51
|
Sun W, Yang Z, Lin H, Liu M, Zhao C, Hou X, Hu Z, Cui B. Improvement in affinity and thermostability of a fully human antibody against interleukin-17A by yeast-display technology and CDR grafting. Acta Pharm Sin B 2019; 9:960-972. [PMID: 31649846 PMCID: PMC6804450 DOI: 10.1016/j.apsb.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Monoclonal antibodies (mAbs) are widely used in many fields due to their high specificity and ability to recognize a broad range of antigens. IL-17A can induce a rapid inflammatory response both alone and synergistically with other proinflammatory cytokines. Accumulating evidence suggests that therapeutic intervention of IL-17A signaling offers an attractive treatment option for autoimmune diseases and cancer. Here, we present a combinatorial approach for optimizing the affinity and thermostability of a novel anti-hIL-17A antibody. From a large naïve phage-displayed library, we isolated the anti-IL-17A mAb 7H9 that can neutralize the effects of recombinant human IL-17A. However, the modest neutralization potency and poor thermostability limit its therapeutic applications. In vitro affinity optimization was then used to generate 8D3 by using yeast-displayed random mutagenesis libraries. This resulted in four key amino acid changes and provided an approximately 15-fold potency increase in a cell-based neutralization assay. Complementarity-determining regions (CDRs) of 8D3 were further grafted onto the stable framework of the huFv 4D5 to improve thermostability. The resulting hybrid antibody 9NT/S has superior stabilization and affinities beyond its original antibody. Human fibrosarcoma cell-based assays and in vivo analyses in mice indicated that the anti-IL-17A antibody 9NT/S efficiently inhibited the secretion of IL-17A-induced proinflammatory cytokines. Therefore, this lead anti-IL-17A mAb might be used as a potential best-in-class candidate for treating IL-17A related diseases.
Collapse
Key Words
- AIN457, secukinumab
- Antibody engineering
- Antibody maturation
- CDR grafting
- CDRs, complementarity-determining regions
- FACS, fluorescent-activated cell sorting
- HC, heavy chain
- HRP, horse radish peroxidase
- KD, dissociation constant
- Koff, the dissociation rate constant
- Kon, the association rate constant
- LC, light chain
- LY2439821, ixekizumab
- MACS, magnetic-activated cell sorting
- MFI, mean fluorescence intensity
- Monoclonal antibody
- Phage display
- VH, the variable regions of heavy chains
- VL, the variable regions of light chains
- YSD, yeast surface display
- Yeast surface display
- mAbs, monoclonal antibodies
- scFv, single-chain variable fragment
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bing Cui
- Corresponding author. Tel./fax: +86 10 83165034.
| |
Collapse
|
52
|
Lua WH, Su CTT, Yeo JY, Poh JJ, Ling WL, Phua SX, Gan SKE. Role of the IgE variable heavy chain in FcεRIα and superantigen binding in allergy and immunotherapy. J Allergy Clin Immunol 2019; 144:514-523.e5. [DOI: 10.1016/j.jaci.2019.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 01/17/2023]
|
53
|
Germinality does not necessarily define mAb expression and thermal stability. Appl Microbiol Biotechnol 2019; 103:7505-7518. [PMID: 31350616 PMCID: PMC6719414 DOI: 10.1007/s00253-019-09998-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 01/09/2023]
Abstract
The production potential of recombinant monoclonal antibody (mAb) expressing cell lines depends, among other factors, on the intrinsic antibody structure determined by the amino acid sequence. In this study, we investigated the influence of somatic mutations in the V(D)J sequence of four individual, mature model mAbs on the expression potential. Therefore, we defined four couples, each consisting of one naturally occurring mAb (2G12, Ustekinumab, 4B3, and 2F5) and the corresponding germline-derived cognate mAb (353/11, 554/12, 136/63, and 236/14). For all eight mAb variants, recombinant Chinese hamster ovary (CHO) cell lines were developed with mAbs expressed from a defined chromosomal locus. The presented workflow investigates critical parameters including productivity, intra- and extracellular product profile, XBP1 splicing, thermal stability, and in silico hydrophobicity. Significant differences in productivity were even observed between the germline-derived mAbs which did not undergo somatic mutagenesis. Accordingly, back-to-germline mutations of mature mAbs are not necessarily reflecting improved expression and stability but indicate opportunities and limits of mAb engineering. From our studies, we conclude that germinalization represents a potential to improve mAb properties depending on the antibody’s germline family, highlighting the fact that mAbs should be treated individually.
Collapse
|
54
|
Benschop RJ, Chow CK, Tian Y, Nelson J, Barmettler B, Atwell S, Clawson D, Chai Q, Jones B, Fitchett J, Torgerson S, Ji Y, Bina H, Hu N, Ghanem M, Manetta J, Wroblewski VJ, Lu J, Allan BW. Development of tibulizumab, a tetravalent bispecific antibody targeting BAFF and IL-17A for the treatment of autoimmune disease. MAbs 2019; 11:1175-1190. [PMID: 31181988 PMCID: PMC6748573 DOI: 10.1080/19420862.2019.1624463] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 12/23/2022] Open
Abstract
We describe a bispecific dual-antagonist antibody against human B cell activating factor (BAFF) and interleukin 17A (IL-17). An anti-IL-17 single-chain variable fragment (scFv) derived from ixekizumab (Taltz®) was fused via a glycine-rich linker to anti-BAFF tabalumab. The IgG-scFv bound both BAFF and IL-17 simultaneously with identical stoichiometry as the parental mAbs. Stability studies of the initial IgG-scFv revealed chemical degradation and aggregation not observed in either parental antibody. The anti-IL-17 scFv showed a high melting temperature (Tm) by differential scanning calorimetry (73.1°C), but also concentration-dependent, initially reversible, protein self-association. To engineer scFv stability, three parallel approaches were taken: labile complementary-determining region (CDR) residues were replaced by stable, affinity-neutral amino acids, CDR charge distribution was balanced, and a H44-L100 interface disulfide bond was introduced. The Tm of the disulfide-stabilized scFv was largely unperturbed, yet it remained monodispersed at high protein concentration. Fluorescent dye binding titrations indicated reduced solvent exposure of hydrophobic residues and decreased proteolytic susceptibility was observed, both indicative of enhanced conformational stability. Superimposition of the H44-L100 scFv (PDB id: 6NOU) and ixekizumab antigen-binding fragment (PDB id: 6NOV) crystal structures revealed nearly identical orientation of the frameworks and CDR loops. The stabilized bispecific molecule LY3090106 (tibulizumab) potently antagonized both BAFF and IL-17 in cell-based and in vivo mouse models. In cynomolgus monkey, it suppressed B cell development and survival and remained functionally intact in circulation, with a prolonged half-life. In summary, we engineered a potent bispecific antibody targeting two key cytokines involved in human autoimmunity amenable to clinical development.
Collapse
Affiliation(s)
- Robert J. Benschop
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - Chi-Kin Chow
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - Yu Tian
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - James Nelson
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, USA
| | - Barbra Barmettler
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, USA
| | - Shane Atwell
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, USA
| | - David Clawson
- Discovery Chemistry Research and Technologies, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - Qing Chai
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, USA
| | - Bryan Jones
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, USA
| | - Jon Fitchett
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, USA
| | - Stacy Torgerson
- Department of Drug Disposition Development/Commercialization; Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | | | - Holly Bina
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - Ningjie Hu
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | | | - Joseph Manetta
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - Victor J. Wroblewski
- Department of Drug Disposition Development/Commercialization; Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - Jirong Lu
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - Barrett W. Allan
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, USA
| |
Collapse
|
55
|
Kaleli NE, Karadag M, Kalyoncu S. Phage display derived therapeutic antibodies have enriched aliphatic content: Insights for developability issues. Proteins 2019; 87:607-618. [DOI: 10.1002/prot.25685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Nazlı Eda Kaleli
- Izmir Biomedicine and Genome Center Izmir Turkey
- Izmir Biomedicine and Genome Institute, Dokuz Eylül University Izmir Turkey
| | - Murat Karadag
- Izmir Biomedicine and Genome Center Izmir Turkey
- Izmir Biomedicine and Genome Institute, Dokuz Eylül University Izmir Turkey
| | | |
Collapse
|
56
|
Clarke SC, Ma B, Trinklein ND, Schellenberger U, Osborn MJ, Ouisse LH, Boudreau A, Davison LM, Harris KE, Ugamraj HS, Balasubramani A, Dang KH, Jorgensen B, Ogana HAN, Pham DT, Pratap PP, Sankaran P, Anegon I, van Schooten WC, Brüggemann M, Buelow R, Force Aldred S. Multispecific Antibody Development Platform Based on Human Heavy Chain Antibodies. Front Immunol 2019; 9:3037. [PMID: 30666250 PMCID: PMC6330309 DOI: 10.3389/fimmu.2018.03037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/07/2018] [Indexed: 01/10/2023] Open
Abstract
Heavy chain-only antibodies (HCAbs) do not associate with light chains and their VH regions are functional as single domains, forming the smallest active antibody fragment. These VH regions are ideal building blocks for a variety of antibody-based biologics because they tolerate fusion to other molecules and may also be attached in series to construct multispecific antibodies without the need for protein engineering to ensure proper heavy and light chain pairing. Production of human HCAbs has been impeded by the fact that natural human VH regions require light chain association and display poor biophysical characteristics when expressed in the absence of light chains. Here, we present an innovative platform for the rapid development of diverse sets of human HCAbs that have been selected in vivo. Our unique approach combines antibody repertoire analysis with immunization of transgenic rats, called UniRats, that produce chimeric HCAbs with fully human VH domains in response to an antigen challenge. UniRats express HCAbs from large transgenic loci representing the entire productive human heavy chain V(D)J repertoire, mount robust immune responses to a wide array of antigens, exhibit diverse V gene usage and generate large panels of stable, high affinity, antigen-specific molecules.
