51
|
Roser C, Tóth C, Renner M, Herpel E, Schirmacher P. Expression of apoptosis repressor with caspase recruitment domain (ARC) in familial adenomatous polyposis (FAP) adenomas and its correlation with DNA mismatch repair proteins, p53, Bcl-2, COX-2 and beta-catenin. Cell Commun Signal 2021; 19:15. [PMID: 33579312 PMCID: PMC7879509 DOI: 10.1186/s12964-020-00702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/26/2020] [Indexed: 11/25/2022] Open
Abstract
Background Colorectal familial adenomatous polyposis (FAP) adenomas exhibit a uniform pathogenetic basis caused by a germline mutation in the adenomatous polyposis gene (APC), but the molecular changes leading to their development are incompletely understood. However, dysregulated apoptosis is known to substantially affect the development of colonic adenomas. One of the key regulatory proteins involved in apoptosis is apoptosis repressor with caspase recruitment domain (ARC). Methods The expression of nuclear and cytoplasmic ARC in 212 adenomas from 80 patients was analyzed by immunohistochemistry. We also compared expression levels of ARC with the expression levels of p53, Bcl-2, COX-2, and MMR proteins. Statistical analyses were performed by Spearman’s rank correlation and linear regression test. Results ARC was overexpressed in the nuclei and cytoplasm of most FAP adenomas investigated. Cytoplasmic ARC staining was moderately stronger (score 2) in 49.1% (n = 104/212) and substantially stronger (score 3) in 32.5% (n = 69/212) of adenomas compared to non-tumorous colorectal mucosa. In 18.4% (n = 39/212) of adenomas, cytoplasmic ARC staining was equivalent to that in non-tumorous mucosa. Nuclear expression of ARC in over 75% of cells was present in 30.7% (n = 65/212) of investigated adenomas, and nuclear expression in 10–75% of cells was detected in 62.7% (n = 133/212). ARC expression in under 10% of nuclei was found in 6.6% (n = 14/212) of adenomas. The correlation between nuclear ARC expression and cytoplasmic ARC expression was highly significant (p = 0.001). Moreover, nuclear ARC expression correlated positively with overexpression of Bcl-2, COX-2 p53 and β-catenin. Cytoplasmic ARC also correlated with overexpression of Bcl-2. Sporadic MMR deficiency was detected in very few FAP adenomas and showed no correlation with nuclear or cytoplasmic ARC. Conclusions Our results demonstrated that both cytoplasmic and nuclear ARC are overexpressed in FAP adenomas, thus in a homogenous collective. The highly significant correlation between nuclear ARC and nuclear β-catenin suggested that ARC might be regulated by β-catenin in FAP adenomas. Because of its further correlations with p53, Bcl-2, and COX-2, nuclear ARC might play a substantial role not only in carcinomas but also in precursor lesions. Video Abstract
Collapse
Affiliation(s)
- Christoph Roser
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany. .,Department of Orthodontics and Dentofacial Orthopaedics, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Csaba Tóth
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Trier MVZ for Histology, Cytology and Molecular Diagnostics, Max-Planck-Straße 5, 54296, Trier, Germany
| | - Marcus Renner
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Tissue Bank of the National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| |
Collapse
|
52
|
Lee Y, Ma EL, Patel M, Kim G, Howe C, Pothoulakis C, Kim YS, Im E, Rhee SH. Corticotropin-Releasing Hormone Receptor Alters the Tumor Development and Growth in Apcmin/+ Mice and in a Chemically-Induced Model of Colon Cancer. Int J Mol Sci 2021; 22:ijms22031043. [PMID: 33494263 PMCID: PMC7864487 DOI: 10.3390/ijms22031043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
The neuroendocrine circuit of the corticotropin-releasing hormone (CRH) family peptides, via their cognate receptors CRHR1 and CRHR2, copes with psychological stress. However, peripheral effects of the CRH system in colon cancer remains elusive. Thus, we investigate the role of CRHR1 and CRHR2 in colon cancer. Human colon cancer biopsies were used to measure the mRNA levels of the CRH family by quantitative real-time PCR. Two animal models of colon cancer were used: Apcmin/+ mice and azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice. The mRNA levels of CRHR2 and UCN III are reduced in human colon cancer tissues compared to those of normal tissues. Crhr1 deletion suppresses the tumor development and growth in Apcmin/+ mice, while Crhr2 deficiency exacerbates the tumorigenicity. Crhr1 deficiency not only inhibits the expression of tumor-promoting cyclooxygenase 2, but also upregulates tumor-suppressing phospholipase A2 in Apcmin/+ mice; however, Crhr2 deficiency does not change these expressions. In the AOM/DSS model, Crhr2 deficiency worsens the tumorigenesis. In conclusion, Crhr1 deficiency confers tumor-suppressing effects in Apcmin/+ mice, but Crhr2 deficiency worsens the tumorigenicity in both Apcmin/+ and AOM/DSS-treated mice. Therefore, pharmacological inhibitors of CRHR1 or activators of CRHR2 could be of significance as anti-colon cancer drugs.
Collapse
Affiliation(s)
- Yunna Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea;
| | - Elise L. Ma
- Inflammatory Bowel Disease Center, and Center for Systems Biomedicine, Vatcher and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; (E.L.M.); (C.P.)
| | - Marisa Patel
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (M.P.); (G.K.); (C.H.)
| | - Gayoung Kim
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (M.P.); (G.K.); (C.H.)
| | - Cody Howe
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (M.P.); (G.K.); (C.H.)
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, and Center for Systems Biomedicine, Vatcher and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; (E.L.M.); (C.P.)
| | - Yong Sung Kim
- Digestive Disease Research Institute and GutnFood Healthcare Inc., School of Medicine, Wonkwang University, Iksan 54538, Korea;
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan 46241, Korea;
- Correspondence: (E.I.); (S.H.R.); Tel.: +82-51-510-2812 (E.I.); +1-248-370-4162 (S.H.R.)
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (M.P.); (G.K.); (C.H.)
- Correspondence: (E.I.); (S.H.R.); Tel.: +82-51-510-2812 (E.I.); +1-248-370-4162 (S.H.R.)
| |
Collapse
|
53
|
Zahedi T, Hosseinzadeh Colagar A, Mahmoodzadeh H. PTGS2 Over-Expression: A Colorectal Carcinoma Initiator not an Invasive Factor. Rep Biochem Mol Biol 2021; 9:442-451. [PMID: 33969138 PMCID: PMC8068447 DOI: 10.52547/rbmb.9.4.442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2) main product is Prostaglandin E2 (PGE2) which cause mitogenesis and inflammation. COX-2 is the product of prostaglandin-endoperoxide synthase 2 (PTGS2) gene expression. COX-2 dysregulation can cause angiogenesis, differentiation, and promotion of cancer and its suppression related to control of the tumor's size, number, and cell shape. This study focused on the association of COX-2 expression with colorectal carcinoma (CRC) among Iranian patients on mRNA level and in the Cancer Genome Atlas Program (TCGA) colon and rectum RNAseq dataset, and its relation with pathological features. METHODS PTGS2 expression was assayed by quantitative-PCR method from 90 tissue samples collected from 45 participants. The control samples come from the non-tumor area of the same patients. The data analyzed based on ΔΔCq. The PTGS2-RNAseq data extracted and analyzed by UCSC Xena browser, and its association assessed the occurrence of CRC and invasive-features. RESULTS PTGS2 showed very significant over-expression in tumor tissues (p< 0.0001) with an N-fold expression of 2.25. But, there was not any significant association between PTGS2 and CRC invasive-pathological features such as Lymphatic, vascular and perineural invasion, the Grades of cancer, and Pathologic-M in both parts of this study. CONCLUSION The increase in PTGS2 is related to the occurrence of CRC among patient samples. But in both part of this study, PTGS2 is not an invasive factor, and it does not affect the cell differentiation of tumors and metastasis. Based on the high N-fold for patient samples, it can be a strong candidate as a CRC initiator biomarker.
Collapse
Affiliation(s)
- Tahereh Zahedi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran.
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran.
| | - Habibollah Mahmoodzadeh
- Department of Surgical Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
54
|
Guo DA, Wei WL, Wu SF, Li ZW, Li HJ, Qu H, Yao CL, Zhang JQ, Li JY, Zhang GL, Wu WY. Exploration of bioactive constituents and immunoregulatory mechanisms of a hanshi-yufei formulation for treating COVID-19. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_45_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
55
|
Kemp Bohan PM, Mankaney G, Vreeland TJ, Chick RC, Hale DF, Cindass JL, Hickerson AT, Ensley DC, Sohn V, Clifton GT, Peoples GE, Burke CA. Chemoprevention in familial adenomatous polyposis: past, present and future. Fam Cancer 2021; 20:23-33. [PMID: 32507936 PMCID: PMC7276278 DOI: 10.1007/s10689-020-00189-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/18/2020] [Indexed: 01/05/2023]
Abstract
Familial adenomatous polyposis (FAP) is a hereditary colorectal cancer syndrome characterized by colorectal adenomas and a near 100% lifetime risk of colorectal cancer (CRC). Prophylactic colectomy, usually by age 40, is the gold-standard therapy to mitigate this risk. However, colectomy is associated with morbidity and fails to prevent extra-colonic disease manifestations, including gastric polyposis, duodenal polyposis and cancer, thyroid cancer, and desmoid disease. Substantial research has investigated chemoprevention medications in an aim to prevent disease progression, postponing the need for colectomy and temporizing the development of extracolonic disease. An ideal chemoprevention agent should have a biologically plausible mechanism of action, be safe and easily tolerated over a prolonged treatment period, and produce a durable and clinically meaningful effect. To date, no chemoprevention agent tested has fulfilled these criteria. New agents targeting novel pathways in FAP are needed. Substantial preclinical literature exists linking the molecular target of rapamycin (mTOR) pathway to FAP. A single case report of rapamycin, an mTOR inhibitor, used as chemoprevention in FAP patients exists, but no formal clinical studies have been conducted. Here, we review the prior literature on chemoprevention in FAP, discuss the rationale for rapamycin in FAP, and outline a proposed clinical trial testing rapamycin as a chemoprevention agent in patients with FAP.
