51
|
Betzer C, Jensen PH. Reduced Cytosolic Calcium as an Early Decisive Cellular State in Parkinson's Disease and Synucleinopathies. Front Neurosci 2018; 12:819. [PMID: 30459551 PMCID: PMC6232531 DOI: 10.3389/fnins.2018.00819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
The more than 30-year-old Calcium hypothesis postulates that dysregulation in calcium dependent processes in the aging brain contributes to its increased vulnerability and this concept has been extended to Alzheimer’s disease and Parkinson’s disease. Central to the hypothesis is that increased levels of intracellular calcium develop and contributes to neuronal demise. We have studied the impact on cells encountering a gradual build-up of aggregated α-synuclein, which is a central process to Parkinson’s disease and other synucleinopathies. Surprisingly, we observed a yet unrecognized phase characterized by a reduced cytosolic calcium in cellular and neuronal models of Parkinson’s disease, caused by α-synuclein aggregates activating the endoplasmic calcium ATPase, SERCA. Counteracting the initial phase with low calcium rescues the subsequent degenerative phase with increased calcium and cell death – and demonstrates this early phase initiates decisive degenerative signals. In this review, we discuss our findings in relation to literature on calcium dysregulation in Parkinson’s disease and dementia.
Collapse
Affiliation(s)
- Cristine Betzer
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Poul Henning Jensen
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
52
|
Britzolaki A, Saurine J, Flaherty E, Thelen C, Pitychoutis PM. The SERCA2: A Gatekeeper of Neuronal Calcium Homeostasis in the Brain. Cell Mol Neurobiol 2018; 38:981-994. [PMID: 29663107 DOI: 10.1007/s10571-018-0583-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Calcium (Ca2+) ions are prominent cell signaling regulators that carry information for a variety of cellular processes and are critical for neuronal survival and function. Furthermore, Ca2+ acts as a prominent second messenger that modulates divergent intracellular cascades in the nerve cells. Therefore, nerve cells have developed intricate Ca2+ signaling pathways to couple the Ca2+ signal to their biochemical machinery. Notably, intracellular Ca2+ homeostasis greatly relies on the rapid redistribution of Ca2+ ions into the diverse subcellular organelles which serve as Ca2+ stores, including the endoplasmic reticulum (ER). It is well established that Ca2+ released into the neuronal cytoplasm is pumped back into the ER by the sarco-/ER Ca2+ ATPase 2 (SERCA2), a P-type ion-motive ATPase that resides on the ER membrane. Even though the SERCA2 is constitutively expressed in nerve cells, its precise role in brain physiology and pathophysiology is not well-characterized. Intriguingly, SERCA2-dependent Ca2+ dysregulation has been implicated in several disorders that affect cognitive function, including Darier's disease, schizophrenia, Alzheimer's disease, and cerebral ischemia. The current review summarizes knowledge on the expression pattern of the different SERCA2 isoforms in the nervous system, and further discusses evidence of SERCA2 dysregulation in various neuropsychiatric disorders. To the best of our knowledge, this is the first literature review that specifically highlights the critical role of the SERCA2 in the brain. Advancing knowledge on the role of SERCA2 in maintaining neuronal Ca2+ homeostasis may ultimately lead to the development of safer and more effective pharmacotherapies to combat debilitating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aikaterini Britzolaki
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Joseph Saurine
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Emily Flaherty
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Connor Thelen
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA.
| |
Collapse
|
53
|
Chen J, Miller M, Unno H, Rosenthal P, Sanderson MJ, Broide DH. Orosomucoid-like 3 (ORMDL3) upregulates airway smooth muscle proliferation, contraction, and Ca 2+ oscillations in asthma. J Allergy Clin Immunol 2018; 142:207-218.e6. [PMID: 28889952 PMCID: PMC5842097 DOI: 10.1016/j.jaci.2017.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/25/2017] [Accepted: 08/24/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Airway hyperresponsiveness is a major feature of asthma attributed predominantly to an extrinsic immune/inflammatory response increasing airway smooth muscle (ASM) contractility. OBJECTIVE We investigated whether increased ASM expression of orosomucoid-like 3 (ORMDL3), a gene on chromosome 17q21 highly linked to asthma, induced increased ASM proliferation and contractility in vitro and influenced airway contractility and calcium flux in ASM in precision-cut lung slices (PCLSs) from wild-type and hORMDL3Zp3-Cre mice (which express increased levels of human ORMDL3 [hORMDL3]). METHODS Levels of ASM proliferation and contraction were assessed in ASM cells transfected with ORMDL3 in vitro. In addition, airway contractility and calcium oscillations were quantitated in ASM cells in PCLSs derived from naive wild-type and naive hORMDL3Zp3-Cre mice, which do not have a blood supply. RESULTS Increased ASM expression of ORMDL3 in vitro resulted in increased ASM proliferation and contractility. PCLSs derived from naive hORMDL3Zp3-Cre mice, which do not have airway inflammation, exhibit increased airway contractility with increased calcium oscillations in ASM cells. Increased ASM ORMDL3 expression increases levels of ASM sarcoplasmic reticulum Ca2+ ATPase 2b (SERCA2b), which increases ASM proliferation and contractility. CONCLUSION Overall, these studies provide evidence that an intrinsic increase in ORMDL3 expression in ASM can induce increased ASM proliferation and contractility, which might contribute to increased airway hyperresponsiveness in the absence of airway inflammation in asthmatic patients.
Collapse
Affiliation(s)
- Jun Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and the Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Mass
| | - Marina Miller
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Hirotoshi Unno
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Peter Rosenthal
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Michael J Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Mass
| | - David H Broide
- Department of Medicine, University of California, San Diego, La Jolla, Calif.
| |
Collapse
|
54
|
Liu G, Li SQ, Hu PP, Tong XY. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy. Diab Vasc Dis Res 2018; 15:322-335. [PMID: 29762054 DOI: 10.1177/1479164118774313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.
Collapse
Affiliation(s)
- Gang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Si Qi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Ping Ping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiao Yong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
55
|
Weng L, Jia S, Xu C, Ye J, Cao Y, Liu Y, Zheng M. Nogo-C regulates post myocardial infarction fibrosis through the interaction with ER Ca 2+ leakage channel Sec61α in mouse hearts. Cell Death Dis 2018; 9:612. [PMID: 29795235 PMCID: PMC5966439 DOI: 10.1038/s41419-018-0598-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022]
Abstract
Cardiac fibrosis is an independent risk factor for heart failure and even the leading cause of death in myocardial infarction patients. However, molecular mechanisms associated with the pathogenesis of cardiac fibrosis following myocardial infarction are not yet fully understood. Nogo-C protein ubiquitously expresses in tissues including in the heart. Our previous study found that Nogo-C regulated cardiomyocyte apoptosis during myocardial infarction. In the present study, we found that Nogo-C was upregulated in fibrotic hearts after myocardial infarction and in Ang II- or TGF-β1-stimulated cardiac fibroblasts. Overexpression of Nogo-C in cardiac fibroblasts increased expression of pro-fibrogenic proteins, while knockdown of Nogo-C inhibited the fibrotic responses of cardiac fibroblasts to Ang II- or TGF-β1 stimulation. Functionally, Nogo-C deficiency suppressed pro-fibrogenic proteins in post-myocardial infarction hearts and ameliorated post-myocardial infarction cardiac function. Mechanistically, we found that Nogo-C increased intracellular Ca2+ concentration and buffering Ca2+ totally abolished Nogo-C-induced fibrotic responses. Moreover, overexpression of Nogo-C caused increased Sec61α, the Ca2+ leakage channel on endoplasmic reticulum membrane. Nogo-C interacted with Sec61α on endoplasmic reticulum and stabilized Sec61α protein by inhibiting its ubiquitination. Inhibition or knockdown of Sec61α blocked Nogo-C-induced increase of cytosolic Ca2+ concentration and inhibited Nogo-C- and TGF-β1-induced fibrotic responses in cardiac fibroblasts, suggesting that Nogo-C regulates cardiac fibrosis through interacting with Sec61α to mediate the Ca2+ leakage from endoplasmic reticulum. Thus, our results reveal a novel mechanism underlying cardiac fibrosis following myocardial infarction, and provide a therapeutic strategy for cardiac remodeling related heart diseases.
