51
|
Katsumura KR, Mehta C, Hewitt KJ, Soukup AA, Fraga de Andrade I, Ranheim EA, Johnson KD, Bresnick EH. Human leukemia mutations corrupt but do not abrogate GATA-2 function. Proc Natl Acad Sci U S A 2018; 115:E10109-E10118. [PMID: 30301799 PMCID: PMC6205465 DOI: 10.1073/pnas.1813015115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
By inducing the generation and function of hematopoietic stem and progenitor cells, the master regulator of hematopoiesis GATA-2 controls the production of all blood cell types. Heterozygous GATA2 mutations cause immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA2 disease mutations commonly disrupt amino acid residues that mediate DNA binding or cis-elements within a vital GATA2 intronic enhancer, suggesting a haploinsufficiency mechanism of pathogenesis. Mutations also occur in GATA2 coding regions distinct from the DNA-binding carboxyl-terminal zinc finger (C-finger), including the amino-terminal zinc finger (N-finger), and N-finger function is not established. Whether distinct mutations differentially impact GATA-2 mechanisms is unknown. Here, we demonstrate that N-finger mutations decreased GATA-2 chromatin occupancy and attenuated target gene regulation. We developed a genetic complementation assay to quantify GATA-2 function in myeloid progenitor cells from Gata2 -77 enhancer-mutant mice. GATA-2 complementation increased erythroid and myeloid differentiation. While GATA-2 disease mutants were not competent to induce erythroid differentiation of Lin-Kit+ myeloid progenitors, unexpectedly, they promoted myeloid differentiation and proliferation. As the myelopoiesis-promoting activity of GATA-2 mutants exceeded that of GATA-2, GATA2 disease mutations are not strictly inhibitory. Thus, we propose that the haploinsufficiency paradigm does not fully explain GATA-2-linked pathogenesis, and an amalgamation of qualitative and quantitative defects instigated by GATA2 mutations underlies the complex phenotypes of GATA-2-dependent pathologies.
Collapse
Affiliation(s)
- Koichi R Katsumura
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Charu Mehta
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Kyle J Hewitt
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Alexandra A Soukup
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Isabela Fraga de Andrade
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Kirby D Johnson
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Emery H Bresnick
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| |
Collapse
|
52
|
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development 2018; 145:145/20/dev164384. [DOI: 10.1242/dev.164384] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
The GATA family of transcription factors is of crucial importance during embryonic development, playing complex and widespread roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three germ layers, including the skin, brain, gonads, liver, hematopoietic, cardiovascular and urogenital systems. The crucial activity of GATA factors is underscored by the fact that inactivating mutations in most GATA members lead to embryonic lethality in mouse models and are often associated with developmental diseases in humans. In this Primer, we discuss the unique and redundant functions of GATA proteins in tissue morphogenesis, with an emphasis on their regulation of lineage specification and early organogenesis.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| |
Collapse
|
53
|
Sorrentino A, Federico A, Rienzo M, Gazzerro P, Bifulco M, Ciccodicola A, Casamassimi A, Abbondanza C. PR/SET Domain Family and Cancer: Novel Insights from the Cancer Genome Atlas. Int J Mol Sci 2018; 19:ijms19103250. [PMID: 30347759 PMCID: PMC6214140 DOI: 10.3390/ijms19103250] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
The PR/SET domain gene family (PRDM) encodes 19 different transcription factors that share a subtype of the SET domain [Su(var)3-9, enhancer-of-zeste and trithorax] known as the PRDF1-RIZ (PR) homology domain. This domain, with its potential methyltransferase activity, is followed by a variable number of zinc-finger motifs, which likely mediate protein⁻protein, protein⁻RNA, or protein⁻DNA interactions. Intriguingly, almost all PRDM family members express different isoforms, which likely play opposite roles in oncogenesis. Remarkably, several studies have described alterations in most of the family members in malignancies. Here, to obtain a pan-cancer overview of the genomic and transcriptomic alterations of PRDM genes, we reanalyzed the Exome- and RNA-Seq public datasets available at The Cancer Genome Atlas portal. Overall, PRDM2, PRDM3/MECOM, PRDM9, PRDM16 and ZFPM2/FOG2 were the most mutated genes with pan-cancer frequencies of protein-affecting mutations higher than 1%. Moreover, we observed heterogeneity in the mutation frequencies of these genes across tumors, with cancer types also reaching a value of about 20% of mutated samples for a specific PRDM gene. Of note, ZFPM1/FOG1 mutations occurred in 50% of adrenocortical carcinoma patients and were localized in a hotspot region. These findings, together with OncodriveCLUST results, suggest it could be putatively considered a cancer driver gene in this malignancy. Finally, transcriptome analysis from RNA-Seq data of paired samples revealed that transcription of PRDMs was significantly altered in several tumors. Specifically, PRDM12 and PRDM13 were largely overexpressed in many cancers whereas PRDM16 and ZFPM2/FOG2 were often downregulated. Some of these findings were also confirmed by real-time-PCR on primary tumors.
Collapse
Affiliation(s)
- Anna Sorrentino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 80138 Naples, Italy.
- Department of Science and Technology, University of Naples "Parthenope", 80143 Naples, Italy.
| | - Antonio Federico
- Department of Science and Technology, University of Naples "Parthenope", 80143 Naples, Italy.
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy.
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy.
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| | - Alfredo Ciccodicola
- Department of Science and Technology, University of Naples "Parthenope", 80143 Naples, Italy.
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy.
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 80138 Naples, Italy.
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 80138 Naples, Italy.
| |
Collapse
|
54
|
Baldeosingh R, Gao H, Wu X, Fossett N. Hedgehog signaling from the Posterior Signaling Center maintains U-shaped expression and a prohemocyte population in Drosophila. Dev Biol 2018; 441:132-145. [PMID: 29966604 PMCID: PMC6064674 DOI: 10.1016/j.ydbio.2018.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022]
Abstract
Hematopoietic progenitor choice between multipotency and differentiation is tightly regulated by intrinsic factors and extrinsic signals from the surrounding microenvironment. The Drosophila melanogaster hematopoietic lymph gland has emerged as a powerful tool to investigate mechanisms that regulate hematopoietic progenitor choice in vivo. The lymph gland contains progenitor cells, which share key characteristics with mammalian hematopoietic progenitors such as quiescence, multipotency and niche-dependence. The lymph gland is zonally arranged, with progenitors located in medullary zone, differentiating cells in the cortical zone, and the stem cell niche or Posterior Signaling Center (PSC) residing at the base of the medullary zone (MZ). This arrangement facilitates investigations into how signaling from the microenvironment controls progenitor choice. The Drosophila Friend of GATA transcriptional regulator, U-shaped, is a conserved hematopoietic regulator. To identify additional novel intrinsic and extrinsic regulators that interface with U-shaped to control hematopoiesis, we conducted an in vivo screen for factors that genetically interact with u-shaped. Smoothened, a downstream effector of Hedgehog signaling, was one of the factors identified in the screen. Here we report our studies that characterized the relationship between Smoothened and U-shaped. We showed that the PSC and Hedgehog signaling are required for U-shaped expression and that U-shaped is an important intrinsic progenitor regulator. These observations identify a potential link between the progenitor regulatory machinery and extrinsic signals from the PSC. Furthermore, we showed that both Hedgehog signaling and the PSC are required to maintain a subpopulation of progenitors. This led to a delineation of PSC-dependent versus PSC-independent progenitors and provided further evidence that the MZ progenitor population is heterogeneous. Overall, we have identified a connection between a conserved hematopoietic master regulator and a putative stem cell niche, which adds to our understanding of how signals from the microenvironment regulate progenitor multipotency.
Collapse
Affiliation(s)
- Rajkumar Baldeosingh
- Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hongjuan Gao
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaorong Wu
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nancy Fossett
- Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
55
|
Liu L, Wang Q, Sun Y, Zhang Y, Zhang X, Liu J, Yu G, Pan H. Sssfh1, a Gene Encoding a Putative Component of the RSC Chromatin Remodeling Complex, Is Involved in Hyphal Growth, Reactive Oxygen Species Accumulation, and Pathogenicity in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:1828. [PMID: 30131794 PMCID: PMC6090059 DOI: 10.3389/fmicb.2018.01828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
SFH1 (for Snf5 homolog) protein, comprised in the RSC (Remodels Structure of Chromatin) chromatin remodeling complex, functions as a transcription factor (TF) to specifically regulate gene transcription and chromatin remodeling. As one of the well-conserved TFs in eukaryotic organisms, little is known about the roles of SFH1 protein in the filamentous fungi. In Sclerotinia sclerotiorum, one of the notorious plant fungal pathogens, there are nine proteins predicted to contain GATA-box domain according to GATA family TF classification, among which Sssfh1 (SS1G_01151) encodes a protein including a GATA-box domain and a SNF5 domain. Here, we characterized the roles of Sssfh1 in the developmental process and fungal pathogenicity by using RNA interference (RNAi)-based gene silencing in S. sclerotiorum. RNA-silenced strains with significantly reduced Sssfh1 RNA levels exhibited slower hyphal growth and decreased reactive oxygen species (ROS) accumulation in hyphae compared to the wild-type (WT) strain. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays demonstrated that SsSFH1 interacts with SsMSG5, a MAPK phosphatase in S. sclerotiorum. Furthermore, Sssfh1-silenced strains exhibited enhanced tolerance to NaCl and H2O2. Results of infection assays on soybean and common bean (Phaseolus vulgaris) leaves indicated that Sssfh1 is required for full virulence of S. sclerotiorum during infection in the susceptible host plants. Collectively, our results suggest that the TF SsSFH1 is involved in growth, ROS accumulation and virulence in S. sclerotiorum.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Qiaochu Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Ying Sun
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Gang Yu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
56
|
Bouchghoul H, Quelin C, Loget P, Encha-Razavi F, Senat MV, Maheut L, Galimand J, Collardeau-Frachon S, Da Costa L, Martinovic J. Fetal cerebral hemorrhage due to X-linked GATA1 gene mutation. Prenat Diagn 2018; 38:772-778. [PMID: 29949202 DOI: 10.1002/pd.5320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/12/2018] [Indexed: 11/06/2022]
Abstract
We report a multiplex family with a GATA1 gene mutation responsible for a massive fetal cerebral hemorrhage occurring at 36 weeks. Two other stillbirth cousins presented with fetal hydrops and congenital hemochromatosis' phenotype at 37 and 12 weeks of gestation. Molecular screening revealed the presence of a c.613G>A pathogenic allelic variation in exon 4 of GATA1 gene in the 3 male siblings and their carrier mothers. The diagnosis of a GATA1 gene mutation may be suspected in cases of male fetuses with intracerebral bleeding, particularly if a history of prior fetal loss(es) and mild maternal thrombocytopenia are also present.