Collapse
Affiliation(s)
- Phillip M Kemp Bohan
- Department of Surgery, Brooke Army Medical Center, 3551 Roger Brooke Dr., Ft Sam Houston, TX, 78234, USA.
| | - Gautam Mankaney
- Department of Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy J Vreeland
- Department of Surgery, Brooke Army Medical Center, 3551 Roger Brooke Dr., Ft Sam Houston, TX, 78234, USA
| | - Robert C Chick
- Department of Surgery, Brooke Army Medical Center, 3551 Roger Brooke Dr., Ft Sam Houston, TX, 78234, USA
| | - Diane F Hale
- Department of Surgery, Brooke Army Medical Center, 3551 Roger Brooke Dr., Ft Sam Houston, TX, 78234, USA
| | - Jessica L Cindass
- Department of Surgery, Brooke Army Medical Center, 3551 Roger Brooke Dr., Ft Sam Houston, TX, 78234, USA
| | - Annelies T Hickerson
- Department of Surgery, Brooke Army Medical Center, 3551 Roger Brooke Dr., Ft Sam Houston, TX, 78234, USA
| | - Daniel C Ensley
- Department of Urology, Brooke Army Medical Center, Ft. Sam Houston, TX, USA
| | - Vance Sohn
- Department of Surgery, Madigan Army Medical Center, Joint Base Lewis-McChord, Tacoma, WA, USA
| | - G Travis Clifton
- Department of Surgery, Brooke Army Medical Center, 3551 Roger Brooke Dr., Ft Sam Houston, TX, 78234, USA
| | | | - Carol A Burke
- Department of Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
56
|
Guo DA, Wei WL, Wu SF, Li ZW, Li HJ, Qu H, Yao CL, Zhang JQ, Li JY, Zhang GL, Wu WY. Exploration of bioactive constituents and immunoregulatory mechanisms of a Hanshi-Yufei formulation for treating COVID-19. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/2311-8571.321975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
57
|
Muzzi C, Watanabe N, Twomey E, Meers GK, Reichardt HM, Bohnenberger H, Reichardt SD. The Glucocorticoid Receptor in Intestinal Epithelial Cells Alleviates Colitis and Associated Colorectal Cancer in Mice. Cell Mol Gastroenterol Hepatol 2020; 11:1505-1518. [PMID: 33316454 PMCID: PMC8039723 DOI: 10.1016/j.jcmgh.2020.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease is commonly treated by administration of glucocorticoids. While the importance of intestinal epithelial cells for the pathogenesis of this disorder is widely accepted, their role as target cells for glucocorticoids has not been explored. To address this issue, we induced colonic inflammation in GRvillin mice, which carry an inducible deletion of the glucocorticoid receptor in intestinal epithelial cells. METHODS Colitis and colitis-associated colorectal cancer were induced by administration of dextran sulfate sodium and azoxymethane in mice. Clinical parameters, epithelial permeability and tumor development were monitored during disease progression. Colon tissue, lamina propria cells and intestinal epithelial cells were examined by gene expression analyses, flow cytometry, histopathology, and immunohistochemistry. RESULTS The absence of the intestinal epithelial glucocorticoid receptor aggravated clinical symptoms and tissue damage, and compromised epithelial barrier integrity during colitis. Gene expression of chemokines, pattern recognition receptors and molecules controlling epithelial permeability was dysregulated in intestinal epithelial cells of GRvillin mice, leading to a reduced recruitment and a hyperactivation of leukocytes in the lamina propria of the colon. Importantly, the exaggerated inflammatory response in GRvillin mice also enhanced associated tumorigenesis, resulting in a higher number and larger size of tumors in the colon. CONCLUSIONS Our results reveal an important role of intestinal epithelial cells as targets of glucocorticoid action in inflammatory bowel disease and suggest that the efficacy with which colitis is kept at bay directly affects the progression of colorectal cancer.
Collapse
Affiliation(s)
- Chiara Muzzi
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Norika Watanabe
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Eric Twomey
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Garrit K. Meers
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Sybille D. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany,Correspondence Address correspondence to: Sybille Reichardt, PhD, Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Humboldtallee 34, 37073 Göttingen, Germany. fax: +49 551-395843.
| |
Collapse
|
58
|
Pyo IS, Yun S, Yoon YE, Choi JW, Lee SJ. Mechanisms of Aging and the Preventive Effects of Resveratrol on Age-Related Diseases. Molecules 2020; 25:molecules25204649. [PMID: 33053864 PMCID: PMC7587336 DOI: 10.3390/molecules25204649] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
Aging gradually decreases cellular biological functions and increases the risk of age-related diseases. Cancer, type 2 diabetes mellitus, cardiovascular disease, and neurological disorders are commonly classified as age-related diseases that can affect the lifespan and health of individuals. Aging is a complicated and sophisticated biological process involving damage to biochemical macromolecules including DNA, proteins, and cellular organelles such as mitochondria. Aging causes multiple alterations in biological processes including energy metabolism and nutrient sensing, thus reducing cell proliferation and causing cellular senescence. Among the polyphenolic phytochemicals, resveratrol is believed to reduce the negative effects of the aging process through its multiple biological activities. Resveratrol increases the lifespan of several model organisms by regulating oxidative stress, energy metabolism, nutrient sensing, and epigenetics, primarily by activating sirtuin 1. This review summarizes the most important biological mechanisms of aging, and the ability of resveratrol to prevent age-related diseases.
Collapse
|
59
|
Bae S, Kim MK, Kim HS, Moon YA. Arachidonic acid induces ER stress and apoptosis in HT-29 human colon cancer cells. Anim Cells Syst (Seoul) 2020; 24:260-266. [PMID: 33209199 PMCID: PMC7646553 DOI: 10.1080/19768354.2020.1813805] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) have important functions in biological systems. The beneficial effects of dietary PUFAs against inflammatory diseases, cardiovascular diseases, and metabolic disorders have been shown. Studies using cancer cells have presented the anti-tumorigenic effects of docosahexaenoic acid (DHA), an n-3 PUFA, while arachidonic acid (AA), an n-6 PUFA, has been shown to elicit both pro- and anti-tumorigenic effects. In the current study, the anti-tumorigenic effects of AA were evaluated in HT-29 human colon cancer cells. Upon adding AA in the media, more than 90% of HT-29 cells died, while the MCF7 cells showed good proliferation. AA inhibited the expression of SREBP-1 and its target genes that encode enzymes involved in fatty acid synthesis. As HT-29 cells contained lower basal levels of fatty acid synthase, a target gene of SREBP-1, than that in MCF7 cells, the inhibitory effects of AA on the fatty acid synthase levels in HT-29 cells were much stronger than those in MCF-7 cells. When oleic acid (OA), a monounsaturated fatty acid that can be synthesized endogenously, was added along with AA, the HT-29 cells were able to proliferate. These results suggested that HT-29 cells could not synthesize enough fatty acids for cell division in the presence of AA because of the suppression of lipogenesis. HT-29 cells may incorporate more AA into their membrane phospholipids to proliferate, which resulted in ER stress, thereby inducing apoptosis. AA could be used as an anti-tumorigenic agent against cancer cells in which the basal fatty acid synthase levels are low.
Collapse
Affiliation(s)
- Sijeong Bae
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Min-Kyoung Kim
- Department of New Drug Development, Inha University College of Medicine, Incheon, South Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| |
Collapse
|
60
|
Cekanova M, Pandey S, Olin S, Ryan P, Stokes JE, Hecht S, Martin-Jimenez T, Uddin MJ, Marnett LJ. Pharmacokinetic characterization of fluorocoxib D, a cyclooxygenase-2-targeted optical imaging agent for detection of cancer. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200044R. [PMID: 32860356 PMCID: PMC7456637 DOI: 10.1117/1.jbo.25.8.086005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Fluorocoxib D, N-[(rhodamin-X-yl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide, is a water-soluble optical imaging agent to detect cyclooxygenase-2 (COX-2)-expressing cancer cells. AIM We evaluated the pharmacokinetic and safety properties of fluorocoxib D and its ability to detect cancer cells in vitro and in vivo. APPROACH Pharmacokinetic parameters of fluorocoxib D were assessed from plasma collected at designated time points after intravenous administration of 1 mg / kg fluorocoxib D in six research dogs using a high-performance liquid chromatography analysis. Safety of fluorocoxib D was assessed for 3 days after its administration using physical assessment, complete blood count, serum chemistry profile, and complete urinalysis in six research dogs. The ability of fluorocoxib D to detect COX-2-expressing cancer cells was performed using human 5637 cells in vitro and during rhinoscopy evaluation of specific fluorocoxib D uptake by canine cancer cells in vivo. RESULTS No evidence of toxicity and no clinically relevant adverse events were noted in dogs. Peak concentration of fluorocoxib D (114.8 ± 50.5 ng / ml) was detected in plasma collected at 0.5 h after its administration. Pretreatment of celecoxib blocked specific uptake of fluorocoxib D in COX-2-expressing human 5637 cancer cells. Fluorocoxib D uptake was detected in histology-confirmed COX-2-expressing head and neck cancer during rhinoscopy in a client-owned dog in vivo. Specific tumor-to-normal tissue ratio of detected fluorocoxib D signal was in an average of 3.7 ± 0.9 using Image J analysis. CONCLUSIONS Our results suggest that fluorocoxib D is a safe optical imaging agent used for detection of COX-2-expressing cancers and their margins during image-guided minimally invasive biopsy and surgical procedures.
Collapse
Affiliation(s)
- Maria Cekanova
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
- The University of Tennessee, UT-ORNL Graduate School of Genome, Science and Technology, Knoxville, Tennessee, United States
| | - Sony Pandey
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Shelly Olin
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Phillip Ryan
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Jennifer E. Stokes
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Silke Hecht
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Tomas Martin-Jimenez
- The University of Tennessee, College of Veterinary Medicine, Department of Biomedical and Diagnostic Sciences, Knoxville, Tennessee, United States
| | - Md. Jashim Uddin
- Vanderbilt University School of Medicine, Vanderbilt Institute of Chemical Biology, Center for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Nashville, Tennessee, United States
| | - Lawrence J. Marnett
- Vanderbilt University School of Medicine, Vanderbilt Institute of Chemical Biology, Center for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Nashville, Tennessee, United States
| |
Collapse
|
61
|
Ungaro F, D’Alessio S, Danese S. The Role of Pro-Resolving Lipid Mediators in Colorectal Cancer-Associated Inflammation: Implications for Therapeutic Strategies. Cancers (Basel) 2020; 12:cancers12082060. [PMID: 32722560 PMCID: PMC7463689 DOI: 10.3390/cancers12082060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a recognized hallmark of cancer that contributes to the development and progression of colorectal cancer (CRC). Anti-inflammatory drugs currently used for the treatment of CRC show many adverse side effects that prompted researchers to propose the polyunsaturated fatty acids-derived specialized pro-resolving mediators (SPMs) as promoters of resolution of cancer-associated inflammation. SPMs were found to inhibit the CRC-associated pro-inflammatory milieu via specific G-coupled protein receptors, although clinical data are still lacking. This review aims to summarize the state-of-the-art in this field, ultimately providing insights for the development of innovative anti-CRC therapies that promote the endogenous lipid-mediated resolution of CRC-associated inflammation.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
- Correspondence:
| | - Silvia D’Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
| |
Collapse
|
62
|
Limited Proteolysis of Cyclooxygenase-2 Enhances Cell Proliferation. Int J Mol Sci 2020; 21:ijms21093195. [PMID: 32366045 PMCID: PMC7246915 DOI: 10.3390/ijms21093195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 01/28/2023] Open
Abstract
Accumulating evidence suggests that the cyclooxygenase-2 (COX-2) enzyme has additional catalytic-independent functions. Here we show that COX-2 appears to be cleaved in mouse and human tumors, which led us to hypothesize that COX-2 proteolysis may play a role in cell proliferation. The data presented herein show that a K598R point mutation at the carboxyl-terminus of COX-2 causes the appearance of several COX-2 immunoreactive fragments in nuclear compartments, and significantly enhances cell proliferation. In contrast, insertion of additional mutations at the border of the membrane-binding and catalytic domains of K598R COX-2 blocks fragment formation and prevents the increase in proliferation. Transcriptomic analyses show that K598R COX-2 significantly affects the expression of genes involved in RNA metabolism, and subsequent proteomics suggest that it is associated with proteins that regulate mRNA processing. We observe a similar increase in proliferation by expressing just that catalytic domain of COX-2 (ΔNT- COX-2), which is completely devoid of catalytic activity in the absence of its other domains. Moreover, we show that the ΔNT- COX-2 protein also interacts in the nucleus with β-catenin, a central regulator of gene transcription. Together these data suggest that the cleavage products of COX-2 can affect cell proliferation by mechanisms that are independent of prostaglandin synthesis.