Collapse
Affiliation(s)
- Lin Weng
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Shi Jia
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chunling Xu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jingjing Ye
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yangpo Cao
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yingying Liu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ming Zheng
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| |
Collapse
|
56
|
Shigehara Y, Shinkuma S, Fujimoto A, Saijo S, Abe R. Hailey-Hailey disease patient with a novel missense mutation in ATP2C1 successfully treated with minocycline hydrochloride. J Dermatol 2018; 45:e306-e308. [PMID: 29740863 DOI: 10.1111/1346-8138.14353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yohya Shigehara
- Divisions of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoru Shinkuma
- Divisions of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Fujimoto
- Divisions of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Riichiro Abe
- Divisions of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
57
|
Krishnan B, Massilamany C, Basavalingappa RH, Gangaplara A, Rajasekaran RA, Afzal MZ, Khalilzad-Sharghi V, Zhou Y, Riethoven JJ, Nandi SS, Mishra PK, Sobel RA, Strande JL, Steffen D, Reddy J. Epitope Mapping of SERCA2a Identifies an Antigenic Determinant That Induces Mainly Atrial Myocarditis in A/J Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:523-537. [PMID: 29229678 PMCID: PMC5760440 DOI: 10.4049/jimmunol.1701090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/05/2017] [Indexed: 12/20/2022]
Abstract
Sarcoplasmic/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA)2a, a critical regulator of calcium homeostasis, is known to be decreased in heart failure. Patients with myocarditis or dilated cardiomyopathy develop autoantibodies to SERCA2a suggesting that they may have pathogenetic significance. In this report, we describe epitope mapping analysis of SERCA2a in A/J mice that leads us to make five observations: 1) SERCA2a contains multiple T cell epitopes that induce varying degrees of myocarditis. One epitope, SERCA2a 971-990, induces widespread atrial inflammation without affecting noncardiac tissues; the cardiac abnormalities could be noninvasively captured by echocardiography, electrocardiography, and magnetic resonance microscopy imaging. 2) SERCA2a 971-990-induced disease was associated with the induction of CD4 T cell responses and the epitope preferentially binds MHC class II/IAk rather than IEk By creating IAk/and IEk/SERCA2a 971-990 dextramers, the T cell responses were determined by flow cytometry to be Ag specific. 3) SERCA2a 971-990-sensitized T cells produce both Th1 and Th17 cytokines. 4) Animals immunized with SERCA2a 971-990 showed Ag-specific Abs with enhanced production of IgG2a and IgG2b isotypes, suggesting that SERCA2a 971-990 can potentially act as a common epitope for both T cells and B cells. 5) Finally, SERCA2a 971-990-sensitized T cells were able to transfer disease to naive recipients. Together, these data indicate that SERCA2a is a critical autoantigen in the mediation of atrial inflammation in mice and that our model may be helpful to study the inflammatory events that underlie the development of conditions such as atrial fibrillation in humans.
Collapse
Affiliation(s)
- Bharathi Krishnan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Rakesh H Basavalingappa
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Arunakumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rajkumar A Rajasekaran
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | | | - Vahid Khalilzad-Sharghi
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588
| | | | - Shyam S Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198; and
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198; and
| | - Raymond A Sobel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304
| | | | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583;
| |
Collapse
|
58
|
Sousa L, Pessoa MTC, Costa TGF, Cortes VF, Santos HL, Barbosa LA. Iron overload impact on P-ATPases. Ann Hematol 2018; 97:377-385. [PMID: 29307086 DOI: 10.1007/s00277-017-3222-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 12/23/2017] [Indexed: 12/16/2022]
Abstract
Iron is a chemical element that is active in the fundamental physiological processes for human life, but its burden can be toxic to the body, mainly because of the stimulation of membrane lipid peroxidation. For this reason, the action of iron on many ATPases has been studied, especially on P-ATPases, such as the Na+,K+-ATPase and the Ca2+-ATPase. On the Fe2+-ATPase activity, the free iron acts as an activator, decreasing the intracellular Fe2+ and playing a protection role for the cell. On the Ca2+-ATPase activity, the iron overload decreases the enzyme activity, raising the cytoplasmic Ca2+ and decreasing the sarco/endoplasmic reticulum and the Golgi apparatus Ca2+ concentrations, which could promote an enzyme oxidation, nitration, and fragmentation. However, the iron overload effect on the Na+,K+-ATPase may change according to the tissue expressions. On the renal cells, as well as on the brain and the heart, iron promotes an enzyme inactivation, whereas its effect on the erythrocytes seems to be the opposite, directly stimulating the ATPase activity, or stimulating it by signaling pathways involving ROS and PKC. Modulations in the ATPase activity may impair the ionic transportation, which is essential for cell viability maintenance, inducing irreversible damage to the cell homeostasis. Here, we will discuss about the iron overload effect on the P-ATPases, such as the Na+,K+-ATPase, the Ca2+-ATPase, and the Fe2+-ATPase.
Collapse
Affiliation(s)
- Leilismara Sousa
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Marco Tulio C Pessoa
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Tamara G F Costa
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Vanessa F Cortes
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Herica L Santos
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Leandro Augusto Barbosa
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
59
|
Abstract
The calcium pump (a.k.a. Ca2+-ATPase or SERCA) is a membrane transport protein ubiquitously found in the endoplasmic reticulum (ER) of all eukaryotic cells. As a calcium transporter, SERCA maintains the low cytosolic calcium level that enables a vast array of signaling pathways and physiological processes (e.g. synaptic transmission, muscle contraction, fertilization). In muscle cells, SERCA promotes relaxation by pumping calcium ions from the cytosol into the lumen of the sarcoplasmic reticulum (SR), the main storage compartment for intracellular calcium. X-ray crystallographic studies have provided an extensive understanding of the intermediate states that SERCA populates as it progresses through the calcium transport cycle. Historically, SERCA is also known to be regulated by small transmembrane peptides, phospholamban (PLN) and sarcolipin (SLN). PLN is expressed in cardiac muscle, whereas SLN predominates in skeletal and atrial muscle. These two regulatory subunits play critical roles in cardiac contractility. While our understanding of these regulatory mechanisms are still developing, SERCA and PLN are one of the best understood examples of peptide-transporter regulatory interactions. Nonetheless, SERCA appeared to have only two regulatory subunits, while the related sodium pump (a.k.a. Na+, K+-ATPase) has at least nine small transmembrane peptides that provide tissue specific regulation. The last few years have seen a renaissance in our understanding of SERCA regulatory subunits. First, structures of the SERCA-SLN and SERCA-PLN complexes revealed molecular details of their interactions. Second, an array of micropeptides concealed within long non-coding RNAs have been identified as new SERCA regulators. This chapter will describe our current understanding of SERCA structure, function, and regulation.
Collapse
|
60
|
Lang S, Pfeffer S, Lee PH, Cavalié A, Helms V, Förster F, Zimmermann R. An Update on Sec61 Channel Functions, Mechanisms, and Related Diseases. Front Physiol 2017; 8:887. [PMID: 29163222 PMCID: PMC5672155 DOI: 10.3389/fphys.2017.00887] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
The membrane of the endoplasmic reticulum (ER) of nucleated human cells harbors the protein translocon, which facilitates membrane integration or translocation of almost every newly synthesized polypeptide targeted to organelles of the endo- and exocytotic pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins and complexes that are permanently or transiently associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, modification of precursor polypeptides in transit through the Sec61 complex, and Sec61 channel gating, i.e., dynamic regulation of the pore forming subunit to mediate precursor transport and calcium efflux. Recently, cryoelectron tomography of translocons in native ER membrane vesicles, derived from human cell lines or patient fibroblasts, and even intact cells has given unprecedented insights into the architecture and dynamics of the native translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion, and translocation of newly synthesized polypeptides as well as the putative physiological roles of the Sec61 channel as a passive ER calcium leak channel. Furthermore, the structural insights into the Sec61 channel are incorporated into an overview and update on Sec61 channel-related diseases—the Sec61 channelopathies—and novel therapeutic concepts for their treatment.