Collapse
Affiliation(s)
- Hanane Bouchghoul
- Department of Gynecology and Obstetrics, Kremlin-Bicêtre Hospital, Kremlin-Bicêtre, France.,University Paris-Sud, Paris, France
| | - Chloé Quelin
- Department of Genetics, Sud Hospital, Rennes, France
| | - Philippe Loget
- Department of Anatomo-Pathology, Pontchaillou Hospital, Rennes, France
| | | | - Marie-Victoire Senat
- Department of Gynecology and Obstetrics, Kremlin-Bicêtre Hospital, Kremlin-Bicêtre, France.,University Paris-Sud, Paris, France
| | - Lorraine Maheut
- Department of Gynecology and Obstetrics, Mutualiste la Sagesse Clinic, Rennes, France
| | - Julie Galimand
- Hematology Diagnosis Laboratory, Robert Debré Hospital, Paris, France.,University Paris7-Denis Diderot, Paris, France
| | | | - Lydie Da Costa
- Hematology Diagnosis Laboratory, Robert Debré Hospital, Paris, France.,University Paris7-Denis Diderot, Paris, France
| | | |
Collapse
|
57
|
Liu A, Li S, Donnenberg V, Fu J, Gollin SM, Ma H, Lu C, Stolz DB, Mapara MY, Monaghan SA, Lentzsch S. Immunomodulatory drugs downregulate IKZF1 leading to expansion of hematopoietic progenitors with concomitant block of megakaryocytic maturation. Haematologica 2018; 103:1688-1697. [PMID: 29954930 PMCID: PMC6165797 DOI: 10.3324/haematol.2018.188227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022] Open
Abstract
The immunomodulatory drugs, lenalidomide and pomalidomide yield high response rates in multiple myeloma patients, but are associated with a high rate of thrombocytopenia and increased risk of secondary hematologic malignancies. Here, we demonstrate that the immunomodulatory drugs induce self-renewal of hematopoietic progenitors and upregulate megakaryocytic colonies by inhibiting apoptosis and increasing proliferation of early megakaryocytic progenitors via down-regulation of IKZF1. In this process, the immunomodulatory drugs degrade IKZF1 and subsequently down-regulate its binding partner, GATA1. This results in the decrease of GATA1 targets such as ZFPM1 and NFE2, leading to expansion of megakaryocytic progenitors with concomitant inhibition of maturation of megakaryocytes. The down-regulation of GATA1 further decreases CCND1 and increases CDKN2A expression. Overexpression of GATA1 abrogated the effects of the immunomodulatory drugs and restored maturation of megakaryocytic progenitors. Our data not only provide the mechanism for the immunomodulatory drugs induced thrombocytopenia but also help to explain the higher risk of secondary malignancies and long-term cytopenia induced by enhanced cell cycling and subsequent exhaustion of the stem cell pool.
Collapse
Affiliation(s)
- Ailing Liu
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine and Cancer Institute, PA, USA
| | - Shirong Li
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine and Cancer Institute, PA, USA.,Division of Hematology/Oncology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vera Donnenberg
- Department of Surgery and Pharmaceutical Sciences, University of Pittsburgh School of Medicine and Cancer Institute, PA, USA
| | - Jing Fu
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine and Cancer Institute, PA, USA.,Division of Hematology/Oncology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health and Cancer Institute, and the University of Pittsburgh Cell Culture and Cytogenetics Facility, PA, USA
| | - Huihui Ma
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine and Cancer Institute, PA, USA.,Columbia Center for Translational Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Caisheng Lu
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine and Cancer Institute, PA, USA.,Columbia Center for Translational Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Donna B Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh, PA, USA
| | - Markus Y Mapara
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine and Cancer Institute, PA, USA.,Division of Hematology/Oncology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Columbia Center for Translational Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sara A Monaghan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Suzanne Lentzsch
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine and Cancer Institute, PA, USA .,Division of Hematology/Oncology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
58
|
Zhang Y, Li L, Yu C, Senyuk V, Li F, Quigley JG, Zhu T, Qian Z. miR-9 upregulation leads to inhibition of erythropoiesis by repressing FoxO3. Sci Rep 2018; 8:6519. [PMID: 29695725 PMCID: PMC5916915 DOI: 10.1038/s41598-018-24628-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are emerging as critical regulators of normal and malignant hematopoiesis. In previous studies of acute myeloid leukemia miR-9 overexpression was commonly observed. Here, we show that ectopic expression of miR-9 in vitro and in vivo significantly blocks differentiation of erythroid progenitor cells with an increase in reactive oxygen species (ROS) production. Consistent with this observation, ROS scavenging enzymes, including superoxide dismutase (Sod2), Catalase (Cat), and glutathine peroxidase (Gpx1), are down-regulated by miR-9. In addition, miR-9 suppresses expression of the erythroid transcriptional regulator FoxO3, and its down-stream targets Btg1 and Cited 2 in erythroid progenitor cells, while expression of a constitutively active form of FoxO3 (FoxO3-3A) reverses miR-9-induced suppression of erythroid differentiation, and inhibits miR-9-induced ROS production. Thus, our findings indicate that aberrant expression of miR-9 blocks erythropoiesis by deregulating FoxO3-mediated pathways, which may contribute to the ineffective erythropoiesis observed in patients with hematological malignancies.
Collapse
Affiliation(s)
- Yunyuan Zhang
- Department of Clinical laboratory, The Affiliated Hospital of Qingdao University Medical College, Qingdao, 266003, China
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Liping Li
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
- Fudan University ZhongShan Hospital, Shanghai, China
| | - Chunjie Yu
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Vitalyi Senyuk
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Fuxing Li
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - John G Quigley
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Tongyu Zhu
- Fudan University ZhongShan Hospital, Shanghai, China
| | - Zhijian Qian
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA.
| |
Collapse
|
59
|
Kojima M, Nagano T, Nakata K, Hara S, Katsurada N, Yamamoto M, Tachihara M, Kamiryo H, Kobayashi K, Usui T, Nishimura Y. Lung squamous cell carcinoma associated with hypoparathyroidism with sensorineural deafness and renal dysplasia syndrome: a case report. Onco Targets Ther 2018; 11:1595-1599. [PMID: 29593425 PMCID: PMC5865551 DOI: 10.2147/ott.s161420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoparathyroidism with sensorineural deafness and renal dysplasia (HDR) syndrome is an autosomal dominant condition caused by mutations of the gene encoding the dual zinc-finger transcription factor, GATA3. A previous study identified some patients with GATA3 gene variants and breast cancer, suggesting that GATA3 variants may contribute to tumorigenesis in estrogen receptor 1-positive breast tumors; however, these patients did not have HDR syndrome. A 32-year-old nonsmoking Japanese woman was histologically diagnosed with lung squamous cell carcinoma associated with HDR syndrome and a c.C952T>C (p.C318R) germline mutation in GATA3. This is the first report describing cancer in a patient with HDR syndrome. Our data indicates that GATA3 mutations may be a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Mariko Kojima
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kyosuke Nakata
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shigeo Hara
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Naoko Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Motoko Tachihara
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroshi Kamiryo
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takeshi Usui
- Department of Medical Genetics, Shizuoka General Hospital, Shizuoka City, Shizuoka, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
60
|
Bresnick EH, Hewitt KJ, Mehta C, Keles S, Paulson RF, Johnson KD. Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond. Development 2018; 145:dev151423. [PMID: 29321181 PMCID: PMC5825862 DOI: 10.1242/dev.151423] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.
Collapse
Affiliation(s)
- Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - Kirby D Johnson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
61
|
|
62
|
Abstract
Human eosinophils have characteristic morphologic features, including a bilobed nucleus and cytoplasmic granules filled with cytotoxic and immunoregulatory proteins that are packaged in a specific manner. Eosinophil production in the bone marrow is exquisitely regulated by timely expression of a repertoire of transcription factors that work together via collaborative and hierarchical interactions to direct eosinophil development. In addition, proper granule formation, which occurs in a spatially organized manner, is an intrinsic checkpoint that must be passed for proper eosinophil production to occur. In eosinophil-associated disorders, eosinophils and their progenitors can be recruited in large numbers into tissues where they can induce proinflammatory organ damage in response to local signals. Eosinophils are terminally differentiated and do not proliferate once they leave the bone marrow. The cytokine IL-5 specifically enhances eosinophil production and, along with other mediators, promotes eosinophil activation. Indeed, eosinophil depletion with anti-IL-5 or anti-IL-5Rα is now proven to be clinically beneficial for several eosinophilic disorders, most notably severe asthma, and several therapeutics targeting eosinophil viability and production are now in development. Significant progress has been made in our understanding of eosinophil development and the consequences of tissue eosinophilia. Future research efforts focused on basic eosinophil immunobiology and translational efforts to assist in the diagnosis, treatment selection, and resolution of eosinophil-associated disorders will likely be informative and clinically helpful.