Collapse
|
63
|
Hidalgo-Estévez AM, Stamatakis K, Jiménez-Martínez M, López-Pérez R, Fresno M. Cyclooxygenase 2-Regulated Genes an Alternative Avenue to the Development of New Therapeutic Drugs for Colorectal Cancer. Front Pharmacol 2020; 11:533. [PMID: 32410997 PMCID: PMC7201075 DOI: 10.3389/fphar.2020.00533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and recurrent types of cancer, with high mortality rates. Several clinical trials and meta-analyses have determined that the use of pharmacological inhibitors of cyclooxygenase 2 (COX-2), the enzyme that catalyses the rate-limiting step in the synthesis of prostaglandins (PG) from arachidonic acid, can reduce the incidence of CRC as well as the risk of recurrence of this disease, when used together with commonly used chemotherapeutic agents. These observations suggest that inhibition of COX-2 may be useful in the treatment of CRC, although the current drugs targeting COX-2 are not widely used since they increase the risk of health complications. To overcome this difficulty, a possibility is to identify genes regulated by COX-2 activity that could give an advantage to the cells to form tumors and/or metastasize. The modulation of those genes as effectors of COX-2 may cancel the beneficial effects of COX-2 in tumor transformation and metastasis. A review of the available databases and literature and our own data have identified some interesting molecules induced by prostaglandins or COX-2 that have been also described to play a role in colon cancer, being thus potential pharmacological targets in colon cancer. Among those mPGES-1, DUSP4, and 10, Programmed cell death 4, Trop2, and many from the TGFβ and p53 pathways have been identified as genes upregulated in response to COX-2 overexpression or PGs in colon carcinoma lines and overexpressed in colon tumor tissue. Here, we review the available evidence of the potential roles of those molecules in colon cancer in the context of PG/COX signaling pathways that could be critical mediators of some of the tumor growth and metastasis advantage induced by COX-2. At the end, this may allow defining new therapeutic targets/drugs against CRC that could act specifically against tumor cells and would be effective in the prevention and treatment of CRC, lacking the unwanted side effects of COX-2 pharmacological inhibitors, providing alternative approaches in colon cancer.
Collapse
Affiliation(s)
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Marta Jiménez-Martínez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo López-Pérez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| |
Collapse
|
64
|
Immunological Mechanisms in Inflammation-Associated Colon Carcinogenesis. Int J Mol Sci 2020; 21:ijms21093062. [PMID: 32357539 PMCID: PMC7247693 DOI: 10.3390/ijms21093062] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/08/2023] Open
Abstract
Patients with chronic inflammatory bowel diseases are at an increased risk of developing colitis-associated cancer (CAC). Chronic inflammation positively correlates with tumorigenesis. Similarly, the cumulative rate of incidence of developing CAC increases with prolonged colon inflammation. Immune signaling pathways, such as nuclear factor (NF)-κB, prostaglandin E2 (PGE2)/cyclooxygenase-2 (COX-2), interleukin (IL)-6/signal transducer and activator of transcription 3 (STAT3), and IL-23/T helper 17 cell (Th17), have been shown to promote CAC tumorigenesis. In addition, gut microbiota contributes to the development and progression of CAC. This review summarizes the signaling pathways involved in the pathogenesis following colon inflammation to understand the underlying molecular mechanisms in CAC tumorigenesis.
Collapse
|
65
|
Elliot A, Myllymäki H, Feng Y. Inflammatory Responses during Tumour Initiation: From Zebrafish Transgenic Models of Cancer to Evidence from Mouse and Man. Cells 2020; 9:cells9041018. [PMID: 32325966 PMCID: PMC7226149 DOI: 10.3390/cells9041018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
The zebrafish is now an important model organism for cancer biology studies and provides unique and complementary opportunities in comparison to the mammalian equivalent. The translucency of zebrafish has allowed in vivo live imaging studies of tumour initiation and progression at the cellular level, providing novel insights into our understanding of cancer. Here we summarise the available transgenic zebrafish tumour models and discuss what we have gleaned from them with respect to cancer inflammation. In particular, we focus on the host inflammatory response towards transformed cells during the pre-neoplastic stage of tumour development. We discuss features of tumour-associated macrophages and neutrophils in mammalian models and present evidence that supports the idea that these inflammatory cells promote early stage tumour development and progression. Direct live imaging of tumour initiation in zebrafish models has shown that the intrinsic inflammation induced by pre-neoplastic cells is tumour promoting. Signals mediating leukocyte recruitment to pre-neoplastic cells in zebrafish correspond to the signals that mediate leukocyte recruitment in mammalian tumours. The activation state of macrophages and neutrophils recruited to pre-neoplastic cells in zebrafish appears to be heterogenous, as seen in mammalian models, which provides an opportunity to study the plasticity of innate immune cells during tumour initiation. Although several potential mechanisms are described that might mediate the trophic function of innate immune cells during tumour initiation in zebrafish, there are several unknowns that are yet to be resolved. Rapid advancement of genetic tools and imaging technologies for zebrafish will facilitate research into the mechanisms that modulate leukocyte function during tumour initiation and identify targets for cancer prevention.
Collapse
Affiliation(s)
| | | | - Yi Feng
- Correspondence: ; Tel.: +44-(0)131-242-6685
| |
Collapse
|
66
|
Li T, Hai L, Liu B, Mao W, Liu K, Li Q, Guo Y, Jia Y, Bao H, Cao J. TLR2/4 promotes PGE 2 production to increase tissue damage in Escherichia coli-infected bovine endometrial explants via MyD88/p38 MAPK pathway. Theriogenology 2020; 152:129-138. [PMID: 32408026 DOI: 10.1016/j.theriogenology.2020.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 01/22/2023]
Abstract
Prostaglandin E2 (PGE2), a lipid mediator, is released by several cell types including endometrial cells and plays a central role in bacterial infection of the endometrium during inflammation. PGE2 production accumulated in Escherichia coli (E. coli) -infected bovine endometrial tissue, which increased E. coli-infected endometrial tissue damage. However, the mechanisms of PGE2 accumulation in the E. coli-infected endometrium during inflammation-associated endometrial tissue damage remain unclear. This study was conducted to investigate the role of Toll-like receptors (TLRs) 2 and 4 in increased PGE2 production in E. coli-infected endometrial tissue. E. coli and TLR2/4 agonists significantly induced cyclooxygenase-2 and microsomal prostaglandin E synthase-1 expression and PGE2 synthesis detected by RT-PCR, Western blot, and ELISA in the endometrial tissue. The expression and synthesis were dramatically decreased by TLR4, myeloid differentiation factor88 (MyD88), and p38 mitogen-activated protein kinase (MAPK) inhibitors in E. coli-infected endometrial tissue. These inhibitors also significantly decreased proinflammatory factor (interleukin-6 and tumor necrosis factor-α) and damage-associated molecular pattern (high mobility group box-1 and hyaluronan-binding protein-1) release and tissue damage measured by double-label immunofluorescence in E. coli-infected endometrial explants. Our work provides in vitro evidence that TLR2/4-MyD88/p38 MAPK promotes PGE2 synthesis and E. coli-infected endometrial tissue damage, which may be useful for improving PGE2-based therapies for endometritis.
Collapse
Affiliation(s)
- Tingting Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques of Animal Disease for Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
| | - Lili Hai
- Key Laboratory of Clinical Diagnosis and Treatment Techniques of Animal Disease for Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
| | - Bo Liu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques of Animal Disease for Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
| | - Wei Mao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques of Animal Disease for Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
| | - Kun Liu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques of Animal Disease for Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
| | - Qianru Li
- Key Laboratory of Clinical Diagnosis and Treatment Techniques of Animal Disease for Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
| | - Yuli Guo
- Key Laboratory of Clinical Diagnosis and Treatment Techniques of Animal Disease for Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
| | - Yan Jia
- Key Laboratory of Clinical Diagnosis and Treatment Techniques of Animal Disease for Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
| | - Haixia Bao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques of Animal Disease for Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
| | - Jinshan Cao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques of Animal Disease for Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.
| |
Collapse
|
67
|
Hannan CJ, Lewis D, O'Leary C, Donofrio CA, Evans DG, Roncaroli F, Brough D, King AT, Coope D, Pathmanaban ON. The inflammatory microenvironment in vestibular schwannoma. Neurooncol Adv 2020; 2:vdaa023. [PMID: 32642684 PMCID: PMC7212860 DOI: 10.1093/noajnl/vdaa023] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vestibular schwannomas are tumors arising from the vestibulocochlear nerve at the cerebellopontine angle. Their proximity to eloquent brainstem structures means that the pathology itself and the treatment thereof can be associated with significant morbidity. The vast majority of these tumors are sporadic, with the remainder arising as a result of the genetic syndrome Neurofibromatosis Type 2 or, more rarely, LZTR1-related schwannomatosis. The natural history of these tumors is extremely variable, with some tumors not displaying any evidence of growth, others demonstrating early, persistent growth and a small number growing following an extended period of indolence. Emerging evidence now suggests that far from representing Schwann cell proliferation only, the tumor microenvironment is complex, with inflammation proposed to play a key role in their growth. In this review, we provide an overview of this new evidence, including the role played by immune cell infiltration, the underlying molecular pathways involved, and biomarkers for detecting this inflammation in vivo. Given the limitations of current treatments, there is a pressing need for novel therapies to aid in the management of this condition, and we conclude by proposing areas for future research that could lead to the development of therapies targeted toward inflammation in vestibular schwannoma.
Collapse
Affiliation(s)
- Cathal John Hannan
- Manchester Centre for Clinical Neurosciences, Salford Royal Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.,Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Daniel Lewis
- Manchester Centre for Clinical Neurosciences, Salford Royal Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Claire O'Leary
- Manchester Centre for Clinical Neurosciences, Salford Royal Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Carmine A Donofrio
- Manchester Centre for Clinical Neurosciences, Salford Royal Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Dafydd Gareth Evans
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester, UK.,Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Federico Roncaroli
- Manchester Centre for Clinical Neurosciences, Salford Royal Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew Thomas King
- Manchester Centre for Clinical Neurosciences, Salford Royal Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - David Coope
- Manchester Centre for Clinical Neurosciences, Salford Royal Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Omar Nathan Pathmanaban
- Manchester Centre for Clinical Neurosciences, Salford Royal Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
68
|
Microbial Sensing by Intestinal Myeloid Cells Controls Carcinogenesis and Epithelial Differentiation. Cell Rep 2020; 24:2342-2355. [PMID: 30157428 PMCID: PMC6177233 DOI: 10.1016/j.celrep.2018.07.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/24/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Physiologic microbe-host interactions in the intestine require the maintenance of the microbiota in a luminal compartment through a complex interplay between epithelial and immune cells. However, the roles of mucosal myeloid cells in this process remain incompletely understood. In this study, we identified that decreased myeloid cell phagocytic activity promotes colon tumorigenesis. We show that this is due to bacterial accumulation in the lamina propria and present evidence that the underlying mechanism is bacterial induction of prostaglandin production by myeloid cells. Moreover, we show that similar events in the normal colonic mucosa lead to reductions in Tuft cells, goblet cells, and the mucus barrier of the colonic epithelium. These alterations are again linked to the induction of prostaglandin production in response to bacterial penetration of the mucosa. Altogether, our work highlights immune cell-epithelial cell interactions triggered by the microbiota that control intestinal immunity, epithelial differentiation, and carcinogenesis.