Collapse
Affiliation(s)
| | - Biao Ma
- Teneobio, Inc., Menlo Park, CA, United States
| | | | | | | | - Laure-Hélène Ouisse
- Centre de Recherche en Transplantation et Immunologie, Inserm UMR 1064, Université de Nantes, Nantes, France
| | | | | | | | | | | | | | | | | | - Duy T Pham
- Teneobio, Inc., Menlo Park, CA, United States
| | | | | | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie, Inserm UMR 1064, Université de Nantes, Nantes, France
| | | | | | | | | |
Collapse
|
57
|
Kuramochi T, Igawa T, Tsunoda H, Hattori K. Humanization and Simultaneous Optimization of Monoclonal Antibody. Methods Mol Biol 2019; 1904:213-230. [PMID: 30539472 DOI: 10.1007/978-1-4939-8958-4_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Antibody humanization is an essential technology for reducing the potential risk of immunogenicity associated with animal-derived antibodies and has been applied to a majority of the therapeutic antibodies on the market. For developing an antibody molecule as a pharmaceutical at the current biotechnology level, however, other properties also have to be considered in parallel with humanization in antibody generation and optimization. This section describes the critical properties of therapeutic antibodies that should be sufficiently qualified, including immunogenicity, binding affinity, physicochemical stability, expression in host cells and pharmacokinetics, and the basic methodologies of antibody engineering involved. By simultaneously optimizing the antibody molecule in light of these properties, it should prove possible to shorten the research and development period necessary to identify a highly qualified clinical candidate and consequently accelerate the start of the clinical trial.
Collapse
Affiliation(s)
| | - Tomoyuki Igawa
- Chugai Pharmabody Research Pte. Ltd., Singapore, Singapore
| | - Hiroyuki Tsunoda
- Research Division, Chugai Pharmaceutical, Kamakura, Kanagawa, Japan
| | - Kunihiro Hattori
- Research Division, Chugai Pharmaceutical, Kamakura, Kanagawa, Japan
| |
Collapse
|
58
|
Hamidi SR, Safdari Y, Sheikh Arabi M. Test bacterial inclusion body for activity prior to start denaturing and refolding processes to obtain active eukaryotic proteins. Protein Expr Purif 2018; 154:147-151. [PMID: 30389592 DOI: 10.1016/j.pep.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 02/05/2023]
Abstract
One of a major drawbacks correlated with expressing antibody fragments in bacterial cells is insolubility, which is often regarded as an obstacle in obtaining active molecules. Recombinant proteins aggregated as inclusion bodies within bacterial cells are thought to be unfolded or misfolded, and therefore inactive. So, denaturing and refolding strategies, which are laborious and sometime inefficient, are used to obtain correctly-folded active proteins. In the current study, we show that large quantities of correctly folded and completely active scFv molecules are there in bacterial inclusion bodies; they only need to be isolated from inclusion bodies.
Collapse
Affiliation(s)
- Seyedeh Roghayeh Hamidi
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yaghoub Safdari
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mehdi Sheikh Arabi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
59
|
Wijesuriya SD, Pongo E, Tomic M, Zhang F, Garcia-Rodriquez C, Conrad F, Farr-Jones S, Marks JD, Horwitz AH. Antibody engineering to improve manufacturability. Protein Expr Purif 2018; 149:75-83. [DOI: 10.1016/j.pep.2018.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
|
60
|
Schaefer JV, Sedlák E, Kast F, Nemergut M, Plückthun A. Modification of the kinetic stability of immunoglobulin G by solvent additives. MAbs 2018. [PMID: 29537925 DOI: 10.1080/19420862.2018.1450126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Biophysical properties of antibody-based biopharmaceuticals are a critical part of their release criteria. In this context, finding the appropriate formulation is equally important as optimizing their intrinsic biophysical properties through protein engineering, and both are mutually dependent. Most previous studies have empirically tested the impact of additives on measures of colloidal stability, while mechanistic aspects have usually been limited to only the thermodynamic stability of the protein. Here we emphasize the kinetic impact of additives on the irreversible denaturation steps of immunoglobulins G (IgG) and their antigen-binding fragments (Fabs), as these are the key committed steps preceding aggregation, and thus especially informative in elucidating the molecular parameters of activity loss. We examined the effects of ten additives on the conformational kinetic stability by differential scanning calorimetry (DSC), using a recently developed three-step model containing both reversible and irreversible steps. The data highlight and help to rationalize different effects of the additives on the properties of full-length IgG, analyzed by onset and aggregation temperatures as well as by kinetic parameters derived from our model. Our results further help to explain the observation that stabilizing mutations in the antigen-binding fragment (Fab) significantly affect the kinetic parameters of its thermal denaturation, but not the aggregation properties of the full-length IgGs. We show that the proper analysis of DSC scans for full-length IgGs and their corresponding Fabs not only helps in ranking their stability in different formats and formulations, but provides important mechanistic insights for improving the conformational kinetic stability of IgGs.
Collapse
Affiliation(s)
- Jonas V Schaefer
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| | - Erik Sedlák
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland.,b Center for Interdisciplinary Biosciences, P.J. Šafárik University , Jesenná 5, Košice , Slovakia
| | - Florian Kast
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| | - Michal Nemergut
- c Department of Biophysics , P.J. Šafárik University , Jesenná 5, Košice , Slovakia
| | - Andreas Plückthun
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| |
Collapse
|
61
|
Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies. Proc Natl Acad Sci U S A 2018; 115:2836-2841. [PMID: 29476010 PMCID: PMC5856557 DOI: 10.1073/pnas.1721899115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Next-generation sequencing (NGS) has allowed the comprehensive study of the genome and transcriptome. However, a similarly broad, highly multiplexed, and inexpensive method for proteomics using NGS remains elusive. Here, we describe a phage display-based method using preselected antibodies that are genetically encoded and capable of simultaneous profiling of hundreds of cell-surface targets on cells in culture or singly at low cost and without the need for chemical conjugation to purified antibodies. We use the method to identify cell-surface proteins that change in cancer cells, some of which are coordinately regulated and could lead to new biomarkers and cancer targets. Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNGS). Using 144 preselected antibodies displayed on filamentous phage (Fab-phage) against 44 receptor targets, we assess changes in B cell surface proteins after the development of drug resistance in a patient with acute lymphoblastic leukemia (ALL) and in adaptation to oncogene expression in a Myc-inducible Burkitt lymphoma model. We further show PhaNGS can be applied at the single-cell level. Our results reveal that a common set of proteins including FLT3, NCR3LG1, and ROR1 dominate the response to similar oncogenic perturbations in B cells. Linking high-affinity, selective, genetically encoded binders to NGS enables direct and highly multiplexed protein detection, comparable to RNA-sequencing for mRNA. PhaNGS has the potential to profile a substantial fraction of the surface proteome simultaneously and inexpensively to enable more accurate and complete classification of cell states.
Collapse
|
62
|
Safdari Y. Engineering of single chain antibodies for solubility. Int Immunopharmacol 2018; 55:86-97. [DOI: 10.1016/j.intimp.2017.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/16/2017] [Accepted: 11/30/2017] [Indexed: 11/30/2022]
|
63
|
Decoding Selection Bias Imparted by Unpaired Cysteines: a Tug of War Between Expression and Affinity. Appl Biochem Biotechnol 2018; 185:778-785. [PMID: 29330770 DOI: 10.1007/s12010-017-2691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/29/2017] [Indexed: 11/27/2022]
Abstract
In a recombinant antibody scFv format, the presence of an unpaired cysteine (Cys) is implicated in reduced soluble expression and inefficient presentation in phage display. Compared to other species, antibodies derived from rabbits are more likely to contain this unpaired Cys residue at position 80 (Cys80), when generated in a scFv format. In a screening campaign to isolate rabbit scFv against cardiac troponin I (cTnI), it was found that, a large proportion of isolated cTnI-specific clones contained unpaired Cys80. To analyze the factors that led to the selection of anti-cTnI Cys80 scFv, after five rounds of biopanning, the biopanning experiments were repeated with a Cys80 scFv (MG4Cys), its alanine variant (MG4Ala), and an irrelevant high expressing scFv control. It was found that the selection and subsequent enrichment of MG4Cys scFv was ousted by the superior expressing variant MG4Ala, indicating that the Cys80 scFv was selected primarily due to its affinity. It is evident that phage-based selection is influenced by specific sequence characteristics affecting the expression as well as the binding specificity and this needs to be taken into account for selection of optimal antibody derivatives.
