51
|
Meuten TK, Dean GA, Thamm DH. Review: The PI3K-AKT-mTOR signal transduction pathway in canine cancer. Vet Pathol 2024; 61:339-356. [PMID: 37905509 DOI: 10.1177/03009858231207021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
Collapse
|
52
|
Eberlein C, Williamson SC, Hopcroft L, Ros S, Moss JI, Kerr J, van Weerden WM, de Bruin EC, Dunn S, Willis B, Ross SJ, Rooney C, Barry ST. Capivasertib combines with docetaxel to enhance anti-tumour activity through inhibition of AKT-mediated survival mechanisms in prostate cancer. Br J Cancer 2024; 130:1377-1387. [PMID: 38396173 PMCID: PMC11014923 DOI: 10.1038/s41416-024-02614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND/OBJECTIVE To explore the anti-tumour activity of combining AKT inhibition and docetaxel in PTEN protein null and WT prostate tumours. METHODS Mechanisms associated with docetaxel capivasertib treatment activity in prostate cancer were examined using a panel of in vivo tumour models and cell lines. RESULTS Combining docetaxel and capivasertib had increased activity in PTEN null and WT prostate tumour models in vivo. In vitro short-term docetaxel treatment caused cell cycle arrest in the majority of cells. However, a sub-population of docetaxel-persister cells did not undergo G2/M arrest but upregulated phosphorylation of PI3K/AKT pathway effectors GSK3β, p70S6K, 4E-BP1, but to a lesser extent AKT. In vivo acute docetaxel treatment induced p70S6K and 4E-BP1 phosphorylation. Treating PTEN null and WT docetaxel-persister cells with capivasertib reduced PI3K/AKT pathway activation and cell cycle progression. In vitro and in vivo it reduced proliferation and increased apoptosis or DNA damage though effects were more marked in PTEN null cells. Docetaxel-persister cells were partly reliant on GSK3β as a GSK3β inhibitor AZD2858 reversed capivasertib-induced apoptosis and DNA damage. CONCLUSION Capivasertib can enhance anti-tumour effects of docetaxel by targeting residual docetaxel-persister cells, independent of PTEN status, to induce apoptosis and DNA damage in part through GSK3β.
Collapse
Affiliation(s)
- Cath Eberlein
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | | | | | - Susana Ros
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | - James Kerr
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Wytske M van Weerden
- Department of Experimental Urology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Shanade Dunn
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Brandon Willis
- Bioscience, Early Oncology, AstraZeneca, Boston, MA, USA
| | - Sarah J Ross
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| |
Collapse
|
53
|
Ruan D, Xu J, Liu Y, Luo J, Zhao X, Li Y, Wang G, Feng J, Liang H, Yin Y, Luo J, Yin Y. CircPTEN-MT from PTEN regulates mitochondrial energy metabolism. J Genet Genomics 2024; 51:531-542. [PMID: 38184105 DOI: 10.1016/j.jgg.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphatase and tensin homolog (PTEN) is a multifunctional gene involved in a variety of physiological and pathological processes. Circular RNAs (circRNAs) are generated from back-splicing events during mRNA processing and participate in cell biological processes through binding to RNAs or proteins. However, PTEN-related circRNAs are largely unknown. Here, we report that circPTEN- mitochondria (MT) (hsa_circ_0002934) is a circular RNA encoded by exons 3, 4, and 5 of PTEN and is a critical regulator of mitochondrial energy metabolism. CircPTEN-MT is localized to mitochondria and physically associated with leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), which regulates posttranscriptional gene expression in mitochondria. Knocking down circPTEN-MT reduces the interaction of LRPPRC and steroid receptor RNA activator (SRA) stem-loop interacting RNA binding protein (SLIRP) and inhibits the polyadenylation of mitochondrial mRNA, which decreases the mRNA level of the mitochondrial complex I subunit and reduces mitochondrial membrane potential and adenosine triphosphate production. Our data demonstrate that circPTEN-MT is an important regulator of cellular energy metabolism. This study expands our understanding of the role of PTEN, which produces both linear and circular RNAs with different and independent functions.
Collapse
Affiliation(s)
- Danhui Ruan
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiancheng Xu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Juan Luo
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuhua Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guangxi Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiawen Feng
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hui Liang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China; Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| |
Collapse
|
54
|
Trinh VH, Choi JM, Nguyen Huu T, Sah DK, Yoon HJ, Park SC, Jung YS, Ahn YK, Lee KH, Lee SR. Redox Regulation of Phosphatase and Tensin Homolog by Bicarbonate and Hydrogen Peroxide: Implication of Peroxymonocarbonate in Cell Signaling. Antioxidants (Basel) 2024; 13:473. [PMID: 38671920 PMCID: PMC11047460 DOI: 10.3390/antiox13040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a negative regulator of the phosphoinositide 3-kinases/protein kinase B (PI3K/AKT) signaling pathway. Notably, its active site contains a cysteine residue that is susceptible to oxidation by hydrogen peroxide (H2O2). This oxidation inhibits the phosphatase function of PTEN, critically contributing to the activation of the PI3K/AKT pathway. Upon the stimulation of cell surface receptors, the activity of NADPH oxidase (NOX) generates a transient amount of H2O2, serving as a mediator in this pathway by oxidizing PTEN. The mechanism underlying this oxidation, occurring despite the presence of highly efficient and abundant cellular oxidant-protecting and reducing systems, continues to pose a perplexing conundrum. Here, we demonstrate that the presence of bicarbonate (HCO3-) promoted the rate of H2O2-mediated PTEN oxidation, probably through the formation of peroxymonocarbonate (HCO4-), and consequently potentiated the phosphorylation of AKT. Acetazolamide (ATZ), a carbonic anhydrase (CA) inhibitor, was shown to diminish the oxidation of PTEN. Thus, CA can also be considered as a modulator in this context. In essence, our findings consolidate the crucial role of HCO3- in the redox regulation of PTEN by H2O2, leading to the presumption that HCO4- is a signaling molecule during cellular physiological processes.
Collapse
Affiliation(s)
- Vu Hoang Trinh
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (H.-J.Y.)
- Department of Oncology, Department of Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam
| | - Jin-Myung Choi
- Luxanima Inc., Room 102, 12-55, Sandan-gil, Hwasun-eup, Hwasun-gun 58128, Republic of Korea;
| | - Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (H.-J.Y.)
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (H.-J.Y.)
| | - Hyun-Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (H.-J.Y.)
| | - Sang-Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea;
| | - Yu-Seok Jung
- Chonnam National University Medical School, Gwangju 501190, Republic of Korea;
| | - Young-Keun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea;
| | - Kun-Ho Lee
- Department of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea;
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (H.-J.Y.)
| |
Collapse
|
55
|
Fang KT, Su CS, Layos JJ, Lau NYS, Cheng KH. Haploinsufficiency of Adenomatous Polyposis Coli Coupled with Kirsten Rat Sarcoma Viral Oncogene Homologue Activation and P53 Loss Provokes High-Grade Glioblastoma Formation in Mice. Cancers (Basel) 2024; 16:1046. [PMID: 38473403 DOI: 10.3390/cancers16051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and deadly type of brain tumor originating from glial cells. Despite decades of clinical trials and research, there has been limited success in improving survival rates. However, molecular pathology studies have provided a detailed understanding of the genetic alterations associated with the formation and progression of glioblastoma-such as Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling activation (5%), P53 mutations (25%), and adenomatous polyposis coli (APC) alterations (2%)-laying the groundwork for further investigation into the biological and biochemical basis of this malignancy. These analyses have been crucial in revealing the sequential appearance of specific genetic lesions at distinct histopathological stages during the development of GBM. To further explore the pathogenesis and progression of glioblastoma, here, we developed the glial-fibrillary-acidic-protein (GFAP)-Cre-driven mouse model and demonstrated that activated KRAS and p53 deficiencies play distinct and cooperative roles in initiating glioma tumorigenesis. Additionally, the combination of APC haploinsufficiency with mutant Kras activation and p53 deletion resulted in the rapid progression of GBM, characterized by perivascular inflammation, large necrotic areas, and multinucleated giant cells. Consequently, our GBM models have proven to be invaluable resources for identifying early disease biomarkers in glioblastoma, as they closely mimic the human disease. The insights gained from these models may pave the way for potential advancements in the diagnosis and treatment of this challenging brain tumor.
Collapse
Affiliation(s)
- Kuan-Te Fang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chuan-Shiang Su
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jhoanna Jane Layos
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Nga Yin Sadonna Lau
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
56
|
Krauter D, Stausberg D, Hartmann TJ, Volkmann S, Kungl T, Rasche DA, Saher G, Fledrich R, Stassart RM, Nave KA, Goebbels S, Ewers D, Sereda MW. Targeting PI3K/Akt/mTOR signaling in rodent models of PMP22 gene-dosage diseases. EMBO Mol Med 2024; 16:616-640. [PMID: 38383802 PMCID: PMC10940316 DOI: 10.1038/s44321-023-00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/23/2024] Open
Abstract
Haplo-insufficiency of the gene encoding the myelin protein PMP22 leads to focal myelin overgrowth in the peripheral nervous system and hereditary neuropathy with liability to pressure palsies (HNPP). Conversely, duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A), characterized by hypomyelination of medium to large caliber axons. The molecular mechanisms of abnormal myelin growth regulation by PMP22 have remained obscure. Here, we show in rodent models of HNPP and CMT1A that the PI3K/Akt/mTOR-pathway inhibiting phosphatase PTEN is correlated in abundance with PMP22 in peripheral nerves, without evidence for direct protein interactions. Indeed, treating DRG neuron/Schwann cell co-cultures from HNPP mice with PI3K/Akt/mTOR pathway inhibitors reduced focal hypermyelination. When we treated HNPP mice in vivo with the mTOR inhibitor Rapamycin, motor functions were improved, compound muscle amplitudes were increased and pathological tomacula in sciatic nerves were reduced. In contrast, we found Schwann cell dedifferentiation in CMT1A uncoupled from PI3K/Akt/mTOR, leaving partial PTEN ablation insufficient for disease amelioration. For HNPP, the development of PI3K/Akt/mTOR pathway inhibitors may be considered as the first treatment option for pressure palsies.
Collapse
Affiliation(s)
- Doris Krauter
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Daniela Stausberg
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Timon J Hartmann
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan Volkmann
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Theresa Kungl
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - David A Rasche
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Robert Fledrich
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Ruth M Stassart
- Institute of Neuropathology, University of Leipzig, Leipzig, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David Ewers
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Michael W Sereda
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
57
|
Morimoto A, Takasugi N, Pan Y, Kubota S, Dohmae N, Abiko Y, Uchida K, Kumagai Y, Uehara T. Methyl vinyl ketone and its analogs covalently modify PI3K and alter physiological functions by inhibiting PI3K signaling. J Biol Chem 2024; 300:105679. [PMID: 38272219 PMCID: PMC10881440 DOI: 10.1016/j.jbc.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Reactive carbonyl species (RCS), which are abundant in the environment and are produced in vivo under stress, covalently bind to nucleophilic residues such as Cys in proteins. Disruption of protein function by RCS exposure is predicted to play a role in the development of various diseases such as cancer and metabolic disorders, but most studies on RCS have been limited to simple cytotoxicity validation, leaving their target proteins and resulting physiological changes unknown. In this study, we focused on methyl vinyl ketone (MVK), which is one of the main RCS found in cigarette smoke and exhaust gas. We found that MVK suppressed PI3K-Akt signaling, which regulates processes involved in cellular homeostasis, including cell proliferation, autophagy, and glucose metabolism. Interestingly, MVK inhibits the interaction between the epidermal growth factor receptor and PI3K. Cys656 in the SH2 domain of the PI3K p85 subunit, which is the covalently binding site of MVK, is important for this interaction. Suppression of PI3K-Akt signaling by MVK reversed epidermal growth factor-induced negative regulation of autophagy and attenuated glucose uptake. Furthermore, we analyzed the effects of the 23 RCS compounds with structures similar to MVK and showed that their analogs also suppressed PI3K-Akt signaling in a manner that correlated with their similarities to MVK. Our study demonstrates the mechanism of MVK and its analogs in suppressing PI3K-Akt signaling and modulating physiological functions, providing a model for future studies analyzing environmental reactive species.