Collapse
Affiliation(s)
- Patricia C Fulkerson
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
63
|
Corrected and Republished from: BCL11A Is a Critical Component of a Transcriptional Network That Activates RAG Expression and V(D)J Recombination. Mol Cell Biol 2017; 38:MCB.00362-17. [PMID: 29038163 DOI: 10.1128/mcb.00362-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
Recombination activating gene 1 (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining [V(D)J] segment recombination, an essential process for antigen receptor expression and lymphocyte development. The BCL11A transcription factor is required for B cell and plasmacytoid dendritic cell (pDC) development, but its molecular function(s) in early B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds directly to the RAG1 promoter as well as directly to regulatory regions of transcription factors previously implicated in both B cell and pDC development to activate RAG1 and RAG2 gene transcription in pro- and pre-B cells. We employed BCL11A overexpression with recombination substrates to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination.
Collapse
|
64
|
Freson K, Wijgaerts A, Van Geet C. GATA1 gene variants associated with thrombocytopenia and anemia. Platelets 2017; 28:731-734. [DOI: 10.1080/09537104.2017.1361525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Anouck Wijgaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Chris Van Geet
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
65
|
Butcher L, Ahluwalia M, Örd T, Johnston J, Morris RH, Kiss-Toth E, Örd T, Erusalimsky JD. Evidence for a role of TRIB3 in the regulation of megakaryocytopoiesis. Sci Rep 2017; 7:6684. [PMID: 28751721 PMCID: PMC5532315 DOI: 10.1038/s41598-017-07096-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/27/2017] [Indexed: 12/23/2022] Open
Abstract
Megakaryocytopoiesis is a complex differentiation process driven by the hormone thrombopoietin by which haematopoietic progenitor cells give rise to megakaryocytes, the giant bone marrow cells that in turn break down to form blood platelets. The Tribbles Pseudokinase 3 gene (TRIB3) encodes a pleiotropic protein increasingly implicated in the regulation of cellular differentiation programmes. Previous studies have hinted that TRIB3 could be also involved in megakaryocytopoiesis but its role in this process has so far not been investigated. Using cellular model systems of haematopoietic lineage differentiation here we demonstrate that TRIB3 is a negative modulator of megakaryocytopoiesis. We found that in primary cultures derived from human haematopoietic progenitor cells, thrombopoietin-induced megakaryocytic differentiation led to a time and dose-dependent decrease in TRIB3 mRNA levels. In the haematopoietic cell line UT7/mpl, silencing of TRIB3 increased basal and thrombopoietin-stimulated megakaryocyte antigen expression, as well as basal levels of ERK1/2 phosphorylation. In primary haematopoietic cell cultures, silencing of TRIB3 facilitated megakaryocyte differentiation. In contrast, over-expression of TRIB3 in these cells inhibited the differentiation process. The in-vitro identification of TRIB3 as a negative regulator of megakaryocytopoiesis suggests that in-vivo this gene could be important for the regulation of platelet production.
Collapse
Affiliation(s)
- Lee Butcher
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | - Tiit Örd
- Estonian Biocentre, Tartu, Estonia
| | - Jessica Johnston
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Roger H Morris
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
66
|
Fulkerson PC. Transcription Factors in Eosinophil Development and As Therapeutic Targets. Front Med (Lausanne) 2017; 4:115. [PMID: 28791289 PMCID: PMC5522844 DOI: 10.3389/fmed.2017.00115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Dynamic gene expression is a major regulatory mechanism that directs hematopoietic cell fate and differentiation, including eosinophil lineage commitment and eosinophil differentiation. Though GATA-1 is well established as a critical transcription factor (TF) for eosinophil development, delineating the transcriptional networks that regulate eosinophil development at homeostasis and in inflammatory states is not complete. Yet, recent advances in molecular experimental tools using purified eosinophil developmental stages have led to identifying new regulators of gene expression during eosinophil development. Herein, recent studies that have provided new insight into the mechanisms of gene regulation during eosinophil lineage commitment and eosinophil differentiation are reviewed. A model is described wherein distinct classes of TFs work together via collaborative and hierarchical interactions to direct eosinophil development. In addition, the therapeutic potential for targeting TFs to regulate eosinophil production is discussed. Understanding how specific signals direct distinct patterns of gene expression required for the specialized functions of eosinophils will likely lead to new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Patricia C Fulkerson
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
67
|
Litchfield K, Levy M, Orlando G, Loveday C, Law P, Migliorini G, Holroyd A, Broderick P, Karlsson R, Haugen TB, Kristiansen W, Nsengimana J, Fenwick K, Assiotis I, Kote-Jarai ZS, Dunning AM, Muir K, Peto J, Eeles R, Easton DF, Dudakia D, Orr N, Pashayan N, UK Testicular Cancer Collaboration, The PRACTICAL consortium, Bishop DT, Reid A, Huddart RA, Shipley J, Grotmol T, Wiklund F, Houlston RS, Turnbull C. Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor. Nat Genet 2017; 49:1133-1140. [PMID: 28604728 PMCID: PMC6016736 DOI: 10.1038/ng.3896] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/16/2017] [Indexed: 12/29/2022]
Abstract
Genome-wide association studies (GWAS) have transformed understanding of susceptibility to testicular germ cell tumors (TGCTs), but much of the heritability remains unexplained. Here we report a new GWAS, a meta-analysis with previous GWAS and a replication series, totaling 7,319 TGCT cases and 23,082 controls. We identify 19 new TGCT risk loci, roughly doubling the number of known TGCT risk loci to 44. By performing in situ Hi-C in TGCT cells, we provide evidence for a network of physical interactions among all 44 TGCT risk SNPs and candidate causal genes. Our findings implicate widespread disruption of developmental transcriptional regulators as a basis of TGCT susceptibility, consistent with failed primordial germ cell differentiation as an initiating step in oncogenesis. Defective microtubule assembly and dysregulation of KIT-MAPK signaling also feature as recurrently disrupted pathways. Our findings support a polygenic model of risk and provide insight into the biological basis of TGCT.
Collapse
Affiliation(s)
- Kevin Litchfield
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Max Levy
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Giulia Orlando
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Chey Loveday
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Philip Law
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Gabriele Migliorini
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Amy Holroyd
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Peter Broderick
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Trine B Haugen
- Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | - Wenche Kristiansen
- Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | - Jérémie Nsengimana
- Section of Epidemiology & Biostatistics, Leeds Institute of Cancer and Pathology, Leeds, LS9 7TF, UK
| | - Kerry Fenwick
- Tumour Profiling Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Ioannis Assiotis
- Tumour Profiling Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - ZSofia Kote-Jarai
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Kenneth Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, CV4 7AL, UK
- Institute of Population Health, University of Manchester, M1 3BB, UK
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Rosalind Eeles
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, SM2 5NG, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Darshna Dudakia
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Nick Orr
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Nora Pashayan
- Department of Applied Health Research, University College London, London, WC1E 6BT, UK
| | | | | | - D. Timothy Bishop
- Section of Epidemiology & Biostatistics, Leeds Institute of Cancer and Pathology, Leeds, LS9 7TF, UK
| | - Alison Reid
- Academic Radiotherapy Unit, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Robert A Huddart
- Academic Radiotherapy Unit, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Janet Shipley
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Tom Grotmol
- Department of Research, Cancer Registry of Norway, Oslo, 0369, Norway
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Richard S Houlston
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Clare Turnbull
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
- William Harvey Research Institute, Queen Mary University, London, EC1M 6BQ, UK
| |
Collapse
|
68
|
Chen H, Shao H, Li K, Zhang D, Fan S, Li Y, Han M. Genome-wide identification, evolution, and expression analysis of GATA transcription factors in apple (Malus×domestica Borkh.). Gene 2017; 627:460-472. [PMID: 28669931 DOI: 10.1016/j.gene.2017.06.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 11/19/2022]
Abstract
Plant GATA transcription factors are type-IV zinc-finger proteins that play important regulatory roles in plant growth and development. In this study, we identified 35 GATA genes classified into four groups in the whole genome sequence of Malus domestica. A physiochemical property analysis indicated that GATA proteins are largely unstable hydrophilic proteins. An analysis of conserved protein motifs uncovered three highly conserved motifs, in addition to the GATA motif, in all MdGATA proteins. These three motifs, CCT, TIFY, and ASXH, were found to occur in specific GATA groups and may be related to GATA gene function. We identified 10 pairs of putative paralogs, indicating that MdGATA genes have mainly undergone whole genome duplication. Eighteen orthologous gene pairs were also identified between Arabidopsis thaliana and M. domestica. Furthermore, many light-responsive cis-elements were found in MdGATA gene promoters. Tissue-specific expression analysis performed by quantitative real-time reverse transcription PCR showed that MdGATA genes were preferentially expressed in flowers, leaves, and buds. Apple seedlings maintained in darkness for 7days exhibited a moderate decline in chlorophyll content along with significant down-regulation of most MdGATA genes, suggesting that MdGATA genes may be involved in light-responsive development and chlorophyll-level regulation. The distinctly higher expression levels observed for many MdGATA genes during three stages of floral induction also indicate that MdGATA genes may play a role in the apple flowering transition. The results presented here lay the foundation for further investigation of MdGATA gene family putative functions and improvement of apple yields.
Collapse
Affiliation(s)
- Hongfei Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongxia Shao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ke Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sheng Fan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Youmei Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
69
|
Ghosh S, Chatterji D. Two zinc finger proteins from Mycobacterium smegmatis: DNA binding and activation of transcription. Genes Cells 2017. [PMID: 28639742 DOI: 10.1111/gtc.12507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single zinc finger domain containing proteins are very few in number. Of numerous zinc finger proteins in eukaryotes, only three of them like GAGA, Superman and DNA binding by one finger (Dof) have single zinc finger domain. Although few zinc finger proteins have been described in eubacteria, no protein with single C4 zinc finger has been described in details in anyone of them. In this article, we are describing two novel C-terminal C4 zinc finger proteins-Msmeg_0118 and Msmeg_3613 from Mycobacterium smegmatis. We have named these proteins as Mszfp1 (Mycobacterial Single Zinc Finger Protein 1) and Mszfp2 (Mycobacterial Single Zinc Finger Protein 2). Both the proteins are expressed constitutively, can bind to DNA and regulate transcription. It appears that Mszfp1 and Mszfp2 may activate transcription by interacting with RNA polymerase.