Collapse
|
64
|
Könning D, Hinz S, Grzeschik J, Schröter C, Krah S, Zielonka S, Kolmar H. Construction of Histidine-Enriched Shark IgNAR Variable Domain Antibody Libraries for the Isolation of pH-Sensitive vNAR Fragments. Methods Mol Biol 2018; 1827:109-127. [PMID: 30196494 DOI: 10.1007/978-1-4939-8648-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The adaptive immune system of sharks comprises a heavy chain-only antibody isotype, referred to as immunoglobulin new antigen receptor (IgNAR). Antigen binding in case of IgNAR antibodies is mediated by a single variable domain (vNAR). Due to their inherent beneficial biophysical properties, such as small size and high thermal stability combined with a high specificity and affinity to their target antigens, vNAR domains emerged as promising tools for biotechnological and biomedical applications. Herein, we present detailed protocols for the engineering of pH-sensitivity into IgNAR V domains by constructing histidine-enriched and CDR3-diversified semisynthetic antibody libraries which can then be screened upon using yeast surface display. Protonation or deprotonation of incorporated histidine residues at different pH values results in structural transitions caused by altered electrostatic interactions. These interactions account for an altered binding behavior toward the target antigen. In the following protocol, we describe the generation of a semisynthetic vNAR master library that comprises two histidine residues on average in the 12-residue CDR3 loop. Moreover, once a pH-dependent vNAR population toward the target antigen is identified, this population can further be optimized in terms of affinity and pH sensitivity upon conducting a CDR1-mediated affinity maturation.
Collapse
Affiliation(s)
- Doreen Könning
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany
| | - Steffen Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Julius Grzeschik
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Christian Schröter
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany
| | - Simon Krah
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
65
|
Grzeschik J, Könning D, Hinz SC, Krah S, Schröter C, Empting M, Kolmar H, Zielonka S. Generation of Semi-Synthetic Shark IgNAR Single-Domain Antibody Libraries. Methods Mol Biol 2018; 1701:147-167. [PMID: 29116504 DOI: 10.1007/978-1-4939-7447-4_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Besides classical antibodies with the composition of heavy and light chains, sharks produce a unique heavy chain only isotype, termed Immunoglobulin New Antigen Receptor (IgNAR), in which antigen binding is solely mediated by a single domain, referred to as vNAR. Owing to their high affinity and specificity combined with their small size and high stability, vNAR domains emerged as promising target-binding scaffolds that can be tailor-made for biotechnological and biomedical applications. Herein, we describe protocols for the construction of semi-synthetic, CDR3-randomized vNAR libraries for the isolation of target-specific antibodies using yeast surface display or phage display as platform technology. Additionally, we provide information for affinity maturation of target-specific molecules through CDR1 diversification and sublibrary establishment.
Collapse
Affiliation(s)
- Julius Grzeschik
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany
| | - Doreen Könning
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany
| | - Simon Krah
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany.,Protein Engineering and Antibody Technologies, Merck-Serono, Merck KGaA, Frankfurter Straße 250, D-64293, Darmstadt, Germany
| | - Christian Schröter
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany.,Protein Engineering and Antibody Technologies, Merck-Serono, Merck KGaA, Frankfurter Straße 250, D-64293, Darmstadt, Germany
| | - Martin Empting
- Department Drug Design and Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany.
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany. .,Protein Engineering and Antibody Technologies, Merck-Serono, Merck KGaA, Frankfurter Straße 250, D-64293, Darmstadt, Germany.
| |
Collapse
|
66
|
Banisadr A, Safdari Y, Kianmehr A, Pourafshar M. Production of a germline-humanized cetuximab scFv and evaluation of its activity in recognizing EGFR- overexpressing cancer cells. Hum Vaccin Immunother 2017; 14:856-863. [PMID: 29185855 DOI: 10.1080/21645515.2017.1407482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The aim of this study was to produce a humanized single chain antibody (scFv) as a potential improved product design to target EGFR (Epidermal Growth Factor Receptor) overexpressing cancer cells. To this end, CDR loops of cetuximab (an FDA-approved anti-EGFR antibody) were grafted on framework regions derived from type 3 (VH3 and VL3 kappa) human germline sequences to obtain recombinant VH and VL domainslinked together with a flexible linker [(Gly4Ser)3] to form a scFv. Codon optimized synthetic gene encoding the scFv (with NH2-VH-linker-VL-COOH orientation) was expressed in E. coli Origami™ 2(DE3) cells and the resultant scFv purified by using Ni-NTA affinity chromatography. The scFv, called cet.Hum scFv, was evaluated in ELISA and immunoblot to determine whether it can recognize EGFR. The scFv was able to recognize EGFR over-expressing cancer cells (A-431) but failed to detect cancer cells with low levels of EGFR (MCF-7 cells). Although the affinity of the scFv forA-431 cells was 9 fold lower than that of cetuximab, it was strong enough to recognize these cells. Considering its ability to bind EGFR molecules, the scFv may exhibit a potential application for the detection of EGFR-overexpressing cancer cells.
Collapse
Affiliation(s)
- Arsham Banisadr
- a Department of Medical Biotechnology , School of Advanced Technologies in Medicine, Golestan University of Medical Sciences , Gorgan , Iran
| | - Yaghoub Safdari
- b Golestan Research Center of Gastroenterology & Hepatology (GRCGH), Golestan University of Medical Sciences , Gorgan , Iran
| | - Anvarsadat Kianmehr
- c Cancer Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - Mahdieh Pourafshar
- a Department of Medical Biotechnology , School of Advanced Technologies in Medicine, Golestan University of Medical Sciences , Gorgan , Iran
| |
Collapse
|
67
|
Gąciarz A, Ruddock LW. Complementarity determining regions and frameworks contribute to the disulfide bond independent folding of intrinsically stable scFv. PLoS One 2017; 12:e0189964. [PMID: 29253024 PMCID: PMC5734687 DOI: 10.1371/journal.pone.0189964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/05/2017] [Indexed: 11/19/2022] Open
Abstract
CyDisCo is a system facilitating disulfide bond formation in recombinant proteins in the cytoplasm of Escherichia coli. Previously we screened for soluble expression of single chain antibody fragments (scFv) in the cytoplasm of E. coli in the presence and absence of CyDisCo, with >90% being solubly expressed. Two scFv, those derived from natalizumab and trastuzumab, were solubly produced in high amounts even in the absence of folding catalysts i.e. disulfide bond formation is not critical for their folding. Here we investigate the contribution of the framework and the complementarity determining regions (CDRs) of scFv to the disulfide-independence of folding. We swapped CDRs between four scFv that have different properties, including two scFv that can efficiently fold independently from disulfide bonds and two more disulfide-dependent scFv. To confirm disulfide-independence we generated cysteine to alanine mutants of the disulfide-independent scFv. All of the scFv were tested for soluble expression in the cytoplasm of E. coli in the presence and absence of the oxidative folding catalysts Erv1p and PDI. Eight of the hybrid scFv were solubly produced in the presence of CyDisCo, while seven were solubly produced in the absence of CyDisCo, though the yields were often much lower when CyDisCo was absent. Soluble expression was also observed for scFv natalizumab and trastuzumab containing no cysteines. We compared yields, thermal stability and secondary structure of solubly produced scFv and undertook binding studies by western blotting, dot blotting or surface plasmon resonance of those produced in good yields. Our results indicate that both the CDRs and the framework contribute to the disulfide-dependence of soluble production of scFv, with the CDRs having the largest effect. In addition, there was no correlation between thermal stability and disulfide-dependence of folding and only a weak correlation between the yield of protein and the thermal stability of the protein.
Collapse
Affiliation(s)
- Anna Gąciarz
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Lloyd W. Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
68
|
Van Blarcom T, Lindquist K, Melton Z, Cheung WL, Wagstrom C, McDonough D, Valle Oseguera C, Ding S, Rossi A, Potluri S, Sundar P, Pitts S, Sirota M, Galindo Casas M, Yan Y, Jones J, Roe-Zurz Z, Srivatsa Srinivasan S, Zhai W, Pons J, Rajpal A, Chaparro-Riggers J. Productive common light chain libraries yield diverse panels of high affinity bispecific antibodies. MAbs 2017; 10:256-268. [PMID: 29227213 PMCID: PMC5825193 DOI: 10.1080/19420862.2017.1406570] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The commercial success of bispecific antibodies generally has been hindered by the complexities associated with generating appropriate molecules for both research scale and large scale manufacturing purposes. Bispecific IgG (BsIgG) based on two antibodies that use an identical common light chain can be combined with a minimal set of Fc mutations to drive heavy chain heterodimerization in order to address these challenges. However, the facile generation of common light chain antibodies with properties similar to traditional monoclonal antibodies has not been demonstrated and they have only been used sparingly. Here, we describe the design of a synthetic human antibody library based on common light chains to generate antibodies with biochemical and biophysical properties that are indistinguishable to traditional therapeutic monoclonal antibodies. We used this library to generate diverse panels of well-behaved, high affinity antibodies toward a variety of epitopes across multiple antigens, including mouse 4-1BB, a therapeutically important T cell costimulatory receptor. Over 200 BsIgG toward 4-1BB were generated using an automated purification method we developed that enables milligram-scale production of BsIgG. This approach allowed us to identify antibodies with a wide range of agonistic activity that are being used to further investigate the therapeutic potential of antibodies targeting one or more epitopes of 4-1BB.