Collapse
Affiliation(s)
- Atsushi Morimoto
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuexuan Pan
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Sho Kubota
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yumi Abiko
- Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Koji Uchida
- Laboratory of Food Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshito Kumagai
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
58
|
Ghosh D, Pryor B, Jiang N. Cellular signaling in glioblastoma: A molecular and clinical perspective. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:1-47. [PMID: 38782497 DOI: 10.1016/bs.ircmb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor with an average life expectancy of less than 15 months. Such high patient mortality in GBM is pertaining to the presence of clinical and molecular heterogeneity attributed to various genetic and epigenetic alterations. Such alterations in critically important signaling pathways are attributed to aberrant gene signaling. Different subclasses of GBM show predominance of different genetic alterations and therefore, understanding the complex signaling pathways and their key molecular components in different subclasses of GBM is extremely important with respect to clinical management. In this book chapter, we summarize the common and important signaling pathways that play a significant role in different subclasses and discuss their therapeutic targeting approaches in terms of preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Debarati Ghosh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.
| | - Brett Pryor
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nancy Jiang
- Wellesley College, Wellesley, MA, United States
| |
Collapse
|
59
|
Phan AT, Zhu Y. PTEN Mediates the Silencing of Unintegrated HIV-1 DNA. Viruses 2024; 16:291. [PMID: 38400066 PMCID: PMC10892664 DOI: 10.3390/v16020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The integration of viral DNA into a host genome is an important step in HIV-1 replication. However, due to the high failure rate of integration, the majority of viral DNA exists in an unintegrated state during HIV-1 infection. In contrast to the robust expression from integrated viral DNA, unintegrated HIV-1 DNA is very poorly transcribed in infected cells, but the molecular machinery responsible for the silencing of unintegrated HIV-1 DNA remains poorly characterized. In this study, we sought to characterize new host factors for the inhibition of expression from unintegrated HIV-1 DNA. A genome-wide CRISPR-Cas9 knockout screening revealed the essential role of phosphatase and tensin homolog (PTEN) in the silencing of unintegrated HIV-1 DNA. PTEN's phosphatase activity negatively regulates the PI3K-Akt pathway to inhibit the transcription from unintegrated HIV-1 DNA. The knockout (KO) of PTEN or inhibition of PTEN's phosphatase activity by point mutagenesis activates Akt by phosphorylation and enhances the transcription from unintegrated HIV-1 DNA. Inhibition of the PI3K-Akt pathway by Akt inhibitor in PTEN-KO cells restores the silencing of unintegrated HIV-1 DNA. Transcriptional factors (NF-κB, Sp1, and AP-1) are important for the activation of unintegrated HIV-1 DNA in PTEN-KO cells. Finally, the knockout of PTEN increases the levels of active epigenetic marks (H3ac and H3K4me3) and the recruitment of PolII on unintegrated HIV-1 DNA chromatin. Our experiments reveal that PTEN targets transcription factors (NF-κB, Sp1, and AP-1) by negatively regulating the PI3K-Akt pathway to promote the silencing of unintegrated HIV-1 DNA.
Collapse
Affiliation(s)
| | - Yiping Zhu
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| |
Collapse
|
60
|
O'Malley DE, Raspin K, Melton PE, Burdon KP, Dickinson JL, FitzGerald LM. Acquired copy number variation in prostate tumours: a review of common somatic copy number alterations, how they are formed and their clinical utility. Br J Cancer 2024; 130:347-357. [PMID: 37945750 PMCID: PMC10844642 DOI: 10.1038/s41416-023-02485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and unfortunately, disease will progress in up to a third of patients despite primary treatment. Currently, there is a significant lack of prognostic tests that accurately predict disease course; however, the acquisition of somatic chromosomal variation in the form of DNA copy number variants may help understand disease progression. Notably, studies have found that a higher burden of somatic copy number alterations (SCNA) correlates with more aggressive disease, recurrence after surgery and metastasis. Here we will review the literature surrounding SCNA formation, including the roles of key tumour suppressors and oncogenes (PTEN, BRCA2, NKX3.1, ERG and AR), and their potential to inform diagnostic and prognostic clinical testing to improve predictive value. Ultimately, SCNAs, or inherited germline alterations that predispose to SCNAs, could have significant clinical utility in diagnostic and prognostic tests, in addition to guiding therapeutic selection.
Collapse
Affiliation(s)
- Dannielle E O'Malley
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Phillip E Melton
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- School of Population and Global Health, The University of Western Australia, Crawley, WA, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
61
|
Skalka GL, Tsakovska M, Murphy DJ. Kinase signalling adaptation supports dysfunctional mitochondria in disease. Front Mol Biosci 2024; 11:1354682. [PMID: 38434478 PMCID: PMC10906720 DOI: 10.3389/fmolb.2024.1354682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Collapse
Affiliation(s)
- George L. Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mina Tsakovska
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Scotland Institute, Glasgow, United Kingdom
| |
Collapse
|
62
|
Chen T, Xie S, Cheng J, Zhao Q, Wu H, Jiang P, Du W. AKT1 phosphorylation of cytoplasmic ME2 induces a metabolic switch to glycolysis for tumorigenesis. Nat Commun 2024; 15:686. [PMID: 38263319 PMCID: PMC10805786 DOI: 10.1038/s41467-024-44772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Many types of tumors feature aerobic glycolysis for meeting their increased energetic and biosynthetic demands. However, it remains still unclear how this glycolytic phenomenon is achieved and coordinated with other metabolic pathways in tumor cells in response to growth stimuli. Here we report that activation of AKT1 induces a metabolic switch to glycolysis from the mitochondrial metabolism via phosphorylation of cytoplasmic malic enzyme 2 (ME2), named ME2fl (fl means full length), favoring an enhanced glycolytic phenotype. Mechanistically, in the cytoplasm, AKT1 phosphorylates ME2fl at serine 9 in the mitochondrial localization signal peptide at the N-terminus, preventing its mitochondrial translocation. Unlike mitochondrial ME2, which accounts for adjusting the tricarboxylic acid (TCA) cycle, ME2fl functions as a scaffold that brings together the key glycolytic enzymes phosphofructokinase (PFKL), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and pyruvate kinase M2 (PKM2), as well as Lactate dehydrogenase A (LDHA), to promote glycolysis in the cytosol. Thus, through phosphorylation of ME2fl, AKT1 enhances the glycolytic capacity of tumor cells in vitro and in vivo, revealing an unexpected role for subcellular translocation switching of ME2 mediated by AKT1 in the metabolic adaptation of tumor cells to growth stimuli.
Collapse
Affiliation(s)
- Taiqi Chen
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), South Medical University, Guangzhou, 510080, China
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Siyi Xie
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Jie Cheng
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Qiao Zhao
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hong Wu
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
- School of Life Sciences, Peking University, Beijing, 100084, China.
| | - Peng Jiang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), South Medical University, Guangzhou, 510080, China.
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Wenjing Du
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
63
|
Jung EJ, Jo JH, Uwamahoro C, Jang SI, Lee WJ, Hwang JM, Bae JW, Kwon WS. Ritonavir Has Reproductive Toxicity Depending on Disrupting PI3K/PDK1/AKT Signaling Pathway. TOXICS 2024; 12:73. [PMID: 38251029 PMCID: PMC10819985 DOI: 10.3390/toxics12010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Ritonavir (RTV) is an antiviral and a component of COVID-19 treatments. Moreover, RTV demonstrates anti-cancer effects by suppressing AKT. However, RTV has cytotoxicity and suppresses sperm functions by altering AKT activity. Although abnormal AKT activity is known for causing detrimental effects on sperm functions, how RTV alters AKT signaling in spermatozoa remains unknown. Therefore, this study aimed to investigate reproductive toxicity of RTV in spermatozoa through phosphoinositide 3-kinase/phosphoinositide-dependent protein kinase-1/protein kinase B (PI3K/PDK1/AKT) signaling. Duroc spermatozoa were treated with various concentrations of RTV, and capacitation was induced. Sperm functions (sperm motility, motion kinematics, capacitation status, and cell viability) and expression levels of tyrosine-phosphorylated proteins and PI3K/PDK1/AKT pathway-related proteins were evaluated. In the results, RTV significantly suppressed sperm motility, motion kinematics, capacitation, acrosome reactions, and cell viability. Additionally, RTV significantly increased levels of phospho-tyrosine proteins and PI3K/PDK1/AKT pathway-related proteins except for AKT and PI3K. The expression level of AKT was not significantly altered and that of PI3K was significantly decreased. These results suggest RTV may suppress sperm functions by induced alterations of PI3K/PDK1/AKT pathway through abnormally increased tyrosine phosphorylation. Therefore, we suggest people who use or prescribe RTV need to consider its male reproductive toxicity.
Collapse
Affiliation(s)
- Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (E.-J.J.); (C.U.); (S.-I.J.); (W.-J.L.); (J.-M.H.); (J.-W.B.)
| | - Jae-Hwan Jo
- Department of Animal Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea;
| | - Claudine Uwamahoro
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (E.-J.J.); (C.U.); (S.-I.J.); (W.-J.L.); (J.-M.H.); (J.-W.B.)
| | - Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (E.-J.J.); (C.U.); (S.-I.J.); (W.-J.L.); (J.-M.H.); (J.-W.B.)
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (E.-J.J.); (C.U.); (S.-I.J.); (W.-J.L.); (J.-M.H.); (J.-W.B.)
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (E.-J.J.); (C.U.); (S.-I.J.); (W.-J.L.); (J.-M.H.); (J.-W.B.)
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (E.-J.J.); (C.U.); (S.-I.J.); (W.-J.L.); (J.-M.H.); (J.-W.B.)
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (E.-J.J.); (C.U.); (S.-I.J.); (W.-J.L.); (J.-M.H.); (J.-W.B.)