Collapse
Affiliation(s)
- Subho Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
70
|
Haploinsufficiency for ANKRD11-flanking genes makes the difference between KBG and 16q24.3 microdeletion syndromes: 12 new cases. Eur J Hum Genet 2017; 25:694-701. [PMID: 28422132 PMCID: PMC5533198 DOI: 10.1038/ejhg.2017.49] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/24/2017] [Accepted: 02/01/2017] [Indexed: 11/09/2022] Open
Abstract
16q24 deletion involving the ANKRD11 gene, ranging from 137 kb to 2 Mb, have been associated with a microdeletion syndrome characterized by variable cognitive impairment, autism spectrum disorder, facial dysmorphisms with dental anomalies, brain abnormalities essentially affecting the corpus callosum and short stature. On the other hand, patients carrying either deletions encompassing solely ANKRD11 or its loss-of-function variants were reported in association with the KBG syndrome, characterized by a very similar phenotype, including mild-to-moderate intellectual disability, short stature and macrodontia of upper incisors, with inter and intrafamilial variability. To assess whether the haploinsufficiency of ANKRD11-flanking genes, such as ZFPM1, CDH15 and ZNF778, contributed to either the severity of the neurological impairment or was associated with other clinical features, we collected 12 new cases with a 16q24.2q24.3 deletion (de novo in 11 cases), ranging from 343 kb to 2.3 Mb. In 11 of them, the deletion involved the ANKRD11 gene, whereas in 1 case only flanking genes upstream to it were deleted. By comparing the clinical and genetic features of our patients with those previously reported, we show that the severity of the neurological phenotype and the frequency of congenital heart defects characterize the deletions that, besides ANKRD11, contain ZFPM1, CDH15 and ZNF778 as well. Moreover, the presence of thrombocytopenia and astigmatism should be taken into account to distinguish between 16q24 microdeletion syndrome and KBG syndrome. The single patient not deleted for ANKRD11, whose phenotype is characterized by milder psychomotor delay, cardiac congenital malformation, thrombocytopenia and astigmatism, confirms all this data.
Collapse
|
71
|
Wang L, Yu H, Cheng H, He K, Fang Z, Ge L, Cheng T, Jin Y. Deletion of Stk40 impairs definitive erythropoiesis in the mouse fetal liver. Cell Death Dis 2017; 8:e2722. [PMID: 28358362 PMCID: PMC5386544 DOI: 10.1038/cddis.2017.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 01/09/2023]
Abstract
The serine threonine kinase Stk40 has been shown to involve in mouse embryonic stem cell differentiation, pulmonary maturation and adipocyte differentiation. Here we report that targeted deletion of Stk40 leads to fetal liver hypoplasia and anemia in the mouse embryo. The reduction of erythrocytes in the fetal liver is accompanied by increased apoptosis and compromised erythroid maturation. Stk40-/- fetal liver cells have significantly reduced colony-forming units (CFUs) capable of erythroid differentiation, including burst forming unit-erythroid, CFU-erythroid (CFU-E), and CFU-granulocyte, erythrocyte, megakaryocyte and macrophage, but not CFU-granulocyte/macrophages. Purified Stk40-/- megakaryocyte-erythrocyte progenitors produce substantially fewer CFU-E colonies compared to control cells. Moreover, Stk40-/- fetal liver erythroblasts fail to form normal erythroblastic islands in association with wild type or Stk40-/- macrophages, indicating an intrinsic defect of Stk40-/- erythroblasts. Furthermore, the hematopoietic stem and progenitor cell pool is reduced in Stk40-/- fetal livers but still retains the multi-lineage reconstitution capacity. Finally, comparison of microarray data between wild type and Stk40-/- E14.5 fetal liver cells reveals a potential role of aberrantly activated TNF-α signaling in Stk40 depletion induced dyserythropoiesis with a concomitant increase in cleaved caspase-3 and decrease in Gata1 proteins. Altogether, the identification of Stk40 as a regulator for fetal erythroid maturation and survival provides new clues to the molecular regulation of erythropoiesis and related diseases.
Collapse
Affiliation(s)
- Lina Wang
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Hongyao Yu
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Ke He
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Zhuoqing Fang
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Science, Chinese Academy of Sciences, Shanghai 200032, China
| | - Laixiang Ge
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Science, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
72
|
Fujiwara T, Sasaki K, Saito K, Hatta S, Ichikawa S, Kobayashi M, Okitsu Y, Fukuhara N, Onishi Y, Harigae H. Forced FOG1 expression in erythroleukemia cells: Induction of erythroid genes and repression of myelo-lymphoid transcription factor PU.1. Biochem Biophys Res Commun 2017; 485:380-387. [PMID: 28216155 DOI: 10.1016/j.bbrc.2017.02.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 11/27/2022]
Abstract
The transcription factor GATA-1-interacting protein Friend of GATA-1 (FOG1) is essential for proper transcriptional activation and repression of GATA-1 target genes; yet, the mechanisms by which FOG1 exerts its activating and repressing functions remain unknown. Forced FOG1 expression in human K562 erythroleukemia cells induced the expression of erythroid genes (SLC4A1, globins) but repressed that of GATA-2 and PU.1. A quantitative chromatin immunoprecipitation (ChIP) analysis demonstrated increased GATA-1 chromatin occupancy at both FOG1-activated as well as FOG1-repressed gene loci. However, while TAL1 chromatin occupancy was significantly increased at FOG1-activated gene loci, it was significantly decreased at FOG1-repressed gene loci. When FOG1 was overexpressed in TAL1-knocked down K562 cells, FOG1-mediated activation of HBA, HBG, and SLC4A1 was significantly compromised by TAL1 knockdown, suggesting that FOG1 may require TAL1 to activate GATA-1 target genes. Promoter analysis and quantitative ChIP analysis demonstrated that FOG1-mediated transcriptional repression of PU.1 would be mediated through a GATA-binding element located at its promoter, accompanied by significantly decreased H3 acetylation at lysine 4 and 9 (K4 and K9) as well as H3K4 trimethylation. Our results provide important mechanistic insight into the role of FOG1 in the regulation of GATA-1-regulated genes and suggest that FOG1 has an important role in inducing cells to differentiate toward the erythroid lineage rather than the myelo-lymphoid one by repressing the expression of PU.1.
Collapse
Affiliation(s)
- Tohru Fujiwara
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan.
| | - Katsuyuki Sasaki
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; Department of Laboratory, Tohoku University Hospital, Sendai, 1-1 Seiryo-cho, Aoba-ku, Sendai 980-8574, Japan
| | - Kei Saito
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Shunsuke Hatta
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Satoshi Ichikawa
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Masahiro Kobayashi
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Yoko Okitsu
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Noriko Fukuhara
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Yasushi Onishi
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
73
|
Place ES, Smith JC. Zebrafish atoh8 mutants do not recapitulate morpholino phenotypes. PLoS One 2017; 12:e0171143. [PMID: 28182631 PMCID: PMC5300237 DOI: 10.1371/journal.pone.0171143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/29/2016] [Indexed: 11/18/2022] Open
Abstract
Atoh8 is a bHLH transcription factor expressed in pancreas, skeletal muscle, the nervous system, and cardiovascular tissues during embryological development. Although it has been implicated in the regulation of pancreatic and endothelial cell differentiation, the phenotypic consequences of Atoh8 loss are uncertain. Conclusions from knockout studies in the mouse differ widely depending on the targeting strategy used, while atoh8 knockdown by interfering morpholino oligonucleotides (morpholinos) in zebrafish has led to a range of developmental defects. This study characterised zebrafish embryos homozygous for atoh8sa1465, a loss-of-function allele of atoh8, in order to provide genetic evidence for the developmental role of Atoh8 in this species. Embryos homozygous for atoh8sa1465 present normal body morphology, swimbladder inflation, and heart looping, and survive to adulthood. These embryos do not develop pericardial oedema by 72 hpf and are not sensitised to the loss of Fog1 protein, suggesting that this previously described abnormality is not a specific phenotype. Vascular patterning and primitive haematopoiesis are unaffected in atoh8sa1465/sa1465 mutant embryos. Together, the data suggest that Atoh8 is dispensible for zebrafish development under standard laboratory conditions.
Collapse
Affiliation(s)
- Elsie S. Place
- Developmental Biology Laboratory, Francis Crick Institute, London, United Kingdom
| | - James C. Smith
- Developmental Biology Laboratory, Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
74
|
Abstract
The discovery of the GATA binding protein (GATA factor) transcription factor family revolutionized hematology. Studies of GATA proteins have yielded vital contributions to our understanding of how hematopoietic stem and progenitor cells develop from precursors, how progenitors generate red blood cells, how hemoglobin synthesis is regulated, and the molecular underpinnings of nonmalignant and malignant hematologic disorders. This thrilling journey began with mechanistic studies on a β-globin enhancer- and promoter-binding factor, GATA-1, the founding member of the GATA family. This work ushered in the cloning of related proteins, GATA-2-6, with distinct and/or overlapping expression patterns. Herein, we discuss how the hematopoietic GATA factors (GATA-1-3) function via a battery of mechanistic permutations, which can be GATA factor subtype, cell type, and locus specific. Understanding this intriguing protein family requires consideration of how the mechanistic permutations are amalgamated into circuits to orchestrate processes of interest to the hematologist and more broadly.
Collapse
|
75
|
GATA factor mutations in hematologic disease. Blood 2017; 129:2103-2110. [PMID: 28179280 DOI: 10.1182/blood-2016-09-687889] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
GATA family proteins play essential roles in development of many cell types, including hematopoietic, cardiac, and endodermal lineages. The first three factors, GATAs 1, 2, and 3, are essential for normal hematopoiesis, and their mutations are responsible for a variety of blood disorders. Acquired and inherited GATA1 mutations contribute to Diamond-Blackfan anemia, acute megakaryoblastic leukemia, transient myeloproliferative disorder, and a group of related congenital dyserythropoietic anemias with thrombocytopenia. Conversely, germ line mutations in GATA2 are associated with GATA2 deficiency syndrome, whereas acquired mutations are seen in myelodysplastic syndrome, acute myeloid leukemia, and in blast crisis transformation of chronic myeloid leukemia. The fact that mutations in these genes are commonly seen in blood disorders underscores their critical roles and highlights the need to develop targeted therapies for transcription factors. This review focuses on hematopoietic disorders that are associated with mutations in two prominent GATA family members, GATA1 and GATA2.