Collapse
Affiliation(s)
- Sven Lang
- Competence Center for Molecular Medicine, Saarland University Medical School, Homburg, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Po-Hsien Lee
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Friedrich Förster
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Richard Zimmermann
- Competence Center for Molecular Medicine, Saarland University Medical School, Homburg, Germany
| |
Collapse
|
61
|
Fiuza-Luces C, Nogales-Gadea G, García-Consuegra I, Pareja-Galeano H, Rufián-Vázquez L, Pérez LM, Andreu AL, Arenas J, Martín MA, Pinós T, Lucia A, Morán M. Muscle Signaling in Exercise Intolerance: Insights from the McArdle Mouse Model. Med Sci Sports Exerc 2017; 48:1448-58. [PMID: 27031745 DOI: 10.1249/mss.0000000000000931] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION We recently generated a knock-in mouse model (PYGM p.R50X/p.R50X) of the McArdle disease (myophosphorylase deficiency). One mechanistic approach to unveil the molecular alterations caused by myophosphorylase deficiency, which is arguably the paradigm of "exercise intolerance," is to compare the skeletal muscle tissue of McArdle, heterozygous, and healthy (wild-type [wt]) mice. METHODS We analyzed in quadriceps muscle of p.R50X/p.R50X (n = 4), p.R50X/wt (n = 6), and wt/wt mice (n = 5) (all male, 8 wk old) molecular markers of energy-sensing pathways, oxidative phosphorylation and autophagy/proteasome systems, oxidative damage, and sarcoplasmic reticulum Ca handling. RESULTS We found a significant group effect for total adenosine monophosphate-(AMP)-activated protein kinase (tAMPK) and ratio of phosphorylated (pAMPK)/tAMPK (P = 0.012 and 0.033), with higher mean values in p.R50X/p.R50X mice versus the other two groups. The absence of a massive accumulation of ubiquitinated proteins, autophagosomes, or lysosomes in p.R50X/p.R50X mice suggested no major alterations in autophagy/proteasome systems. Citrate synthase activity was lower in p.R50X/p.R50X mice versus the other two groups (P = 0.036), but no statistical effect existed for respiratory chain complexes. We found higher levels of 4-hydroxy-2-nonenal-modified proteins in p.R50X/p.R50X and p.R50X/wt mice compared with the wt/wt group (P = 0.011). Sarco(endo)plasmic reticulum ATPase 1 levels detected at 110 kDa tended to be higher in p.R50X/p.R50X and p.R50X/wt mice compared with wt/wt animals (P = 0.076), but their enzyme activity was normal. We also found an accumulation of phosphorylated sarco(endo)plasmic reticulum ATPase 1 in p.R50X/p.R50X animals. CONCLUSION Myophosphorylase deficiency causes alterations in sensory energetic pathways together with some evidence of oxidative damage and alterations in Ca handling but with no major alterations in oxidative phosphorylation capacity or autophagy/ubiquitination pathways, which suggests that the muscle tissue of patients is likely to adapt overall favorably to exercise training interventions.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- 1Mitochondrial and Neuromuscular Diseases Laboratory and "MITOLAB-CM," Research Institute of Hospital "12 de Octubre" ("i + 12"), Madrid, SPAIN; 2Neuromuscular and Neuropediatric Research Group, Neurosciences Department, Germans Trias i Pujol Research Institute and Campus Can Ruti, Autonomous University of Barcelona, Badalona, SPAIN; 3Department of Research and Doctorate Studies, European University, Madrid, SPAIN; 4Neuromuscular and Mitochondrial Pathology Department, Vall d'Hebron University Hospital, Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, SPAIN; and 5Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, SPAIN
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
McCrink KA, Maning J, Vu A, Jafferjee M, Marrero C, Brill A, Bathgate-Siryk A, Dabul S, Koch WJ, Lymperopoulos A. β-Arrestin2 Improves Post-Myocardial Infarction Heart Failure via Sarco(endo)plasmic Reticulum Ca 2+-ATPase-Dependent Positive Inotropy in Cardiomyocytes. Hypertension 2017; 70:972-981. [PMID: 28874462 DOI: 10.1161/hypertensionaha.117.09817] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/25/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022]
Abstract
Heart failure is the leading cause of death in the Western world, and new and innovative treatments are needed. The GPCR (G protein-coupled receptor) adapter proteins βarr (β-arrestin)-1 and βarr-2 are functionally distinct in the heart. βarr1 is cardiotoxic, decreasing contractility by opposing β1AR (adrenergic receptor) signaling and promoting apoptosis/inflammation post-myocardial infarction (MI). Conversely, βarr2 inhibits apoptosis/inflammation post-MI but its effects on cardiac function are not well understood. Herein, we sought to investigate whether βarr2 actually increases cardiac contractility. Via proteomic investigations in transgenic mouse hearts and in H9c2 rat cardiomyocytes, we have uncovered that βarr2 directly interacts with SERCA2a (sarco[endo]plasmic reticulum Ca2+-ATPase) in vivo and in vitro in a β1AR-dependent manner. This interaction causes acute SERCA2a SUMO (small ubiquitin-like modifier)-ylation, increasing SERCA2a activity and thus, cardiac contractility. βarr1 lacks this effect. Moreover, βarr2 does not desensitize β1AR cAMP-dependent procontractile signaling in cardiomyocytes, again contrary to βarr1. In vivo, post-MI heart failure mice overexpressing cardiac βarr2 have markedly improved cardiac function, apoptosis, inflammation, and adverse remodeling markers, as well as increased SERCA2a SUMOylation, levels, and activity, compared with control animals. Notably, βarr2 is capable of ameliorating cardiac function and remodeling post-MI despite not increasing cardiac βAR number or cAMP levels in vivo. In conclusion, enhancement of cardiac βarr2 levels/signaling via cardiac-specific gene transfer augments cardiac function safely, that is, while attenuating post-MI remodeling. Thus, cardiac βarr2 gene transfer might be a novel, safe positive inotropic therapy for both acute and chronic post-MI heart failure.
Collapse
Affiliation(s)
- Katie A McCrink
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Jennifer Maning
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Angela Vu
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Malika Jafferjee
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Christine Marrero
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Ava Brill
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Ashley Bathgate-Siryk
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Samalia Dabul
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Walter J Koch
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.).
| |
Collapse
|
63
|
Franklin BM, Voss SR, Osborn JL. Ion channel signaling influences cellular proliferation and phagocyte activity during axolotl tail regeneration. Mech Dev 2017; 146:42-54. [PMID: 28603004 PMCID: PMC6386162 DOI: 10.1016/j.mod.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 01/30/2023]
Abstract
Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, KV2.1, KV2.2, L-type CaV channels and H/K ATPases) or completely (GlyR, GABAAR, KV1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K+ channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H+ pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair.
Collapse
Affiliation(s)
- Brandon M Franklin
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - S Randal Voss
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - Jeffrey L Osborn
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States.
| |
Collapse
|
64
|
Aït Ghezali L, Arbabian A, Roudot H, Brouland JP, Baran-Marszak F, Salvaris E, Boyd A, Drexler HG, Enyedi A, Letestu R, Varin-Blank N, Papp B. Induction of endoplasmic reticulum calcium pump expression during early leukemic B cell differentiation. J Exp Clin Cancer Res 2017; 36:87. [PMID: 28651627 PMCID: PMC5485704 DOI: 10.1186/s13046-017-0556-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/18/2017] [Indexed: 11/15/2022] Open
Abstract
Background Endoplasmic reticulum (ER) calcium storage and release play important roles in B lymphocyte maturation, survival, antigen-dependent cell activation and immunoglobulin synthesis. Calcium is accumulated in the endoplasmic reticulum (ER) by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). Because lymphocyte function is critically dependent on SERCA activity, it is important to understand qualitative and quantitative changes of SERCA protein expression that occur during B lymphoid differentiation and leukemogenesis. Methods In this work we investigated the modulation of SERCA expression during the pharmacologically induced differentiation of leukemic precursor B lymphoblast cell lines that carry the E2A-PBX1 fusion oncoprotein. Changes of SERCA levels during differentiation were determined and compared to those of established early B lymphoid differentiation markers. SERCA expression of the cells was compared to that of mature B cell lines as well, and the effect of the direct inhibition of SERCA-dependent calcium transport on the differentiation process was investigated. Results We show that E2A-PBX1+ leukemia cells simultaneously express SERCA2 and SERCA3-type calcium pumps; however, their SERCA3 expression is markedly inferior to that of mature B cells. Activation of protein kinase C enzymes by phorbol ester leads to phenotypic differentiation of the cells, and this is accompanied by the induction of SERCA3 expression. Direct pharmacological inhibition of SERCA-dependent calcium transport during phorbol ester treatment interferes with the differentiation process. Conclusion These data show that the calcium pump composition of the ER is concurrent with increased SERCA3 expression during the differentiation of precursor B acute lymphoblastic leukemia cells, that a cross-talk exists between SERCA function and the control of differentiation, and that SERCA3 may constitute an interesting new marker for the study of early B cell phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0556-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lamia Aït Ghezali
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France
| | | | - Hervé Roudot
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France.,Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Seine-Saint-Denis, AP-HP, Hôpital Avicenne, Bobigny, France
| | | | - Fanny Baran-Marszak
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France.,Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Seine-Saint-Denis, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Evelyn Salvaris
- Immunology Research Centre, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Andrew Boyd
- Department of Medicine, University of Queensland, Queensland, Australia
| | - Hans G Drexler
- Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Brauschweig, Germany
| | - Agnes Enyedi
- Second Institute of Pathology, Semmelweis University Medical School, Budapest, Hungary
| | - Remi Letestu
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France.,Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Seine-Saint-Denis, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France
| | - Bela Papp
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France. .,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France. .,U978 Inserm, UFR SMBH, Université Paris-13, 74, rue Marcel Cachin, 93017, Bobigny, France.