- Department of Animal Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea;
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
64
|
Monti M, Benerini Gatta L, Bugatti M, Pezzali I, Picinoli S, Manfredi M, Lavazza A, Vanella VV, De Giorgis V, Zanatta L, Missale F, Lonardi S, Zanetti B, Bozzoni G, Cadei M, Abate A, Vergani B, Balzarini P, Battocchio S, Facco C, Turri-Zanoni M, Castelnuovo P, Nicolai P, Fonsatti E, Leone BE, Marengo E, Sigala S, Ronca R, Perego M, Lombardi D, Vermi W. Novel cellular systems unveil mucosal melanoma initiating cells and a role for PI3K/Akt/mTOR pathway in mucosal melanoma fitness. J Transl Med 2024; 22:35. [PMID: 38191367 PMCID: PMC10775657 DOI: 10.1186/s12967-023-04784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Mucosal Melanomas (MM) are highly aggressive neoplasms arising from mucosal melanocytes. Current treatments offer a limited survival benefit for patients with advanced MM; moreover, the lack of pre-clinical cellular systems has significantly limited the understanding of their immunobiology. METHODS Five novel cell lines were obtained from patient-derived biopsies of MM arising in the sino-nasal mucosa and designated as SN-MM1-5. The morphology, ultrastructure and melanocytic identity of SN-MM cell lines were validated by transmission electron microscopy and immunohistochemistry. Moreover, in vivo tumorigenicity of SN-MM1-5 was tested by subcutaneous injection in NOD/SCID mice. Molecular characterization of SN-MM cell lines was performed by a mass-spectrometry proteomic approach, and their sensitivity to PI3K chemical inhibitor LY294002 was validated by Akt activation, measured by pAkt(Ser473) and pAkt(Thr308) in immunoblots, and MTS assay. RESULTS This study reports the validation and functional characterization of five newly generated SN-MM cell lines. Compared to the normal counterpart, the proteomic profile of SN-MM is consistent with transformed melanocytes showing a heterogeneous degree of melanocytic differentiation and activation of cancer-related pathways. All SN-MM cell lines resulted tumorigenic in vivo and display recurrent structural variants according to aCGH analysis. Of relevance, the microscopic analysis of the corresponding xenotransplants allowed the identification of clusters of MITF-/CDH1-/CDH2 + /ZEB1 + /CD271 + cells, supporting the existence of melanoma-initiating cells also in MM, as confirmed in clinical samples. In vitro, SN-MM cell lines were sensitive to cisplatin, but not to temozolomide. Moreover, the proteomic analysis of SN-MM cell lines revealed that RICTOR, a subunit of mTORC2 complex, is the most significantly activated upstream regulator, suggesting a relevant role for the PI3K-Akt-mTOR pathway in these neoplasms. Consistently, phosphorylation of NDRG1 and Akt activation was observed in SN-MM, the latter being constitutive and sustained by PTEN loss in SN-MM2 and SN-MM3. The cell viability impairment induced by LY294002 confirmed a functional role for the PI3K-Akt-mTOR pathway in SN-MM cell lines. CONCLUSIONS Overall, these novel and unique cellular systems represent relevant experimental tools for a better understanding of the biology of these neoplasms and, as an extension, to MM from other sites.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Benerini Gatta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Histocompatibility Laboratory "Vittorio Mero", Department of Transfusion Medicine, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Irene Pezzali
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Picinoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Center for Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia-Romagna "Bruno Ubertini", Brescia, Italy
| | - Virginia Vita Vanella
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Center for Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Veronica De Giorgis
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Center for Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Lucia Zanatta
- Department of Pathology, Treviso Regional Hospital, Treviso, Italy
| | - Francesco Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Head & Neck Oncology & Surgery Otorhinolaryngology, Antoni Van Leeuwenhoek, Nederlands Kanker Instituut, Amsterdam, The Netherlands
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Benedetta Zanetti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanni Bozzoni
- Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia-Romagna "Bruno Ubertini", Brescia, Italy
| | - Moris Cadei
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Abate
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Barbara Vergani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Piera Balzarini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Simonetta Battocchio
- Unit of Pathology, Department of Molecular and Translational Medicine, University of Brescia-"ASST Spedali Civili Di Brescia", Brescia, Italy
| | - Carla Facco
- Unit of Pathology, Department of Medicine and Surgery, ASST Sette-Laghi, University of Insubria, Varese, Italy
| | - Mario Turri-Zanoni
- Unit of Otorhinolaryngology and Head & Neck Surgery, Department of Biotechnology and Life Sciences, ASST Sette Laghi, University of Insubria, Varese, Italy
| | - Paolo Castelnuovo
- Unit of Otorhinolaryngology and Head & Neck Surgery, Department of Biotechnology and Life Sciences, ASST Sette Laghi, University of Insubria, Varese, Italy
| | - Piero Nicolai
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Ester Fonsatti
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | | | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Sandra Sigala
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Davide Lombardi
- Unit of Otorhinolaryngology - Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
| |
Collapse
|
65
|
Workenhe ST, Inkol JM, Westerveld MJ, Verburg SG, Worfolk SM, Walsh SR, Kallio KL. Determinants for Antitumor and Protumor Effects of Programmed Cell Death. Cancer Immunol Res 2024; 12:7-16. [PMID: 37902605 PMCID: PMC10762341 DOI: 10.1158/2326-6066.cir-23-0321] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023]
Abstract
Cytotoxic anticancer therapies activate programmed cell death in the context of underlying stress and inflammatory signaling to elicit the emission of danger signals, cytokines, and chemokines. In a concerted manner, these immunomodulatory secretomes stimulate antigen presentation and T cell-mediated anticancer immune responses. In some instances, cell death-associated secretomes attract immunosuppressive cells to promote tumor progression. As it stands, cancer cell death-induced changes in the tumor microenvironment that contribute to antitumor or protumor effects remain largely unknown. This is complicated to examine because cell death is often subverted by tumors to circumvent natural, and therapy-induced, immunosurveillance. Here, we provide insights into important but understudied aspects of assessing the contribution of cell death to tumor elimination or cancer progression, including the role of tumor-associated genetics, epigenetics, and oncogenic factors in subverting immunogenic cell death. This perspective will also provide insights on how future studies may address the complex antitumor and protumor immunologic effects of cell death, while accounting for variations in tumor genetics and underlying microenvironment.
Collapse
Affiliation(s)
- Samuel T. Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jordon M. Inkol
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Michael J. Westerveld
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Shayla G. Verburg
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sarah M. Worfolk
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Scott R. Walsh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Kaslyn L.F. Kallio
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
66
|
Hao XL, Lv YF, Li DF, Bai FH, Gong J, Pan GQ, Su LX, Wang YL, Fu WL, Liu B, Huang L, Yan D, Tan QL, Liu JY, Guo QN. TC2N inhibits distant metastasis and stemness of breast cancer via blocking fatty acid synthesis. J Transl Med 2024; 22:6. [PMID: 38167440 PMCID: PMC10763294 DOI: 10.1186/s12967-023-04721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Tandem C2 domains, nuclear (TC2N) is a C2 domain-containing protein that belongs to the carboxyl-terminal type (C-type) tandem C2 protein family, and acts as an oncogenic driver in several cancers. Previously, we preliminarily reported that TC2N mediates the PI3K-Akt signaling pathway to inhibit tumor growth of breast cancer (BC) cells. Beyond that, its precise biological functions and detailed molecular mechanisms in BC development and progression are not fully understood. METHODS Tumor tissues of 212 BC patients were subjected to tissue microarray and further assessed the associations of TC2N expression with pathological parameters and FASN expression. The protein levels of TC2N and FASN in cell lines and tumor specimens were monitored by qRT-PCR, WB, immunofluorescence and immunohistochemistry. In vitro cell assays, in vivo nude mice model was used to assess the effect of TC2N ectopic expression on tumor metastasis and stemness of breast cancer cells. The downstream signaling pathway or target molecule of TC2N was mined using a combination of transcriptomics, proteomics and lipidomics, and the underlying mechanism was explored by WB and co-IP assays. RESULTS Here, we found that the expression of TC2N remarkedly silenced in metastatic and poorly differentiated tumors. Function-wide, TC2N strongly inhibits tumor metastasis and stem-like properties of BC via inhibition of fatty acid synthesis. Mechanism-wise, TC2N blocks neddylated PTEN-mediated FASN stabilization by a dual mechanism. The C2B domain is crucial for nuclear localization of TC2N, further consolidating the TRIM21-mediated ubiquitylation and degradation of FASN by competing with neddylated PTEN for binding to FASN in nucleus. On the other hand, cytoplasmic TC2N interacts with import proteins, thereby restraining nuclear import of PTEN to decrease neddylated PTEN level. CONCLUSIONS Altogether, we demonstrate a previously unidentified role and mechanism of TC2N in regulation of lipid metabolism and PTEN neddylation, providing a potential therapeutic target for anti-cancer.
Collapse
Affiliation(s)
- Xiang-Lin Hao
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Yang-Fan Lv
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - De-Feng Li
- Clinical Medical Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Fu-Hai Bai
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Ji Gong
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Guang-Qiang Pan
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Lin-Xi Su
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Ya-Li Wang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Wan-Lei Fu
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Bo Liu
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Lu Huang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Dong Yan
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Qiu-Lin Tan
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China.
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
67
|
Jahn M, Lang V, Diehl S, Back R, Kaufmann R, Fauth T, Buerger C. Different immortalized keratinocyte cell lines display distinct capabilities to differentiate and reconstitute an epidermis in vitro. Exp Dermatol 2024; 33:e14985. [PMID: 38043130 DOI: 10.1111/exd.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 12/05/2023]
Abstract
Dermatological research relies on the availability of suitable models that most accurately reflect the in vivo situation. Primary keratinocytes obtained from skin reduction surgeries are not only limited by availability but have a short lifespan and show donor-specific variations, which hamper the understanding of general mechanisms. The spontaneously immortalized keratinocyte cell line HaCaT displays chromosomal aberrations and is known to differentiate in an abnormal manner. To overcome these issues, we validated different engineered immortalized cell lines created from primary human keratinocytes (NHK) as model systems to study epidermal function. Cell lines either immortalized by the expression of SV40 large T antigen and hTERT (NHK-SV/TERT) or by transduction with HPV E6/E7 (NHK-E6/E7) were analysed for their growth and differentiation behaviour using 2D and 3D culture systems and compared to primary keratinocytes. Both cell lines displayed a robust proliferative behaviour but were still sensitive to contact inhibition. NHK-E6/E7 could be driven into differentiation by Ca2+ switch, while NHK-SV/TERT needed withdrawal from any proliferative signal to initiate a delayed onset of differentiation. In 3D epidermal models both cell lines were able to reconstitute a stratified epidermis and functional epidermal barrier. However, only NHK-E6/E7 showed a degree of epidermal maturation and stratification that was comparable to primary keratinocytes.
Collapse
Affiliation(s)
- Magdalena Jahn
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Victoria Lang
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Sandra Diehl
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | | | - Roland Kaufmann
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | | | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
68
|
Mu C, Gao M, Xu W, Sun X, Chen T, Xu H, Qiu H. Mechanisms of microRNA-132 in central neurodegenerative diseases: A comprehensive review. Biomed Pharmacother 2024; 170:116029. [PMID: 38128185 DOI: 10.1016/j.biopha.2023.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNA-132 (miR-132) is a highly conserved molecule that plays a crucial regulatory role in central nervous system (CNS) disorders. The expression levels of miR-132 exhibit variability in various neurological disorders and have been closely linked to disease onset and progression. The expression level of miR-132 in the CNS is regulated by a diverse range of stimuli and signaling pathways, including neuronal migration and integration, dendritic outgrowth, and complexity, synaptogenesis, synaptic plasticity, as well as inflammation and apoptosis activation. The aberrant expression of miR-132 in various central neurodegenerative diseases has garnered widespread attention. Clinical studies have revealed altered miR-132 expression levels in both chronic and acute CNS diseases, positioning miR-132 as a potential biomarker or therapeutic target. An in-depth exploration of miR-132 holds the promise of enhancing our understanding of the mechanisms underlying CNS diseases, thereby offering novel insights and strategies for disease diagnosis and treatment. It is anticipated that this review will assist researchers in recognizing the potential value of miR-132 and in generating innovative ideas for clinical trials related to CNS degenerative diseases.
Collapse
Affiliation(s)
- Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Meng Gao
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Weijing Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Tianhao Chen
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Hongbin Qiu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
69
|
Martin-Salgado M, Ochoa-Echeverría A, Mérida I. Diacylglycerol kinases: A look into the future of immunotherapy. Adv Biol Regul 2024; 91:100999. [PMID: 37949728 DOI: 10.1016/j.jbior.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Cancer still represents the second leading cause of death right after cardiovascular diseases. According to the World Health Organization (WHO), cancer provoked around 10 million deaths in 2020, with lung and colon tumors accounting for the deadliest forms of cancer. As tumor cells become resistant to traditional therapeutic approaches, immunotherapy has emerged as a novel strategy for tumor control. T lymphocytes are key players in immune responses against tumors. Immunosurveillance allows identification, targeting and later killing of cancerous cells. Nevertheless, tumors evolve through different strategies to evade the immune response and spread in a process called metastasis. The ineffectiveness of traditional strategies to control tumor growth and expansion has led to novel approaches considering modulation of T cell activation and effector functions. Program death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) showed promising results in the early 90s and nowadays are still being exploited together with other drugs for several cancer types. Other negative regulators of T cell activation are diacylglycerol kinases (DGKs) a family of enzymes that catalyze the conversion of diacylglycerol (DAG) into phosphatidic acid (PA). In T cells, DGKα and DGKζ limit the PLCγ/Ras/ERK axis thus attenuating DAG mediated signaling and T cell effector functions. Upregulation of either of both isoforms results in impaired Ras activation and anergy induction, whereas germline knockdown mice showed enhanced antitumor properties and more effective immune responses against pathogens. Here we review the mechanisms used by DGKs to ameliorate T cell activation and how inhibition could be used to reinvigorate T cell functions in cancer context. A better knowledge of the molecular mechanisms involved upon T cell activation will help to improve current therapies with DAG promoting agents.
Collapse
Affiliation(s)
- Miguel Martin-Salgado
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Isabel Mérida
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain.
| |
Collapse
|
70
|
Zhang HL, Li Y. The Patent Landscape of mTOR and PTEN Targets. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:104-118. [PMID: 37132311 DOI: 10.2174/2772434418666230427164556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND PTEN and mTOR signaling have many roles, including antiinflammatory, immunosuppressant and cancer. OBJECTIVE US patents were retrieved to show the current landscape of the mTOR and PTEN targets. METHODS PTEN and mTOR targets were analyzed by patent analysis. The U.S. granted patents from January 2003 to July 2022 were performed and analyzed. RESULTS The results showed that the mTOR target was more attractive in drug discovery than the PTEN target. Our findings indicated that most large global pharmaceutical companies focused the drug discovery related to the mTOR target. The present study demonstrated that mTOR and PTEN targets showed more applications in biological approaches compared to BRAF and KRAS targets. The chemical structures of the inhibitors of the mTOR target demonstrated some similar features to those of the inhibitors of KRAS targets. CONCLUSION At this stage, the PTEN target may not be an ideal target subjected to new drug discovery. The present study was the first one which demonstrated that the group of O=S=O may play a critical role in the chemical structures of mTOR inhibitors. It was the first time to show that a PTEN target may be suitably subjected to new therapeutic discovery efforts related to biological applications. Our findings provide a recent insight into therapeutic development for mTOR and PTEN targets.