Collapse
|
76
|
Luo ST, Zhang DM, Qin Q, Lu L, Luo M, Guo FC, Shi HS, Jiang L, Shao B, Li M, Yang HS, Wei YQ. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid. Sci Rep 2017; 7:38105. [PMID: 28165036 PMCID: PMC5292721 DOI: 10.1038/srep38105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 10/27/2016] [Indexed: 02/05/2023] Open
Abstract
The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA+ cells. Also, increases in haematocrit and CD71−/Ter119+ erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34+/CD117− cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions.
Collapse
Affiliation(s)
- Shun-Tao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| | - Dong-Mei Zhang
- Center of Reproductive Medicine, Department of Gynecology and Obstetrics, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qing Qin
- Department of Oncology, Chengdu Shang Jin Nan Fu Hospital, Chengdu, Sichuan 610041, China
| | - Lian Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| | - Min Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| | - Fu-Chun Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| | - Hua-Shan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, and Head and Neck Oncology Department of Cancer Center, West China Hospital, Chengdu, 610064, China
| | - Li Jiang
- West China Hospital, West China Medical School, Sichuan University, Chengdu, 610064, China
| | - Bin Shao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| | - Meng Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| | - Han-Shuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| |
Collapse
|
77
|
Hasegawa A, Shimizu R. GATA1 Activity Governed by Configurations of cis-Acting Elements. Front Oncol 2017; 6:269. [PMID: 28119852 PMCID: PMC5220053 DOI: 10.3389/fonc.2016.00269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
The transcription factor GATA1 regulates the expression of essential erythroid and megakaryocytic differentiation genes through binding to the DNA consensus sequence WGATAR. The GATA1 protein has four functional domains, including two centrally located zinc-finger domains and two transactivation domains at the N- and C-termini. These functional domains play characteristic roles in the elaborate regulation of diversified GATA1 target genes, each of which exhibits a unique expression profile. Three types of GATA1-related hematological malignancies have been reported. One is a structural mutation in the GATA1 gene, resulting in the production of a short form of GATA1 that lacks the N-terminal transactivation domain and is found in Down syndrome-related acute megakaryocytic leukemia. The other two are cis-acting regulatory mutations affecting expression of the Gata1 gene, which have been shown to cause acute erythroblastic leukemia and myelofibrosis in mice. Therefore, imbalanced gene regulation caused by qualitative and quantitative changes in GATA1 is thought to be involved in specific hematological disease pathogenesis. In the present review, we discuss recent advances in understanding the mechanisms of differential transcriptional regulation by GATA1 during erythroid differentiation, with special reference to the binding kinetics of GATA1 at conformation-specific binding sites.
Collapse
Affiliation(s)
- Atsushi Hasegawa
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan; Medical Mega-Bank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
78
|
Wałajtys-Rode E, Dzik JM. Monocyte/Macrophage: NK Cell Cooperation-Old Tools for New Functions. Results Probl Cell Differ 2017; 62:73-145. [PMID: 28455707 DOI: 10.1007/978-3-319-54090-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monocyte/macrophage and natural killer (NK) cells are partners from a phylogenetic standpoint of innate immune system development and its evolutionary progressive interaction with adaptive immunity. The equally conservative ways of development and differentiation of both invertebrate hemocytes and vertebrate macrophages are reviewed. Evolutionary conserved molecules occurring in macrophage receptors and effectors have been inherited by vertebrates after their common ancestor with invertebrates. Cytolytic functions of mammalian NK cells, which are rooted in immune cells of invertebrates, although certain NK cell receptors (NKRs) are mammalian new events, are characterized. Broad heterogeneity of macrophage and NK cell phenotypes that depends on surrounding microenvironment conditions and expression profiles of specific receptors and activation mechanisms of both cell types are discussed. The particular tissue specificity of macrophages and NK cells, as well as their plasticity and mechanisms of their polarization to different functional subtypes have been underlined. The chapter summarized studies revealing the specific molecular mechanisms and regulation of NK cells and macrophages that enable their highly specific cross-cooperation. Attention is given to the evolving role of human monocyte/macrophage and NK cell interaction in pathogenesis of hypersensitivity reaction-based disorders, including autoimmunity, as well as in cancer surveillance and progression.
Collapse
Affiliation(s)
- Elżbieta Wałajtys-Rode
- Faculty of Chemistry, Department of Drug Technology and Biotechnology, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland.
| | - Jolanta M Dzik
- Faculty of Agriculture and Biology, Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
79
|
Abstract
GATA transcription factors are emerging as critical players in mammalian reproductive development and function. GATA-4 contributes to fetal male gonadal development by regulating genes mediating Müllerian duct regression and the onset of testosterone production. GATA-2 expression appears to be sexually dimorphic being transiently expressed in the germ cell lineage of the fetal ovary but not the fetal testis. In the reproductive system, GATA-1 is exclusively expressed in Sertoli cells at specific seminiferous tubule stages. In addition, GATA-4 and GATA-6 are localized primary to ovarian and testicular somatic cells. The majority of cell transfection studies demonstrate that GATA-1 and GATA-4 can stimulate inhibin subunit gene promoter constructs. Other studies provide strong evidence that GATA-4 and GATA-6 can activate genes mediating gonadal cell steroidogenesis. GATA-2 and GATA-3 are found in pituitary and placental cells and can regulate alpha-glycoprotein subunit gene expression. Gonadal expression and activation of GATAs appear to be regulated in part by gonadotropin signaling via the cyclic AMP-protein kinase A pathway. This review will cover the current knowledge regarding GATA expression and function at all levels of the reproductive axis.
Collapse
Affiliation(s)
- Holly A LaVoie
- Department of Cell and Developmental Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA.
| |
Collapse
|
80
|
p53-/- synergizes with enhanced NrasG12D signaling to transform megakaryocyte-erythroid progenitors in acute myeloid leukemia. Blood 2016; 129:358-370. [PMID: 27815262 DOI: 10.1182/blood-2016-06-719237] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022] Open
Abstract
Somatic mutations in TP53 and NRAS are associated with transformation of human chronic myeloid diseases to acute myeloid leukemia (AML). Here, we report that concurrent RAS pathway and TP53 mutations are identified in a subset of AML patients and confer an inferior overall survival. To further investigate the genetic interaction between p53 loss and endogenous NrasG12D/+ in AML, we generated conditional NrasG12D/+p53-/- mice. Consistent with the clinical data, recipient mice transplanted with NrasG12D/+p53-/- bone marrow cells rapidly develop a highly penetrant AML. We find that p53-/- cooperates with NrasG12D/+ to promote increased quiescence in megakaryocyte-erythroid progenitors (MEPs). NrasG12D/+p53-/- MEPs are transformed to self-renewing AML-initiating cells and are capable of inducing AML in serially transplanted recipients. RNA sequencing analysis revealed that transformed MEPs gain a partial hematopoietic stem cell signature and largely retain an MEP signature. Their distinct transcriptomes suggests a potential regulation by p53 loss. In addition, we show that during AML development, transformed MEPs acquire overexpression of oncogenic Nras, leading to hyperactivation of ERK1/2 signaling. Our results demonstrate that p53-/- synergizes with enhanced oncogenic Nras signaling to transform MEPs and drive AML development. This model may serve as a platform to test candidate therapeutics in this aggressive subset of AML.
Collapse
|
81
|
Du C, Xu Y, Yang K, Chen S, Wang X, Wang S, Wang C, Shen M, Chen F, Chen M, Zeng D, Li F, Wang T, Wang F, Zhao J, Ai G, Cheng T, Su Y, Wang J. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1. Leukemia 2016; 31:945-956. [DOI: 10.1038/leu.2016.285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022]
|
82
|
Zhang Y, Zhang J, An W, Wan Y, Ma S, Yin J, Li X, Gao J, Yuan W, Guo Y, Engel JD, Shi L, Cheng T, Zhu X. Intron 1 GATA site enhances ALAS2 expression indispensably during erythroid differentiation. Nucleic Acids Res 2016; 45:657-671. [PMID: 28123038 PMCID: PMC5314798 DOI: 10.1093/nar/gkw901] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 01/19/2023] Open
Abstract
The first intronic mutations in the intron 1 GATA site (int-1-GATA) of 5-aminolevulinate synthase 2 (ALAS2) have been identified in X-linked sideroblastic anemia (XLSA) pedigrees, strongly suggesting it could be causal mutations of XLSA. However, the function of this int-1-GATA site during in vivo development remains largely unknown. Here, we generated mice lacking a 13 bp fragment, including this int-1-GATA site (TAGATAAAGCCCC) and found that hemizygous deletion led to an embryonic lethal phenotype due to severe anemia resulting from a lack of ALAS2 expression, indicating that this non-coding sequence is indispensable for ALAS2 expression in vivo. Further analyses revealed that this int-1-GATA site anchored the GATA site in intron 8 (int-8-GATA) and the proximal promoter, forming a long-range loop to enhance ALAS2 expression by an enhancer complex including GATA1, TAL1, LMO2, LDB1 and Pol II at least, in erythroid cells. However, compared with the int-8-GATA site, the int-1-GATA site is more essential for regulating ALAS2 expression through CRISPR/Cas9-mediated site-specific deletion. Therefore, the int-1-GATA site could serve as a valuable site for diagnosing XLSA in cases with unknown mutations.