| |
Collapse
|
65
|
Let's talk about Secs: Sec61, Sec62 and Sec63 in signal transduction, oncology and personalized medicine. Signal Transduct Target Ther 2017; 2:17002. [PMID: 29263911 PMCID: PMC5661625 DOI: 10.1038/sigtrans.2017.2] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022] Open
Abstract
The heterotrimeric Sec61 complex and the dimeric Sec62/Sec63 complex are located in the membrane of the human endoplasmic reticulum (ER) and play a central role in translocation of nascent and newly synthesized precursor polypeptides into the ER. This process involves targeting of the precursors to the membrane and opening of the polypeptide conducting Sec61 channel for translocation. Apart from this central role in the intracellular transport of polypeptides, several studies of the last decade uncovered additional functions of Sec proteins in intracellular signaling: Sec62 can induce ER-phagy in the process of recovery of cells from ER stress and the Sec61 channel can also act as a passive ER calcium leak channel. Furthermore, mutations, amplifications and an overexpression of the SEC genes were linked to various diseases including kidney and liver diseases, diabetes and human cancer. Studies of the last decade could not only elucidate the functional role of Sec proteins in the pathogenesis of these diseases, but also demonstrate a relevance of Sec62 as a prognostic and predictive biomarker in head and neck cancer, prostate and lung cancer including a basis for new therapeutic strategies. In this article, we review the current understanding of protein transport across the ER membrane as central function of Sec proteins and further focus on recent studies that gave first insights into the functional role and therapeutic relevance of Sec61, Sec62 and Sec63 in human diseases.
Collapse
|
66
|
Chen J, De Raeymaecker J, Hovgaard JB, Smaardijk S, Vandecaetsbeek I, Wuytack F, Møller JV, Eggermont J, De Maeyer M, Christensen SB, Vangheluwe P. Structure/activity relationship of thapsigargin inhibition on the purified Golgi/secretory pathway Ca 2+/Mn 2+-transport ATPase (SPCA1a). J Biol Chem 2017; 292:6938-6951. [PMID: 28264934 DOI: 10.1074/jbc.m117.778431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
The Golgi/secretory pathway Ca2+/Mn2+-transport ATPase (SPCA1a) is implicated in breast cancer and Hailey-Hailey disease. Here, we purified recombinant human SPCA1a from Saccharomyces cerevisiae and measured Ca2+-dependent ATPase activity following reconstitution in proteoliposomes. The purified SPCA1a displays a higher apparent Ca2+ affinity and a lower maximal turnover rate than the purified sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1a). The lipids cholesteryl hemisuccinate, linoleamide/oleamide, and phosphatidylethanolamine inhibit and phosphatidic acid and sphingomyelin enhance SPCA1a activity. Moreover, SPCA1a is blocked by micromolar concentrations of the commonly used SERCA1a inhibitors thapsigargin (Tg), cyclopiazonic acid, and 2,5-di-tert-butylhydroquinone. Because tissue-specific targeting of SERCA2b by Tg analogues is considered for prostate cancer therapy, the inhibition of SPCA1a by Tg might represent an off-target risk. We assessed the structure-activity relationship (SAR) of Tg for SPCA1a by in silico modeling, site-directed mutagenesis, and measuring the potency of a series of Tg analogues. These indicate that Tg and the analogues are bound via the Tg scaffold but with lower affinity to the same homologous cavity as on the membrane surface of SERCA1a. The lower Tg affinity may depend on a more flexible binding cavity in SPCA1a, with low contributions of the Tg O-3, O-8, and O-10 chains to the binding energy. Conversely, the protein interaction of the Tg O-2 side chain with SPCA1a appears comparable with that of SERCA1a. These differences define a SAR of Tg for SPCA1a distinct from that of SERCA1a, indicating that Tg analogues with a higher specificity for SPCA1a can probably be developed.
Collapse
Affiliation(s)
- Jialin Chen
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, and
| | - Joren De Raeymaecker
- Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven, 3000 Leuven, Belgium
| | - Jannik Brøndsted Hovgaard
- the Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark, and
| | - Susanne Smaardijk
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, and
| | - Ilse Vandecaetsbeek
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, and
| | - Frank Wuytack
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, and
| | | | - Jan Eggermont
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, and
| | - Marc De Maeyer
- Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven, 3000 Leuven, Belgium
| | - Søren Brøgger Christensen
- the Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark, and
| | - Peter Vangheluwe
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, and
| |
Collapse
|
67
|
Nellen RGL, Steijlen PM, van Steensel MAM, Vreeburg M, Frank J, van Geel M. Mendelian Disorders of Cornification Caused by Defects in Intracellular Calcium Pumps: Mutation Update and Database for Variants in ATP2A2 and ATP2C1 Associated with Darier Disease and Hailey-Hailey Disease. Hum Mutat 2017; 38:343-356. [PMID: 28035777 DOI: 10.1002/humu.23164] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 10/30/2016] [Accepted: 12/26/2016] [Indexed: 12/22/2022]
Abstract
The two disorders of cornification associated with mutations in genes coding for intracellular calcium pumps are Darier disease (DD) and Hailey-Hailey disease (HHD). DD is caused by mutations in the ATP2A2 gene, whereas the ATP2C1 gene is associated with HHD. Both are inherited as autosomal-dominant traits. DD is mainly defined by warty papules in seborrheic and flexural areas, whereas the major symptoms of HHD are vesicles and erosions in flexural skin. Both phenotypes are highly variable. In 12%-40% of DD patients and 12%-55% of HHD patients, no mutations in ATP2A2 or ATP2C1 are found. We provide a comprehensive review of clinical variability in DD and HHD and a review of all reported mutations in ATP2A2 and ATP2C1. Having the entire spectrum of ATP2A2 and ATP2C1 variants allows us to address the question of a genotype-phenotype correlation, which has not been settled unequivocally in DD and HHD. We created a database for all mutations in ATP2A2 and ATP2C1 using the Leiden Open Variation Database (LOVD v3.0), for variants reported in the literature and future inclusions. This data may be of use as a reference tool in further research on treatment of DD and HHD.
Collapse
Affiliation(s)
- Ruud G L Nellen
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW Research School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Peter M Steijlen
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW Research School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maurice A M van Steensel
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW Research School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maaike Vreeburg
- Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | -
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jorge Frank
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Michel van Geel
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW Research School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
68
|
Dong Y, Fernandes C, Liu Y, Wu Y, Wu H, Brophy ML, Deng L, Song K, Wen A, Wong S, Yan D, Towner R, Chen H. Role of endoplasmic reticulum stress signalling in diabetic endothelial dysfunction and atherosclerosis. Diab Vasc Dis Res 2017; 14:14-23. [PMID: 27941052 PMCID: PMC5161113 DOI: 10.1177/1479164116666762] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is well established that diabetes mellitus accelerates atherosclerotic vascular disease. Endothelial injury has been proposed to be the initial event in the pathogenesis of atherosclerosis. Endothelium not only acts as a semi-selective barrier but also serves physiological and metabolic functions. Diabetes or high glucose in circulation triggers a series of intracellular responses and organ damage such as endothelial dysfunction and apoptosis. One such response is high glucose-induced chronic endoplasmic reticulum stress in the endothelium. The unfolded protein response is an acute reaction that enables cells to overcome endoplasmic reticulum stress. However, when chronically persistent, endoplasmic reticulum stress response could ultimately lead to endothelial dysfunction and atherosclerosis. Herein, we discuss the scientific advances in understanding endoplasmic reticulum stress-induced endothelial dysfunction, the pathogenesis of diabetes-accelerated atherosclerosis and endoplasmic reticulum stress as a potential target in therapies for diabetic atherosclerosis.
Collapse
Affiliation(s)
- Yunzhou Dong
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Yanjun Liu
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, University of California-Los Angeles School of Medicine, Los Angeles, CA, USA
| | - Yong Wu
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, University of California-Los Angeles School of Medicine, Los Angeles, CA, USA
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Megan L Brophy
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Deng
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Kai Song
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aiyun Wen
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott Wong
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daoguang Yan
- Department of Biology, Jinan University, Guangzhou, China
| | - Rheal Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
69
|
Structure-Function Relationship of the SERCA Pump and Its Regulation by Phospholamban and Sarcolipin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:77-119. [DOI: 10.1007/978-3-319-55858-5_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
70
|
Yamamoto S, Takehara M, Kabashima Y, Fukutomi T, Ushimaru M. Identification of novel inhibitors of human SPCA2. Biochem Biophys Res Commun 2016; 477:266-70. [PMID: 27297103 DOI: 10.1016/j.bbrc.2016.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022]
Abstract
To identify specific inhibitors of the human secretary pathway Ca(2+)-ATPase 2 (hSPCA2), a recombinant hSPCA2 was expressed in Saccharomyces cerevisiae, and purified by Co(2+)-chelating chromatography. The isolated hSPCA2 catalyzed ATP hydrolysis in the presence of Ca(2+) ions. The Ca(2+) dissociation constant for ATPase activation was 25 nM. hSPCA2 activity was inhibited by thapsigargin, 2,2'-methylenebis(6-tert-butyl-p-cresol), and 4-octylphenol in the low-micromolar concentration range. Unexpectedly, the organic solvent wash from standard laboratory polypropylene microtubes showed strong inhibitory potency toward hSPCA2 activity. The extract was found to comprise mainly primary fatty acid amides (PFAAs) by NMR analysis. Individual PFAAs, especially oleamide and linoleamide, almost completely inhibited hSPCA2 activity with IC50 values of 7.5 μM and 3.8 μM, respectively.