Collapse
Affiliation(s)
- Hai-Long Zhang
- Central International Intellectual Property (Baotou) Co., Ltd, Baotou, China
| | - Yongxia Li
- Central International Intellectual Property (Baotou) Co., Ltd, Baotou, China
| |
Collapse
|
71
|
Yeh YC, Chu PY, Lin SY, Wang SY, Ho HL, Wang YC. Comprehensive Genomic and Transcriptomic Analysis of Sclerosing Pneumocytoma. Mod Pathol 2024; 37:100354. [PMID: 37844870 DOI: 10.1016/j.modpat.2023.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
Sclerosing pneumocytoma is a rare and distinct lung neoplasm whose histogenesis and molecular alterations are the subject of ongoing research. Our recent study revealed that AKT1 internal tandem duplications (ITD), point mutations, and short indels were present in almost all tested sclerosing pneumocytomas, suggesting that AKT1 mutations are a major driving oncogenic event in this tumor. Although the pathogenic role of AKT1 point mutations is well established, the significance of AKT1 ITD in oncogenesis remains largely unexplored. We conducted comprehensive genomic and transcriptomic analyses of sclerosing pneumocytoma to address this knowledge gap. RNA-sequencing data from 23 tumors and whole-exome sequencing data from 44 tumors were used to obtain insights into their genetic and transcriptomic profiles. Our analysis revealed a high degree of genetic and transcriptomic similarity between tumors carrying AKT1 ITD and those with AKT1 point mutations. Mutational signature analysis revealed COSMIC signatures 1 and 5 as the prevailing signatures of sclerosing pneumocytoma, associated with the spontaneous deamination of 5-methylcytosine and an unknown etiology, respectively. RNA-sequencing data analysis revealed that the sclerosing pneumocytoma gene expression profile is characterized by activation of the PI3K/AKT/mTOR pathway, which exhibits significant similarity between tumors harboring AKT1 ITD and those with AKT1 point mutations. Notably, an upregulation of SOX9, a transcription factor known for its involvement in fetal lung development, was observed in sclerosing pneumocytoma. Specifically, SOX9 expression was prominent in the round cell component, whereas it was relatively lower in the surface cell component of the tumor. To the best of our knowledge, this is the first comprehensive investigation of the genomic and transcriptomic characteristics of sclerosing pneumocytoma. Results of the present study provide insights into the molecular attributes of sclerosing pneumocytoma and a basis for future studies of this enigmatic tumor.
Collapse
Affiliation(s)
- Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ping-Yuan Chu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shin-Ying Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Ying Wang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chao Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
72
|
Kim JH, Yang HJ, Lee KW, Park JJ, Lee CH, Jeon YS, Kim JH, Park S, Song SJ, Lee JH, Moon A, Kim YH, Song YS. The Correlations between the Intensity of Histopathological Ubiquitin-Specific Protease 11 Staining and Progression of Prostate Cancer. Pharmaceuticals (Basel) 2023; 16:1703. [PMID: 38139829 PMCID: PMC10747236 DOI: 10.3390/ph16121703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Ubiquitin-specific protease 11 (USP11), one of the principal phosphatase and tensin homolog (PTEN) deubiquitinases, can reserve PTEN polyubiquitination to maintain PTEN protein integrity and inhibit PI3K/AKT pathway activation. The aim of the current study was to investigate the associations between immunohistochemical USP11 staining intensities and prognostic indicators in individuals with prostate cancer. METHODS Tissue microarrays (TMAs) were performed for human prostate cancer and normal tissue (control) samples. Data on patient's age, Gleason score, plasma prostate-specific antigen (PSA) titer, disease stage, and presence of seminal vesicles, lymph nodes, and surgical margin involvement were collected. A pathologist who was blinded to the clinical outcome data scored the TMA for USP11 staining intensity as either positive or negative. RESULTS Cancerous tissues exhibited lower USP11 staining intensity, whereas the neighboring benign peri-tumoral tissues showed higher USP11 staining intensity. The degree of USP11 staining intensity was lower in patients with a higher PSA titer, higher Gleason score, or more advanced disease stage. Patients who showed positive USP11 staining were more likely to have more optimal clinical and biochemical recurrence-free survival statistics. CONCLUSIONS USP11 staining intensity in patients with prostate cancer is negatively associated with several prognostic factors such as an elevated PSA titer and a high Gleason score. It also reflects both biochemical and clinical recurrence-free survival in such patients. Thus, USP11 staining is a valuable prognostic factor in patients with prostate cancer.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, School of Medicine, Soonchunhyang University, Seoul 04404, Republic of Korea; (J.H.K.); (J.J.P.)
| | - Hee Jo Yang
- Department of Urology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Kwang Woo Lee
- Department of Urology, School of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea
| | - Jae Joon Park
- Department of Urology, School of Medicine, Soonchunhyang University, Seoul 04404, Republic of Korea; (J.H.K.); (J.J.P.)
| | - Chang-Ho Lee
- Department of Urology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Youn Soo Jeon
- Department of Urology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Jae Ho Kim
- Department of Urology, School of Medicine, Soonchunhyang University, Gumi 39371, Republic of Korea;
| | - Suyeon Park
- Department of Data Innovation, Soonchunhyang University Seoul Hospital, Seoul 04404, Republic of Korea
- Department of Applied Statistics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Su Jung Song
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Republic of Korea;
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Ji-Hye Lee
- Department of Pathology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea;
| | - Ahrim Moon
- Department of Pathology, School of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea
| | - Yon Hee Kim
- Department of Pathology, School of Medicine, Soonchunhyang University, Seoul 04404, Republic of Korea
| | - Yun Seob Song
- Department of Urology, School of Medicine, Soonchunhyang University, Seoul 04404, Republic of Korea; (J.H.K.); (J.J.P.)
| |
Collapse
|
73
|
Ahmad H, Ali A, Ali R, Khalil AT, Khan I, Khan MM, Alorini M. Mutational Landscape and In-Silico Analysis of TP53, PIK3CA, and PTEN in Patients with Breast Cancer from Khyber Pakhtunkhwa. ACS OMEGA 2023; 8:43318-43331. [PMID: 38024667 PMCID: PMC10652387 DOI: 10.1021/acsomega.3c07472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Herein, we report the mutational spectrum of three breast cancer candidate genes (TP53, PIK3CA, and PTEN) using WES for identifying potential biomarkers. The WES data were thoroughly analyzed using SAMtools for variant calling and identification of the mutations. Various bioinformatic tools (SIFT, PolyPhen-2, Mutation Taster, ISPRED-SEQ, SAAFEQ-SEQ, ConSurf, PROCHECK etc.) were used to determine the pathogenicity and nature of the SNVs. Selected interaction site (IS) mutations were visualized in PyMOL after building 3D structures in Swiss-Model. Ramachandran plots were generated by using the PROCHECK server. The selected IS mutations were subjected to molecular dynamic simulation (MDS) studies using Gromacs 4.5. STRING and GeneMANIA were used for the prediction of gene-gene interactions and pathways. Our results revealed that the luminal A molecular subtype of the breast cancer was most common, whereas a high percentage of was Her2 negatives. Moreover, the somatic mutations were more common as compared to the germline mutations in TP53, PIK3CA, and PTEN. 20% of the identified mutations are reported for the first time from Khyber Pakhtunkhwa. In the enrolled cohort, 23 mutations were nonsynonymous SNVs. The frequency of mutations was the highest in PIK3CA, followed by TP53 and PTEN. A total of 13 mutations were found to be highly pathogenic. Four novel mutations were identified on PIK3CA and one each on PTEN and TP53. SAAFEQ-SEQ predicted the destabilizing effect for all mutations. ISPRED-SEQ predicted 9 IS mutations (6 on TP53 and 3 on PIK3CA), whereas no IS mutation was predicted on PTEN. The TP53 IS mutations were TP53R43H, TP53Y73X, TP53K93Q, TP53K93R, TP53D149E, and TP53Q199X; whereas for PIK3CA, the IS mutations were PIK3CAL156V, PIK3CAM610K, and PIK3CAH1047R. Analysis from the ConSurf Web server revealed five SNVs with a highly conserved status (conservation score 9) across TP53 and PTEN. TP53P33R was found predominant in the grade 3 tumors, whereas PTENp.C65S was distributed on ER+, ER-, PR+, PR-, Her2+, and Her2- patients. TP53p.P33R mutation was found to be recurring in the 14/19 (73.6%) patients and, therefore, can be considered as a potential biomarker. Finally, these mutations were studied in the context of their potential association with different hormonal and social factors.
Collapse
Affiliation(s)
- Hilal Ahmad
- Institute
of Basic Medical Sciences Khyber Medical University, Khyber Medical University, Phase V, Peshawar 25000, Pakistan
| | - Asif Ali
- Institute
of Basic Medical Sciences Khyber Medical University, Khyber Medical University, Phase V, Peshawar, Peshawar 25000, Pakistan
- College
of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
- School
of Medicine, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Roshan Ali
- Institute
of Basic Medical Sciences Khyber Medical University, Khyber Medical University, Phase V, Peshawar 25000, Pakistan
| | - Ali Talha Khalil
- Department
of Pathology, Lady Reading Hospital Medical
Teaching Institution (LRH-MTI), Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Ishaq Khan
- Institute
of Basic Medical Sciences Khyber Medical University, Khyber Medical University, Phase V, Peshawar 25000, Pakistan
| | - Mah Muneer Khan
- General Surgery, Khyber Teaching Hospital Medical Teaching Institute, Peshawar 25000, Pakistan
| | - Mohammed Alorini
- Department
of Basic Medical Sciences, Unaizah College of Medicine and Medical
Sciences, Qassim University, Unaizah, 56219, Saudi Arabia
| |
Collapse
|
74
|
Ali ES, Ben-Sahra I. Regulation of nucleotide metabolism in cancers and immune disorders. Trends Cell Biol 2023; 33:950-966. [PMID: 36967301 PMCID: PMC10518033 DOI: 10.1016/j.tcb.2023.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
Nucleotides are the foundational elements of life. Proliferative cells acquire nutrients for energy production and the synthesis of macromolecules, including proteins, lipids, and nucleic acids. Nucleotides are continuously replenished through the activation of the nucleotide synthesis pathways. Despite the importance of nucleotides in cell physiology, there is still much to learn about how the purine and pyrimidine synthesis pathways are regulated in response to intracellular and exogenous signals. Over the past decade, evidence has emerged that several signaling pathways [Akt, mechanistic target of rapamycin complex I (mTORC1), RAS, TP53, and Hippo-Yes-associated protein (YAP) signaling] alter nucleotide synthesis activity and influence cell function. Here, we examine the mechanisms by which these signaling networks affect de novo nucleotide synthesis in mammalian cells. We also discuss how these molecular links can be targeted in diseases such as cancers and immune disorders.