Collapse
|
69
|
Arefi H, Naderi N, Shemirani ABI, Kiani Falavarjani M, Azami Movahed M, Zarghi A. Design, synthesis, and biological evaluation of new 1,4-diarylazetidin-2-one derivatives (β-lactams) as selective cyclooxygenase-2 inhibitors. Arch Pharm (Weinheim) 2020; 353:e1900293. [PMID: 31917485 DOI: 10.1002/ardp.201900293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 11/07/2022]
Abstract
A new series of 1,4-diarylazetidin-2-one derivatives (β-lactams) were designed and synthesized to evaluate their biological activities as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1 and COX-2 inhibition studies showed that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the 0.05-0.11 µM range, and COX-2 selectivity indexes in the range of 170-703.7. Among the synthesized β-lactams, 3-methoxy-4-(4-(methylsulfonyl)phenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (4j) possessing trimethoxy groups at the N-1 phenyl ring exhibited the highest COX-2 inhibitory selectivity and potency, even more potent than the reference drug celecoxib. The analgesic activity of the synthesized compounds was also determined using the formalin test. Compound 4f displayed the best analgesic activity among the synthesized molecules. Molecular modeling studies indicated that the methylsulfonyl pharmacophore group can be inserted into the secondary pocket of the COX-2 active site for interactions with Arg513 . The structure-activity data acquired indicate that the β-lactam ring moiety constitutes a suitable scaffold to design new 1,4-diarylazetidin-2-ones with selective COX-2 inhibitory activity.
Collapse
Affiliation(s)
- Hadi Arefi
- Department of Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Naderi
- Department of Pharmacology and Toxicology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir B Irani Shemirani
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Kiani Falavarjani
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Azami Movahed
- Department of Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
70
|
Yue M, Shao L, Cheng J, Fan Y, Cai X, Li H, Li M, Zhang X, Fu A, Huang Y, Nie C, Long F, Chen H, Zhu Q, Zeng H. Prostaglandin E2 accelerated recovery of chemotherapy-induced intestinal damage by increasing expression of cyclin D. Exp Cell Res 2020; 388:111819. [PMID: 31917964 DOI: 10.1016/j.yexcr.2020.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/14/2019] [Accepted: 01/03/2020] [Indexed: 11/26/2022]
Abstract
Intestinal stem cells (ISCs) play a crucial role in maintaining intestinal homeostasis upon chemotherapy and radiotherapy. It has been documented that prostaglandin E2 (PGE2) treatment improved hematopoietic stem cell function in vitro and in vivo, while the relationship between PGE2 and intestinal stem cells remains unclear. Presently, mice were exposed to PGE1, dmPGE2 and indomethacin. Numbers and function of ISCs were assessed by analyzing Olfm4+ ISCs. Intestinal protection of dmPGE2 was investigated on a 5-fluorouracil (5FU)-induced intestinal damage mouse model. The results showed that dmPGE2 treatment, but not PGE1, increased numbers of Olfm4+ ISCs in dose- and time-dependent manners. Indomethacin treatment decreased numbers of Olfm4+ ISCs. The beneficial effects of short-term dmPGE2 treatment on intestine were supported in a 5FU-induced intestinal damage model. Our data showed that 5FU treatment significantly decreased numbers of Olfm4+ ISCs and goblet cells in intestine, which could be ameliorated by dmPGE2 treatment. dmPGE2 treatment accelerated the recovery of 5FU-induced ISC injury via increasing expression of cyclin D1 and D2 in intestine. Furthermore, dmPGE2 treatment-induced expression of cyclin D1 and D2 might be mediated by up-regulation of FOXM1 expression in intestine. These findings feature PGE2 as an effective protector against chemotherapy-induced intestinal damage.
Collapse
Affiliation(s)
- Mengzhen Yue
- Medical School of Nanchang University, Nanchang, 330006, China
| | - Lijian Shao
- Medical School of Nanchang University, Nanchang, 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, China
| | - Jiaoqi Cheng
- Medical School of Nanchang University, Nanchang, 330006, China
| | - Ying Fan
- Medical School of Nanchang University, Nanchang, 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, China
| | - Xueqin Cai
- Medical School of Nanchang University, Nanchang, 330006, China
| | - Huan Li
- Medical School of Nanchang University, Nanchang, 330006, China
| | - Manjun Li
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xinxin Zhang
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Aixiang Fu
- Medical School of Nanchang University, Nanchang, 330006, China
| | - Yanqiu Huang
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Chengtao Nie
- Medical School of Nanchang University, Nanchang, 330006, China
| | - Fei Long
- Medical School of Nanchang University, Nanchang, 330006, China
| | - Hongping Chen
- Medical School of Nanchang University, Nanchang, 330006, China
| | - Qingxian Zhu
- Medical School of Nanchang University, Nanchang, 330006, China
| | - Huihong Zeng
- Medical School of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
71
|
Sheng J, Sun H, Yu FB, Li B, Zhang Y, Zhu YT. The Role of Cyclooxygenase-2 in Colorectal Cancer. Int J Med Sci 2020; 17:1095-1101. [PMID: 32410839 PMCID: PMC7211146 DOI: 10.7150/ijms.44439] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer is the third common cancer in this world, accounting for more than 1 million cases each year. However, detailed etiology and mechanism of colorectal cancer have not been fully understood. For example, cyclooxygenase-2 (COX-2) and its product prostaglandin E2 (PGE2) have been closely linked to its occurrence, progression and prognosis. However, the mechanisms on how COX-2 and PGE2-mediate the pathogenesis of colorectal cancer are obscure. In this review, we have summarized recent advances in studies of pathogenesis and control in colorectal cancer to assist further advances in the research for the cure of the cancer. In addition, the knowledge gained may also guide the audiences for reduction of the risk and control of this deadly disease.
Collapse
Affiliation(s)
- Juan Sheng
- Department of Gastroenterology, the Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Hong Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fu-Bing Yu
- Department of Gastroenterology, the Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Bo Li
- Department of General Surgery, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Yuan Zhang
- Tissue Tech Inc, Miami, Florida 33032, USA
| | | |
Collapse
|
72
|
Nguyen LH, Goel A, Chung DC. Pathways of Colorectal Carcinogenesis. Gastroenterology 2020; 158:291-302. [PMID: 31622622 PMCID: PMC6981255 DOI: 10.1053/j.gastro.2019.08.059] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022]
Abstract
Colorectal cancer is a heterogeneous disease that develops via stepwise accumulation of well-characterized genetic and epigenetic alterations. We review the genetic changes associated with the development of precancerous colorectal adenomas and their progression to tumors, as well as the effects of defective DNA repair, chromosome instability, microsatellite instability, and alterations in the serrated pathway and DNA methylation. We provide insights into the different molecular subgroups of colorectal tumors that develop via each of these different mechanisms and their associations with patient outcomes.
Collapse
Affiliation(s)
- Long H Nguyen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Dallas, Texas; Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas; Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Daniel C Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Center for Cancer Risk Assessment, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
73
|
Joharatnam-Hogan N, Cafferty FH, Macnair A, Ring A, Langley RE. The role of aspirin in the prevention of ovarian, endometrial and cervical cancers. WOMEN'S HEALTH (LONDON, ENGLAND) 2020; 16:1745506520961710. [PMID: 33019903 PMCID: PMC7543116 DOI: 10.1177/1745506520961710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Drug repurposing is the application of an existing licenced drug for a new indication and potentially provides a faster and cheaper approach to developing new anti-cancer agents. Gynaecological cancers contribute significantly to the global cancer burden, highlighting the need for low cost, widely accessible therapies. A large body of evidence supports the role of aspirin as an anti-cancer agent, and a number of randomized trials are currently underway aiming to assess the potential benefit of aspirin in the treatment of cancer. This review summarizes the evidence underpinning aspirin use for the prevention of the development and recurrence of gynaecological cancers (ovarian, endometrial and cervical) and potential mechanisms of action.
Collapse
Affiliation(s)
- Nalinie Joharatnam-Hogan
- MRC Clinical Trials Unit, University College London, Institute of Clinical Trials & Methodology, London, UK
| | - Fay H Cafferty
- MRC Clinical Trials Unit, University College London, Institute of Clinical Trials & Methodology, London, UK
| | - Archie Macnair
- MRC Clinical Trials Unit, University College London, Institute of Clinical Trials & Methodology, London, UK
| | - Alistair Ring
- Royal Marsden Hospital, NHS Foundation Trust, London, UK
| | - Ruth E Langley
- MRC Clinical Trials Unit, University College London, Institute of Clinical Trials & Methodology, London, UK
| |
Collapse
|
74
|
Combined Modality Therapy Based on Hybrid Gold Nanostars Coated with Temperature Sensitive Liposomes to Overcome Paclitaxel-Resistance in Hepatic Carcinoma. Pharmaceutics 2019; 11:pharmaceutics11120683. [PMID: 31847496 PMCID: PMC6969923 DOI: 10.3390/pharmaceutics11120683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
In this study, we prepared gold nanostar (GNS) composite nanoparticles containing siRNA of cyclooxygenase-2(siCOX-2) that were modified by tumor targeting ligand 2-deoxyglucose (DG) and transmembrane peptide 9-poly-D-arginine (9R) to form siCOX-2(9R/DG-GNS). Paclitaxel loaded temperature sensitive liposomes (PTX-TSL) were surface-modified to produce PTX-TSL-siCOX-2(9R/DG-GNS) displaying homogeneous star-shaped structures of suitable size (293.93 nm ± 3.21) and zeta potentials (2.47 mV ± 0.22). PTX-TSL-siCOX-2(9R/DG-GNS) had a high thermal conversion efficiency under 808 nm laser radiation and a superior transfection efficiency, which may be related to the targeting effects of DG and increased heat induced membrane permeability. COX-2 expression in HepG2/PTX cells was significantly suppressed by PTX-TSL-siCOX-2(9R/DG-GNS) in high temperatures. The co-delivery system inhibited drug-resistant cell growth rates by ≥77% and increased the cell apoptosis rate about 47% at elevated temperatures. PTX-TSL and siCOX-2 loaded gold nanostar particles, therefore, show promise for overcoming tumor resistance.