Collapse
Affiliation(s)
- Sachiko Yamamoto
- Department of Chemistry, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan.
| | - Munenori Takehara
- Department of Materials Science, The University of Shiga Prefecture, Hassaka, Hikone 522-8533, Japan
| | - Yoshiki Kabashima
- Department of Chemistry, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Makoto Ushimaru
- Department of Chemistry, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
71
|
Darcy YL, Diaz-Sylvester PL, Copello JA. K201 (JTV519) is a Ca2+-Dependent Blocker of SERCA and a Partial Agonist of Ryanodine Receptors in Striated Muscle. Mol Pharmacol 2016; 90:106-15. [PMID: 27235390 DOI: 10.1124/mol.115.102277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/26/2016] [Indexed: 12/26/2022] Open
Abstract
K201 (JTV-519) may prevent abnormal Ca(2+) leak from the sarcoplasmic reticulum (SR) in the ischemic heart and skeletal muscle (SkM) by stabilizing the ryanodine receptors (RyRs; RyR1 and RyR2, respectively). We tested direct modulation of the SR Ca(2+)-stimulated ATPase (SERCA) and RyRs by K201. In isolated cardiac and SkM SR microsomes, K201 slowed the rate of SR Ca(2+) loading, suggesting potential SERCA block and/or RyR agonism. K201 displayed Ca(2+)-dependent inhibition of SERCA-dependent ATPase activity, which was measured in microsomes incubated with 200, 2, and 0.25 µM Ca(2+) and with the half-maximal K201 inhibitory doses (IC50) estimated at 130, 19, and 9 µM (cardiac muscle) and 104, 13, and 5 µM (SkM SR). K201 (≥5 µM) increased RyR1-mediated Ca(2+) release from SkM microsomes. Maximal K201 doses at 80 µM produced ∼37% of the increase in SkM SR Ca(2+) release observed with the RyR agonist caffeine. K201 (≥5 µM) increased the open probability (Po) of very active ("high-activity") RyR1 of SkM reconstituted into bilayers, but it had no effect on "low-activity" channels. Likewise, K201 activated cardiac RyR2 under systolic Ca(2+) conditions (∼5 µM; channels at Po ∼0.3) but not under diastolic Ca(2+) conditions (∼100 nM; Po < 0.01). Thus, K201-induced the inhibition of SR Ca(2+) leak found in cell-system studies may relate to potentially potent SERCA block under resting Ca(2+) conditions. SERCA block likely produces mild SR depletion in normal conditions but could prevent SR Ca(2+) overload under pathologic conditions, thus precluding abnormal RyR-mediated Ca(2+) release.
Collapse
Affiliation(s)
- Yuanzhao L Darcy
- Department of Pharmacology (Y.L.D., P.L.D.-S., J.A.C.) and Center for Clinical Research (P.L.D.-S.), Southern Illinois University School of Medicine, Springfield, Illinois
| | - Paula L Diaz-Sylvester
- Department of Pharmacology (Y.L.D., P.L.D.-S., J.A.C.) and Center for Clinical Research (P.L.D.-S.), Southern Illinois University School of Medicine, Springfield, Illinois
| | - Julio A Copello
- Department of Pharmacology (Y.L.D., P.L.D.-S., J.A.C.) and Center for Clinical Research (P.L.D.-S.), Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
72
|
Hide and Seek: Protein-coding Sequences Inside "Non-coding" RNAs. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:179-80. [PMID: 27071812 PMCID: PMC4996849 DOI: 10.1016/j.gpb.2016.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 03/31/2016] [Indexed: 11/23/2022]
|
73
|
Li LH, Tian XR, Jiang Z, Zeng LW, He WF, Hu ZP. The Golgi Apparatus: Panel Point of Cytosolic Ca(2+) Regulation. Neurosignals 2016; 21:272-84. [PMID: 23796968 DOI: 10.1159/000350471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/05/2013] [Indexed: 12/21/2022] Open
Abstract
The Golgi apparatus (GA), an intermediate organelle of the cell inner membrane system, plays a key role in protein glycosylation and secretion. In recent years, this organelle has been found to act as a vital intracellular Ca(2+) store because different Ca (2+) regulators, such as the inositol-1,4,5-triphosphate receptor, sarco/endoplasmic reticulum Ca(2+) -ATPase and secretory pathway Ca 2+ -ATPase, were demonstrated to localize on their membrane. The mechanisms involved in Ca(2+) release and uptake in the GA have now been established.Here, based on careful backward looking on compartments and patterns in GA Ca (2+) regulation, we review neurological diseases related to GA calcium remodeling and propose a modified cytosolic Ca(2+) adjustment model, in which GA acts as part of the panel point.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Neurology, Second Xiangya Hospital, Central-South University, Changsha; School of Medicine, Jishou University, Jishou , PR China
| | | | | | | | | | | |
Collapse
|
74
|
Zimmermann R. Components and Mechanisms of Import, Modification, Folding, and Assembly of Immunoglobulins in the Endoplasmic Reticulum. J Clin Immunol 2016; 36 Suppl 1:5-11. [PMID: 26923573 DOI: 10.1007/s10875-016-0250-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 11/27/2022]
Abstract
In mammalian cells, the endoplasmic reticulum (ER) plays a central role in biogenesis of secretory- and plasma membrane proteins as well as in cellular calcium (Ca(2+)) homeostasis. The protein biogenesis function involves an aqueous polypeptide conducting channel in the ER membrane, which is formed by the heterotrimeric Sec61 complex; the store- and receptor-controlled Ca(2+)- release function requires a steep ER to cytosol gradient, with more than 500 μM free Ca(2+) in the ER and 50 nM Ca(2+) in the cytosol. Recent work demonstrated that the Sec61 complex can transiently allow passive ER Ca(2+) efflux. Therefore, gating of the Sec61 channel has to be tightly regulated by substrates as well as allosteric effectors. The ER lumenal Hsp70-type molecular chaperone, immunoglobulin heavy-chain binding protein (BiP), together with its membrane resident co-chaperone Sec63 facilitates channel opening in a precursor specific manner. In addition, BiP, together with its lumenal co-chaperones, ERj3 and ERj6, as well as cytosolic Ca(2+)-calmodulin (CaM) in collaboration with the membrane resident Sec62 protein represent allosteric effectors for channel closure. In the course of the last couple of years several human diseases were linked to the Sec61 complex and its effectors and were termed Sec61-channelopathies.
Collapse
Affiliation(s)
- Richard Zimmermann
- Competence Center for Molecular Medicine, Saarland University Medical School, Building 44, D-66421, Homburg, Germany.
| |
Collapse
|
75
|
Li LH, Tian XR, Hu ZP. The key target of neuroprotection after the onset of ischemic stroke: secretory pathway Ca(2+)-ATPase 1. Neural Regen Res 2015; 10:1271-8. [PMID: 26487855 PMCID: PMC4590240 DOI: 10.4103/1673-5374.162760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The regulatory mechanisms of cytoplasmic Ca(2+) after myocardial infarction-induced Ca(2+) overload involve secretory pathway Ca(2+)-ATPase 1 and the Golgi apparatus and are well understood. However, the effect of Golgi apparatus on Ca(2+) overload after cerebral ischemia and reperfusion remains unclear. Four-vessel occlusion rats were used as animal models of cerebral ischemia. The expression of secretory pathway Ca(2+)-ATPase 1 in the cortex and hippocampus was detected by immunoblotting, and Ca(2+) concentrations in the cytoplasm and Golgi vesicles were determined. Results showed an overload of cytoplasmic Ca(2+) during ischemia and reperfusion that reached a peak after reperfusion. Levels of Golgi Ca(2+) showed an opposite effect. The expression of Golgi-specific secretory pathway Ca(2+)-ATPase 1 in the cortex and hippocampus decreased before ischemia and reperfusion, and increased after reperfusion for 6 hours. This variation was similar to the alteration of calcium in separated Golgi vesicles. These results indicate that the Golgi apparatus participates in the formation and alleviation of calcium overload, and that secretory pathway Ca(2+)-ATPase 1 tightly responds to ischemia and reperfusion in nerve cells. Thus, we concluded that secretory pathway Ca(2+)-ATPase 1 plays an essential role in cytosolic calcium regulation and its expression can be used as a marker of Golgi stress, responding to cerebral ischemia and reperfusion. The secretory pathway Ca(2+)-ATPase 1 can be an important neuroprotective target of ischemic stroke.