Collapse
Affiliation(s)
- Eunus S Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
75
|
Ertay A, Ewing RM, Wang Y. Synthetic lethal approaches to target cancers with loss of PTEN function. Genes Dis 2023; 10:2511-2527. [PMID: 37533462 PMCID: PMC7614861 DOI: 10.1016/j.gendis.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene and has a role in inhibiting the oncogenic AKT signalling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumour phenotype and tumorigenesis. Identifying targeted therapies for inactive tumour suppressor genes such as PTEN has been challenging as it is difficult to restore the tumour suppressor functions. Therefore, focusing on the downstream signalling pathways to discover a targeted therapy for inactive tumour suppressor genes has highlighted the importance of synthetic lethality studies. This review focuses on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
76
|
Xu J, Ma H, Shi L, Zhou H, Cheng Y, Tong J, Meng B, Xu X, He K, Ding S, Zhang J, Yue L, Xiang G. Inflammatory Cell-Derived MYDGF Attenuates Endothelial LDL Transcytosis to Protect Against Atherogenesis. Arterioscler Thromb Vasc Biol 2023; 43:e443-e467. [PMID: 37767706 DOI: 10.1161/atvbaha.123.319905] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Inflammation contributes to the pathogenesis of atherosclerosis. But little is known about the potential benefits of inflammatory cells to atherosclerosis. The aim of this study was to investigate the function of inflammatory cells/endothelium axis and determine whether and how inflammatory cell-derived MYDGF (myeloid-derived growth factor) inhibited endothelial LDL (low-density lipoprotein) transcytosis. METHODS In in vivo experiments, both loss- and gain-of-function strategies were used to evaluate the effect of inflammatory cell-derived MYDGF on LDL transcytosis. We generated monocyte/macrophage-targeted MYDGF-null mice on an Ldlr (LDL receptor)-/- background in the loss-of-function strategy and restored the inflammatory cell-derived MYDGF by bone marrow transplantation and inflammatory cell-specific overexpression of MYDGF mice model in the gain-of-function strategy. In in vitro experiments, coculture experiments between primary mouse aortic endothelial cells and macrophages and mouse aortic endothelial cells supplemented with or without recombinant MYDGF were conducted. RESULTS Inflammatory cell-derived MYDGF deficiency aggravated endothelial LDL transcytosis, drove LDL uptake by artery wall, and thus exacerbated atherosclerosis in vivo. Inflammatory cell-derived MYDGF restoration by bone marrow transplantation and inflammatory cell MYDGF overexpression alleviated LDL transport across the endothelium, prevented LDL accumulation in the subendothelial space, and subsequently ameliorated atherosclerosis in vivo. Furthermore, in the in vitro study, macrophages isolated from MYDGF+/+ mice and recombinant MYDGF attenuated LDL transcytosis and uptake in mouse aortic endothelial cells. Mechanistically, MYDGF inhibited MAP4K4 (mitogen-activated protein kinase kinase kinase kinase isoform 4) phosphorylation, enhanced activation of Akt (protein kinase B)-1, and diminished the FoxO (forkhead box O) 3a signaling cascade to exert protective effects of MYDGF on LDL transcytosis and atherosclerosis. CONCLUSIONS The findings support a role for inflammatory cell-derived MYDGF served as a cross talk factor between inflammatory cells and endothelial cells that inhibits LDL transcytosis across endothelium. MYDGF may become a novel therapeutic drug for atherosclerosis, and the beneficial effects of inflammatory cell in atherosclerosis deserve further attention.
Collapse
Affiliation(s)
- Jinling Xu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Huaxing Ma
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, China (H.M.)
| | - Lingfeng Shi
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Hui Zhou
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Hunan, China (H.Z.)
| | - Yangyang Cheng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, China (H.M.)
| | - Jiayue Tong
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Biying Meng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
| | - Xiaoli Xu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
| | - Kaiyue He
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Sheng Ding
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Jiajia Zhang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
| | - Ling Yue
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
| | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| |
Collapse
|
77
|
de Paula CP, de Oliveira da Silva JPM, Romanello KS, Bernardo VS, Torres FF, da Silva DGH, da Cunha AF. Peroxiredoxins in erythrocytes: far beyond the antioxidant role. J Mol Med (Berl) 2023; 101:1335-1353. [PMID: 37728644 DOI: 10.1007/s00109-023-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
The red blood cells (RBCs) are essential to transport oxygen (O2) and nutrients throughout the human body. Changes in the structure or functioning of the erythrocytes can lead to several deficiencies, such as hemolytic anemias, in which an increase in reactive oxidative species generation is involved in the pathophysiological process, playing a significant role in the severity of several clinical manifestations. There are important lines of defense against the damage caused by oxidizing molecules. Among the antioxidant molecules, the enzyme peroxiredoxin (Prx) has the higher decomposition power of hydrogen peroxide, especially in RBCs, standing out because of its abundance. This review aimed to present the recent findings that broke some paradigms regarding the three isoforms of Prxs found in RBC (Prx1, Prx2, and Prx6), showing that in addition to their antioxidant activity, these enzymes may have supplementary roles in transducing peroxide signals, as molecular chaperones, protecting from membrane damage, and maintenance of iron homeostasis, thus contributing to the overall survival of human RBCs, roles that seen to be disrupted in hemolytic anemia conditions.
Collapse
Affiliation(s)
- Carla Peres de Paula
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
- Biotechnology Graduate Program, Exact and Technology Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
| | - João Pedro Maia de Oliveira da Silva
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
- Evolutionary Genetics and Molecular Biology Graduate Program, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
| | - Karen Simone Romanello
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
- Evolutionary Genetics and Molecular Biology Graduate Program, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Paulista State University, São Paulo, Brazil
- Federal University of Mato Grosso do Sul, Campus de Três Lagoas, Três Lagoas, Mato Grosso do Sul, Brazil
| | - Anderson Ferreira da Cunha
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
| |
Collapse
|
78
|
Choi S, Cho N, Kim EM, Kim KK. The role of alternative pre-mRNA splicing in cancer progression. Cancer Cell Int 2023; 23:249. [PMID: 37875914 PMCID: PMC10594706 DOI: 10.1186/s12935-023-03094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Alternative pre-mRNA splicing is a critical mechanism that generates multiple mRNA from a single gene, thereby increasing the diversity of the proteome. Recent research has highlighted the significance of specific splicing isoforms in cellular processes, particularly in regulating cell numbers. In this review, we examine the current understanding of the role of alternative splicing in controlling cancer cell growth and discuss specific splicing factors and isoforms and their molecular mechanisms in cancer progression. These isoforms have been found to intricately control signaling pathways crucial for cell cycle progression, proliferation, and apoptosis. Furthermore, studies have elucidated the characteristics and functional importance of splicing factors that influence cell numbers. Abnormal expression of oncogenic splicing isoforms and splicing factors, as well as disruptions in splicing caused by genetic mutations, have been implicated in the development and progression of tumors. Collectively, these findings provide valuable insights into the complex interplay between alternative splicing and cell proliferation, thereby suggesting the potential of alternative splicing as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
79
|
Amin T, Sharma RP, Mir KB, Slathia N, Chhabra S, Tsering D, Kotwal P, Bhagat M, Nandi U, Parkesh R, Kapoor KK, Goswami A. Quinoxalinone substituted pyrrolizine (4h)-induced dual inhibition of AKT and ERK instigates apoptosis in breast and colorectal cancer by modulating mitochondrial membrane potential. Eur J Pharmacol 2023; 957:175945. [PMID: 37541376 DOI: 10.1016/j.ejphar.2023.175945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
AKT and ERK 1/2 play a pivotal role in cancer cell survival, proliferation, migration, and angiogenesis. Therefore, AKT and ERK 1/2 are considered crucial targets for cancer intervention. In this study, we envisaged the role of AKT and ERK signaling in apoptosis regulation in presence of compound 4h, a novel synthetic derivative of quinoxalinone substituted spiropyrrolizines exhibiting substantial antiproliferative activity in various cancer cell lines. Structurally 4h is a spiropyrrolizine derivative. Molecular docking analysis revealed that compound 4h shows strong binding affinity with AKT-1 (-9.5 kcal/mol) and ERK2 (-9.0 kcal/mol) via binding at allosteric sites of AKT and active site of ERK2. The implications of 4h binding with these two survival kinases resulted in the obstruction for ATP binding, hence, hampering their phosphorylation dependent activation. We demonstrate that 4h mediated apoptotic induction via disruption in the mitochondrial membrane potential of MCF-7 and HCT-116 cells and 4h-mediated inhibition of survival pathways occurred in a wild type PTEN background and is diminished in PTEN-/- cells. In 4T1 mammary carcinoma model, 4h exhibited pronounced reduction in the tumor size and tumor volume at significantly low doses. Besides, 4h reached the highest plasma concentration of 5.8 μM within a period of 1 h in mice model intraperitoneally. Furthermore, 4h showed acceptable clearance with an adequate elimination half-life and satisfactory pharmacokinetic behaviour, thus proclaiming as a potential lead molecule against breast and colorectal cancer by specifically inhibiting simultaneously AKT and ERK1/2 kinases.
Collapse
Affiliation(s)
- Tanzeeba Amin
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | | | - Khalid Bashir Mir
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Nancy Slathia
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | - Sonali Chhabra
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India; CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Dolma Tsering
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | - Pankul Kotwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, J&K, 181143, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Raman Parkesh
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India; CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Kamal K Kapoor
- School of Biotechnology, University of Jammu, J&K, 181143, India.
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
80
|
Travis G, McGowan EM, Simpson AM, Marsh DJ, Nassif NT. PTEN, PTENP1, microRNAs, and ceRNA Networks: Precision Targeting in Cancer Therapeutics. Cancers (Basel) 2023; 15:4954. [PMID: 37894321 PMCID: PMC10605164 DOI: 10.3390/cancers15204954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well characterised tumour suppressor, playing a critical role in the maintenance of fundamental cellular processes including cell proliferation, migration, metabolism, and survival. Subtle decreases in cellular levels of PTEN result in the development and progression of cancer, hence there is tight regulation of the expression, activity, and cellular half-life of PTEN at the transcriptional, post-transcriptional, and post-translational levels. PTENP1, the processed pseudogene of PTEN, is an important transcriptional and post-transcriptional regulator of PTEN. PTENP1 expression produces sense and antisense transcripts modulating PTEN expression, in conjunction with miRNAs. Due to the high sequence similarity between PTEN and the PTENP1 sense transcript, the transcripts possess common miRNA binding sites with the potential for PTENP1 to compete for the binding, or 'sponging', of miRNAs that would otherwise target the PTEN transcript. PTENP1 therefore acts as a competitive endogenous RNA (ceRNA), competing with PTEN for the binding of specific miRNAs to alter the abundance of PTEN. Transcription from the antisense strand produces two functionally independent isoforms (PTENP1-AS-α and PTENP1-AS-β), which can regulate PTEN transcription. In this review, we provide an overview of the post-transcriptional regulation of PTEN through interaction with its pseudogene, the cellular miRNA milieu and operation of the ceRNA network. Furthermore, its importance in maintaining cellular integrity and how disruption of this PTEN-miRNA-PTENP1 axis may lead to cancer but also provide novel therapeutic opportunities, is discussed. Precision targeting of PTENP1-miRNA mediated regulation of PTEN may present as a viable alternative therapy.