Collapse
Affiliation(s)
- Yingchi Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jingliao Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wenbin An
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Yin
- Department of Cell Biology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Xichuan Li
- Department of Immunology, Biochemistry and Molecular Biology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China .,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
83
|
Papageorgiou DN, Karkoulia E, Amaral-Psarris A, Burda P, Kolodziej K, Demmers J, Bungert J, Stopka T, Strouboulis J. Distinct and overlapping DNMT1 interactions with multiple transcription factors in erythroid cells: Evidence for co-repressor functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1515-1526. [PMID: 27693117 DOI: 10.1016/j.bbagrm.2016.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 01/14/2023]
Abstract
DNMT1 is the maintenance DNA methyltransferase shown to be essential for embryonic development and cellular growth and differentiation in many somatic tissues in mammals. Increasing evidence has also suggested a role for DNMT1 in repressing gene expression through interactions with specific transcription factors. Previously, we identified DNMT1 as an interacting partner of the TR2/TR4 nuclear receptor heterodimer in erythroid cells, implicated in the developmental silencing of fetal β-type globin genes in the adult stage of human erythropoiesis. Here, we extended this work by using a biotinylation tagging approach to characterize DNMT1 protein complexes in mouse erythroleukemic cells. We identified novel DNMT1 interactions with several hematopoietic transcription factors with essential roles in erythroid differentiation, including GATA1, GFI-1b and FOG-1. We provide evidence for DNMT1 forming distinct protein subcomplexes with specific transcription factors and propose the existence of a "core" DNMT1 complex with the transcription factors ZBP-89 and ZNF143, which is also present in non-hematopoietic cells. Furthermore, we identified the short (17a.a.) PCNA Binding Domain (PBD) located near the N-terminus of DNMT1 as being necessary for mediating interactions with the transcription factors described herein. Lastly, we provide evidence for DNMT1 serving as a co-repressor of ZBP-89 and GATA1 acting through upstream regulatory elements of the PU.1 and GATA1 gene loci.
Collapse
Affiliation(s)
- Dimitris N Papageorgiou
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Elena Karkoulia
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Alexandra Amaral-Psarris
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Pavel Burda
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Katarzyna Kolodziej
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeroen Demmers
- Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Tomas Stopka
- Biocev, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - John Strouboulis
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| |
Collapse
|
84
|
GATA1 Binding Kinetics on Conformation-Specific Binding Sites Elicit Differential Transcriptional Regulation. Mol Cell Biol 2016; 36:2151-67. [PMID: 27215385 DOI: 10.1128/mcb.00017-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 05/17/2016] [Indexed: 01/19/2023] Open
Abstract
GATA1 organizes erythroid and megakaryocytic differentiation by orchestrating the expression of multiple genes that show diversified expression profiles. Here, we demonstrate that GATA1 monovalently binds to a single GATA motif (Single-GATA) while a monomeric GATA1 and a homodimeric GATA1 bivalently bind to two GATA motifs in palindromic (Pal-GATA) and direct-repeat (Tandem-GATA) arrangements, respectively, and form higher stoichiometric complexes on respective elements. The amino-terminal zinc (N) finger of GATA1 critically contributes to high occupancy of GATA1 on Pal-GATA. GATA1 lacking the N finger-DNA association fails to trigger a rate of target gene expression comparable to that seen with the wild-type GATA1, especially when expressed at low level. This study revealed that Pal-GATA and Tandem-GATA generate transcriptional responses from GATA1 target genes distinct from the response of Single-GATA. Our results support the notion that the distinct alignments in binding motifs are part of a critical regulatory strategy that diversifies and modulates transcriptional regulation by GATA1.
Collapse
|
85
|
Alawad A, Alharbi S, Alhazzaa O, Alagrafi F, Alkhrayef M, Alhamdan Z, Alenazi A, Al-Johi H, Alanazi IO, Hammad M. Phylogenetic and Structural Analysis of the Pluripotency Factor Sex-Determining Region Y box2 Gene of Camelus dromedarius (cSox2). Bioinform Biol Insights 2016; 10:111-20. [PMID: 27486314 PMCID: PMC4962958 DOI: 10.4137/bbi.s39047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/15/2016] [Accepted: 05/21/2016] [Indexed: 12/18/2022] Open
Abstract
Although the sequencing information of Sox2 cDNA for many mammalian is available, the Sox2 cDNA of Camelus dromedaries has not yet been characterized. The objective of this study was to sequence and characterize Sox2 cDNA from the brain of C. dromedarius (also known as Arabian camel). A full coding sequence of the Sox2 gene from the brain of C. dromedarius was amplified by reverse transcription PCRjmc and then sequenced using the 3730XL series platform Sequencer (Applied Biosystem) for the first time. The cDNA sequence displayed an open reading frame of 822 nucleotides, encoding a protein of 273 amino acids. The molecular weight and the isoelectric point of the translated protein were calculated as 29.825 kDa and 10.11, respectively, using bioinformatics analysis. The predicted cSox2 protein sequence exhibited high identity: 99% for Homo sapiens, Mus musculus, Bos taurus, and Vicugna pacos; 98% for Sus scrofa and 93% for Camelus ferus. A 3D structure was built based on the available crystal structure of the HMG-box domain of human stem cell transcription factor Sox2 (PDB: 2 LE4) with 81 residues and predicting bioinformatics software for 273 amino acid residues. The comparison confirms the presence of the HMG-box domain in the cSox2 protein. The orthologous phylogenetic analysis showed that the Sox2 isoform from C. dromedarius was grouped with humans, alpacas, cattle, and pigs. We believe that this genetic and structural information will be a helpful source for the annotation. Furthermore, Sox2 is one of the transcription factors that contributes to the generation-induced pluripotent stem cells (iPSCs), which in turn will probably help generate camel induced pluripotent stem cells (CiPSCs).
Collapse
Affiliation(s)
- Abdullah Alawad
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Sultan Alharbi
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Othman Alhazzaa
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Faisal Alagrafi
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Mohammed Alkhrayef
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Ziyad Alhamdan
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Abdullah Alenazi
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Hasan Al-Johi
- National Center for Genomic Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Ibrahim O Alanazi
- National Center for Genomic Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Mohamed Hammad
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA.; SAAD Research and Development Center, Clinical Research Laboratory and Radiation Oncology, SAAD Specialist Hospital, Al Khobar, KSA
| |
Collapse
|
86
|
Daly ME. Transcription factor defects causing platelet disorders. Blood Rev 2016; 31:1-10. [PMID: 27450272 DOI: 10.1016/j.blre.2016.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/10/2016] [Accepted: 07/12/2016] [Indexed: 01/19/2023]
Abstract
Recent years have seen increasing recognition of a subgroup of inherited platelet function disorders which are due to defects in transcription factors that are required to regulate megakaryopoiesis and platelet production. Thus, germline mutations in the genes encoding the haematopoietic transcription factors RUNX1, GATA-1, FLI1, GFI1b and ETV6 have been associated with both quantitative and qualitative platelet abnormalities, and variable bleeding symptoms in the affected patients. Some of the transcription factor defects are also associated with an increased predisposition to haematologic malignancies (RUNX1, ETV6), abnormal erythropoiesis (GATA-1, GFI1b, ETV6) and immune dysfunction (FLI1). The persistence of MYH10 expression in platelets is a surrogate marker for FLI1 and RUNX1 defects. Characterisation of the transcription factor defects that give rise to platelet function disorders, and of the genes that are differentially regulated as a result, are yielding insights into the roles of these genes in platelet formation and function.
Collapse
Affiliation(s)
- Martina E Daly
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
87
|
Shimizu R, Yamamoto M. GATA-related hematologic disorders. Exp Hematol 2016; 44:696-705. [PMID: 27235756 DOI: 10.1016/j.exphem.2016.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 01/09/2023]
Abstract
The transcription factors GATA1 and GATA2 are fundamental regulators of hematopoiesis and have overlapping expression profiles. GATA2 is expressed in hematopoietic stem cells and early erythroid-megakaryocytic progenitors and activates a certain set of early-phase genes, including the GATA2 gene itself. GATA2 also initiates GATA1 gene expression. In contrast, GATA1 is expressed in relatively mature erythroid progenitors and facilitates the expression of genes associated with differentiation, including the GATA1 gene itself; however, GATA1 represses the expression of GATA2. Switching the GATA factors from GATA2 to GATA1 appears to be one of the key regulatory mechanisms underlying erythroid differentiation. Loss-of-function analyses using mice in vivo have indicated that GATA2 and GATA1 are functionally nonredundant and that neither can compensate for the absence of the other. However, transgenic expression of GATA2 under the transcriptional regulation of the Gata1 gene rescues lethal dyserythropoiesis in GATA1-deficient mice, illustrating that the dynamic expression profiles of these GATA factors are critically important for the maintenance of hematopoietic homeostasis. Analysis of naturally occurring leukemias in GATA1-knockdown mice revealed that leukemic stem cells undergo functional alterations in response to exposure to chemotherapeutic agents. This mechanism may also underlie the aggravating features of relapsing leukemias. Recent hematologic analyses have suggested that disturbances in the balance of the GATA factors are associated with specific types of hematopoietic disorders. Here, we describe GATA1- and GATA2-related hematologic diseases, focusing on the regulation of GATA factor gene expression.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
88
|
Paralkar VR, Taborda CC, Huang P, Yao Y, Kossenkov AV, Prasad R, Luan J, Davies JOJ, Hughes JR, Hardison RC, Blobel GA, Weiss MJ. Unlinking an lncRNA from Its Associated cis Element. Mol Cell 2016; 62:104-10. [PMID: 27041223 PMCID: PMC4877494 DOI: 10.1016/j.molcel.2016.02.029] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/01/2016] [Accepted: 02/24/2016] [Indexed: 01/24/2023]
Abstract
Long non-coding (lnc) RNAs can regulate gene expression and protein functions. However, the proportion of lncRNAs with biological activities among the thousands expressed in mammalian cells is controversial. We studied Lockd (lncRNA downstream of Cdkn1b), a 434-nt polyadenylated lncRNA originating 4 kb 3' to the Cdkn1b gene. Deletion of the 25-kb Lockd locus reduced Cdkn1b transcription by approximately 70% in an erythroid cell line. In contrast, homozygous insertion of a polyadenylation cassette 80 bp downstream of the Lockd transcription start site reduced the entire lncRNA transcript level by >90% with no effect on Cdkn1b transcription. The Lockd promoter contains a DNase-hypersensitive site, binds numerous transcription factors, and physically associates with the Cdkn1b promoter in chromosomal conformation capture studies. Therefore, the Lockd gene positively regulates Cdkn1b transcription through an enhancer-like cis element, whereas the lncRNA itself is dispensable, which may be the case for other lncRNAs.