Collapse
Affiliation(s)
- Thomas Van Blarcom
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Kevin Lindquist
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Zea Melton
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Wai Ling Cheung
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Chris Wagstrom
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Dan McDonough
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Cendy Valle Oseguera
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Sheng Ding
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Andrea Rossi
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Shobha Potluri
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Purnima Sundar
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Steven Pitts
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Marina Sirota
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Meri Galindo Casas
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Yu Yan
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Jeffrey Jones
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Zygy Roe-Zurz
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | | | - Wenwu Zhai
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Jaume Pons
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Arvind Rajpal
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | | |
Collapse
|
69
|
Kirik U, Persson H, Levander F, Greiff L, Ohlin M. Antibody Heavy Chain Variable Domains of Different Germline Gene Origins Diversify through Different Paths. Front Immunol 2017; 8:1433. [PMID: 29180996 PMCID: PMC5694033 DOI: 10.3389/fimmu.2017.01433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/16/2017] [Indexed: 02/04/2023] Open
Abstract
B cells produce antibodies, key effector molecules in health and disease. They mature their properties, including their affinity for antigen, through hypermutation events; processes that involve, e.g., base substitution, codon insertion and deletion, often in association with an isotype switch. Investigations of antibody evolution define modes whereby particular antibody responses are able to form, and such studies provide insight important for instance for development of efficient vaccines. Antibody evolution is also used in vitro for the design of antibodies with improved properties. To better understand the basic concepts of antibody evolution, we analyzed the mutational paths, both in terms of amino acid substitution and insertions and deletions, taken by antibodies of the IgG isotype. The analysis focused on the evolution of the heavy chain variable domain of sets of antibodies, each with an origin in 1 of 11 different germline genes representing six human heavy chain germline gene subgroups. Investigated genes were isolated from cells of human bone marrow, a major site of antibody production, and characterized by next-generation sequencing and an in-house bioinformatics pipeline. Apart from substitutions within the complementarity determining regions, multiple framework residues including those in protein cores were targets of extensive diversification. Diversity, both in terms of substitutions, and insertions and deletions, in antibodies is focused to different positions in the sequence in a germline gene-unique manner. Altogether, our findings create a framework for understanding patterns of evolution of antibodies from defined germline genes.
Collapse
Affiliation(s)
- Ufuk Kirik
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Helena Persson
- Science for Life Laboratory, Drug Discovery and Development Platform, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Immunotechnology, Lund University, Lund, Sweden
| | - Lennart Greiff
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden.,Science for Life Laboratory, Drug Discovery and Development Platform, Human Antibody Therapeutics, Lund University, Lund, Sweden.,U-READ, Lund School of Technology, Lund University, Lund, Sweden
| |
Collapse
|
70
|
Herold EM, John C, Weber B, Kremser S, Eras J, Berner C, Deubler S, Zacharias M, Buchner J. Determinants of the assembly and function of antibody variable domains. Sci Rep 2017; 7:12276. [PMID: 28947772 PMCID: PMC5613017 DOI: 10.1038/s41598-017-12519-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/12/2017] [Indexed: 01/17/2023] Open
Abstract
The antibody Fv module which binds antigen consists of the variable domains VL and VH. These exhibit a conserved ß-sheet structure and comprise highly variable loops (CDRs). Little is known about the contributions of the framework residues and CDRs to their association. We exchanged conserved interface residues as well as CDR loops and tested the effects on two Fvs interacting with moderate affinities (KDs of ~2.5 µM and ~6 µM). While for the rather instable domains, almost all mutations had a negative effect, the more stable domains tolerated a number of mutations of conserved interface residues. Of particular importance for Fv association are VLP44 and VHL45. In general, the exchange of conserved residues in the VL/VH interface did not have uniform effects on domain stability. Furthermore, the effects on association and antigen binding do not strictly correlate. In addition to the interface, the CDRs modulate the variable domain framework to a significant extent as shown by swap experiments. Our study reveals a complex interplay of domain stability, association and antigen binding including an unexpected strong mutual influence of the domain framework and the CDRs on stability/association on the one side and antigen binding on the other side.
Collapse
Affiliation(s)
- Eva Maria Herold
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany.,Sanofi-Aventis GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Christine John
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Benedikt Weber
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Stephan Kremser
- Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, 85747, Garching, Germany
| | - Jonathan Eras
- ETH Zürich, Otto-Stern-Weg 5, 8093, Zuerich, Switzerland
| | - Carolin Berner
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Sabrina Deubler
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Martin Zacharias
- Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, 85747, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany.
| |
Collapse
|
71
|
Hamidon NH, Suraiya S, Sarmiento ME, Acosta A, Norazmi MN, Lim TS. Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections. Appl Biochem Biotechnol 2017; 184:852-868. [DOI: 10.1007/s12010-017-2582-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/15/2017] [Indexed: 12/30/2022]
|
72
|
Nemergut M, Žoldák G, Schaefer JV, Kast F, Miškovský P, Plückthun A, Sedlák E. Analysis of IgG kinetic stability by differential scanning calorimetry, probe fluorescence and light scattering. Protein Sci 2017; 26:2229-2239. [PMID: 28833802 DOI: 10.1002/pro.3278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 01/01/2023]
Abstract
Monoclonal antibodies of the immunoglobulin G (IgG) type have become mainstream therapeutics for the treatment of many life-threatening diseases. For their successful application in the clinic and a favorable cost-benefit ratio, the design and formulation of these therapeutic molecules must guarantee long-term stability for an extended period of time. Accelerated stability studies, e.g., by employing thermal denaturation, have the great potential for enabling high-throughput screening campaigns to find optimal molecular variants and formulations in a short time. Surprisingly, no validated quantitative analysis of these accelerated studies has been performed yet, which clearly limits their application for predicting IgG stability. Therefore, we have established a quantitative approach for the assessment of the kinetic stability over a broad range of temperatures. To this end, differential scanning calorimetry (DSC) experiments were performed with a model IgG, testing chaotropic formulations and an extended temperature range, and they were subsequently analyzed by our recently developed three-step sequential model of IgG denaturation, consisting of one reversible and two irreversible steps. A critical comparison of the predictions from this model with data obtained by an orthogonal fluorescence probe method, based on 8-anilinonaphthalene-1-sulfonate binding to partially unfolded states, resulted in very good agreement. In summary, our study highlights the validity of this easy-to-perform analysis for reliably assessing the kinetic stability of IgGs, which can support accelerated formulation development of monoclonal antibodies by ranking different formulations as well as by improving colloidal stability models.
Collapse
Affiliation(s)
- Michal Nemergut
- Department of Biophysics, P.J. Šafárik University, Jesenna 5, Košice, 041 54, Slovakia
| | - Gabriel Žoldák
- Department of Biophysics, Institute of Molecular and Cellular Biophysics, Technical University of Munich, James-Franck-Str. 1, Garching, D-85748, Germany
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Florian Kast
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Pavol Miškovský
- Department of Biophysics, P.J. Šafárik University, Jesenna 5, Košice, 041 54, Slovakia.,Centre for Interdisciplinary Biosciences, P.J. Šafárik University, Jesenna 5, Košice, 041 54, Slovakia
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Erik Sedlák
- Centre for Interdisciplinary Biosciences, P.J. Šafárik University, Jesenna 5, Košice, 041 54, Slovakia.,Department of Biochemistry, P.J. Šafárik University, Moyzesova 11, Košice, 040 01, Slovakia
| |
Collapse
|
73
|
Stijlemans B, De Baetselier P, Caljon G, Van Den Abbeele J, Van Ginderachter JA, Magez S. Nanobodies As Tools to Understand, Diagnose, and Treat African Trypanosomiasis. Front Immunol 2017; 8:724. [PMID: 28713367 PMCID: PMC5492476 DOI: 10.3389/fimmu.2017.00724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/08/2017] [Indexed: 02/04/2023] Open
Abstract
African trypanosomes are strictly extracellular protozoan parasites that cause diseases in humans and livestock and significantly affect the economic development of sub-Saharan Africa. Due to an elaborate and efficient (vector)–parasite–host interplay, required to complete their life cycle/transmission, trypanosomes have evolved efficient immune escape mechanisms that manipulate the entire host immune response. So far, not a single field applicable vaccine exists, and chemotherapy is the only strategy available to treat the disease. Current therapies, however, exhibit high drug toxicity and an increased drug resistance is being reported. In addition, diagnosis is often hampered due to the inadequacy of current diagnostic procedures. In the context of tackling the shortcomings of current treatment and diagnostic approaches, nanobodies (Nbs, derived from the heavy chain-only antibodies of camels and llamas) might represent unmet advantages compared to conventional tools. Indeed, the combination of their small size, high stability, high affinity, and specificity for their target and tailorability represents a unique advantage, which is reflected by their broad use in basic and clinical research to date. In this article, we will review and discuss (i) diagnostic and therapeutic applications of Nbs that are being evaluated in the context of African trypanosomiasis, (ii) summarize new strategies that are being developed to optimize their potency for advancing their use, and (iii) document on unexpected properties of Nbs, such as inherent trypanolytic activities, that besides opening new therapeutic avenues, might offer new insight in hidden biological activities of conventional antibodies.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp (UA), Antwerp, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| |
Collapse
|
74
|
Rouet R, Langley DB, Schofield P, Christie M, Roome B, Porebski BT, Buckle AM, Clifton BE, Jackson CJ, Stock D, Christ D. Structural reconstruction of protein ancestry. Proc Natl Acad Sci U S A 2017; 114:3897-3902. [PMID: 28356519 PMCID: PMC5393204 DOI: 10.1073/pnas.1613477114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ancestral protein reconstruction allows the resurrection and characterization of ancient proteins based on computational analyses of sequences of modern-day proteins. Unfortunately, many protein families are highly divergent and not suitable for sequence-based reconstruction approaches. This limitation is exemplified by the antigen receptors of jawed vertebrates (B- and T-cell receptors), heterodimers formed by pairs of Ig domains. These receptors are believed to have evolved from an extinct homodimeric ancestor through a process of gene duplication and diversification; however molecular evidence has so far remained elusive. Here, we use a structural approach and laboratory evolution to reconstruct such molecules and characterize their interaction with antigen. High-resolution crystal structures of reconstructed homodimeric receptors in complex with hen-egg white lysozyme demonstrate how nanomolar affinity binding of asymmetrical antigen is enabled through selective recruitment and structural plasticity within the receptor-binding site. Our results provide structural evidence in support of long-held theories concerning the evolution of antigen receptors, and provide a blueprint for the experimental reconstruction of protein ancestry in the absence of phylogenetic evidence.