Collapse
Affiliation(s)
- Glena Travis
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
| | - Eileen M. McGowan
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Ann M. Simpson
- Gene Therapy and Translational Molecular Analysis Laboratory, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Deborah J. Marsh
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Najah T. Nassif
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
| |
Collapse
|
81
|
Hosseinalizadeh H, Rabiee F, Eghbalifard N, Rajabi H, Klionsky DJ, Rezaee A. Regulating the regulatory T cells as cell therapies in autoimmunity and cancer. Front Med (Lausanne) 2023; 10:1244298. [PMID: 37828948 PMCID: PMC10565010 DOI: 10.3389/fmed.2023.1244298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Regulatory T cells (Tregs), possess a pivotal function in the maintenance of immune homeostasis. The dysregulated activity of Tregs has been associated with the onset of autoimmune diseases and cancer. Hence, Tregs are promising targets for interventions aimed at steering the immune response toward the desired path, either by augmenting the immune system to eliminate infected and cancerous cells or by dampening it to curtail the damage to self-tissues in autoimmune disorders. The activation of Tregs has been observed to have a potent immunosuppressive effect against T cells that respond to self-antigens, thus safeguarding our body against autoimmunity. Therefore, promoting Treg cell stability presents a promising strategy for preventing or managing chronic inflammation that results from various autoimmune diseases. On the other hand, Tregs have been found to be overactivated in several forms of cancer, and their role as immune response regulators with immunosuppressive properties poses a significant impediment to the successful implementation of cancer immunotherapy. However, the targeting of Tregs in a systemic manner may lead to the onset of severe inflammation and autoimmune toxicity. It is imperative to develop more selective methods for targeting the function of Tregs in tumors. In this review, our objective is to elucidate the function of Tregs in tumors and autoimmunity while also delving into numerous therapeutic strategies for reprogramming their function. Our focus is on reprogramming Tregs in a highly activated phenotype driven by the activation of key surface receptors and metabolic reprogramming. Furthermore, we examine Treg-based therapies in autoimmunity, with a specific emphasis on Chimeric Antigen Receptor (CAR)-Treg therapy and T-cell receptor (TCR)-Treg therapy. Finally, we discuss key challenges and the future steps in reprogramming Tregs that could lead to the development of novel and effective cancer immunotherapies.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Rabiee
- Department of Pharmacology and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Eghbalifard
- Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Rajabi
- Faculty of Medicine, ShahreKord University of Medical Sciences, Shahrekord, Iran
| | - Daniel J. Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
82
|
Sinha S, Li J, Tam B, Wang SM. Classification of PTEN missense VUS through exascale simulations. Brief Bioinform 2023; 24:bbad361. [PMID: 37843401 DOI: 10.1093/bib/bbad361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN), a tumor suppressor with dual phosphatase properties, is a key factor in PI3K/AKT signaling pathway. Pathogenic germline variation in PTEN can abrogate its ability to dephosphorylate, causing high cancer risk. Lack of functional evidence lets numerous PTEN variants be classified as variants of uncertain significance (VUS). Utilizing Molecular Dynamics (MD) simulations, we performed a thorough evaluation for 147 PTEN missense VUS, sorting them into 66 deleterious and 81 tolerated variants. Utilizing replica exchange molecular dynamic (REMD) simulations, we further assessed the variants situated in the catalytic core of PTEN's phosphatase domain and uncovered conformational alterations influencing the structural stability of the phosphatase domain. There was a high degree of agreement between our results and the variants classified by Variant Abundance by Massively Parallel Sequencing, saturation mutagenesis, multiplexed functional data and experimental assays. Our extensive analysis of PTEN missense VUS should benefit their clinical applications in PTEN-related cancer. SIGNIFICANCE STATEMENT Classification of PTEN variants affecting its lipid phosphatase activity is important for understanding the roles of PTEN variation in the pathogenesis of hereditary and sporadic malignancies. Of the 3000 variants identified in PTEN, 1296 (43%) were assigned as VUS. Here, we applied MD and REMD simulations to investigate the effects of PTEN missense VUS on the structural integrity of the PTEN phosphatase domain consisting the WPD, P and TI active sites. We classified a total of 147 missense VUS into 66 deleterious and 81 tolerated variants by referring to the control group comprising 54 pathogenic and 12 benign variants. The classification was largely in concordance with these classified by experimental approaches.
Collapse
Affiliation(s)
- Siddharth Sinha
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| | - Jiaheng Li
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| | - Benjamin Tam
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| |
Collapse
|
83
|
Qian W, Xu Y, Wen W, Huang L, Guo Z, Zhu W, Li Y. Exosomal miR-103a-3p from Crohn's Creeping Fat-Derived Adipose-Derived Stem Cells Contributes to Intestinal Fibrosis by Targeting TGFBR3 and Activating Fibroblasts. J Crohns Colitis 2023; 17:1291-1308. [PMID: 36897738 DOI: 10.1093/ecco-jcc/jjad042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND AIMS Mesenteric adipose tissue hypertrophy is a hallmark of Crohn's disease [CD], and creeping fat [CF] is unique to CD. Adipose-derived stem cells [ASCs] from inflammatory tissue exhibited altered biological functions. The role of ASCs isolated from CF in intestinal fibrosis and the potential mechanism remain unclear. METHODS ASCs were isolated from CF [CF-ASCs] and disease-unaffected mesenteric adipose tissue [Ctrl-ASCs] of patients with CD. A series of in vitro and in vivo experiments were conducted to study the effects of exosomes from CF-ASCs [CF-Exos] on intestinal fibrosis and fibroblast activation. A micro-RNA microarray analysis was performed. Western blot, luciferase assay and immunofluorescence were performed to further detect the underlying mechanisms. RESULTS The results indicated that CF-Exos promoted intestinal fibrosis by activating fibroblasts in a dose-dependent manner. They continuously promoted progression of intestinal fibrosis even after dextran sulphate sodium withdrawal. Further analysis showed that exosomal miR-103a-3p was enriched in CF-Exos and participated in exosome-mediated fibroblast activation. TGFBR3 was identified as a target gene of miR-103a-3p. Mechanistically, CF-ASCs released exosomal miR-103a-3p and promoted fibroblast activation by targeting TGFBR3 and promoting Smad2/3 phosphorylation. We also found that the expression of miR-103a-3p in diseased intestine was positively associated with the degree of CF and fibrosis score. CONCLUSION Our findings show that exosomal miR-103a-3p from CF-ASCs promotes intestinal fibrosis by activating fibroblasts via TGFBR3 targeting, suggesting that CF-ASCs are potential therapeutic targets for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Wenwei Qian
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Yihan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Weiwei Wen
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Liangyu Huang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zhen Guo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| |
Collapse
|
84
|
Loh ZN, Wang ME, Wan C, Asara JM, Ji Z, Chen M. Nuclear PTEN Regulates Thymidylate Biosynthesis in Human Prostate Cancer Cell Lines. Metabolites 2023; 13:939. [PMID: 37623882 PMCID: PMC10456368 DOI: 10.3390/metabo13080939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor governs a variety of biological processes, including metabolism, by acting on distinct molecular targets in different subcellular compartments. In the cytosol, inactive PTEN can be recruited to the plasma membrane where it dimerizes and functions as a lipid phosphatase to regulate metabolic processes mediated by the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin complex 1 (mTORC1) pathway. However, the metabolic regulation of PTEN in the nucleus remains undefined. Here, using a gain-of-function approach to targeting PTEN to the plasma membrane and nucleus, we show that nuclear PTEN contributes to pyrimidine metabolism, in particular de novo thymidylate (dTMP) biosynthesis. PTEN appears to regulate dTMP biosynthesis through interaction with methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), a key enzyme that generates 5,10-methylenetetrahydrofolate, a cofactor required for thymidylate synthase (TYMS) to catalyze deoxyuridylate (dUMP) into dTMP. Our findings reveal a nuclear function for PTEN in controlling dTMP biosynthesis and may also have implications for targeting nuclear-excluded PTEN prostate cancer cells with antifolate drugs.
Collapse
Affiliation(s)
- Zoe N. Loh
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Mu-En Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Changxin Wan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Zhicheng Ji
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ming Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
85
|
Shi F, Collins S. Regulation of mTOR Signaling: Emerging Role of Cyclic Nucleotide-Dependent Protein Kinases and Implications for Cardiometabolic Disease. Int J Mol Sci 2023; 24:11497. [PMID: 37511253 PMCID: PMC10380887 DOI: 10.3390/ijms241411497] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) kinase is a central regulator of cell growth and metabolism. It is the catalytic subunit of two distinct large protein complexes, mTOR complex 1 (mTORC1) and mTORC2. mTOR activity is subjected to tight regulation in response to external nutrition and growth factor stimulation. As an important mechanism of signaling transduction, the 'second messenger' cyclic nucleotides including cAMP and cGMP and their associated cyclic nucleotide-dependent kinases, including protein kinase A (PKA) and protein kinase G (PKG), play essential roles in mediating the intracellular action of a variety of hormones and neurotransmitters. They have also emerged as important regulators of mTOR signaling in various physiological and disease conditions. However, the mechanism by which cAMP and cGMP regulate mTOR activity is not completely understood. In this review, we will summarize the earlier work establishing the ability of cAMP to dampen mTORC1 activation in response to insulin and growth factors and then discuss our recent findings demonstrating the regulation of mTOR signaling by the PKA- and PKG-dependent signaling pathways. This signaling framework represents a new non-canonical regulation of mTOR activity that is independent of AKT and could be a novel mechanism underpinning the action of a variety of G protein-coupled receptors that are linked to the mTOR signaling network. We will further review the implications of these signaling events in the context of cardiometabolic disease, such as obesity, non-alcoholic fatty liver disease, and cardiac remodeling. The metabolic and cardiac phenotypes of mouse models with targeted deletion of Raptor and Rictor, the two essential components for mTORC1 and mTORC2, will be summarized and discussed.
Collapse
Affiliation(s)
- Fubiao Shi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
86
|
Asai T, Yokota M, Isomura H, Koide H, Sakurai N, Okamoto A, Ando H, Dewa T, Oku N. Treatment of PTEN-Null Breast Cancer by a Synthetic Lethal Approach Involving PARP1 Gene Silencing. J Pharm Sci 2023; 112:1908-1914. [PMID: 36828124 DOI: 10.1016/j.xphs.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
The loss of the phosphatase and tensin homolog (PTEN) deleted from chromosome 10 is frequently observed in a variety of human cancers and appears to be an ideal target in synthetic lethality-based treatment. In this study, the synthetic lethal interaction between PTEN loss and the gene silencing of poly [ADP-ribose] polymerase 1 (PARP1) was examined in human triple-negative breast cancer cells (PTEN-null MDA-MB-468 and PTEN-positive MDA-MB-231 cells). Polycation liposomes previously developed by us were employed to deliver the small interfering ribonucleic acid (siRNA) targeted toward PARP1 (siPARP1) into the cancer cells. The silencing of the PARP1 gene exerted a cytocidal effect on the MDA-MB-468 cells but had no effect on the MDA-MB-231 cells and the human umbilical vein endothelial cells employed as normal cells. The simultaneous knockdown of PARP1 and PTEN in the MDA-MB-231 cells resulted in the significant inhibition of cell growth. The data suggest that the effects of the PARP1 knockdown on the cells were dependent on the PTEN status. A significant increase in the DNA breaks and the extent of apoptosis, possibly due to the failure of DNA repair, was observed upon PARP1 knockdown in the MDA-MB-468 cells compared with the case in the MDA-MB-231 cells. Our findings suggest that the synthetic lethal approach via PARP1 gene silencing holds promise for the treatment of patients with PTEN-null breast cancer.
Collapse
Affiliation(s)
- Tomohiro Asai
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Masafumi Yokota
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hideki Isomura
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Koide
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Naoyuki Sakurai
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ayaka Okamoto
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Japan Society for the Promotion of Science (JSPS), 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Hidenori Ando
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takehisa Dewa
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555 Japan
| | - Naoto Oku
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 Japan
| |
Collapse
|
87
|
Sahu U, Mullarkey MP, Pei G, Zhao Z, Hong B, Kaur B. oHSV-P10 reduces glioma stem cell enrichment after oncolytic HSV therapy. Mol Ther Oncolytics 2023; 29:30-41. [PMID: 37114074 PMCID: PMC10126842 DOI: 10.1016/j.omto.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Longstanding evidence implicate glioma stem-like cells as the main drivers contributing toward glioblastoma (GBM) therapy resistance and tumor recurrence. Although oncolytic herpes simplex virus (oHSV) viral therapy is a promising biological therapy recently approved for melanoma (in the United States and Europe) and GBM (in Japan); however, the impact of this therapy on GBM stem-like cells (GSCs) is understudied. Here we show that post-oHSV virotherapy activated AKT signaling results in an enrichment of GSC signatures in glioma, which mimics the enrichment in GSC observed after radiation treatment. We also uncovered that a second-generation oncolytic virus armed with PTEN-L (oHSV-P10) decreases this by moderating IL6/JAK/STAT3 signaling. This ability was retained in the presence of radiation treatment and oHSV-P10-sensitized intracranial GBM to radiotherapy. Collectively, our findings uncover potential mechanisms to overcome GSC-mediated radiation resistance via oHSV-P10.
Collapse
Affiliation(s)
- Upasana Sahu
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Matthew P. Mullarkey
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bangxing Hong
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
88
|
Cahuzac KM, Lubin A, Bosch K, Stokes N, Shoenfeld SM, Zhou R, Lemon H, Asara J, Parsons RE. AKT activation because of PTEN loss upregulates xCT via GSK3β/NRF2, leading to inhibition of ferroptosis in PTEN-mutant tumor cells. Cell Rep 2023; 42:112536. [PMID: 37210723 PMCID: PMC10558134 DOI: 10.1016/j.celrep.2023.112536] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/25/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Here, we show that the tumor suppressor phosphatase and tensin homolog deleted from chromosome 10 (PTEN) sensitizes cells to ferroptosis, an iron-dependent form of cell death, by restraining the expression and activity of the cystine/glutamate antiporter system Xc- (xCT). Loss of PTEN activates AKT kinase to inhibit GSK3β, increasing NF-E2 p45-related factor 2 (NRF2) along with transcription of one of its known target genes encoding xCT. Elevated xCT in Pten-null mouse embryonic fibroblasts increases the flux of cystine transport and synthesis of glutathione, which enhances the steady-state levels of these metabolites. A pan-cancer analysis finds that loss of PTEN shows evidence of increased xCT, and PTEN-mutant cells are resistant to ferroptosis as a consequence of elevated xCT. These findings suggest that selection of PTEN mutation during tumor development may be due to its ability to confer resistance to ferroptosis in the setting of metabolic and oxidative stress that occurs during tumor initiation and progression.