Collapse
|
75
|
Kojima Y, Kondo Y, Fujishita T, Mishiro‐Sato E, Kajino‐Sakamoto R, Taketo MM, Aoki M. Stromal iodothyronine deiodinase 2 (DIO2) promotes the growth of intestinal tumors in Apc Δ716 mutant mice. Cancer Sci 2019; 110:2520-2528. [PMID: 31215118 PMCID: PMC6676103 DOI: 10.1111/cas.14100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/29/2019] [Accepted: 06/15/2019] [Indexed: 12/15/2022] Open
Abstract
Iodothyronine deiodinase 2 (DIO2) converts the prohormone thyroxine (T4) to bioactive T3 in peripheral tissues and thereby regulates local thyroid hormone (TH) levels. Although epidemiologic studies suggest the contribution of TH to the progression of colorectal cancer (CRC), the role of DIO2 in CRC remains elusive. Here we show that Dio2 is highly expressed in intestinal polyps of ApcΔ716 mice, a mouse model of familial adenomatous polyposis and early stage sporadic CRC. Laser capture microdissection and in situ hybridization analysis show almost exclusive expression of Dio2 in the stroma of ApcΔ716 polyps in the proximity of the COX-2-positive areas. Treatment with iopanoic acid, a deiodinase inhibitor, or chemical thyroidectomy suppresses tumor formation in ApcΔ716 mice, accompanied by reduced tumor cell proliferation and angiogenesis. Dio2 expression in ApcΔ716 polyps is strongly suppressed by treatment with the COX-2 inhibitor meloxicam. Analysis of The Cancer Genome Atlas data shows upregulation of DIO2 in CRC clinical samples and a close association of its expression pattern with the stromal component, consistently with almost exclusive expression of DIO2 in the stroma of human CRC as revealed by in situ hybridization. These results indicate essential roles of stromal DIO2 and thyroid hormone signaling in promoting the growth of intestinal tumors.
Collapse
Affiliation(s)
- Yasushi Kojima
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Yuriko Kondo
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Teruaki Fujishita
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Emi Mishiro‐Sato
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Rie Kajino‐Sakamoto
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Makoto Mark Taketo
- Division of Experimental TherapeuticsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Masahiro Aoki
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
- Department of Cancer PhysiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
76
|
van Neerven SM, Vermeulen L. The interplay between intrinsic and extrinsic Wnt signaling in controlling intestinal transformation. Differentiation 2019; 108:17-23. [PMID: 30799131 PMCID: PMC6717105 DOI: 10.1016/j.diff.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/17/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
The intestinal epithelial layer is the fastest renewing tissue in the human body. Due to its incredible turnover rate, the intestine is especially prone to develop cancer, in particular in the colon. Colorectal cancer (CRC) development is characterized by the stepwise accumulation of mutations over time, of which mutations in the tumor suppressor APC are often very early to occur. Generally, mutations in this gene lead to truncated APC proteins that cannot bind to β-catenin to promote its degradation, resulting in a constant overstimulation of the Wnt pathway. The level of intrinsic Wnt activation is dependent on the number of functional β-catenin binding sites remaining within the APC proteins, and the right amount of Wnt signaling is rate-limiting in the formation of polyps. In addition, the intestinal niche provides an extensive spectrum of Wnt ligands, amplifiers and antagonists that locally regulate basal Wnt levels and consequently influence polyp formation propensity. Here we will discuss the crosstalk between transforming epithelial cells and their regional niche in the development of intestinal cancer.
Collapse
Affiliation(s)
- Sanne M van Neerven
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, 1105AZ Amsterdam, Netherlands.
| |
Collapse
|
77
|
Szweda M, Rychlik A, Babińska I, Pomianowski A. Significance of Cyclooxygenase-2 in Oncogenesis. J Vet Res 2019; 63:215-224. [PMID: 31276061 PMCID: PMC6598184 DOI: 10.2478/jvetres-2019-0030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/23/2019] [Indexed: 12/25/2022] Open
Abstract
Abstract
The cyclooxygenase-2 (COX-2) enzyme catalyses the first stage of biosynthesis of prostanoids, proteins that are implicated in various physiological and pathological processes in humans and animals. The expression of COX-2 increases significantly during pathological processes accompanied by inflammation, pain and fever. Overexpression of COX-2 was determined in tumour tissues, which suggests that this enzyme participates in oncogenesis. In this paper the topics discussed are mechanisms regulating COX-2 expression, COX isoforms, their role in the body and the oncogenic mechanisms triggered by the overexpression of COX-2, including inhibition of apoptosis, intensification of neoangiogenesis, increased metastatic capacity, and weakening of the immune system. The significance of and the mechanisms by which COX-2 participates in oncogenesis have been studied intensively in recent years. The results are highly promising, and they expand our understanding of the complex processes and changes at the molecular, cellular and tissue level that promote oncogenesis and cancer progression. Notwithstanding the knowledge already gleaned, many processes and mechanisms have not yet been elucidated in human medicine and, in particular, in veterinary medicine. Further research is required to develop effective tumour diagnostic methods and treatment procedures for humans and animals.
Collapse
Affiliation(s)
- Marta Szweda
- Department of Internal Diseases with Clinic, 10-719Olsztyn, Poland
| | | | - Izabella Babińska
- Department of Pathophysiology, Forensic Medicine, and Administration Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| | | |
Collapse
|
78
|
Abstract
Eicosanoids are bioactive lipids that play crucial roles in various pathophysiological conditions, including inflammation and cancer. They include both the COX-derived prostaglandins and the LOX-derived leukotrienes. Furthermore, the epidermal growth factor receptor (EGFR) pathways family of receptor tyrosine kinases also are known to play a central role in the tumorigenesis. Various antitumor modalities have been approved cancer treatments that target therapeutically the COX-2 and EGFR pathways; these include selective COX-2 inhibitors and EGFR monoclonal antibodies. Research has shown that the COX-2 and epidermal growth factor receptor pathways actively interact with each other in order to orchestrate carcinogenesis. This has been used to justify a targeted combinatorial approach aimed at these two pathways. Although combined therapies have been found to have a greater antitumor effect than the administration of single agent, this does not exempt them from the possible fatal cardiac effects that are associated with COX-2 inhibition. In this review, we delineate the contribution of HB-EGF, an important EGFR ligand, to the cardiac dysfunction related to decreased shedding of HB-EGF after COX-2/PGE2 inhibition. A better understanding of the molecular mechanisms underlying these cardiac side effects will make possible more effective regimens that use the dual-targeting approach.
Collapse
Affiliation(s)
- Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan.
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
79
|
Abstract
Tumor tissue is composed of tumor cells and surrounding non-tumor endothelial and immune cells, collectively known as the tumor microenvironment. Tumor cells manipulate tumor microenvironment to obtain sufficient oxygen and nutrient supply, and evade anti-tumor immunosurveillance. Various types of signaling molecules, including cytokines, chemokines, growth factors, and lipid mediators, are secreted, which co-operate to make up the complex tumor microenvironment. Prostaglandins, cyclooxygenase metabolites of arachidonic acid, are abundantly produced in tumor tissues. Ever since treatment with nonsteroidal anti-inflammatory drugs showed anti-tumor effect in mouse models and human patients by inhibiting whole prostaglandin production, investigators have focused on the importance of prostaglandins in tumor malignancies. However, most studies that followed focused on the role of an eminent prostaglandin, prostaglandin E2, in tumor onset, growth, and metastasis. It remained unclear how other prostaglandin species affected tumor malignancies. Recently, we identified prostaglandin D2, a well-known sleep-inducing prostaglandin, as a factor with strong anti-angiogenic and anti-tumor properties, in genetically modified mice. In this review, we summarize recent studies focusing on the importance of prostaglandins and their metabolites in the tumor microenvironment.
Collapse
Affiliation(s)
- Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keisuke Omori
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
80
|
Roles of prostaglandins in tumor-associated lymphangiogenesis with special reference to breast cancer. Cancer Metastasis Rev 2019; 37:369-384. [PMID: 29858743 DOI: 10.1007/s10555-018-9734-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Lymphangiogenesis (formation of new lymphatic vessels), unlike angiogenesis, has been a lesser-focused field in cancer biology, because of earlier controversy regarding whether lymphatic metastasis occurs via pre-existing or newly formed lymphatics. Recent evidence reveals that peri-tumoral or intra-tumoral lymphangiogenesis is a precursor for lymphatic metastasis in most carcinomas and melanomas. Two major lymphangiogenic factors, vascular endothelial growth factor (VEGF)-C and VEGF-D, are produced by cancer cells or immune cells such as macrophages in the tumor-stroma to promote sprouting of lymphatics from lymphatic endothelial cells (LEC) or LEC precursors (LECP) by binding to their primary (high affinity) receptor VEGF-R3 or secondary receptors VEGF-R2, neuropilin (NRP)2 and α9/β1 integrin. Many other growth factors/receptors such as VEGF-A/VEGF-R2, fibroblast growth factor (FGF)2/FGF-R, platelet-derived growth factor (PDGF)/PDGF-R, hepatocyte growth factor (HGF)/C-Met, angiopoietins (Ang)1, 2/Tie2, and chemokines/ chemokine receptors (CCL21/CCR7, CCL12/CCR4) can also stimulate LEC sprouting directly or indirectly. This review deals with the roles of prostaglandins (PG), in particular PGE2, in cancer-associated lymphangiogenesis, with special emphasis on breast cancer. We show that cyclooxygenase (COX)-2 expression by breast cancer cells or tumor stroma leading to high PGE2 levels in the tumor milieu promotes lymphangiogenesis and lymphatic metastases, resulting from binding of PGE2 to PGE receptors (EP, in particular EP4) on multiple cell types: tumor cells, tumor-infiltrating immune cells, and LEC. EP4 activation on cancer cells and macrophages upregulated VEGF-C/D production to stimulate LEC sprouting. Furthermore, ligation of EP4 with PGE2 on cancer or host cells can initiate a new cascade of molecular events leading to cross-talk between cancer cells and LEC, facilitating lymphangiogenesis and lympho-vascular transport of cancer cells. We make a case for EP4 as a potential therapeutic target for breast cancer.
Collapse
|
81
|
Umamaheswaran S, Dasari SK, Yang P, Lutgendorf SK, Sood AK. Stress, inflammation, and eicosanoids: an emerging perspective. Cancer Metastasis Rev 2019; 37:203-211. [PMID: 29948328 DOI: 10.1007/s10555-018-9741-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinical and experimental studies support the notion that adrenergic stimulation and chronic stress affect inflammation, metabolism, and tumor growth. Eicosanoids are also known to heavily influence inflammation while regulating certain stress responses. However, additional work is needed to understand the full extent of interactions between the stress-related pathways and eicosanoids. Here, we review the potential influences that stress, inflammation, and metabolic pathways have on each other, in the context of eicosanoids. Understanding the intricacies of such interactions could provide insights on how systemic metabolic effects mediated by the stress pathways can be translated into therapies for cancer and other diseases.