Collapse
Affiliation(s)
- Romain Rouet
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - David B Langley
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW 2010, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Mary Christie
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Brendan Roome
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Benjamin T Porebski
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ben E Clifton
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Daniela Stock
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW 2010, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia;
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
75
|
Ayyar BV, Arora S, Ravi SS. Optimizing antibody expression: The nuts and bolts. Methods 2017; 116:51-62. [PMID: 28163103 DOI: 10.1016/j.ymeth.2017.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/28/2017] [Accepted: 01/28/2017] [Indexed: 01/07/2023] Open
Abstract
Antibodies are extensively utilized entities in biomedical research, and in the development of diagnostics and therapeutics. Many of these applications require high amounts of antibodies. However, meeting this ever-increasing demand of antibodies in the global market is one of the outstanding challenges. The need to maintain a balance between demand and supply of antibodies has led the researchers to discover better means and methods for optimizing their expression. These strategies aim to increase the volumetric productivity of the antibodies along with the reduction of associated manufacturing costs. Recent years have witnessed major advances in recombinant protein technology, owing to the introduction of novel cloning strategies, gene manipulation techniques, and an array of cell and vector engineering techniques, together with the progress in fermentation technologies. These innovations were also highly beneficial for antibody expression. Antibody expression depends upon the complex interplay of multiple factors that may require fine tuning at diverse levels to achieve maximum yields. However, each antibody is unique and requires individual consideration and customization for optimizing the associated expression parameters. This review provides a comprehensive overview of several state-of-the-art approaches, such as host selection, strain engineering, codon optimization, gene optimization, vector modification and process optimization that are deemed suitable for enhancing antibody expression.
Collapse
Affiliation(s)
- B Vijayalakshmi Ayyar
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sushrut Arora
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Shiva Shankar Ravi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
76
|
Nam DH, Fang K, Rodriguez C, Lopez T, Ge X. Generation of inhibitory monoclonal antibodies targeting matrix metalloproteinase-14 by motif grafting and CDR optimization. Protein Eng Des Sel 2016; 30:113-118. [PMID: 27986919 DOI: 10.1093/protein/gzw070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinase-14 (MMP-14) plays important roles in cancer metastasis, and the failures of broad-spectrum MMP compound inhibitors in clinical trials suggested selectivity is critical. By grafting an MMP-14 specific inhibition motif into complementarity determining region (CDR)-H3 of antibody scaffolds and optimizing other CDRs and the sequences that flank CDR-H3, we isolated a Fab 1F8 showing a binding affinity of 8.3 nM with >1000-fold enhancement on inhibition potency compared to the peptide inhibitor. Yeast surface display and fluorescence-activated cell sorting results indicated that 1F8 was highly selective to MMP-14 and competed with TIMP-2 on binding to the catalytic domain of MMP-14. Converting a low-affinity peptide inhibitor into a high potency antibody, the described methods can be used to develop other inhibitory antibodies of therapeutic significance.
Collapse
Affiliation(s)
- Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Kuili Fang
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Carlos Rodriguez
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Tyler Lopez
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| |
Collapse
|
77
|
Høydahl LS, Nilssen NR, Gunnarsen KS, Pré MFD, Iversen R, Roos N, Chen X, Michaelsen TE, Sollid LM, Sandlie I, Løset GÅ. Multivalent pIX phage display selects for distinct and improved antibody properties. Sci Rep 2016; 6:39066. [PMID: 27966617 PMCID: PMC5155289 DOI: 10.1038/srep39066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
Phage display screening readily allows for the identification of a multitude of antibody specificities, but to identify optimal lead candidates remains a challenge. Here, we direct the antibody-capsid fusion away from the signal sequence-dependent secretory SEC pathway in E. coli by utilizing the intrinsic signal sequence-independent property of pIX to obtain virion integration. This approach was combined with the use of an engineered helper phage known to improve antibody pIX display and retrieval. By direct comparison with pIII display, we demonstrate that antibody display using this pIX system translates into substantially improved retrieval of desired specificities with favorable biophysical properties in de novo selection. We show that the effect was due to less E. coli host toxicity during phage propagation conferred by the lack of a signal sequence. This pIX combinatorial display platform provides a generic alternative route for obtaining good binders with high stability and may thus find broad applicability.
Collapse
Affiliation(s)
- Lene S Høydahl
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway.,Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Nicolay R Nilssen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway.,Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Kristin S Gunnarsen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - M Fleur du Pré
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Rasmus Iversen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Norbert Roos
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Xi Chen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Terje E Michaelsen
- Department of Immunology, Norwegian Institute of Public Health, N-0403 Oslo, Norway.,School of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre and Department of Immunology, University of Oslo, N-0372 Oslo, Norway
| | - Inger Sandlie
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway.,Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Geir Å Løset
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway.,Department of Biosciences, University of Oslo, N-0316 Oslo, Norway.,Nextera AS, N-0349 Oslo, Norway
| |
Collapse
|
78
|
Geddie ML, Kohli N, Kirpotin DB, Razlog M, Jiao Y, Kornaga T, Rennard R, Xu L, Schoerberl B, Marks JD, Drummond DC, Lugovskoy AA. Improving the developability of an anti-EphA2 single-chain variable fragment for nanoparticle targeting. MAbs 2016; 9:58-67. [PMID: 27854147 DOI: 10.1080/19420862.2016.1259047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibody-targeted nanoparticles have great promise as anti-cancer drugs; however, substantial developmental challenges of antibody modules prevent many candidates from reaching the clinic. Here, we describe a robust strategy for developing an EphA2-targeting antibody fragment for immunoliposomal drug delivery. A highly bioactive single-chain variable fragment (scFv) was engineered to overcome developmental liabilities, including low thermostability and weak binding to affinity purification resins. Improved thermostability was achieved by modifying the framework of the scFv, and complementarity-determining region (CDR)-H2 was modified to increase binding to protein A resins. The results of our engineering campaigns demonstrate that it is possible, using focused design strategies, to rapidly improve the stability and manufacturing characteristics of an antibody fragment for use as a component of a novel therapeutic construct.
Collapse
Affiliation(s)
| | | | | | | | - Yang Jiao
- a Merrimack, Inc. , Cambridge , MA , USA
| | | | | | - Lihui Xu
- a Merrimack, Inc. , Cambridge , MA , USA
| | | | - James D Marks
- a Merrimack, Inc. , Cambridge , MA , USA.,b Department of Anesthesia and Pharmaceutical Chemistry , University of California San Francisco , San Francisco , CA , USA
| | | | | |
Collapse
|
79
|
Grewal Y, Shiddiky MJA, Mahler SM, Cangelosi GA, Trau M. Nanoyeast and Other Cell Envelope Compositions for Protein Studies and Biosensor Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30649-30664. [PMID: 27762541 PMCID: PMC5114700 DOI: 10.1021/acsami.6b09263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 05/06/2023]
Abstract
Rapid progress in disease biomarker discovery has increased the need for robust detection technologies. In the past several years, the designs of many immunoaffinity reagents have focused on lowering costs and improving specificity while also promoting stability. Antibody fragments (scFvs) have long been displayed on the surface of yeast and phage libraries for selection; however, the stable production of such fragments presents challenges that hamper their widespread use in diagnostics. Membrane and cell wall proteins similarly suffer from stability problems when solubilized from their native environment. Recently, cell envelope compositions that maintain membrane proteins in native or native-like lipid environment to improve their stability have been developed. This cell envelope composition approach has now been adapted toward stabilizing antibody fragments by retaining their native cell wall environment. A new class of immunoaffinity reagents has been developed that maintains antibody fragment attachment to yeast cell wall. Herein, we review recent strategies that incorporate cell wall fragments with functional scFvs, which are designed for easy production while maintaining specificity and stability when in use with simple detection platforms. These cell wall based antibody fragments are globular in structure, and heterogeneous in size, with fragments ranging from tens to hundreds of nanometers in size. These fragments appear to retain activity once immobilized onto biosensor surfaces for the specific and sensitive detection of pathogen antigens. They can be quickly and economically generated from a yeast display library and stored lyophilized, at room temperature, for up to a year with little effect on stability. This new format of scFvs provides stability, in a simple and low-cost manner toward the use of scFvs in biosensor applications. The production and "panning" of such antibody cell wall composites are also extremely facile, enabling the rapid adoption of stable and inexpensive affinity reagents for emerging infectious threats.