Collapse
Affiliation(s)
- Li-Hua Li
- School of Medicine, Jishou University, Jishou, Hunan Province, China ; Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiang-Rong Tian
- School of Medicine, Jishou University, Jishou, Hunan Province, China ; College of Biology and Environmental Science, Jishou University, Jishou, Hunan Province, China
| | - Zhi-Ping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
76
|
Contreras-Leal E, Hernández-Oliveras A, Flores-Peredo L, Zarain-Herzberg Á, Santiago-García J. Histone deacetylase inhibitors promote the expression of ATP2A3
gene in breast cancer cell lines. Mol Carcinog 2015; 55:1477-85. [DOI: 10.1002/mc.22402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/26/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Erika Contreras-Leal
- Programa de Doctorado en Ciencias Biomédicas; Universidad Veracruzana; Veracruz México
- Instituto de Investigaciones Biol; ó; gicas; Universidad Veracruzana; Xalapa Veracruz México
| | | | - Lucía Flores-Peredo
- Departamento de Bioquímica; Facultad de Medicina; Universidad Nacional Autónoma de México; México
| | - Ángel Zarain-Herzberg
- Departamento de Bioquímica; Facultad de Medicina; Universidad Nacional Autónoma de México; México
| | - Juan Santiago-García
- Instituto de Investigaciones Biol; ó; gicas; Universidad Veracruzana; Xalapa Veracruz México
| |
Collapse
|
77
|
Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava JA, Castaño-Rodriguez C, Fernandez-Delgado R, Torres J, Aguilella VM, Enjuanes L. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 2015; 485:330-9. [PMID: 26331680 PMCID: PMC4619128 DOI: 10.1016/j.virol.2015.08.010] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/30/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) envelope (E) protein is a viroporin involved in virulence. E protein ion channel (IC) activity is specifically correlated with enhanced pulmonary damage, edema accumulation and death. IL-1β driven proinflammation is associated with those pathological signatures, however its link to IC activity remains unknown. In this report, we demonstrate that SARS-CoV E protein forms protein–lipid channels in ERGIC/Golgi membranes that are permeable to calcium ions, a highly relevant feature never reported before. Calcium ions together with pH modulated E protein pore charge and selectivity. Interestingly, E protein IC activity boosted the activation of the NLRP3 inflammasome, leading to IL-1β overproduction. Calcium transport through the E protein IC was the main trigger of this process. These findings strikingly link SARS-CoV E protein IC induced ionic disturbances at the cell level to immunopathological consequences and disease worsening in the infected organism. SARS-CoV E protein forms calcium ion channels, a novel highly relevant function. Transport of calcium ions through E protein channel stimulates the inflammasome. Inflammasome derived exacerbated proinflammation causes SARS worsening. E protein ion channel and its driven proinflammation may be targets to treat SARS.
Collapse
Affiliation(s)
- Jose L Nieto-Torres
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carmina Verdiá-Báguena
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, 12071 Castellón, Spain
| | - Jose M Jimenez-Guardeño
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jose A Regla-Nava
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jaume Torres
- School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, Singapore 637551, Singapore
| | - Vicente M Aguilella
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, 12071 Castellón, Spain.
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
78
|
Zhang C, Bose DD, Thomas DW. Paradoxical effects of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) activator gingerol on NG115-401L neuronal cells: failure to augment ER Ca(2+) uptake and protect against ER stress-induced cell death. Eur J Pharmacol 2015; 762:165-73. [PMID: 26033206 DOI: 10.1016/j.ejphar.2015.05.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/30/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
Perturbation of endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress are thought to underlie a spectrum of defects encompassing major societal diseases such as diabetes and neurodegeneration. In this report we used the NG115-401L neuronal cell line to test the hypothesis that neuroprotection against ER stress may be conferred by pharmacological stimulation of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pumps. We report that the SERCA activator gingerol stimulates SR microsomal Ca(2+)-ATPase activity and restores enzymatic function in the presence of potent SERCA blockers. Yet, enzyme protection in isolated membranes does not extend to protection from ER stress in intact NG115-401L cells. Surprisingly, gingerol not only failed to protect cells from SERCA blocker-induced ER stress and cell death, the compound itself potently induced cell death. Also, we report that gingerol failed to augment ER Ca(2+) uptake, a result contradictory to what has been observed in muscle. Unexpectedly, gingerol discharged ER Ca(2+) stores and coupled robustly to Ca(2+) influx pathways. These observations suggest that gingerol is not acting as a traditional SERCA blocker as thapsigargin mediated ER Ca(2+) store depletion fails to stimulate Ca(2+) influx in the NG115-401L cell phenotype. Moreover, cell death induced by gingerol, in contrast to the classic SERCA inhibitors, is not accompanied by increases in reactive oxygen species production or enzymatic caspase activity. These results argue for a finer regulatory control on SERCA function with gingerol's actions revealing potentially novel routes of coupling altered pump regulation to the assembly of functional Ca(2+) influx units and activation of cell death pathways.
Collapse
Affiliation(s)
- Changfeng Zhang
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, United States
| | - Diptiman D Bose
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, 1215 Wilbraham Road, Springfield, MA 01119, United States
| | - David W Thomas
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, United States.
| |
Collapse
|
79
|
Liang J, Kulasiri D, Samarasinghe S. Ca2+ dysregulation in the endoplasmic reticulum related to Alzheimer's disease: A review on experimental progress and computational modeling. Biosystems 2015; 134:1-15. [PMID: 25998697 DOI: 10.1016/j.biosystems.2015.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating, incurable neurodegenerative disease affecting millions of people worldwide. Dysregulation of intracellular Ca(2+) signaling has been observed as an early event prior to the presence of clinical symptoms of AD and is believed to be a crucial factor contributing to its pathogenesis. The progressive and sustaining increase in the resting level of cytosolic Ca(2+) will affect downstream activities and neural functions. This review focuses on the issues relating to the increasing Ca(2+) release from the endoplasmic reticulum (ER) observed in AD neurons. Numerous research papers have suggested that the dysregulation of ER Ca(2+) homeostasis is associated with mutations in the presenilin genes and amyloid-β oligomers. These disturbances could happen at many different points in the signaling process, directly affecting ER Ca(2+) channels or interfering with related pathways, which makes it harder to reveal the underlying mechanisms. This review paper also shows that computational modeling is a powerful tool in Ca(2+) signaling studies and discusses the progress in modeling related to Ca(2+) dysregulation in AD research.
Collapse
Affiliation(s)
- Jingyi Liang
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand.
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Informatics and Enabling Technologies, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
80
|
Abstract
The understanding of manganese (Mn) biology, in particular its cellular regulation and role in neurological disease, is an area of expanding interest. Mn is an essential micronutrient that is required for the activity of a diverse set of enzymatic proteins (e.g., arginase and glutamine synthase). Although necessary for life, Mn is toxic in excess. Thus, maintaining appropriate levels of intracellular Mn is critical. Unlike other essential metals, cell-level homeostatic mechanisms of Mn have not been identified. In this review, we discuss common forms of Mn exposure, absorption, and transport via regulated uptake/exchange at the gut and blood-brain barrier and via biliary excretion. We present the current understanding of cellular uptake and efflux as well as subcellular storage and transport of Mn. In addition, we highlight the Mn-dependent and Mn-responsive pathways implicated in the growing evidence of its role in Parkinson's disease and Huntington's disease. We conclude with suggestions for future focuses of Mn health-related research.