Collapse
Affiliation(s)
- Sujanitha Umamaheswaran
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Santosh K Dasari
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan K Lutgendorf
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA, USA
- Department of Urology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
82
|
Kanikarla-Marie P, Kopetz S, Hawk ET, Millward SW, Sood AK, Gresele P, Overman M, Honn K, Menter DG. Bioactive lipid metabolism in platelet "first responder" and cancer biology. Cancer Metastasis Rev 2019; 37:439-454. [PMID: 30112590 DOI: 10.1007/s10555-018-9755-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platelets can serve as "first responders" in cancer and metastasis. This is partly due to bioactive lipid metabolism that drives both platelet and cancer biology. The two primary eicosanoid metabolites that maintain platelet rapid response homeostasis are prostacyclin made by endothelial cells that inhibits platelet function, which is counterbalanced by thromboxane produced by platelets during activation, aggregation, and platelet recruitment. Both of these arachidonic acid metabolites are inherently unstable due to their chemical structure. Tumor cells by contrast predominantly make more chemically stable prostaglandin E2, which is the primary bioactive lipid associated with inflammation and oncogenesis. Pharmacological, clinical, and epidemiologic studies demonstrate that non-steroidal anti-inflammatory drugs (NSAIDs), which target cyclooxygenases, can help prevent cancer. Much of the molecular and biological impact of these drugs is generally accepted in the field. Cyclooxygenases catalyze the rate-limiting production of substrate used by all synthase molecules, including those that produce prostaglandins along with prostacyclin and thromboxane. Additional eicosanoid metabolites include lipoxygenases, leukotrienes, and resolvins that can also influence platelets, inflammation, and carcinogenesis. Our knowledge base and technology are now progressing toward identifying newer molecular and cellular interactions that are leading to revealing additional targets. This review endeavors to summarize new developments in the field.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Scott Kopetz
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Ernest T Hawk
- Office of the Vice President Cancer Prevention and Population Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Steven W Millward
- Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Anil K Sood
- Gynocologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Via E. Dal Pozzo, 06126, Perugia, Italy
| | - Michael Overman
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Kenneth Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, 5101 Cass Ave. 430 Chemistry, Detroit, MI, 48202, USA.,Department of Pathology, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA.,Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA.,Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - David G Menter
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.
| |
Collapse
|
83
|
Tian X, Liu K, Zu X, Ma F, Li Z, Lee M, Chen H, Li Y, Zhao Y, Liu F, Oi N, Bode AM, Dong Z, Kim DJ. 3,3'-Diindolylmethane inhibits patient-derived xenograft colon tumor growth by targeting COX1/2 and ERK1/2. Cancer Lett 2019; 448:20-30. [DOI: 10.1016/j.canlet.2019.01.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/20/2018] [Accepted: 01/24/2019] [Indexed: 01/05/2023]
|
84
|
Lucotti S, Cerutti C, Soyer M, Gil-Bernabé AM, Gomes AL, Allen PD, Smart S, Markelc B, Watson K, Armstrong PC, Mitchell JA, Warner TD, Ridley AJ, Muschel RJ. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. J Clin Invest 2019; 129:1845-1862. [PMID: 30907747 PMCID: PMC6486338 DOI: 10.1172/jci121985] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Because metastasis is associated with the majority of cancer-related deaths, its prevention is a clinical aspiration. Prostanoids are a large family of bioactive lipids derived from the activity of cyclooxygenase-1 (COX-1) and COX-2. Aspirin impairs the biosynthesis of all prostanoids through the irreversible inhibition of both COX isoforms. Long-term administration of aspirin leads to reduced distant metastases in murine models and clinical trials, but the COX isoform, downstream prostanoid, and cell compartment responsible for this effect are yet to be determined. Here, we have shown that aspirin dramatically reduced lung metastasis through inhibition of COX-1 while the cancer cells remained intravascular and that inhibition of platelet COX-1 alone was sufficient to impair metastasis. Thromboxane A2 (TXA2) was the prostanoid product of COX-1 responsible for this antimetastatic effect. Inhibition of the COX-1/TXA2 pathway in platelets decreased aggregation of platelets on tumor cells, endothelial activation, tumor cell adhesion to the endothelium, and recruitment of metastasis-promoting monocytes/macrophages, and diminished the formation of a premetastatic niche. Thus, platelet-derived TXA2 orchestrates the generation of a favorable intravascular metastatic niche that promotes tumor cell seeding and identifies COX-1/TXA2 signaling as a target for the prevention of metastasis.
Collapse
Affiliation(s)
- Serena Lucotti
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Camilla Cerutti
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London, United Kingdom
| | - Magali Soyer
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London, United Kingdom
| | - Ana M. Gil-Bernabé
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ana L. Gomes
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip D. Allen
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean Smart
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Bostjan Markelc
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Karla Watson
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul C. Armstrong
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jane A. Mitchell
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Timothy D. Warner
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London, United Kingdom
| | - Ruth J. Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
85
|
Yao C, Narumiya S. Prostaglandin-cytokine crosstalk in chronic inflammation. Br J Pharmacol 2019; 176:337-354. [PMID: 30381825 PMCID: PMC6329627 DOI: 10.1111/bph.14530] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/13/2018] [Accepted: 10/17/2018] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammation underlies various debilitating disorders including autoimmune, neurodegenerative, vascular and metabolic diseases as well as cancer, where aberrant activation of the innate and acquired immune systems is frequently seen. Since non-steroidal anti-inflammatory drugs exert their effects by inhibiting COX and suppressing PG biosynthesis, PGs have been traditionally thought to function mostly as mediators of acute inflammation. However, an inducible COX isoform, COX-2, is often highly expressed in tissues of the chronic disorders, suggesting an as yet unidentified role of PGs in chronic inflammation. Recent studies have shown that in addition to their short-lived actions in acute inflammation, PGs crosstalk with cytokines and amplify the cytokine actions on various types of inflammatory cells and drive pathogenic conversion of these cells by critically regulating their gene expression. One mode of such PG-mediated amplification is to induce the expression of relevant cytokine receptors, which is typically observed in Th1 cell differentiation and Th17 cell expansion, events leading to chronic immune inflammation. Another mode of amplification is cooperation of PGs with cytokines at the transcription level. Typically, PGs and cytokines synergistically activate NF-κB to induce the expression of inflammation-related genes, one being COX-2 itself, which makes PG-mediated positive feedback loops. This signalling consequently enhances the expression of various NF-κB-induced genes including chemokines to macrophages and neutrophils, which enables sustained infiltration of these cells and further amplifies chronic inflammation. In addition, PGs are also involved in tissue remodelling such as fibrosis and angiogenesis. In this article, we review these findings and discuss their relevance to human diseases.
Collapse
Affiliation(s)
- Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research and Department of Drug Discovery Medicine, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
86
|
Choi BY. Biochemical Basis of Anti-Cancer-Effects of Phloretin-A Natural Dihydrochalcone. Molecules 2019; 24:molecules24020278. [PMID: 30642127 PMCID: PMC6359539 DOI: 10.3390/molecules24020278] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/26/2022] Open
Abstract
Apple is a rich source of bioactive phytochemicals that help improve health by preventing and/or curing many disease processes, including cancer. One of the apple polyphenols is phloretin [2′,4′,6′-Trihydroxy-3-(4-hydroxyphenyl)-propiophenone], which has been widely investigated for its antioxidant, anti-inflammatory and anti-cancer activities in a wide array of preclinical studies. The efficacy of phloretin in suppressing xenograft tumor growth in athymic nude mice implanted with a variety of human cancer cells, and the ability of the compound to interfere with cancer cells signaling, have made it a promising candidate for anti-cancer drug development. Mechanistically, phloretin has been reported to arrest the growth of tumor cells by blocking cyclins and cyclin-dependent kinases and induce apoptosis by activating mitochondria-mediated cell death. The blockade of the glycolytic pathway via downregulation of GLUT2 mRNA and proteins, and the inhibition of tumor cells migration, also corroborates the anti-cancer effects of phloretin. This review sheds light on the molecular targets of phloretin as a potential anti-cancer and anti-inflammatory natural agent.
Collapse
Affiliation(s)
- Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, Chungbuk 361-742, Korea.
| |
Collapse
|
87
|
Zhang M, Srichai MB, Zhao M, Chen J, Davis LS, Wu G, Breyer MD, Hao CM. Nonselective Cyclooxygenase Inhibition Retards Cyst Progression in a Murine Model of Autosomal Dominant Polycystic Kidney Disease. Int J Med Sci 2019; 16:180-188. [PMID: 30662341 PMCID: PMC6332488 DOI: 10.7150/ijms.27719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022] Open
Abstract
Aim: Autosomal dominant polycystic kidney disease is one of the most common genetic renal diseases. Cyclooxygenase plays an important role in epithelial cell proliferation and may contribute to the mechanisms underlying cyst formation. The aim of the present study was to evaluate the role of cyclooxygenase inhibition in the cyst progression in polycystic kidney disease. Method: Pkd2WS25/- mice, a murine model which harbors a compound cis-heterozygous mutation of the Pkd2 gene were used. Cyclooxygenase expression was assessed in both human and murine kidney specimens. Pkd2WS25/- mice were treated with Sulindac (a nonselective cyclooxygenase inhibitor) or vehicle for 8 months starting at three weeks age, and then renal cyst burden was assessed by kidney weight and volume. Results: Cyclooxygenase-2 expression was up-regulated compared to control kidneys as shown by RNase protection in human polycystic kidneys and immunoblot in mouse Pkd2WS25/- kidneys. Cyclooxygenase-2 expression was up-regulated in the renal interstitium as well as focal areas of the cystic epithelium (p<0.05). Basal Cyclooxygenase-1 levels were unchanged in both immunohistochemistry and real-time PCR. Administration of Sulindac to Pkd2WS25/- mice and to control mice for 8 months resulted in reduced kidney weights and volume in cystic mice. Renal function and electrolytes were not significantly different between groups. Conclusion: Thus treatment of a murine model of polycystic kidney disease with Sulindac results in decreased kidney cyst burden. These findings provide additional implications for the use of Cyclooxygenase inhibition as treatment to slow the progression of cyst burden in patients with polycystic kidney disease.
Collapse
Affiliation(s)
- Min Zhang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Manakan B Srichai
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN.,VA Medical Center, Nashville, TN
| | - Min Zhao
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN
| | - Jian Chen
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN
| | - Linda S Davis
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN
| | - Guanqing Wu
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Matthew D Breyer
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46225, USA
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN.,VA Medical Center, Nashville, TN
| |
Collapse
|
88
|
Azami Movahed M, Daraei B, Shahosseini S, Esfahanizadeh M, Zarghi A. Design, synthesis, and biological evaluation of new pyrazino[1,2-a
]benzimidazole derivatives as selective cyclooxygenase (COX-2) inhibitors. Arch Pharm (Weinheim) 2018; 352:e1800265. [DOI: 10.1002/ardp.201800265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/04/2018] [Accepted: 11/11/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Mahsa Azami Movahed
- Department of Pharmaceutical Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Bahram Daraei
- Department of Pharmacology and Toxicology, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Soraya Shahosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Marjan Esfahanizadeh
- Department of Pharmaceutical Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
89
|
Lin YM, Lu CC, Hsiang YP, Pi SC, Chen CI, Cheng KC, Pan HL, Chien PH, Chen YJ. c-Met inhibition is required for the celecoxib-attenuated stemness property of human colorectal cancer cells. J Cell Physiol 2018; 234:10336-10344. [PMID: 30480806 DOI: 10.1002/jcp.27701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Cyclooxygenase-2 (COX-2) is frequently overexpressed and enhances colorectal cancer (CRC) tumorigenesis, including cancer stem cell (CSC) regulation. Accordingly, nonsteroidal anti-inflammatory drugs (NSAIDs), inhibiting COX-1/2 activity, are viewed as potential drugs for CRC treatment. Accumulated evidence indicates that celecoxib has the most potency for antitumor growth among NSAIDs and the underlying mechanism is only partly dependent on COX-2 inhibition. However, the potency of these NSAIDs on CSC inhibition is still not known. In this study, we found that among these NSAIDs, celecoxib has the most potency for CSC inhibition of CRC cells, largely correlating to inhibition of c-Met, not COX-2. Further analysis reveals that c-Met activity was required for basal CSC property. Silence of c-Met blocked whereas overexpression of c-Met enhanced the celecoxib-inhibited CSC property. Collectively, these results not only first elucidate the mechanism underlying celecoxib-inhibited CSC but also indicate c-Met as a critical factor for the CSC property of CRC cells.