Collapse
Affiliation(s)
- Yadveer
S. Grewal
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Muhammad J. A. Shiddiky
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen M. Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology
(AIBN), University of Queensland, Brisbane, Queensland 4072, Australia
- School
of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerard A. Cangelosi
- School
of Public Health, University of Washington, Seattle, Washington 98195, United States
| | - Matt Trau
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
- School
of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
80
|
Egan TJ, Diem D, Weldon R, Neumann T, Meyer S, Urech DM. Novel multispecific heterodimeric antibody format allowing modular assembly of variable domain fragments. MAbs 2016; 9:68-84. [PMID: 27786600 PMCID: PMC5240654 DOI: 10.1080/19420862.2016.1248012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multispecific antibody formats provide a promising platform for the development of novel therapeutic concepts that could facilitate the generation of safer, more effective pharmaceuticals. However, the production and use of such antibody-based multispecifics is often made complicated by: 1) the instability of the antibody fragments of which they consist, 2) undesired inter-subunit associations, and 3) the need to include recombinant heterodimerization domains that confer distribution-impairing bulk or enhance immunogenicity. In this paper, we describe a broadly-applicable method for the stabilization of human or humanized antibody Fv fragments that entails replacing framework region IV of a Vκ1/VH3-consensus Fv framework with the corresponding germ-line sequence of a λ-type VL chain. We then used this stable Fv framework to generate a novel heterodimeric multispecific antibody format that assembles by cognate VL/VH associations between 2 split variable domains in the core of the complex. This format, termed multispecific antibody-based therapeutics by cognate heterodimerization (MATCH), can be applied to produce homogeneous and highly stable antibody-derived molecules that simultaneously bind 4 distinct antigens. The heterodimeric design of the MATCH format allows efficient in-format screening of binding domain combinations that result in maximal cooperative activity.
Collapse
Affiliation(s)
- Timothy J Egan
- a Numab AG, Wadenswil , Switzerland.,b Cartilage Engineering & Regeneration Lab, Department of Health , Science & Technology, The Swiss Federal Institute of Technology (ETH) , Zurich , Switzerland
| | | | | | | | | | | |
Collapse
|
81
|
Apgar JR, Mader M, Agostinelli R, Benard S, Bialek P, Johnson M, Gao Y, Krebs M, Owens J, Parris K, St. Andre M, Svenson K, Morris C, Tchistiakova L. Beyond CDR-grafting: Structure-guided humanization of framework and CDR regions of an anti-myostatin antibody. MAbs 2016; 8:1302-1318. [PMID: 27625211 PMCID: PMC5058614 DOI: 10.1080/19420862.2016.1215786] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/23/2016] [Accepted: 07/18/2016] [Indexed: 01/29/2023] Open
Abstract
Antibodies are an important class of biotherapeutics that offer specificity to their antigen, long half-life, effector function interaction and good manufacturability. The immunogenicity of non-human-derived antibodies, which can be a major limitation to development, has been partially overcome by humanization through complementarity-determining region (CDR) grafting onto human acceptor frameworks. The retention of foreign content in the CDR regions, however, is still a potential immunogenic liability. Here, we describe the humanization of an anti-myostatin antibody utilizing a 2-step process of traditional CDR-grafting onto a human acceptor framework, followed by a structure-guided approach to further reduce the murine content of CDR-grafted antibodies. To accomplish this, we solved the co-crystal structures of myostatin with the chimeric (Protein Databank (PDB) id 5F3B) and CDR-grafted anti-myostatin antibody (PDB id 5F3H), allowing us to computationally predict the structurally important CDR residues as well as those making significant contacts with the antigen. Structure-based rational design enabled further germlining of the CDR-grafted antibody, reducing the murine content of the antibody without affecting antigen binding. The overall "humanness" was increased for both the light and heavy chain variable regions.
Collapse
Affiliation(s)
| | | | | | - Susan Benard
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Peter Bialek
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Mark Johnson
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Yijie Gao
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Mark Krebs
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Kevin Parris
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Kris Svenson
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Carl Morris
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | | |
Collapse
|
82
|
Li W, Prabakaran P, Chen W, Zhu Z, Feng Y, Dimitrov DS. Antibody Aggregation: Insights from Sequence and Structure. Antibodies (Basel) 2016; 5:antib5030019. [PMID: 31558000 PMCID: PMC6698864 DOI: 10.3390/antib5030019] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) are the fastest-growing biological therapeutics with important applications ranging from cancers, autoimmunity diseases and metabolic disorders to emerging infectious diseases. Aggregation of mAbs continues to be a major problem in their developability. Antibody aggregation could be triggered by partial unfolding of its domains, leading to monomer-monomer association followed by nucleation and growth. Although the aggregation propensities of antibodies and antibody-based proteins can be affected by the external experimental conditions, they are strongly dependent on the intrinsic antibody properties as determined by their sequences and structures. In this review, we describe how the unfolding and aggregation susceptibilities of IgG could be related to their cognate sequences and structures. The impact of antibody domain structures on thermostability and aggregation propensities, and effective strategies to reduce aggregation are discussed. Finally, the aggregation of antibody-drug conjugates (ADCs) as related to their sequence/structure, linker payload, conjugation chemistry and drug-antibody ratio (DAR) is reviewed.
Collapse
Affiliation(s)
- Wei Li
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | | | - Weizao Chen
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Zhongyu Zhu
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Yang Feng
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
83
|
Säll A, Walle M, Wingren C, Müller S, Nyman T, Vala A, Ohlin M, Borrebaeck CAK, Persson H. Generation and analyses of human synthetic antibody libraries and their application for protein microarrays. Protein Eng Des Sel 2016; 29:427-437. [DOI: 10.1093/protein/gzw042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 07/21/2016] [Indexed: 11/12/2022] Open
|
84
|
Abstract
OBJECTIVE To develop a novel and potent fusion inhibitor of HIV infection based on a rational strategy for synthetic antibody library construction. DESIGN The reduced molecular weight of single-domain antibodies (sdAbs) allows targeting of cryptic epitopes, the most conserved and critical ones in the context of HIV entry. Heavy-chain sdAbs from camelids are particularly suited for this type of epitope recognition because of the presence of long and flexible antigen-binding regions [complementary-determining regions (CDRs)]. METHODS We translated camelid CDR features to a rabbit light-chain variable domain (VL) and constructed a library of minimal antibody fragments with elongated CDRs. Additionally to elongation, CDRs' variability was restricted to binding favorable amino acids to potentiate the selection of high-affinity sdAbs. The synthetic library was screened against a conserved, hidden, and crucial-to-fusion sequence on the heptad-repeat 1 (HR1) region of the HIV-1 envelope glycoprotein. RESULTS Two anti-HR1 VLs, named F63 and D104, strongly inhibited laboratory-adapted HIV-1 infectivity. F63 also inhibited infectivity of HIV-1 and HIV-2 primary isolates similarly to the Food and Drug Administration-approved fusion inhibitor T-20 and HIV-1 strains resistant to T-20. Moreover, epitope mapping of F63 revealed a novel target sequence within the highly conserved hydrophobic pocket of HR1. F63 was also capable of interacting with viral and cell lipid membrane models, a property previously associated with T-20's inhibitory mechanism. CONCLUSION In summary, to our best knowledge, we developed the first potent and broad VL sdAb fusion inhibitor of HIV infection. Our study also gives insights into engineering strategies that could be explored to enhance the development of antiviral drugs.