Collapse
Affiliation(s)
- Kaitlyn M Cahuzac
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abigail Lubin
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kaitlyn Bosch
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Stokes
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Royce Zhou
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haddy Lemon
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ramon E Parsons
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
89
|
Ono M, Miyamoto T, Asaka R, Uchikawa J, Ando H, Tanaka Y, Shinagawa M, Yokokawa Y, Asaka S, Wang TL, Shih IM, Shiozawa T. Establishment of a novel model of endometriosis-associated ovarian cancer by transplanting uterine tissue from Arid1a/Pten knockout mice. Sci Rep 2023; 13:8348. [PMID: 37221199 DOI: 10.1038/s41598-023-35292-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 05/16/2023] [Indexed: 05/25/2023] Open
Abstract
Although endometriosis is primarily benign, it has been identified as a risk factor for endometriosis-associated ovarian cancer (EAOC). Genetic alterations in ARID1A, PTEN, and PIK3CA have been reported in EAOC; however, an appropriate EAOC animal model has yet to be established. Therefore, the present study aimed to create an EAOC mouse model by transplanting uterine pieces from donor mice, in which Arid1a and/or Pten was conditionally knocked out (KO) in Pax8-expressing endometrial cells by the administration of doxycycline (DOX), onto the ovarian surface or peritoneum of recipient mice. Two weeks after transplantation, gene KO was induced by DOX and endometriotic lesions were thereafter removed. The induction of only Arid1a KO did not cause any histological changes in the endometriotic cysts of recipients. In contrast, the induction of only Pten KO evoked a stratified architecture and nuclear atypia in the epithelial lining of all endometriotic cysts, histologically corresponding to atypical endometriosis. The induction of Arid1a; Pten double-KO evoked papillary and cribriform structures with nuclear atypia in the lining of 42 and 50% of peritoneal and ovarian endometriotic cysts, respectively, which were histologically similar to EAOC. These results indicate that this mouse model is useful for investigating the mechanisms underlying the development of EAOC and the related microenvironment.
Collapse
Affiliation(s)
- Motoki Ono
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Tsutomu Miyamoto
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Ryoichi Asaka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Junko Uchikawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hirofumi Ando
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yasuhiro Tanaka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Manaka Shinagawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yusuke Yokokawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Shiho Asaka
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Diagnostic Pathology, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB-2 Rm 306, Baltimore, MD, 21287, USA
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB-2 Rm 305, Baltimore, MD, 21287, USA
| | - Tanri Shiozawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| |
Collapse
|
90
|
Kwinten KJ, Drissen MM, de Hullu JA, Vos JR, Hoogerbrugge N, van Altena AM. Yield of annual endometrial cancer surveillance in women with PTEN Hamartoma Tumor Syndrome. Eur J Med Genet 2023; 66:104785. [PMID: 37172779 DOI: 10.1016/j.ejmg.2023.104785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/15/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE Expert-opinion based guidelines state that endometrial cancer surveillance (ECS) might be considered for patients with PTEN Hamartoma Tumor Syndrome (PHTS) based on an elevated lifetime risk of endometrial cancer. We aimed to evaluate the yield of ECS by annual transvaginal ultrasound (TVUS) and endometrial biopsy (EMB) in PHTS patients. METHODS PHTS patients who visited our PHTS expert center between August 2012 and September 2020 and opted for annual ECS were included. Data on surveillance visits, diagnostics, reports of abnormal uterine bleeding and pathology results were retrospectively gathered and analyzed. RESULTS Surveillance was initiated in 25 women with a total of 93 gynecological surveillance visits during 76 surveillance years. The median age at first visit was 39 years (range 31-60) with a median follow-up duration of 38 months (range 6-96). Hyperplasia with and without atypia was detected six and three times, respectively, in seven (28%) women. The median age at hyperplasia detection was 40 years (range 31-50). In six asymptomatic women hyperplasia was detected during annual surveillance visits, while in one patient hyperplasia with atypia was detected during an additional visit due to abnormal uterine bleeding. In seven out of nine hyperplasias detected with EMB, TVUS beforehand showed no abnormalities. No (interval) carcinomas occurred. CONCLUSIONS ECS in women with PHTS enables detection of a substantial number of asymptomatic premalignancies, such as hyperplasia with and without atypia, suggesting that ECS may be beneficial with regard to cancer prevention. The addition of EMB to TVUS likely improves the detection of premalignancies.
Collapse
Affiliation(s)
- Kevin Jj Kwinten
- Department of Obstetrics & Gynecology, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands.
| | - Meggie McM Drissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
| | - Joanne A de Hullu
- Department of Obstetrics & Gynecology, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
| | - Janet R Vos
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Anne M van Altena
- Department of Obstetrics & Gynecology, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
| |
Collapse
|
91
|
Abdel-Megeed RM, Kadry MO. Amelioration of autophagy and inflammatory signaling pathways via α-lipoic acid, burdock and bee pollen versus lipopolysaccharide-induced insulin resistance in murine model. Heliyon 2023; 9:e15692. [PMID: 37139293 PMCID: PMC10149403 DOI: 10.1016/j.heliyon.2023.e15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
Lipopolysaccharide (LPS) has previously been implicated in insulin resistance by generating an innate immune response and activating inflammatory cascades. Many studies have discovered a relationship between high levels of serum LPS and the advancement of diabetic microvascular problems, indicating that LPS may play a role in the control of critical signaling pathways connected to insulin resistance. The current study focused on signaling pathways linked to insulin resistance and explored probable mechanisms of LPS-induced insulin resistance in a murine model. It next looked at the effects of burdock, bee pollen, and -lipoic acid on LPS-induced inflammation and autoimmune defects in rats. LPS intoxication was induced via ip injection for one week in a dose of 10 mg/kg followed by α-lipoic acid, Burdock and bee pollen in an oral treatment for one month. Following that, biochemical and molecular studies were performed. The RNA expression of the regulating genes STAT5A and PTEN was measured. In addition, ATF-4 and CHOP as autophagy biomarkers were also subjected to mRNA quantification. The results demonstrated a considerable improvement in the -lipoic acid, Burdock, and bee pollen treated groups via modifying oxidative stress indicators as well as molecular ones. Furthermore, glucose concentration in serum and α-amylase were also improved upon treatment with the superiority of α-lipoic acid for modulating all estimated parameters. In conclusion: the results declared in the current study suggested that α-lipoic acid could regulate insulin resistance signaling pathways induced by LPS intoxication.
Collapse
|
92
|
Glover RC, Schwardt NH, Leano SKE, Sanchez ME, Thomason MK, Olive AJ, Reniere ML. A genome-wide screen in macrophages identifies PTEN as required for myeloid restriction of Listeria monocytogenes infection. PLoS Pathog 2023; 19:e1011058. [PMID: 37216395 PMCID: PMC10237667 DOI: 10.1371/journal.ppat.1011058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/02/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Listeria monocytogenes (Lm) is an intracellular foodborne pathogen which causes the severe disease listeriosis in immunocompromised individuals. Macrophages play a dual role during Lm infection by both promoting dissemination of Lm from the gastrointestinal tract and limiting bacterial growth upon immune activation. Despite the relevance of macrophages to Lm infection, the mechanisms underlying phagocytosis of Lm by macrophages are not well understood. To identify host factors important for Lm infection of macrophages, we performed an unbiased CRISPR/Cas9 screen which revealed pathways that are specific to phagocytosis of Lm and those that are required for internalization of bacteria generally. Specifically, we discovered the tumor suppressor PTEN promotes macrophage phagocytosis of Lm and L. ivanovii, but not other Gram-positive bacteria. Additionally, we found that PTEN enhances phagocytosis of Lm via its lipid phosphatase activity by promoting adherence to macrophages. Using conditional knockout mice lacking Pten in myeloid cells, we show that PTEN-dependent phagocytosis is important for host protection during oral Lm infection. Overall, this study provides a comprehensive identification of macrophage factors involved in regulating Lm uptake and characterizes the function of one factor, PTEN, during Lm infection in vitro and in vivo. Importantly, these results demonstrate a role for opsonin-independent phagocytosis in Lm pathogenesis and suggest that macrophages play a primarily protective role during foodborne listeriosis.
Collapse
Affiliation(s)
- Rochelle C. Glover
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nicole H. Schwardt
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Shania-Kate E. Leano
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Madison E. Sanchez
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Maureen K. Thomason
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Andrew J. Olive
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Michelle L. Reniere
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
93
|
Cope BM, Traweek RS, Lazcano R, Keung EZ, Lazar AJ, Roland CL, Nassif EF. Targeting the Molecular and Immunologic Features of Leiomyosarcoma. Cancers (Basel) 2023; 15:2099. [PMID: 37046760 PMCID: PMC10093078 DOI: 10.3390/cancers15072099] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Leiomyosarcoma (LMS) is a rare, aggressive mesenchymal tumor with smooth muscle differentiation. LMS is one of the most common histologic subtypes of soft tissue sarcoma; it most frequently occurs in the extremities, retroperitoneum, or uterus. LMS often demonstrates aggressive tumor biology, with a higher risk of developing distant metastatic disease than most sarcoma histologic types. The prognosis is poor, particularly in patients with uterine disease, and there is a need for the development of more effective therapies. Genetically, LMS is karyotypically complex and characterized by a low tumor mutational burden, with frequent alterations in TP53, RB1, PTEN, and DNA damage response pathways that may contribute to resistance against immune-checkpoint blockade monotherapy. The LMS immune microenvironment is highly infiltrated with tumor-associated macrophages and tumor-infiltrating lymphocytes, which may represent promising biomarkers. This review provides an overview of the clinical and pathologic behavior of both soft tissue and uterine LMS and summarizes the genomic and immune characteristics of these tumors and how they may provide opportunities for the development of biomarker-based immune therapies.
Collapse
Affiliation(s)
- Brandon M. Cope
- Department of Surgery, Keesler Medical Center, Biloxi, MS 39534, USA
| | - Raymond S. Traweek
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rossana Lazcano
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emily Z. Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexander J. Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christina L. Roland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elise F. Nassif
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
94
|
Miyashita A, Kobayashi M, Yokota T, Zochodne DW. Diabetic Polyneuropathy: New Strategies to Target Sensory Neurons in Dorsal Root Ganglia. Int J Mol Sci 2023; 24:ijms24065977. [PMID: 36983051 PMCID: PMC10051459 DOI: 10.3390/ijms24065977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
Diabetic polyneuropathy (DPN) is the most common type of diabetic neuropathy, rendering a slowly progressive, symmetrical, and length-dependent dying-back axonopathy with preferential sensory involvement. Although the pathogenesis of DPN is complex, this review emphasizes the concept that hyperglycemia and metabolic stressors directly target sensory neurons in the dorsal root ganglia (DRG), leading to distal axonal degeneration. In this context, we discuss the role for DRG-targeting gene delivery, specifically oligonucleotide therapeutics for DPN. Molecules including insulin, GLP-1, PTEN, HSP27, RAGE, CWC22, and DUSP1 that impact neurotrophic signal transduction (for example, phosphatidylinositol-3 kinase/phosphorylated protein kinase B [PI3/pAkt] signaling) and other cellular networks may promote regeneration. Regenerative strategies may be essential in maintaining axon integrity during ongoing degeneration in diabetes mellitus (DM). We discuss specific new findings that relate to sensory neuron function in DM associated with abnormal dynamics of nuclear bodies such as Cajal bodies and nuclear speckles in which mRNA transcription and post-transcriptional processing occur. Manipulating noncoding RNAs such as microRNA and long-noncoding RNA (specifically MALAT1) that regulate gene expression through post-transcriptional modification are interesting avenues to consider in supporting neurons during DM. Finally, we present therapeutic possibilities around the use of a novel DNA/RNA heteroduplex oligonucleotide that provides more efficient gene knockdown in DRG than the single-stranded antisense oligonucleotide.