Collapse
Affiliation(s)
- Kyle J Horning
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232; , ,
| | | | | | | | | |
Collapse
|
81
|
Smith RW, Cash P, Hogg DW, Buck LT. Proteomic changes in the brain of the western painted turtle (Chrysemys picta bellii) during exposure to anoxia. Proteomics 2015; 15:1587-97. [PMID: 25583675 DOI: 10.1002/pmic.201300229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/03/2014] [Accepted: 01/09/2015] [Indexed: 01/10/2023]
Abstract
During anoxia, overall protein synthesis is almost undetectable in the brain of the western painted turtle. The aim of this investigation was to address the question of whether there are alterations to specific proteins by comparing the normoxic and anoxic brain proteomes. Reductions in creatine kinase, hexokinase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase reflected the reduced production of adenosine triphosphate (ATP) during anoxia while the reduction in transitional endoplasmic reticulum ATPase reflected the conservation of ATP or possibly a decrease in intracellular Ca(2+). In terms of neural protection programed cell death 6 interacting protein (PDCD6IP; a protein associated with apoptosis), dihydropyrimidinase-like protein, t-complex protein, and guanine nucleotide protein G(o) subunit alpha (Go alpha; proteins associated with neural degradation and impaired cognitive function) also declined. A decline in actin, gelsolin, and PDCD6IP, together with an increase in tubulin, also provided evidence for the induction of a neurological repair response. Although these proteomic alterations show some similarities with the crucian carp (another anoxia-tolerant species), there are species-specific responses, which supports the theory of no single strategy for anoxia tolerance. These findings also suggest the anoxic turtle brain could be an etiological model for investigating mammalian hypoxic damage and clinical neurological disorders.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
82
|
Altshuler I, McLeod AM, Colbourne JK, Yan ND, Cristescu ME. Synergistic interactions of biotic and abiotic environmental stressors on gene expression. Genome 2015; 58:99-109. [DOI: 10.1139/gen-2015-0045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Understanding the response of organisms to multiple stressors is critical for predicting if populations can adapt to rapid environmental change. Natural and anthropogenic stressors often interact, complicating general predictions. In this study, we examined the interactive and cumulative effects of two common environmental stressors, lowered calcium concentration, an anthropogenic stressor, and predator presence, a natural stressor, on the water flea Daphnia pulex. We analyzed expression changes of five genes involved in calcium homeostasis — cuticle proteins (Cutie, Icp2), calbindin (Calb), and calcium pump and channel (Serca and Ip3R) — using real-time quantitative PCR (RT-qPCR) in a full factorial experiment. We observed strong synergistic interactions between low calcium concentration and predator presence. While the Ip3R gene was not affected by the stressors, the other four genes were affected in their transcriptional levels by the combination of the stressors. Transcriptional patterns of genes that code for cuticle proteins (Cutie and Icp2) and a sarcoplasmic calcium pump (Serca) only responded to the combination of stressors, changing their relative expression levels in a synergistic response, while a calcium-binding protein (Calb) responded to low calcium stress and the combination of both stressors. The expression pattern of these genes (Cutie, Icp2, and Serca) were nonlinear, yet they were dose dependent across the calcium gradient. Multiple stressors can have complex, often unexpected effects on ecosystems. This study demonstrates that the dominant interaction for the set of tested genes appears to be synergism. We argue that gene expression patterns can be used to understand and predict the type of interaction expected when organisms are exposed simultaneously to natural and anthropogenic stressors.
Collapse
Affiliation(s)
| | - Anne M. McLeod
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | | | - Norman D. Yan
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
83
|
Stammers AN, Susser SE, Hamm NC, Hlynsky MW, Kimber DE, Kehler DS, Duhamel TA. The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA). Can J Physiol Pharmacol 2015; 93:843-54. [PMID: 25730320 DOI: 10.1139/cjpp-2014-0463] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The sarco(endo)plasmic reticulum calcium ATPase (SERCA) is responsible for transporting calcium (Ca(2+)) from the cytosol into the lumen of the sarcoplasmic reticulum (SR) following muscular contraction. The Ca(2+) sequestering activity of SERCA facilitates muscular relaxation in both cardiac and skeletal muscle. There are more than 10 distinct isoforms of SERCA expressed in different tissues. SERCA2a is the primary isoform expressed in cardiac tissue, whereas SERCA1a is the predominant isoform expressed in fast-twitch skeletal muscle. The Ca(2+) sequestering activity of SERCA is regulated at the level of protein content and is further modified by the endogenous proteins phospholamban (PLN) and sarcolipin (SLN). Additionally, several novel mechanisms, including post-translational modifications and microRNAs (miRNAs) are emerging as integral regulators of Ca(2+) transport activity. These regulatory mechanisms are clinically relevant, as dysregulated SERCA function has been implicated in the pathology of several disease states, including heart failure. Currently, several clinical trials are underway that utilize novel therapeutic approaches to restore SERCA2a activity in humans. The purpose of this review is to examine the regulatory mechanisms of the SERCA pump, with a particular emphasis on the influence of exercise in preventing the pathological conditions associated with impaired SERCA function.
Collapse
Affiliation(s)
- Andrew N Stammers
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Shanel E Susser
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.,c Department of Physiology, Faculty of Health Sciences, University of Manitoba
| | - Naomi C Hamm
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Michael W Hlynsky
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Dustin E Kimber
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - D Scott Kehler
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Todd A Duhamel
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.,c Department of Physiology, Faculty of Health Sciences, University of Manitoba
| |
Collapse
|
84
|
Abstract
In mammalian cells, the rough endoplasmic reticulum or ER plays a central role in the biogenesis of most extracellular plus many organellar proteins and in cellular calcium homeostasis. Therefore, this organelle comprises molecular chaperones that are involved in import, folding/assembly, export, and degradation of polypeptides in millimolar concentrations. In addition, there are calcium channels/pumps and signal transduction components present in the ER membrane that affect and are affected by these processes. The ER lumenal Hsp70, termed immunoglobulin-heavy chain binding protein or BiP, is the central player in all these activities and involves up to seven different co-chaperones, i.e. ER-membrane integrated as well as ER-lumenal Hsp40s, which are termed ERj or ERdj, and two nucleotide exchange factors.
Collapse
|
85
|
Voccoli V, Tonazzini I, Signore G, Caleo M, Cecchini M. Role of extracellular calcium and mitochondrial oxygen species in psychosine-induced oligodendrocyte cell death. Cell Death Dis 2014; 5:e1529. [PMID: 25412308 PMCID: PMC4260741 DOI: 10.1038/cddis.2014.483] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/22/2014] [Accepted: 10/06/2014] [Indexed: 02/06/2023]
Abstract
Globoid cell leukodystrophy (GLD) is a metabolic disease caused by mutations in the galactocerebrosidase (GALC) gene. GALC is a lysosomal enzyme whose function is to degrade galacto-lipids, including galactosyl-ceramide and galactosyl-sphingosine (psychosine, PSY). GALC loss of function causes progressive intracellular accumulation of PSY. It is widely held that PSY is the main trigger for the degeneration of myelinating cells and progressive white-matter loss. However, still little is known about the molecular mechanisms by which PSY imparts toxicity. Here, we address the role of calcium dynamics during PSY-induced cell death. Using the human oligodendrocyte cell line MO3.13, we report that cell death by PSY is accompanied by robust cytosolic and mitochondrial calcium (Ca(2+)) elevations, and by mitochondrial reactive oxygen species (ROS) production. Importantly, we demonstrate that the reduction of extracellular calcium content by the chelating agent ethylenediaminetetraacetic acid can decrease intra-mitochondrial ROS production and enhance cell viability. Antioxidant administration also reduces mitochondrial ROS production and cell loss, but this treatment does not synergize with Ca(2+) chelation. Our results disclose novel intracellular pathways involved in PSY-induced death that may be exploited for therapeutic purposes to delay GLD onset and/or slow down its progression.
Collapse
Affiliation(s)
- V Voccoli
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - I Tonazzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - G Signore
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - M Caleo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy
| | - M Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
86
|
Maggio N, Vlachos A. Synaptic plasticity at the interface of health and disease: New insights on the role of endoplasmic reticulum intracellular calcium stores. Neuroscience 2014; 281:135-46. [PMID: 25264032 DOI: 10.1016/j.neuroscience.2014.09.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Work from the past 40years has unraveled a wealth of information on the cellular and molecular mechanisms underlying synaptic plasticity and their relevance in physiological brain function. At the same time, it has been recognized that a broad range of neurological diseases may be accompanied by severe alterations in synaptic plasticity, i.e., 'maladaptive synaptic plasticity', which could initiate and sustain the remodeling of neuronal networks under pathological conditions. Nonetheless, our current knowledge on the specific contribution and interaction of distinct forms of synaptic plasticity (including metaplasticity and homeostatic plasticity) in the context of pathological brain states remains limited. This review focuses on recent experimental evidence, which highlights the fundamental role of endoplasmic reticulum-mediated Ca(2+) signals in modulating the duration, direction, extent and type of synaptic plasticity. We discuss the possibility that intracellular Ca(2+) stores may regulate synaptic plasticity and hence behavioral and cognitive functions at the interface between physiology and pathology.