Collapse
Affiliation(s)
- Yueh-Ming Lin
- Department of Surgery, Division of Colorectal Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Chien-Chang Lu
- Department of Surgery, Division of Colorectal Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Yi-Ping Hsiang
- Department of Pharmacy, E-Da Hospital, Kaohsiung, Taiwan, ROC
| | - Shu-Chuan Pi
- Department of Pharmacy, E-Da Cancer Hospital, Kaohsiung, Taiwan, ROC
| | - Chih-I Chen
- Department of Surgery, Division of Colon and Rectal Surgery, E-Da Hospital, Kaohsiung, Taiwan, ROC.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan, ROC
| | - Kung-Chuan Cheng
- Department of Surgery, Division of Colorectal Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Hsiao-Lin Pan
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan, ROC
| | - Pei-Hsuan Chien
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan, ROC
| | - Yun-Ju Chen
- Department of Pharmacy, E-Da Cancer Hospital, Kaohsiung, Taiwan, ROC.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan, ROC.,Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan, ROC
| |
Collapse
|
90
|
Campos NA, da Cunha MSB, Arruda SF. Tucum-do-cerrado (Bactris setosa Mart.) modulates oxidative stress, inflammation, and apoptosis-related proteins in rats treated with azoxymethane. PLoS One 2018; 13:e0206670. [PMID: 30427888 PMCID: PMC6235309 DOI: 10.1371/journal.pone.0206670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 01/25/2023] Open
Abstract
Oxidative and inflammatory responses play an important role in the development and prevention of cancer, with both responses being modulated by phytochemical compounds. This study investigated the chemopreventive effect of tucum-do-cerrado fruit in rats treated with azoxymethane. Wistar rats were treated for 12 weeks with: a control diet (CT); a control diet + AOM (CT/DR); a control diet + 15% tucum-do-cerrado (TU); or a control diet + 15% tucum-do-cerrado + AOM (TU/DR). The association of tucum-do-cerrado and AOM (TU/DR) increased glutathione-S-transferase activity, decreased MDA levels, increased levels of COX2, TNFα and BAX, and decreased Bcl2/Bax ratio, compared to the CT/DR group. Carbonyl levels, IL-1β and IL-6 mRNA levels, and aberrant crypt foci showed no difference between the treatments. In conclusion, tucum-do-cerrado reduced lipid oxidative damage, induced a pro-inflammatory effect, and promoted a pro-apoptotic “environment” in rats treated with AOM; however no changes in aberrant crypts were observed.
Collapse
Affiliation(s)
- Natália A. Campos
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Brazil
- * E-mail:
| | - Marcela S. B. da Cunha
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Brazil
- Biological and Health Sciences Center, Campus Reitor Edgard Santos, Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | - Sandra F. Arruda
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Brazil
- Department of Nutrition, Faculty of Health Sciences; Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
91
|
Gao F, Zafar MI, Jüttner S, Höcker M, Wiedenmann B. Expression and Molecular Regulation of the Cox2 Gene in Gastroenteropancreatic Neuroendocrine Tumors and Antiproliferation of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). Med Sci Monit 2018; 24:8125-8140. [PMID: 30420588 PMCID: PMC6243832 DOI: 10.12659/msm.912419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) has had a significant increase over the past 4 decades. The pathophysiological role of the cyclooxygenase-2 (cox-2) gene and factors responsible for the expression in GEP-NETs is of clinical value. Current study determined the expression of cox-2 gene in human GEP-NET tissues and corresponding cell lines, investigated the molecular mechanisms underlying the regulation of cox-2 gene expression and assessed the effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on both anchorage-dependent and independent growth of GEP-NET cells. Material/Methods GEP-NET tissues and QGP-1, BON, and LCC-18 GEP-NET cell lines were used. The expression of cox-2 gene was analyzed by immunohistochemistry, western blot, RT-PCR, and enzyme immunoassay. Transient transfection and luciferase assays along with electrophoretic mobility shift assays were conducted to explore the regulation of cox-2 gene expression. The effect of COX-inhibitors on GEP-NET cell growth was determined by proliferation assays and colony growth assessment. Results We found 87.8% of GEP-NET tissues stained positive for COX-2. QGP-1 and LCC-18 cells expressed cox-2 gene. PGE2 (prostaglandin E2) amounts quantified in the supernatants of NET cells matched to cox-2 expression level. The CRE-E-box element (−56 to −48 bp) and binding of USF1, USF2, and CREB transcription factors to this proximal promoter element were essential for cox-2 promoter activity in GEP-NET cells. COX-2-specific inhibitor NS-398 potently and dose-dependently inhibited PGE2 release from QGP-1 cells. Interestingly, both NS-398 and acetylic salicylic acid effectively suppressed proliferation of QGP-1 and BON cells in a dose-dependent manner. Conclusions The majority of GEP-NETs over express cox-2 gene. The binding of CREB and USF-1/-2 transcription factors to a proximal, overlapping CRE-Ebox element is the underlying mechanism for cox-2 gene expression. NSAIDs potently suppressed the proliferations and may offer a novel approach for chemoprevention and therapy of GEP-NETs.
Collapse
Affiliation(s)
- Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (mainland)
| | - Mohammad Ishraq Zafar
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (mainland)
| | - Stefan Jüttner
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité, Campus Mitte (CCM) and Campus Virchow-Klinikum (CVK), Berlin, Germany.,Department of Pathology, Pathologie Ansbach, Ansbach, Germany
| | - Michael Höcker
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité, Campus Mitte (CCM) and Campus Virchow-Klinikum (CVK), Berlin, Germany.,HMNC Holding, München, Germany
| | - Bertram Wiedenmann
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité, Campus Mitte (CCM) and Campus Virchow-Klinikum (CVK), Berlin, Germany
| |
Collapse
|
92
|
Soares PV, Kannen V, Jordão Junior AA, Garcia SB. Coffee, but Neither Decaffeinated Coffee nor Caffeine, Elicits Chemoprotection Against a Direct Carcinogen in the Colon of Wistar Rats. Nutr Cancer 2018; 71:615-623. [PMID: 30362831 DOI: 10.1080/01635581.2018.1506489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CRC) is the third most frequent malignancy worldwide. Coffee is the second most consumed drink in the globe and suggested to decrease the CRC risk. Here, we explored whether coffee, decaffeinated coffee, or caffeine impact on the development of colorectal carcinogenesis induced by the direct carcinogen N-methyl-N-nitro-N-nitrosoguanidine (MNNG) in rats. To this end, sixty-four young male Wistar rats were divided into eight groups of eight animals each. We analyzed the frequency of dysplastic crypts and expression of metallothionein as a biomarker of the cancer risk, as well the expression of phosphorylated H2A histone family/member X (γH2AX) for DNA damage and cyclooxygenase-2 (COX-2) for inflammatory response. We also studied the oxidative stress profile in hepatic and colonic frozen samples (malondialdehyde [MDA], glutathione [GSH], and α-tocopherol). We found that coffee but neither decaffeinated coffee nor caffeine decreased the development of dysplastic crypts in MNNG-exposed rats. All treatments reduced DNA damage intensity in colonocytes. Only decaffeinated coffee increased the numbers of metallothionein positive crypts in comparison with coffee-treated rats. Coffee and caffeine inhibited COX-2 expression in the colon. Both decaffeinated coffee and caffeine decreased hepatic α-tocopherol levels. We suggest that coffee may have other compounds that elicit greater chemoprotective effects than caffeine reducing the CRC risk.
Collapse
Affiliation(s)
| | - Vinicius Kannen
- b Department of Toxicology, Bromatology, and Clinical Analysis , University of Sao Paulo , Ribeirao Preto , Brazil
| | | | | |
Collapse
|
93
|
Aono Y, Horinaka M, Iizumi Y, Watanabe M, Taniguchi T, Yasuda S, Sakai T. Sulindac sulfone inhibits the mTORC1 pathway in colon cancer cells by directly targeting voltage-dependent anion channel 1 and 2. Biochem Biophys Res Commun 2018; 505:1203-1210. [PMID: 30327144 DOI: 10.1016/j.bbrc.2018.10.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/07/2018] [Indexed: 12/27/2022]
Abstract
Sulindac sulfone is a metabolite of sulindac, a non-steroidal anti-inflammatory drug (NSAID), without anti-inflammatory ability. However, sulindac sulfone has been reported to significantly reduce polyps in patients with colorectal adenomatous polyposis in clinical trials. Thus, sulindac sulfone is expected to be useful for the chemoprevention of neoplasia with few side effects related to anti-inflammatory ability. To date, the molecular targets of sulindac sulfone have not yet fully investigated. Therefore, in order to newly identify sulindac sulfone-binding proteins, we generated sulindac sulfone-fixed FG beads and purified sulindac sulfone-binding proteins from human colon cancer HT-29 cells. we identified mitochondrial outer membrane proteins voltage-dependent anion channel (VDAC) 1 and VDAC2 as novel molecular targets of sulindac sulfone, and sulindac sulfone directly bound to both VDAC1 and VDAC2. Double knockdown of VDAC1 and VDAC2 by siRNA inhibited growth and arrested the cell cycle at G1 phase in HT-29 cells. Depletion of VDAC1 and VDAC2 also inhibited the mTORC1 pathway with a reduction in cyclin D1. Interestingly, these effects were consistent with those of sulindac sulfone against human colon cancer cells, suggesting that sulindac sulfone negatively regulates the function of VDAC1 and VDAC2. In the present study, our data suggested that VDAC1 and VDAC2 are direct targets of sulindac sulfone which suppresses the mTORC1 pathway and induces G1 arrest.