Collapse
Affiliation(s)
- Vikram R Paralkar
- Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Cristian C Taborda
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Rishi Prasad
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jing Luan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James O J Davies
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Jim R Hughes
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, PA 16801, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16801, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
89
|
Di Pierro E, Brancaleoni V, Granata F. Advances in understanding the pathogenesis of congenital erythropoietic porphyria. Br J Haematol 2016; 173:365-79. [PMID: 26969896 DOI: 10.1111/bjh.13978] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Congenital erythropoietic porphyria (CEP) is a rare genetic disease resulting from the remarkable deficient activity of uroporphyrinogen III synthase, the fourth enzyme of the haem biosynthetic pathway. This enzyme defect results in overproduction of the non-physiological and pathogenic porphyrin isomers, uroporphyrin I and coproporphyrin I. The predominant clinical characteristics of CEP include bullous cutaneous photosensitivity to visible light from early infancy, progressive photomutilation and chronic haemolytic anaemia. The severity of clinical manifestations is markedly heterogeneous among patients; and interdependence between disease severity and porphyrin amount in the tissues has been pointed out. A more pronounced endogenous production of porphyrins concomitant to activation of ALAS2, the first and rate-limiting of the haem synthesis enzymes in erythroid cells, has also been reported. CEP is inherited as autosomal recessive or X-linked trait due to mutations in UROS or GATA1 genes; however an involvement of other causative or modifier genes cannot be ruled out.
Collapse
Affiliation(s)
- Elena Di Pierro
- U.O. di Medicina Interna, Fondazione IRCCS Cà Granda - Ospedale Maggiore Policlinico, Milano, Italy
| | - Valentina Brancaleoni
- U.O. di Medicina Interna, Fondazione IRCCS Cà Granda - Ospedale Maggiore Policlinico, Milano, Italy
| | - Francesca Granata
- U.O. di Medicina Interna, Fondazione IRCCS Cà Granda - Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
90
|
Takaku M, Grimm SA, Shimbo T, Perera L, Menafra R, Stunnenberg HG, Archer TK, Machida S, Kurumizaka H, Wade PA. GATA3-dependent cellular reprogramming requires activation-domain dependent recruitment of a chromatin remodeler. Genome Biol 2016; 17:36. [PMID: 26922637 PMCID: PMC4769547 DOI: 10.1186/s13059-016-0897-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/11/2016] [Indexed: 12/13/2022] Open
Abstract
Background Transcription factor-dependent cellular reprogramming is integral to normal development and is central to production of induced pluripotent stem cells. This process typically requires pioneer transcription factors (TFs) to induce de novo formation of enhancers at previously closed chromatin. Mechanistic information on this process is currently sparse. Results Here we explore the mechanistic basis by which GATA3 functions as a pioneer TF in a cellular reprogramming event relevant to breast cancer, the mesenchymal to epithelial transition (MET). In some instances, GATA3 binds previously inaccessible chromatin, characterized by stable, positioned nucleosomes where it induces nucleosome eviction, alters local histone modifications, and remodels local chromatin architecture. At other loci, GATA3 binding induces nucleosome sliding without concomitant generation of accessible chromatin. Deletion of the transactivation domain retains the chromatin binding ability of GATA3 but cripples chromatin reprogramming ability, resulting in failure to induce MET. Conclusions These data provide mechanistic insights into GATA3-mediated chromatin reprogramming during MET, and suggest unexpected complexity to TF pioneering. Successful reprogramming requires stable binding to a nucleosomal site; activation domain-dependent recruitment of co-factors including BRG1, the ATPase subunit of the SWI/SNF chromatin remodeling complex; and appropriate genomic context. The resulting model provides a new conceptual framework for de novo enhancer establishment by a pioneer TF. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0897-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Motoki Takaku
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sara A Grimm
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Takashi Shimbo
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lalith Perera
- Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Roberta Menafra
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen, Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen, Netherlands
| | - Trevor K Archer
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Shinichi Machida
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
91
|
DeVilbiss AW, Tanimura N, McIver SC, Katsumura KR, Johnson KD, Bresnick EH. Navigating Transcriptional Coregulator Ensembles to Establish Genetic Networks: A GATA Factor Perspective. Curr Top Dev Biol 2016; 118:205-44. [PMID: 27137658 DOI: 10.1016/bs.ctdb.2016.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complex developmental programs require orchestration of intrinsic and extrinsic signals to control cell proliferation, differentiation, and survival. Master regulatory transcription factors are vital components of the machinery that transduce these stimuli into cellular responses. This is exemplified by the GATA family of transcription factors that establish cell type-specific genetic networks and control the development and homeostasis of systems including blood, vascular, adipose, and cardiac. Dysregulated GATA factor activity/expression underlies anemia, immunodeficiency, myelodysplastic syndrome, and leukemia. Parameters governing the capacity of a GATA factor expressed in multiple cell types to generate cell type-specific transcriptomes include selective coregulator usage and target gene-specific chromatin states. As knowledge of GATA-1 mechanisms in erythroid cells constitutes a solid foundation, we will focus predominantly on GATA-1, while highlighting principles that can be extrapolated to other master regulators. GATA-1 interacts with ubiquitous and lineage-restricted transcription factors, chromatin modifying/remodeling enzymes, and other coregulators to activate or repress transcription and to maintain preexisting transcriptional states. Major unresolved issues include: how does a GATA factor selectively utilize diverse coregulators; do distinct epigenetic landscapes and nuclear microenvironments of target genes dictate coregulator requirements; and do gene cohorts controlled by a common coregulator ensemble function in common pathways. This review will consider these issues in the context of GATA factor-regulated hematopoiesis and from a broader perspective.
Collapse
Affiliation(s)
- A W DeVilbiss
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - N Tanimura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - S C McIver
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K R Katsumura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K D Johnson
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - E H Bresnick
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States.
| |
Collapse
|
92
|
Hewitt KJ, Johnson KD, Gao X, Keles S, Bresnick EH. The Hematopoietic Stem and Progenitor Cell Cistrome: GATA Factor-Dependent cis-Regulatory Mechanisms. Curr Top Dev Biol 2016; 118:45-76. [PMID: 27137654 PMCID: PMC8572122 DOI: 10.1016/bs.ctdb.2016.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Transcriptional regulators mediate the genesis and function of the hematopoietic system by binding complex ensembles of cis-regulatory elements to establish genetic networks. While thousands to millions of any given cis-element resides in a genome, how transcriptional regulators select these sites and how site attributes dictate functional output is not well understood. An instructive system to address this problem involves the GATA family of transcription factors that control vital developmental and physiological processes and are linked to multiple human pathologies. Although GATA factors bind DNA motifs harboring the sequence GATA, only a very small subset of these abundant motifs are occupied in genomes. Mechanistic studies revealed a unique configuration of a GATA factor-regulated cis-element consisting of an E-box and a downstream GATA motif separated by a short DNA spacer. GATA-1- or GATA-2-containing multiprotein complexes at these composite elements control transcription of genes critical for hematopoietic stem cell emergence in the mammalian embryo, hematopoietic progenitor cell regulation, and erythroid cell maturation. Other constituents of the complex include the basic helix-loop-loop transcription factor Scl/TAL1, its heterodimeric partner E2A, and the Lim domain proteins LMO2 and LDB1. This chapter reviews the structure/function of E-box-GATA composite cis-elements, which collectively constitute an important sector of the hematopoietic stem and progenitor cell cistrome.
Collapse
Affiliation(s)
- Kyle J. Hewitt
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Kirby D. Johnson
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Xin Gao
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health
| | - Emery H. Bresnick
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program,Corresponding author:
| |
Collapse
|
93
|
Lim WF, Burdach J, Funnell APW, Pearson RCM, Quinlan KGR, Crossley M. Directing an artificial zinc finger protein to new targets by fusion to a non-DNA-binding domain. Nucleic Acids Res 2015; 44:3118-30. [PMID: 26673701 PMCID: PMC4838343 DOI: 10.1093/nar/gkv1380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/27/2015] [Indexed: 01/05/2023] Open
Abstract
Transcription factors are often regarded as having two separable components: a DNA-binding domain (DBD) and a functional domain (FD), with the DBD thought to determine target gene recognition. While this holds true for DNA binding in vitro, it appears that in vivo FDs can also influence genomic targeting. We fused the FD from the well-characterized transcription factor Krüppel-like Factor 3 (KLF3) to an artificial zinc finger (AZF) protein originally designed to target the Vascular Endothelial Growth Factor-A (VEGF-A) gene promoter. We compared genome-wide occupancy of the KLF3FD-AZF fusion to that observed with AZF. AZF bound to the VEGF-A promoter as predicted, but was also found to occupy approximately 25 000 other sites, a large number of which contained the expected AZF recognition sequence, GCTGGGGGC. Interestingly, addition of the KLF3 FD re-distributes the fusion protein to new sites, with total DNA occupancy detected at around 50 000 sites. A portion of these sites correspond to known KLF3-bound regions, while others contained sequences similar but not identical to the expected AZF recognition sequence. These results show that FDs can influence and may be useful in directing AZF DNA-binding proteins to specific targets and provide insights into how natural transcription factors operate.
