhancing the tyrosine phosphorylation of signalling peptides and/or transcription factors. (3) IR gene and protein expression is not altered by insulin, vanadate or cAMP in this cell type. (4) The changes in GLUT4 gene expression produced by cAMP or vanadate are accompanied by similar alterations in GLUT4 protein expression and glucose uptake, suggesting a role of GLUT4 gene expression for the long-term regulation of cellular insulin action on glucose transport.
Collapse
Affiliation(s)
- Z W Yu
- Department of Medicine, Umeå University Hospital, Sweden
| | | | | | | | | | | |
Collapse
|
97
|
Hashimoto M, Yang J, Holman GD. Cell-surface recognition of biotinylated membrane proteins requires very long spacer arms: an example from glucose-transporter probes. Chembiochem 2001; 2:52-9. [PMID: 11828427 DOI: 10.1002/1439-7633(20010105)2:1<52::aid-cbic52>3.0.co;2-f] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glucose transporters (GLUTs) can be photoaffinity labelled by (diazirinetrifluoroethyl)benzoyl-substituted glucose derivatives and the adduct can be recognised, after detergent solubilisation of membranes, by using streptavidin-based detection systems. However, in intact cells recognition of photolabelled GLUTs by avidin and anti-biotin antibodies only occurs if the bridge between the photoreactive and the biotin moieties has a minimum of 60--70 spacer atoms. We show that a suitably long bridge can be synthesised with a combination of polyethylene glycol and tartarate groups and that introduction of these spacers generates hydrophilic products that can be cleaved with periodate. Introduction of the very long spacers does not appreciably reduce the affinity of interaction of the probes with the transport system.
Collapse
Affiliation(s)
- M Hashimoto
- Department of Biology and Biochemistry, University of Bath, Bath BA27AY, UK
| | | | | |
Collapse
|
98
|
Schulingkamp RJ, Pagano TC, Hung D, Raffa RB. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 2000; 24:855-72. [PMID: 11118610 DOI: 10.1016/s0149-7634(00)00040-3] [Citation(s) in RCA: 322] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Insulin receptors are known to be located on nerve cells in mammalian brain. The binding of insulin to dimerized receptors stimulates specialized transporter proteins that mediate the facilitated influx of glucose. However, neurons possess other mechanisms by which they obtain glucose, including transporters that are not insulin-dependent. Further, insulin receptors are unevenly distributed throughout the brain (with particularly high density in choroid plexus, olfactory bulb and regions of the striatum and cerebral cortex). Such factors imply that insulin, and insulin receptors, might have functions within the central nervous system in addition to those related to the supply of glucose. Indeed, invertebrate insulin-related peptides are synthesized in brain and serve as neurotransmitters or neuromodulators. The present review summarizes the structure, distribution and function of mammalian brain insulin receptors and the possible implications for central nervous system disorders. It is proposed that this is an under-studied subject of investigation.
Collapse
Affiliation(s)
- R J Schulingkamp
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
99
|
Malide D, Ramm G, Cushman SW, Slot JW. Immunoelectron microscopic evidence that GLUT4 translocation explains the stimulation of glucose transport in isolated rat white adipose cells. J Cell Sci 2000; 113 Pt 23:4203-10. [PMID: 11069765 DOI: 10.1242/jcs.113.23.4203] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used an improved cryosectioning technique in combination with quantitative immunoelectron microscopy to study GLUT4 compartments in isolated rat white adipose cells. We provide clear evidence that in unstimulated cells most of the GLUT4 localizes intracellularly to tubulovesicular structures clustered near small stacks of Golgi and endosomes, or scattered throughout the cytoplasm. This localization is entirely consistent with that originally described in brown adipose tissue, strongly suggesting that the GLUT4 compartments in white and brown adipose cells are morphologically similar. Furthermore, insulin induces parallel increases (with similar magnitudes) in glucose transport activity, approximately 16-fold, and cell-surface GLUT4, approximately 12-fold. Concomitantly, insulin decreases GLUT4 equally from all intracellular locations, in agreement with the concept that the entire cellular GLUT4 pool contributes to insulin-stimulated exocytosis. In the insulin-stimulated state, GLUT4 molecules are not randomly distributed on the plasma membrane, but neither are they enriched in caveolae. Importantly, the total number of GLUT4 C-terminal epitopes detected by the immuno-gold method is not significantly different between basal and insulin-stimulated cells, thus arguing directly against a reported insulin-induced unmasking effect. These results provide strong morphological evidence (1) that GLUT4 compartments are similar in all insulin-sensitive cells and (2) for the concept that GLUT4 translocation almost fully accounts for the increase in glucose transport in response to insulin.
Collapse
Affiliation(s)
- D Malide
- Experimental Diabetes, Metabolism and Nutrition Section, Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
100
|
Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M. Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem 2000; 275:28246-53. [PMID: 10862609 DOI: 10.1074/jbc.m000988200] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dehydroascorbic acid (DHA), the first stable oxidation product of vitamin C, was transported by GLUT1 and GLUT3 in Xenopus laevis oocytes with transport rates similar to that of 2-deoxyglucose (2-DG), but due to inherent difficulties with GLUT4 expression in oocytes it was uncertain whether GLUT4 transported DHA (Rumsey, S. C. , Kwon, O., Xu, G. W., Burant, C. F., Simpson, I., and Levine, M. (1997) J. Biol. Chem. 272, 18982-18989). We therefore studied DHA and 2-DG transport in rat adipocytes, which express GLUT4. Without insulin, rat adipocytes transported 2-DG 2-3-fold faster than DHA. Preincubation with insulin (0.67 micrometer) increased transport of each substrate similarly: 7-10-fold for 2-DG and 6-8-fold for DHA. Because intracellular reduction of DHA in adipocytes was complete before and after insulin stimulation, increased transport of DHA was not explained by increased internal reduction of DHA to ascorbate. To determine apparent transport kinetics of GLUT4 for DHA, GLUT4 expression in Xenopus oocytes was reexamined. Preincubation of oocytes for >4 h with insulin (1 micrometer) augmented GLUT4 transport of 2-DG and DHA by up to 5-fold. Transport of both substrates was inhibited by cytochalasin B and displayed saturable kinetics. GLUT4 had a higher apparent transport affinity (K(m) of 0.98 versus 5.2 mm) and lower maximal transport rate (V(max) of 66 versus 880 pmol/oocyte/10 min) for DHA compared with 2-DG. The lower transport rate for DHA could not be explained by binding differences at the outer membrane face, as shown by inhibition with ethylidene glucose, or by transporter trans-activation and therefore was probably due to substrate-specific differences in transporter/substrate translocation or release. These novel data indicate that the insulin-sensitive transporter GLUT4 transports DHA in both rat adipocytes and Xenopus oocytes. Alterations of this mechanism in diabetes could have clinical implications for ascorbate utilization.
Collapse
Affiliation(s)
- S C Rumsey
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1372, USA
| | | | | | | | | | | |
Collapse
|