Collapse
Affiliation(s)
- Yuichi Aono
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mano Horinaka
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Yosuke Iizumi
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Motoki Watanabe
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoyuki Taniguchi
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shusuke Yasuda
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
94
|
Cordero OJ, Varela-Calviño R. Oral hygiene might prevent cancer. Heliyon 2018; 4:e00879. [PMID: 30417145 PMCID: PMC6218413 DOI: 10.1016/j.heliyon.2018.e00879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/26/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Many evidences support that species from the Human Oral Microbiome Database such as Fusobacterium nucleatum or Bacteroides, linked previously to periodontitis and appendicitis, play a role in colorectal cancer (CRC), including metastasis. These typically oral species are invasive anaerobes that form biofilms in their virulent state. Aspirin (a NSAID) has been recently included into routine CRC prevention rationale. NSAIDs can prevent the growth of neoplastic lesions by inhibiting COX enzymes and another set of recently identified COX-independent targets, which include the WNT, AMPK and MTOR signaling pathways, the crosstalk between nucleoli and NF-κB transcriptional activity in apoptosis, and the biochemistry of platelets. These are signaling pathways related to tumor-promoting inflammation. In this process, pathogens or simple deregulation of the microbiota play an important role in CRC. Aspirin and other NSAIDs are efficient inhibitors of biofilm formation and able to control periodontitis development preventing inflammation related to the microbiota of the gingival tissue, so its seems plausible to include this pathway in the mechanisms that aspirin uses to prevent CRC. We propose arguments suggesting that current oral hygiene methods and other future developments against periodontitis might prevent CRC and probably other cancers, alone or in combination with other options; and that the multidisciplinary studies needed to prove this hypothesis might be relevant for cancer prevention.
Collapse
Affiliation(s)
- Oscar J. Cordero
- University of Santiago de Compostela, Department of Biochemistry and Molecular Biology, Campus Vida, 15782 Santiago de Compostela, Spain
| | | |
Collapse
|
95
|
Pazderka CW, Oliver B, Murray M, Rawling T. Omega-3 Polyunsaturated Fatty Acid Derived Lipid Mediators and their Application in Drug Discovery. Curr Med Chem 2018; 27:1670-1689. [PMID: 30259807 DOI: 10.2174/0929867325666180927100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play crucial and often opposing regulatory roles in health and in pathological conditions. n-3 and n-6 PUFA undergo biotransformation to parallel series of lipid mediators that are potent modulators of many cellular processes. A wide range of biological actions have been attributed to lipid mediators derived from n-6 PUFA, and these mediators have served as lead compounds in the development of numerous clinically approved drugs, including latanoprost (Xalatan: Pfizer), which is listed on the WHO Model List of Essential Medicines. n-3 PUFA-derived mediators have received less attention, in part because early studies suggested that n-3 PUFA act simply as competitive substrates for biotransformation enzymes and decrease the formation of n-6 PUFA-derived lipid mediators. However, more recent studies suggest that n-3 PUFA-derived mediators are biologically important in their own right. It is now emerging that many n-3 PUFA-derived lipid mediators have potent and diverse activities that are distinct from their n-6 counterparts. These findings provide new opportunities for drug discovery. Herein, we review the biosynthesis of n-3 PUFA-derived lipid mediators and highlight their biological actions that may be exploited for drug development. Lastly, we provide examples of medicinal chemistry research that has utilized n-3 PUFA-derived lipid mediators as novel lead compounds in drug design.
Collapse
Affiliation(s)
- Curtis W Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
96
|
Meana C, García-Rostán G, Peña L, Lordén G, Cubero Á, Orduña A, Győrffy B, Balsinde J, Balboa MA. The phosphatidic acid phosphatase lipin-1 facilitates inflammation-driven colon carcinogenesis. JCI Insight 2018; 3:97506. [PMID: 30232275 DOI: 10.1172/jci.insight.97506] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Colon cancer is a devastating illness that is associated with gut inflammation. Here, we explored the possible role of lipin-1, a phosphatidic acid phosphatase, in the development of colitis-associated tumorigenesis. Azoxymethane and dextran sodium sulfate-treated (DSS-treated) animals deficient in lipin-1 harbored fewer tumors and carcinomas than WT animals due to decreased cellular proliferation, lower expression of antiapoptotic and protumorigenic factors, and a reduced infiltration of macrophages in colon tumors. They also displayed increased resistance to DSS-induced colitis by producing less proinflammatory cytokines and experiencing less immune infiltration. Lipin-1-deficient macrophages from the colon were less activated and displayed lower phosphatidic acid phosphatase activity than WT macrophages isolated from DSS-treated animals. Transference of WT macrophages into lipin-1-deficient animals was sufficient to increase colitis burden. Furthermore, treatment of lipin-1-deficient mice with IL-23 exacerbated colon inflammation. Analysis of human databases from colon cancer and ulcerative colitis patients showed that lipin-1 expression is increased in those disorders and correlates with the expression of the proinflammatory markers CXCL1 and CXCL2. And finally, clinically, LPIN1 expression had prognostic value in inflammatory and stem-cell subtypes of colon cancers. Collectively, these data demonstrate that lipin-1 is a critical regulator of intestinal inflammation and inflammation-driven colon cancer development.
Collapse
Affiliation(s)
- Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Ginesa García-Rostán
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain
| | - Lucía Peña
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gema Lordén
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - África Cubero
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Antonio Orduña
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Balázs Győrffy
- MTA-TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology and Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
97
|
Qiu Z, Zhang C, Zhou J, Hu J, Sheng L, Li X, Chen L, Li X, Deng X, Zheng G. Celecoxib alleviates AKT/c-Met-triggered rapid hepatocarcinogenesis by suppressing a novel COX-2/AKT/FASN cascade. Mol Carcinog 2018; 58:31-41. [PMID: 30182439 DOI: 10.1002/mc.22904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/13/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
Previous studies have demonstrated that the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib shows efficacy against multiple cancers, including hepatocellular carcinoma. However, whether celecoxib is effective in alleviating steatosis during hepatocarcinogenesis is unknown. In a rapid hepatocellular carcinoma (HCC) mouse model established via hydrodynamic transfection of activated forms of AKT and c-Met proto-oncogenes, we investigated the antisteatotic and anticarcinogenic efficacy of celecoxib in vivo. Multiple HCC cell lines were employed for in vitro evaluation. Additionally, immunoblotting, immunohistochemistry, hematoxylin and eosin staining and Oil Red O staining were applied for mechanistic investigation. The results revealed that if celecoxib was administered in the early stage of AKT/c-Met-induced HCC, it resulted in disease stabilization. Moreover, celecoxib could alleviate lipid accumulation in the HCC mice and in an oleic acid-induced in vitro hepatic steatosis model. Further evidence at the molecular level indicated that celecoxib down-regulated the expression of phospho-ERK (Thr202/Tyr204) and proliferating cell nuclear antigen (PCNA) in the HCC mice. In addition, celecoxib efficiently repressed the phosphor-Akt (Thr308)/fatty acid synthase (FASN) axis both in vivo and in vitro. Altogether, this study suggests that celecoxib exerts its antilipogenic efficacy by targeting a COX-2/AKT/FASN cascade, which contributes to its ability to delay hepatocarcinogenesis.
Collapse
Affiliation(s)
- Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Cong Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Junxuan Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Lei Sheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Xin Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Liang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Xiang Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Xukun Deng
- College of Pharmacy, South-Central University for Nationalities, Wuhan, People's Republic of China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| |
Collapse
|
98
|
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death in the USA. It is of practical importance to identify novel therapeutic targets of CRC to develop new anti-cancer drugs and to discover novel biomarkers of CRC to develop new detection methods. Eicosanoids, which are metabolites of polyunsaturated fatty acids produced by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes, are important lipid-signaling molecules involved in the regulation of inflammation and tumorigenesis. Substantial studies have shown that the profiles of eicosanoids are deregulated in CRC, and the enzymes, metabolites, and receptors in the eicosanoid signaling cascade play critical roles in regulating colonic inflammation and colon tumorigenesis. In this review, we discuss the roles of the COX, LOX, and CYP pathways in the carcinogenesis of CRC.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Weicang Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Pei-An Shih
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Xinfeng Zhao
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
99
|
Kim HG, Ryu SY, Lee KH, Lee JH, Kim DY. Quantitative analysis of COX-2 promoter methylation in gastric carcinoma. Ann Surg Treat Res 2018; 95:55-63. [PMID: 30079321 PMCID: PMC6073046 DOI: 10.4174/astr.2018.95.2.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/28/2017] [Accepted: 12/22/2017] [Indexed: 11/30/2022] Open
Abstract
Purpose To determine the occurrence of COX-2 methylation in gastric carcinoma (GC), the status and level of CpG methylation in the promoter region of cyclooxygenase-2 (COX-2) were analyzed in early and advanced GCs, as well as in normal gastric tissues. Methods The extent of promoter methylation of the COX-2 gene was assessed quantitatively using pyrosequencing in 60 early and 60 advanced GCs samples harvested upon gastrectomy, and 40 normal gastric mucosa samples from patients with benign gastric diseases as controls. Results The methylation frequency for the COX-2 gene was significantly higher in early than in advanced GCs (40.0% vs. 20.0%, P < 0.05). A significant difference was found in COX-2 methylation between GCs and normal gastric tissues (30.0% vs. 10.0%, by PS; P < 0.05). COX-2 gene methylation was significantly associated with the depth of invasion (P = 0.003), lymph node metastasis (P = 0.009), distant metastasis (P = 0.036), and TNM staging (P = 0.007). The overall survival of patients with COX-2 methylation was significantly lower than that of patients without COX-2 methylation (P = 0.005). Conclusion These results demonstrated that COX-2 promoter methylation was significantly higher in tumor tissues, and was an early event for GC, thus, COX-2 gene methylation may be important in the initial development of gastric carcinogenesis. Thus, GCs with methylation in COX-2 may not be good candidates for treatment with COX-2 inhibitors. Furthermore, COX-2 methylation could be a significant prognostic factor predicting a favorable effect on GC patient outcome when downregulated.
Collapse
Affiliation(s)
- Ho Goon Kim
- Division of Gastroenterologic Surgery, Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Yeob Ryu
- Division of Gastroenterologic Surgery, Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Kyung Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Jae Hyuk Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Dong Yi Kim
- Division of Gastroenterologic Surgery, Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
100
|
Abstract
The intestinal epithelium is a multicellular interface in close proximity to a dense microbial milieu that is completely renewed every 3-5 days. Pluripotent stem cells reside at the crypt, giving rise to transient amplifying cells that go through continuous steps of proliferation, differentiation and finally anoikis (a form of programmed cell death) while migrating upwards to the villus tip. During these cellular transitions, intestinal epithelial cells (IECs) possess distinct metabolic identities reflected by changes in mitochondrial activity. Mitochondrial function emerges as a key player in cell fate decisions and in coordinating cellular metabolism, immunity, stress responses and apoptosis. Mediators of mitochondrial signalling include molecules such as ATP and reactive oxygen species and interrelate with pathways such as the mitochondrial unfolded protein response (MT-UPR) and AMP kinase signalling, in turn affecting cell cycle progression and stemness. Alterations in mitochondrial function and MT-UPR activation are integral aspects of pathologies, including IBD and cancer. Mitochondrial signalling and concomitant changes in metabolism contribute to intestinal homeostasis and regulate IEC dedifferentiation-differentiation programmes in the context of diseases, suggesting that mitochondrial function as a cellular checkpoint critically contributes to disease outcome. This Review highlights mitochondrial function and MT-UPR signalling in epithelial cell stemness, differentiation and lineage commitment and illustrates mitochondrial function in intestinal diseases.
Collapse
|