Collapse
|
85
|
Abstract
The in vitro antibody discovery technologies revolutionized the generation of target-specific antibodies that traditionally relied on the humoral response of immunized animals. An antibody library, a large collection of diverse, pre-constructed antibodies, can be rapidly screened using in vitro display technologies such as phage display. One of the keys to successful in vitro antibody discovery is the quality of the library diversity. Antibody diversity can be obtained either from natural B-cell sources or by the synthetic methods that combinatorially generate random nucleotide sequences. While the functionality of a natural antibody library depends largely upon the library size, various other factors can affect the quality of a synthetic antibody library, making the design and construction of synthetic antibody libraries complicated and challenging. In this review, we present various library designs and diversification methods for synthetic antibody library. From simple degenerate oligonucleotide synthesis to trinucleotide synthesis to physicochemically optimized library design, the synthetic approach is evolving beyond the simple emulation of natural antibodies, into a highly sophisticated method that is capable of producing high quality antibodies suitable for therapeutic, diagnostic, and other demanding applications. [BMB Reports 2015; 48(9): 489-494]
Collapse
Affiliation(s)
- Hyunbo Shim
- Departments of Bioinspired Science and Life Science, Ewha Woman's University, Seoul 03760, Korea
| |
Collapse
|
86
|
Faitschuk E, Nagy V, Hombach AA, Abken H. A dual chain chimeric antigen receptor (CAR) in the native antibody format for targeting immune cells towards cancer cells without the need of an scFv. Gene Ther 2016; 23:718-726. [DOI: 10.1038/gt.2016.48] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 01/22/2023]
|
87
|
O'Brien C, Blanco M, Costanzo J, Enterline M, Fernandez E, Robinson A, Roberts C. Modulating non-native aggregation and electrostatic protein-protein interactions with computationally designed single-point mutations. Protein Eng Des Sel 2016; 29:231-243. [PMID: 27160179 PMCID: PMC4867096 DOI: 10.1093/protein/gzw010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/29/2016] [Accepted: 03/28/2016] [Indexed: 11/14/2022] Open
Abstract
Non-native protein aggregation is a ubiquitous challenge in the production, storage and administration of protein-based biotherapeutics. This study focuses on altering electrostatic protein-protein interactions as a strategy to modulate aggregation propensity in terms of temperature-dependent aggregation rates, using single-charge variants of human γ-D crystallin. Molecular models were combined to predict amino acid substitutions that would modulate protein-protein interactions with minimal effects on conformational stability. Experimental protein-protein interactions were quantified by the Kirkwood-Buff integrals (G22) from laser scattering, and G22 showed semi-quantitative agreement with model predictions. Experimental initial-rates for aggregation showed that increased (decreased) repulsive interactions led to significantly increased (decreased) aggregation resistance, even based solely on single-point mutations. However, in the case of a particular amino acid (E17), the aggregation mechanism was altered by substitution with R or K, and this greatly mitigated improvements in aggregation resistance. The results illustrate that predictions based on native protein-protein interactions can provide a useful design target for engineering aggregation resistance; however, this approach needs to be balanced with consideration of how mutations can impact aggregation mechanisms.
Collapse
Affiliation(s)
- C.J. O'Brien
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - M.A. Blanco
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - J.A. Costanzo
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - M. Enterline
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - E.J. Fernandez
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - A.S. Robinson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - C.J. Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
88
|
Jefferis R. Posttranslational Modifications and the Immunogenicity of Biotherapeutics. J Immunol Res 2016; 2016:5358272. [PMID: 27191002 PMCID: PMC4848426 DOI: 10.1155/2016/5358272] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/20/2016] [Indexed: 12/23/2022] Open
Abstract
Whilst the amino acid sequence of a protein is determined by its gene sequence, the final structure and function are determined by posttranslational modifications (PTMs), including quality control (QC) in the endoplasmic reticulum (ER) and during passage through the Golgi apparatus. These processes are species and cell specific and challenge the biopharmaceutical industry when developing a production platform for the generation of recombinant biologic therapeutics. Proteins and glycoproteins are also subject to chemical modifications (CMs) both in vivo and in vitro. The individual is naturally tolerant to molecular forms of self-molecules but nonself variants can provoke an immune response with the generation of anti-drug antibodies (ADA); aggregated forms can exhibit enhanced immunogenicity and QC procedures are developed to avoid or remove them. Monoclonal antibody therapeutics (mAbs) are a special case because their purpose is to bind the target, with the formation of immune complexes (ICs), a particular form of aggregate. Such ICs may be removed by phagocytic cells that have antigen presenting capacity. These considerations may frustrate the possibility of ameliorating the immunogenicity of mAbs by rigorous exclusion of aggregates from drug product. Alternate strategies for inducing immunosuppression or tolerance are discussed.
Collapse
Affiliation(s)
- Roy Jefferis
- Institute of Immunology & Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
89
|
van Schie KA, Wolbink GJ, Rispens T. Cross-reactive and pre-existing antibodies to therapeutic antibodies--Effects on treatment and immunogenicity. MAbs 2016; 7:662-71. [PMID: 25962087 PMCID: PMC4623040 DOI: 10.1080/19420862.2015.1048411] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The potential for immunogenicity is an ever-present concern during the development of biopharmaceuticals. Therapeutic antibodies occasionally elicit an antibody response in patients, which can result in loss of response or adverse effects. However, antibodies that bind a drug are sometimes found in pre-treatment serum samples, with the amount depending on drug, assay, and patient population. This review summarizes published data on pre-existing antibodies to therapeutic antibodies, including rheumatoid factors, anti-allotype antibodies, anti-hinge antibodies, and anti-glycan antibodies. Unlike anti-idiotype antibodies elicited by the drug, pre-formed antibodies in general appear to have little consequences during treatment. In the few cases where (potential) clinical consequences were encountered, antibodies were characterized and found to bind a distinct, unusual epitope of the therapeutic. Immunogenicity testing strategies should therefore always include a proper level of antibody characterization, especially when pre-formed antibodies are present. This minimizes false-positives, particularly due to rheumatoid factors, and helps to judge the potential threat in case a genuine pre-dose antibody reactivity is identified.
Collapse
Affiliation(s)
- Karin A van Schie
- a Sanquin Research; Dept. Immunopathology; Amsterdam, The Netherlands; and Landsteiner Laboratory; Academic Medical Centre; University of Amsterdam ; Amsterdam , The Netherlands
| | | | | |
Collapse
|
90
|
An Anti-proteome Nanobody Library Approach Yields a Specific Immunoassay for Trypanosoma congolense Diagnosis Targeting Glycosomal Aldolase. PLoS Negl Trop Dis 2016; 10:e0004420. [PMID: 26835967 PMCID: PMC4737498 DOI: 10.1371/journal.pntd.0004420] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Infectious diseases pose a severe worldwide threat to human and livestock health. While early diagnosis could enable prompt preventive interventions, the majority of diseases are found in rural settings where basic laboratory facilities are scarce. Under such field conditions, point-of-care immunoassays provide an appropriate solution for rapid and reliable diagnosis. The limiting steps in the development of the assay are the identification of a suitable target antigen and the selection of appropriate high affinity capture and detection antibodies. To meet these challenges, we describe the development of a Nanobody (Nb)-based antigen detection assay generated from a Nb library directed against the soluble proteome of an infectious agent. In this study, Trypanosoma congolense was chosen as a model system. METHODOLOGY/PRINCIPAL FINDINGS An alpaca was vaccinated with whole-parasite soluble proteome to generate a Nb library from which the most potent T. congolense specific Nb sandwich immunoassay (Nb474H-Nb474B) was selected. First, the Nb474-homologous sandwich ELISA (Nb474-ELISA) was shown to detect experimental infections with high Positive Predictive Value (98%), Sensitivity (87%) and Specificity (94%). Second, it was demonstrated under experimental conditions that the assay serves as test-of-cure after Berenil treatment. Finally, this assay allowed target antigen identification. The latter was independently purified through immuno-capturing from (i) T. congolense soluble proteome, (ii) T. congolense secretome preparation and (iii) sera of T. congolense infected mice. Subsequent mass spectrometry analysis identified the target as T. congolense glycosomal aldolase. CONCLUSIONS/SIGNIFICANCE The results show that glycosomal aldolase is a candidate biomarker for active T. congolense infections. In addition, and by proof-of-principle, the data demonstrate that the Nb strategy devised here offers a unique approach to both diagnostic development and target discovery that could be widely applied to other infectious diseases.
Collapse
|
91
|
Zischewski J, Sack M, Fischer R. Overcoming low yields of plant-made antibodies by a protein engineering approach. Biotechnol J 2016; 11:107-16. [PMID: 26632507 DOI: 10.1002/biot.201500255] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/18/2015] [Accepted: 11/24/2015] [Indexed: 01/16/2023]
Abstract
The commercial development of plant-based antibody production platforms is often limited by low and variable yields, but little is known about the factors that affect antibody accumulation during and after translation. Here, we present a strategy to identify yield-limiting regions in the transcript and protein. We exchanged variable heavy chain (VH) domain sequences between two human antibodies at structurally conserved positions, thus creating ten chimeric VH domains containing sequences from M12 (∼1000 μg/g leaf fresh weight [FW]) and 4E10 (∼100 μg/g FW). After transient expression in Nicotiana benthamiana leaves, we measured mRNA and protein levels by quantitative real-time PCR and surface plasmon resonance spectroscopy, respectively. Transcript levels were similar for all constructs, but antibody levels ranged from ∼250 μg/g to over 2000 μg/g FW. Analysis of the expression levels showed that: i) 4E10 yields were only marginally increased by suppression of post-transcriptional gene silencing; ii) the CDR3 of 4E10 contains a protease site; and iii) a bipartite, yield-limiting region exists in the CDR2/CDR3. Our findings highlight the strong impact of cotranslational and posttranslational events on antibody yields and show that protein engineering is a powerful tool that can be used to overcome the remaining limitations affecting antibody production in plants.