Collapse
Affiliation(s)
- Akiko Miyashita
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masaki Kobayashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Department of Neurology, Nissan Tamagawa Hospital, Tokyo 158-0095, Japan
| | - Takanori Yokota
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Douglas W. Zochodne
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, The Neuroscience and Mental Health Institute and The Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: ; Tel.: +1-780-248-1928; Fax: +1-780-248-1807
| |
Collapse
|
95
|
Ghosh G, Misra S, Ray R, Chowdhury SG, Karmakar P. Phospho PTEN mediated dephosphorylation of mitotic kinase PLK1 and Aurora Kinase A prevents aneuploidy and preserves genomic stability. Med Oncol 2023; 40:119. [PMID: 36930246 DOI: 10.1007/s12032-023-01985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
PTEN, dual phosphatase tumor suppressor protein, is found to be frequently mutated in various cancers. Post-translational modification of PTEN is important for its sub-cellular localization and catalytic functions. But how these modifications affect cytological damage and aneuploidy is not studied in detail. We focus on the role of phosphatase activity along with C-terminal phosphorylation of PTEN in perspective of cytological damage like micronucleus, nuclear bud, and nuclear bridge formation. Our data suggest that wild-type PTEN, but not phospho-mutant PTEN significantly reduces cytological damage in PTEN null PC3 cells. In case of phosphatase-dead PTEN, cytological damage markers are increased during 24 h recovery after DNA damage. When we use phosphorylation and phosphatase-dead dual mutant PTEN, the extent of different cytological DNA damage parameters are similar to phosphatase-dead PTEN. We also find that both of those activities are essential for maintaining chromosome numbers. PTEN null cells exhibit significantly aberrant γ-tubulin pole formation during metaphase. Interestingly, we observed that p-PTEN localized to spindle poles along with PLK1 and Aurora Kinase A. Further depletion of phosphorylation and phosphatase activity of PTEN increases the expression of p-Aurora Kinase A (T288) and p-PLK1 (T210), compared to cells expressing wild-type PTEN. Again, wild-type PTEN but not phosphorylation-dead mutant is able to physically interact with PLK1 and Aurora Kinase A. Thus, our study suggests that the phosphorylation-dependent interaction of PTEN with PLK1 and Aurora Kinase A causes dephosphorylation of those mitotic kinases and by lowering their hyperphosphorylation status, PTEN prevents aberrant chromosome segregation in metaphase.
Collapse
Affiliation(s)
- Ginia Ghosh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Sandip Misra
- Department of Microbiology, Bidhannagar College, Salt Lake, Kolkata, West Bengal, India
| | - Rachayeeta Ray
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Sougata Ghosh Chowdhury
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India.
| |
Collapse
|
96
|
Zhang J, Zhou N, Deng H, Chen X, Chen Q, Wang Q, Sun L, Wen Y, Cao X, Luo Z, Zhang J, Zhu W, Guo L. Prognostic value of circulating tumor DNA using target next-generation sequencing in extensive-stage small-cell lung cancer. Lung Cancer 2023; 178:11-19. [PMID: 36758321 DOI: 10.1016/j.lungcan.2023.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chemotherapy remains the mainstay of treatment for small-cell lung cancer (SCLC). Liquid biopsies provide a convenient and non-invasive detection method for monitoring disease progression in patients with SCLC. METHODS We performed next-generation sequencing of 159 plasma samples from 69 patients with extensive-stage (ES)-SCLC. Circulating tumor (ct)DNA levels were quantified in haploid genome equivalents per mL (hGE/mL). MuTect2 was used to detect single nucleotide variants and short insertions/deletions. The "enrichKEGG" function in the "clusterProfiler" R package was used to enrich the mutated genes that only appeared during disease progression. RESULTS In our cohort, 66 of 69 (95.7%) plasma samples at the time of diagnosis had detectable somatic mutations; TP53 (89%) and RB1(56%) were the most frequent mutations, as well as copy number variations in some common SCLC-related genes such as RB1. Combination ctDNA and tissue testing improved the overall detection rate of actionable mutations from 19.4% to 26.9% compared with that of tissue detection alone. In addition, ctDNA levels changed dynamically during the course of treatment and were significantly associated with decreased progression-free survival. Notably, actionable mutations were detected at the time of diagnosis and during disease progression. CONCLUSIONS Our study revealed a dynamic somatic mutation profile through continuous ctDNA detection and confirmed that ctDNA levels can reflect tumor burden and predict PFS in patients with extensive stage-SCLC. Furthermore, we demonstrated that plasma ctDNA assays can provide real-time information on somatic mutations for potential targeted therapies for SCLC.
Collapse
Affiliation(s)
- Jiexia Zhang
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, Department of Respiration, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningning Zhou
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Huojin Deng
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qunqing Chen
- Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiongyao Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Sun
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Wen
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolong Cao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqiang Luo
- Department of Thoracic Surgery, Maoming People's Hospital, Maoming, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
97
|
Brayford S, Duly A, Teo WS, Dwarte T, Gonzales-Aloy E, Ma Z, McVeigh L, Failes TW, Arndt GM, McCarroll JA, Kavallaris M. βIII-tubulin suppression enhances the activity of Amuvatinib to inhibit cell proliferation in c-Met positive non-small cell lung cancer cells. Cancer Med 2023; 12:4455-4471. [PMID: 35946957 PMCID: PMC9972117 DOI: 10.1002/cam4.5128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/07/2022] Open
Abstract
Non-Small Cell Lung Carcinoma (NSCLC) remains a leading cause of cancer death. Resistance to therapy is a significant problem, highlighting the need to find new ways of sensitising tumour cells to therapeutic agents. βIII-tubulin is associated with aggressive tumours and chemotherapy resistance in a range of cancers including NSCLC. βIII-tubulin expression has been shown to impact kinase signalling in NSCLC cells. Here, we sought to exploit this interaction by identifying co-activity between βIII-tubulin suppression and small-molecule kinase inhibitors. To achieve this, a forced-genetics approach combined with a high-throughput drug screen was used. We show that activity of the multi-kinase inhibitor Amuvatinib (MP-470) is enhanced by βIII-tubulin suppression in independent NSCLC cell lines. We also show that this compound significantly inhibits cell proliferation among βIII-tubulin knockdown cells expressing the receptor tyrosine kinase c-Met. Together, our results highlight that βIII-tubulin suppression combined with targeting specific receptor tyrosine kinases may represent a novel therapeutic approach for otherwise difficult-to-treat lung carcinomas.
Collapse
Affiliation(s)
- Simon Brayford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Alastair Duly
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Wee Siang Teo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Tanya Dwarte
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Estrella Gonzales-Aloy
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Zerong Ma
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Laura McVeigh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Timothy W Failes
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Greg M Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia.,ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Joshua A McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| |
Collapse
|
98
|
Langdon CG. Nuclear PTEN's Functions in Suppressing Tumorigenesis: Implications for Rare Cancers. Biomolecules 2023; 13:biom13020259. [PMID: 36830628 PMCID: PMC9953540 DOI: 10.3390/biom13020259] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) encodes a tumor-suppressive phosphatase with both lipid and protein phosphatase activity. The tumor-suppressive functions of PTEN are lost through a variety of mechanisms across a wide spectrum of human malignancies, including several rare cancers that affect pediatric and adult populations. Originally discovered and characterized as a negative regulator of the cytoplasmic, pro-oncogenic phosphoinositide-3-kinase (PI3K) pathway, PTEN is also localized to the nucleus where it can exert tumor-suppressive functions in a PI3K pathway-independent manner. Cancers can usurp the tumor-suppressive functions of PTEN to promote oncogenesis by disrupting homeostatic subcellular PTEN localization. The objective of this review is to describe the changes seen in PTEN subcellular localization during tumorigenesis, how PTEN enters the nucleus, and the spectrum of impacts and consequences arising from disrupted PTEN nuclear localization on tumor promotion. This review will highlight the immediate need in understanding not only the cytoplasmic but also the nuclear functions of PTEN to gain more complete insights into how important PTEN is in preventing human cancers.
Collapse
Affiliation(s)
- Casey G. Langdon
- Department of Pediatrics, Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; ; Tel.: +1-(843)-792-9289
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
99
|
Li H, Gigi L, Zhao D. CHD1, a multifaceted epigenetic remodeler in prostate cancer. Front Oncol 2023; 13:1123362. [PMID: 36776288 PMCID: PMC9909554 DOI: 10.3389/fonc.2023.1123362] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Chromatin remodeling proteins contribute to DNA replication, transcription, repair, and recombination. The chromodomain helicase DNA-binding (CHD) family of remodelers plays crucial roles in embryonic development, hematopoiesis, and neurogenesis. As the founding member, CHD1 is capable of assembling nucleosomes, remodeling chromatin structure, and regulating gene transcription. Dysregulation of CHD1 at genetic, epigenetic, and post-translational levels is common in malignancies and other human diseases. Through interacting with different genetic alterations, CHD1 possesses the capabilities to exert oncogenic or tumor-suppressive functions in context-dependent manners. In this Review, we summarize the biochemical properties and dysregulation of CHD1 in cancer cells, and then discuss CHD1's roles in different contexts of prostate cancer, with an emphasis on its crosstalk with diverse signaling pathways. Furthermore, we highlight the potential therapeutic strategies for cancers with dysregulated CHD1. At last, we discuss current research gaps in understanding CHD1's biological functions and molecular basis during disease progression, as well as the modeling systems for biology study and therapeutic development.
Collapse
Affiliation(s)
- Haoyan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Loraine Gigi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Texas A&M School of Public Health, Texas A&M University, College Station, TX, United States
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
100
|
Cummings S, Alfonso A, Hughes E, Kucera M, Mabey B, Singh N, Eng C. Cancer Risk Associated With PTEN Pathogenic Variants Identified Using Multigene Hereditary Cancer Panel Testing. JCO Precis Oncol 2023; 7:e2200415. [PMID: 36634299 PMCID: PMC9928870 DOI: 10.1200/po.22.00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE PTEN-associated clinical syndromes such as Cowden syndrome (CS) increase cancer risk and have historically been diagnosed based upon phenotypic criteria. Because not all patients clinically diagnosed with CS have PTEN pathogenic variants (PVs), and not all patients with PTEN PVs have been clinically diagnosed with CS, the cancer risk conferred by PTEN PVs calculated from cohorts of patients with clinical diagnoses of CS/CS-like phenotypes may be inaccurate. METHODS We assessed a consecutive cohort of 727,091 individuals tested clinically for hereditary cancer risk, with a multigene panel between September 2013 and February 2022. Multivariable logistic regression models accounting for personal and family cancer history, age, sex, and ancestry were used to quantify disease risks associated with PTEN PVs. RESULTS PTEN PVs were detected in 0.027% (193/727,091) of the study population, and were associated with a high risk of female breast cancer (odds ratio [OR], 7.88; 95% CI, 5.57 to 11.16; P = 2.3 × 10-31), endometrial cancer (OR, 13.51; 95% CI, 8.77 to 20.83; P = 4.2 × 10-32), thyroid cancer (OR, 4.88; 95% CI, 2.64 to 9.01; P = 4.0 × 10-7), and colon polyposis (OR, 31.60; CI, 15.60 to 64.02; P = 9.0 × 10-22). We observed modest evidence suggesting that PTEN PVs may be associated with ovarian cancer risk (OR, 3.77; 95% CI, 1.71 to 8.32; P = 9.9 × 10-4). Among patients with similar personal/family history and ancestry, every 5-year increase in age of diagnosis decreased the likelihood of detecting a PTEN PV by roughly 60%. CONCLUSION We demonstrate that PTEN PVs are associated with significantly increased risk for a range of cancers. Together with the observation that PTEN PV carriers had earlier disease onset relative to otherwise comparable noncarriers, our results may guide screening protocols, inform risk-management strategies, and warrant enhanced surveillance approaches that improve clinical outcomes for PTEN PV carriers, regardless of their clinical presentation.
Collapse
Affiliation(s)
- Shelly Cummings
- Myriad Genetics Inc, Salt Lake City, UT,Shelly Cummings, MS, 320 Wakara Way, Salt Lake City, UT 84108; e-mail:
| | | | | | | | | | | | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care, Cleveland, OH,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH,Department of Genetics and Genome Sciences, and CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| |
Collapse
|