Collapse
Affiliation(s)
- Wooi F Lim
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Jon Burdach
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Alister P W Funnell
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Richard C M Pearson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
94
|
Nucleated red blood cells impact DNA methylation and expression analyses of cord blood hematopoietic cells. Clin Epigenetics 2015; 7:95. [PMID: 26366232 PMCID: PMC4567832 DOI: 10.1186/s13148-015-0129-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Genome-wide DNA methylation (DNAm) studies have proven extremely useful to understand human hematopoiesis. Due to their active DNA content, nucleated red blood cells (nRBCs) contribute to epigenetic and transcriptomic studies derived from whole cord blood. Genomic studies of cord blood hematopoietic cells isolated by fluorescence-activated cell sorting (FACS) may be significantly altered by heterotopic interactions with nRBCs during conventional cell sorting. RESULTS We report that cord blood T cells, and to a lesser extent monocytes and B cells, physically engage with nRBCs during FACS. These heterotopic interactions resulted in significant cross-contamination of genome-wide epigenetic and transcriptomic data. Formal exclusion of erythroid lineage-specific markers yielded DNAm profiles (measured by the Illumina 450K array) of cord blood CD4 and CD8 T lymphocytes, B lymphocytes, natural killer (NK) cells, granulocytes, monocytes, and nRBCs that were more consistent with expected hematopoietic lineage relationships. Additionally, we identified eight highly differentially methylated CpG sites in nRBCs (false detection rate <5 %, |Δβ| >0.50) that can be used to detect nRBC contamination of purified hematopoietic cells or to assess the impact of nRBCs on whole cord blood DNAm profiles. Several of these erythroid markers are located in or near genes involved in erythropoiesis (ZFPM1, HDAC4) or immune function (MAP3K14, IFIT1B), reinforcing a possible immune regulatory role for nRBCs in early life. CONCLUSIONS Heterotopic interactions between erythroid cells and white blood cells can result in contaminated cell populations if not properly excluded during cell sorting. Cord blood nRBCs have a distinct DNAm profile that can significantly skew epigenetic studies. Our findings have major implications for the design and interpretation of genome-wide epigenetic and transcriptomic studies using human cord blood.
Collapse
|
95
|
Mouse prenatal platelet-forming lineages share a core transcriptional program but divergent dependence on MPL. Blood 2015; 126:807-16. [DOI: 10.1182/blood-2014-12-616607] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/15/2015] [Indexed: 01/15/2023] Open
Abstract
Key Points
Prenatal platelet-forming lineages are subject to common transcription factor controls despite distinct spatial and ancestral origins. Platelet-forming lineage production is MPL-independent on emergence, but MPL is required in the late fetus for efficient thrombopoiesis.
Collapse
|
96
|
Trinh BQ, Barengo N, Kim SB, Lee JS, Zweidler-McKay PA, Naora H. The homeobox gene DLX4 regulates erythro-megakaryocytic differentiation by stimulating IL-1β and NF-κB signaling. J Cell Sci 2015. [PMID: 26208636 PMCID: PMC4541043 DOI: 10.1242/jcs.168187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Megakaryocyte and erythroid development are tightly controlled by a repertoire of cytokines, but it is not clear how cytokine-activated signaling pathways are controlled during development of these two lineages. Here, we identify that expression of DLX4, a transcription factor encoded by a homeobox gene, increases during megakaryopoiesis but decreases during erythropoiesis. Enforced expression of DLX4 in CD34(+) stem and progenitor cells and in bipotent K562 cells induced lineage markers and morphologic features of megakaryocytes and repressed erythroid marker expression and hemoglobin levels. Converse results were obtained when DLX4 was knocked down. Gene Ontology and Gene Set Enrichment Analyses of genome-wide changes in gene expression revealed that DLX4 induces a megakaryocytic transcriptional program and inhibits an erythroid transcriptional program. DLX4 also induced gene signatures that are associated with nuclear factor κB (NF-κB) signaling. The ability of DLX4 to promote megakaryocyte development at the expense of erythroid generation was diminished by blocking NF-κB activity or by repressing IL1B, a transcriptional target of DLX4. Collectively, our findings indicate that DLX4 exerts opposing effects on the megakaryocytic and erythroid lineages in part by inducing IL-1β and NF-κB signaling.
Collapse
Affiliation(s)
- Bon Q Trinh
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 108, Houston, TX 77030, USA
| | - Nicolas Barengo
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 108, Houston, TX 77030, USA
| | - Sang Bae Kim
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 950, Houston, TX 77030, USA
| | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 950, Houston, TX 77030, USA
| | - Patrick A Zweidler-McKay
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 853, Houston, TX 77030, USA
| | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 108, Houston, TX 77030, USA
| |
Collapse
|
97
|
GATA-dependent transcriptional and epigenetic control of cardiac lineage specification and differentiation. Cell Mol Life Sci 2015; 72:3871-81. [PMID: 26126786 PMCID: PMC4575685 DOI: 10.1007/s00018-015-1974-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022]
Abstract
Heart progenitor cells differentiate into various cell types including pacemaker and working cardiomyocytes. Cell-type specific gene expression is achieved by combinatorial interactions between tissue-specific transcription factors (TFs), co-factors, and chromatin remodelers and DNA binding elements in regulatory regions. Dysfunction of these transcriptional networks may result in congenital heart defects. Functional analysis of the regulatory DNA sequences has contributed substantially to the identification of the transcriptional network components and combinatorial interactions regulating the tissue-specific gene programs. GATA TFs have been identified as central players in these networks. In particular, GATA binding elements have emerged as a platform to recruit broadly active histone modification enzymes and cell-type-specific co-factors to drive cell-type-specific gene programs. Here, we discuss the role of GATA factors in cell fate decisions and differentiation in the developing heart.
Collapse
|
98
|
Li H, Hui H, Xu J, Yang H, Zhang X, Liu X, Zhou Y, Li Z, Guo Q, Lu N. Wogonoside induces growth inhibition and cell cycle arrest via promoting the expression and binding activity of GATA-1 in chronic myelogenous leukemia cells. Arch Toxicol 2015; 90:1507-22. [PMID: 26104856 DOI: 10.1007/s00204-015-1552-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/09/2015] [Indexed: 11/24/2022]
Abstract
GATA-1, a zinc finger transcription factor, has been demonstrated to play a key role in the progression of leukemia. In this study, we investigate the effects of wogonoside, a naturally bioactive flavonoid derived from Scutellaria baicalensis Georgi, on cell growth and cell cycle in chronic myeloid leukemia (CML) cells, and uncover its underlying mechanisms. The experimental design comprised CML cell lines K562, imatinib-resistant K562 (K562r) cells, and primary CML cells, treated in vitro or in vivo, respectively, with wogonoside; growth and cell cycle were then evaluated. We found that wogonoside could induce growth inhibition and G0/G1 cell cycle arrest in both normal and K562r cells. Wogonoside promotes the expression of GATA-1 and facilitates the binding to methyl ethyl ketone (MEK) and p21 promoter, thus inhibiting MEK/extracellular signal-regulated kinase signaling and cell cycle checkpoint proteins, including CDK2, CDK4, cyclin A, and cyclin D1, and increasing p21 expression. Furthermore, in vivo studies showed that administration of wogonoside decreased CML cells and prolonged survival in NOD/SCID mice with CML cell xenografts. In conclusion, these results clearly revealed the inhibitory effect of wogonoside on the growth in CML cells and suggested that wogonoside may act as a promising drug for the treatment of imatinib-resistant CML.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Jingyan Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Hao Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Xiaoxiao Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Xiao Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China.
| |
Collapse
|
99
|
Jain D, Mishra T, Giardine BM, Keller CA, Morrissey CS, Magargee S, Dorman CM, Long M, Weiss MJ, Hardison RC. Dynamics of GATA1 binding and expression response in a GATA1-induced erythroid differentiation system. GENOMICS DATA 2015; 4:1-7. [PMID: 25729644 PMCID: PMC4338950 DOI: 10.1016/j.gdata.2015.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During the maturation phase of mammalian erythroid differentiation, highly proliferative cells committed to the erythroid lineage undergo dramatic changes in morphology and function to produce circulating, enucleated erythrocytes. These changes are caused by equally dramatic alterations in gene expression, which in turn are driven by changes in the abundance and binding patterns of transcription factors such as GATA1. We have studied the dynamics of GATA1 binding by ChIP-seq and the global expression responses by RNA-seq in a GATA1-dependent mouse cell line model for erythroid maturation, in both cases examining seven progressive stages during differentiation. Analyses of these data should provide insights both into mechanisms of regulation (early versus late targets) and the consequences in cell physiology (e.g., distinctive categories of genes regulated at progressive stages of differentiation). The data are deposited in the Gene Expression Omnibus, series GSE36029, GSE40522, GSE49847, and GSE51338.
Collapse
Affiliation(s)
- Deepti Jain
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tejaswini Mishra
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Belinda M Giardine
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheryl A Keller
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christapher S Morrissey
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Susan Magargee
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christine M Dorman
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Maria Long
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Mitchell J Weiss
- Dept of Hematology, St Jude Children's Research Hospital, Memphis TN 38105, USA
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
100
|
Morceau F, Chateauvieux S, Orsini M, Trécul A, Dicato M, Diederich M. Natural compounds and pharmaceuticals reprogram leukemia cell differentiation pathways. Biotechnol Adv 2015; 33:785-97. [PMID: 25886879 DOI: 10.1016/j.biotechadv.2015.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/18/2015] [Accepted: 03/29/2015] [Indexed: 12/22/2022]
Abstract
In addition to apoptosis resistance and cell proliferation capacities, the undifferentiated state also characterizes most cancer cells, especially leukemia cells. Cell differentiation is a multifaceted process that depends on complex regulatory networks that involve transcriptional, post-transcriptional and epigenetic regulation of gene expression. The time- and spatially-dependent expression of lineage-specific genes and genes that control cell growth and cell death is implicated in the process of maturation. The induction of cancer cell differentiation is considered an alternative approach to elicit cell death and proliferation arrest. Differentiation therapy has mainly been developed to treat acute myeloid leukemia, notably with all-trans retinoic acid (ATRA). Numerous molecules from diverse natural or synthetic origins are effective alone or in association with ATRA in both in vitro and in vivo experiments. During the last two decades, pharmaceuticals and natural compounds with various chemical structures, including alkaloids, flavonoids and polyphenols, were identified as potential differentiating agents of hematopoietic pathways and osteogenesis.
Collapse
Affiliation(s)
- Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Sébastien Chateauvieux
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marion Orsini
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Anne Trécul
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|