Collapse
Affiliation(s)
- Julia Zischewski
- Department for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Markus Sack
- Department for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.
| | - Rainer Fischer
- Department for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Aachen, Germany
| |
Collapse
|
92
|
Nilvebrant J, Tessier PM, Sidhu SS. Engineered Autonomous Human Variable Domains. Curr Pharm Des 2016; 22:6527-6537. [PMID: 27655414 PMCID: PMC5326600 DOI: 10.2174/1381612822666160921143011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND The complex multi-chain architecture of antibodies has spurred interest in smaller derivatives that retain specificity but can be more easily produced in bacteria. Domain antibodies consisting of single variable domains are the smallest antibody fragments and have been shown to possess enhanced ability to target epitopes that are difficult to access using multidomain antibodies. However, in contrast to natural camelid antibody domains, human variable domains typically suffer from low stability and high propensity to aggregate. METHODS This review summarizes strategies to improve the biophysical properties of heavy chain variable domains from human antibodies with an emphasis on aggregation resistance. Several protein engineering approaches have targeted antibody frameworks and complementarity determining regions to stabilize the native state and prevent aggregation of the denatured state. CONCLUSION Recent findings enable the construction of highly diverse libraries enriched in aggregation-resistant variants that are expected to provide binders to diverse antigens. Engineered domain antibodies possess unique advantages in expression, epitope preference and flexibility of formatting over conventional immunoreagents and are a promising class of antibody fragments for biomedical development.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Division of Protein Technology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | - Peter M. Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| |
Collapse
|
93
|
Ahdi Khosroshahi S, Farajnia S, Ghiamirad M, Tanomand A, Veisi K, Rahbarnia L, Akbari B. Development and evaluation of a single domain antibody against human epidermal growth factor receptor (EGFR). Protein Expr Purif 2015; 120:59-64. [PMID: 26690373 DOI: 10.1016/j.pep.2015.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022]
Abstract
Epidermal growth factor receptor (EGFR) plays an important role in cell growth, multiplication and differentiation. Over expression of EGFR is associated with carcinogenesis and seen in variety of cancers. Anti-EGFR monoclonal antibodies can block EGFR downstream signaling pathway resulting in inhibition of uncontrolled cell proliferation. Antibody fragments have a variety of advantages. In comparison to full length antibodies they have smaller size and therefor exhibit better tumor penetration ability. The aim of this study was to prepare a single domain antibody to target extracellular domain of EGFR. mRNA was extracted from C225 hybridoma cells producing anti-EGFR antibody and subjected to reverse transcription reaction (RT-PCR) to obtain cDNA molecules encoding VH domain of mAb C225. The cDNA encoded VH domain was in frame introduced into the pET-22b(+) vector and expressed in BL21 (DE3) bacterial cells. The resultant antibody was purified via Ni- NTA column and its reactivity was assessed by ELISA and western blot techniques using A431 cell lysate. Analysis by ELISA revealed that this single domain antibody was able to bind EGFR on A431cells. This result was further confirmed by western blotting. In conclusion, the results of this study indicated that single domain antibody can identify and bind to EGFR of A431 carcinoma cells. This recombinant fragment antibody would potentially be used for targeting of cancer cells with high EGFR expression.
Collapse
Affiliation(s)
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Ghiamirad
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University, Ahar Branch, Ahar, Iran
| | | | - Kamal Veisi
- Immunology Research, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Akbari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
94
|
Augmented Binary Substitution: Single-pass CDR germ-lining and stabilization of therapeutic antibodies. Proc Natl Acad Sci U S A 2015; 112:15354-9. [PMID: 26621728 DOI: 10.1073/pnas.1510944112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process.
Collapse
|
95
|
TriFabs--Trivalent IgG-Shaped Bispecific Antibody Derivatives: Design, Generation, Characterization and Application for Targeted Payload Delivery. Int J Mol Sci 2015; 16:27497-507. [PMID: 26593903 PMCID: PMC4661895 DOI: 10.3390/ijms161126037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/28/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023] Open
Abstract
TriFabs are IgG-shaped bispecific antibodies (bsAbs) composed of two regular Fab arms fused via flexible linker peptides to one asymmetric third Fab-sized binding module. This third module replaces the IgG Fc region and is composed of the variable region of the heavy chain (VH) fused to CH3 with “knob”-mutations, and the variable region of the light chain (VL) fused to CH3 with matching “holes”. The hinge region does not contain disulfides to facilitate antigen access to the third binding site. To compensate for the loss of hinge-disulfides between heavy chains, CH3 knob-hole heterodimers are linked by S354C-Y349C disulphides, and VH and VL of the stem region may be linked via VH44C-VL100C disulphides. TriFabs which bind one antigen bivalent in the same manner as IgGs and the second antigen monovalent “in between” these Fabs can be applied to simultaneously engage two antigens, or for targeted delivery of small and large (fluorescent or cytotoxic) payloads.
Collapse
|
96
|
Krah S, Schröter C, Zielonka S, Empting M, Valldorf B, Kolmar H. Single-domain antibodies for biomedical applications. Immunopharmacol Immunotoxicol 2015; 38:21-8. [DOI: 10.3109/08923973.2015.1102934] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
97
|
Tu C, Terraube V, Tam ASP, Stochaj W, Fennell BJ, Lin L, Stahl M, LaVallie ER, Somers W, Finlay WJJ, Mosyak L, Bard J, Cunningham O. A Combination of Structural and Empirical Analyses Delineates the Key Contacts Mediating Stability and Affinity Increases in an Optimized Biotherapeutic Single-chain Fv (scFv). J Biol Chem 2015; 291:1267-76. [PMID: 26515064 DOI: 10.1074/jbc.m115.688010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 11/06/2022] Open
Abstract
Fully-human single-chain Fv (scFv) proteins are key potential building blocks of bispecific therapeutic antibodies, but they often suffer from manufacturability and clinical development limitations such as instability and aggregation. The causes of these scFv instability problems, in proteins that should be theoretically stable, remains poorly understood. To inform the future development of such molecules, we carried out a comprehensive structural analysis of the highly stabilized anti-CXCL13 scFv E10. E10 was derived from the parental 3B4 using complementarity-determining region (CDR)-restricted mutagenesis and tailored selection and screening strategies, and carries four mutations in VL-CDR3. High-resolution crystal structures of parental 3B4 and optimized E10 scFvs were solved in the presence and absence of human CXCL13. In parallel, a series of scFv mutants was generated to interrogate the individual contribution of each of the four mutations to stability and affinity improvements. In combination, these analyses demonstrated that the optimization of E10 was primarily mediated by removing clashes between both the VL and the VH, and between the VL and CXCL13. Importantly, a single, germline-encoded VL-CDR3 residue mediated the key difference between the stable and unstable forms of the scFv. This work demonstrates that, aside from being the critical mediators of specificity and affinity, CDRs may also be the primary drivers of biotherapeutic developability.
Collapse
Affiliation(s)
- Chao Tu
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Virginie Terraube
- Global Biotherapeutics Technologies, Pfizer R&D, Grange Castle Business Park, Dublin D22, Ireland
| | - Amy Sze Pui Tam
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Wayne Stochaj
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Brian J Fennell
- Global Biotherapeutics Technologies, Pfizer R&D, Grange Castle Business Park, Dublin D22, Ireland
| | - Laura Lin
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Mark Stahl
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Edward R LaVallie
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Will Somers
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - William J J Finlay
- Global Biotherapeutics Technologies, Pfizer R&D, Grange Castle Business Park, Dublin D22, Ireland
| | - Lydia Mosyak
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Joel Bard
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Orla Cunningham
- Global Biotherapeutics Technologies, Pfizer R&D, Grange Castle Business Park, Dublin D22, Ireland
| |
Collapse
|
98
|
Rahumatullah A, Ahmad A, Noordin R, Lim TS. Delineation of BmSXP antibody V-gene usage from a lymphatic filariasis based immune scFv antibody library. Mol Immunol 2015; 67:512-23. [DOI: 10.1016/j.molimm.2015.07.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/28/2022]
|
99
|
Zhang K, Geddie ML, Kohli N, Kornaga T, Kirpotin DB, Jiao Y, Rennard R, Drummond DC, Nielsen UB, Xu L, Lugovskoy AA. Comprehensive optimization of a single-chain variable domain antibody fragment as a targeting ligand for a cytotoxic nanoparticle. MAbs 2015; 7:42-52. [PMID: 25484041 DOI: 10.4161/19420862.2014.985933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antibody-targeted nanoparticles have the potential to significantly increase the therapeutic index of cytotoxic anti-cancer therapies by directing them to tumor cells. Using antibodies or their fragments requires careful engineering because multiple parameters, including affinity, internalization rate and stability, all need to be optimized. Here, we present a case study of the iterative engineering of a single chain variable fragment (scFv) for use as a targeting arm of a liposomal cytotoxic nanoparticle. We describe the effect of the orientation of variable domains, the length and composition of the interdomain protein linker that connects VH and VL, and stabilizing mutations in both the framework and complementarity-determining regions (CDRs) on the molecular properties of the scFv. We show that variable domain orientation can alter cross-reactivity to murine antigen while maintaining affinity to the human antigen. We demonstrate that tyrosine residues in the CDRs make diverse contributions to the binding affinity and biophysical properties, and that replacement of non-essential tyrosines can improve the stability and bioactivity of the scFv. Our studies demonstrate that a comprehensive engineering strategy may be required to identify a scFv with optimal characteristics for nanoparticle targeting.
Collapse
Affiliation(s)
- Kathy Zhang
- a Merrimack Pharmaceuticals, Inc. ; Cambridge , MA USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Antibody Fragments and Their Purification by Protein L Affinity Chromatography. Antibodies (Basel) 2015. [DOI: 10.3390/antib4030259] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|