Collapse
Affiliation(s)
- N Maggio
- Talpiot Medical Leadership Program, Department of Neurology, The Chaim Sheba Medical Center, 52621 Tel HaShomer, Israel
| | - A Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
87
|
Ait-Ghezali L, Arbabian A, Jeibmann A, Hasselblatt M, Hallaert GG, Van den Broecke C, Gray F, Brouland JP, Varin-Blank N, Papp B. Loss of endoplasmic reticulum calcium pump expression in choroid plexus tumours. Neuropathol Appl Neurobiol 2014; 40:726-35. [DOI: 10.1111/nan.12098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/08/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Lamia Ait-Ghezali
- Institut National de la Santé et de la Recherche Médicale; UMR U978; Bobigny France
- Université Paris-13; PRES Sorbonne Paris-Cité; Bobigny France
| | | | - Astrid Jeibmann
- Institute of Neuropathology; University Hospital Münster; Münster Germany
| | - Martin Hasselblatt
- Institute of Neuropathology; University Hospital Münster; Münster Germany
| | | | | | - Françoise Gray
- AP-HP; Service d'Anatomie et Cytologie Pathologiques; Hôpital Lariboisière; Paris France
| | - Jean-Philippe Brouland
- AP-HP; Service d'Anatomie et Cytologie Pathologiques; Hôpital Lariboisière; Paris France
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale; UMR U978; Bobigny France
- Université Paris-13; PRES Sorbonne Paris-Cité; Bobigny France
| | - Bela Papp
- Institut National de la Santé et de la Recherche Médicale; UMR U978; Bobigny France
- Université Paris-13; PRES Sorbonne Paris-Cité; Bobigny France
| |
Collapse
|
88
|
Lu T, Hu Z, Zeng L, Jiang Z. Changes in secretory pathway Ca(2+)-ATPase 2 following focal cerebral ischemia/reperfusion injury. Neural Regen Res 2014; 8:76-82. [PMID: 25206375 PMCID: PMC4107497 DOI: 10.3969/j.issn.1673-5374.2013.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/18/2012] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate changes in secretory pathway Ca2+-ATPase 2 expression following cerebral ischemia/reperfusion injury, and to define the role of Ca2+-ATPases in oxidative stress. A rat model of cerebral ischemia/reperfusion injury was established using the unilateral middle cerebral artery occlusion method. Immunohistochemistry and reverse transcription-PCR assay results showed that compared with the control group, the expression of secretory pathway Ca2+-ATPase 2 protein and mRNA in the cerebral cortex and hippocampus of male rats did not significantly change during the ischemic period. However, secretory pathway Ca2+-ATPase 2 protein and mRNA expression reduced gradually at 1, 3, and 24 hours during the reperfusion period. Our experimental findings indicate that levels of secretory pathway Ca2+-ATPase 2 protein and mRNA expression in brain tissue change in response to cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Tonglin Lu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
89
|
Wrzosek A. The potassium channel opener NS1619 modulates calcium homeostasis in muscle cells by inhibiting SERCA. Cell Calcium 2014; 56:14-24. [DOI: 10.1016/j.ceca.2014.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/25/2014] [Accepted: 03/29/2014] [Indexed: 12/31/2022]
|
90
|
Tadic V, Prell T, Lautenschlaeger J, Grosskreutz J. The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8:147. [PMID: 24910594 PMCID: PMC4039088 DOI: 10.3389/fncel.2014.00147] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. Although the etiology remains unclear, disturbances in calcium homoeostasis and protein folding are essential features of neurodegeneration in this disorder. Here, we review recent research findings on the interaction between endoplasmic reticulum (ER) and mitochondria, and its effect on calcium signaling and oxidative stress. We further provide insights into studies, providing evidence that structures of the ER mitochondria calcium cycle serve as a promising targets for therapeutic approaches for treatment of ALS.
Collapse
Affiliation(s)
- Vedrana Tadic
- Hans Berger Department of Neurology, Jena University HospitalJena, Germany
| | | | | | | |
Collapse
|
91
|
Montalbetti N, Dalghi MG, Albrecht C, Hediger MA. Nutrient transport in the mammary gland: calcium, trace minerals and water soluble vitamins. J Mammary Gland Biol Neoplasia 2014; 19:73-90. [PMID: 24567109 DOI: 10.1007/s10911-014-9317-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/22/2014] [Indexed: 01/19/2023] Open
Abstract
Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland,
| | | | | | | |
Collapse
|
92
|
Johnson GG, White MC, Wu JH, Vallejo M, Grimaldi M. The deadly connection between endoplasmic reticulum, Ca2+, protein synthesis, and the endoplasmic reticulum stress response in malignant glioma cells. Neuro Oncol 2014; 16:1086-99. [PMID: 24569545 DOI: 10.1093/neuonc/nou012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) is involved in Ca(2+) signaling and protein processing. Accumulation of unfolded proteins following ER Ca(2+) depletion triggers the ER stress response (ERSR), which facilitates protein folding and removal of damaged proteins and can induce cell death. Unfolded proteins bind to chaperones, such as the glucose-regulated protein (GRP)78 and cause the release of GRP78-repressed proteins executing ERSR. METHODS Several glioma cell lines and primary astrocytes were used to analyze ERSR using standard western blots, reverse transcription-PCR, viability assays, and single cell Ca(2+) imaging. RESULTS ERSR induction with thapsigargin results in a more intense ERSR associated with a larger loss of ER Ca(2+), activation of ER-associated caspases (4/12) and caspase 3, and a higher rate of malignant glioma cell death than in normal glial cells. Malignant glioma cells have higher levels of protein synthesis and expression of the translocon (a component of the ribosomal complex, guiding protein entry in the ER), the activity of which is associated with the loss of ER Ca(2+). Our experiments confirm increased expression of the translocon in malignant glioma cells. In addition, blockade of the ribosome-translocon complex with agents differently affecting translocon Ca(2+) permeability causes opposite effects on ERSR deployment and death of malignant glioma cells. CONCLUSIONS Excessive ER Ca(2+) loss due to translocon activity appears to be responsible for the enhancement of ERSR, leading to the death of glioma cells. The results reveal a characteristic of malignant glioma cells that could be exploited to develop new therapeutic strategies to treat incurable glial malignancies.
Collapse
Affiliation(s)
- Guyla G Johnson
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, Alabama (G.G.J., M.C.W., J-H.W., M.G.); Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama (M.V.)
| | - Misti C White
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, Alabama (G.G.J., M.C.W., J-H.W., M.G.); Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama (M.V.)
| | - Jian-He Wu
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, Alabama (G.G.J., M.C.W., J-H.W., M.G.); Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama (M.V.)
| | - Matthew Vallejo
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, Alabama (G.G.J., M.C.W., J-H.W., M.G.); Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama (M.V.)
| | - Maurizio Grimaldi
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, Alabama (G.G.J., M.C.W., J-H.W., M.G.); Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama (M.V.)
| |
Collapse
|
93
|
Shareef MA, Anwer LA, Poizat C. Cardiac SERCA2A/B: Therapeutic targets for heart failure. Eur J Pharmacol 2014; 724:1-8. [DOI: 10.1016/j.ejphar.2013.12.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 02/05/2023]
|
94
|
Sikkel MB, Hayward C, MacLeod KT, Harding SE, Lyon AR. SERCA2a gene therapy in heart failure: an anti-arrhythmic positive inotrope. Br J Pharmacol 2014; 171:38-54. [PMID: 24138023 PMCID: PMC3874695 DOI: 10.1111/bph.12472] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 01/14/2023] Open
Abstract
Therapeutic options that directly enhance cardiomyocyte contractility in chronic heart failure (HF) therapy are currently limited and do not improve prognosis. In fact, most positive inotropic agents, such as β-adrenoreceptor agonists and PDE inhibitors, which have been assessed in HF patients, cause increased mortality as a result of arrhythmia and sudden cardiac death. Cardiac sarcoplasmic reticulum Ca(2)(+) -ATPase2a (SERCA2a) is a key protein involved in sequestration of Ca(2)(+) into the sarcoplasmic reticulum (SR) during diastole. There is a reduction of SERCA2a protein level and function in HF, which has been successfully targeted via viral transfection of the SERCA2a gene into cardiac tissue in vivo. This has enhanced cardiac contractility and reduced mortality in several preclinical models of HF. Theoretical concerns have been raised regarding the possibility of arrhythmogenic adverse effects of SERCA2a gene therapy due to enhanced SR Ca(2)(+) load and induction of SR Ca(2)(+) leak as a result. Contrary to these concerns, SERCA2a gene therapy in a wide variety of preclinical models, including acute ischaemia/reperfusion, chronic pressure overload and chronic myocardial infarction, has resulted in a reduction in ventricular arrhythmias. The potential mechanisms for this unexpected beneficial effect, as well as mechanisms of enhancement of cardiac contractile function, are reviewed in this article.
Collapse
Affiliation(s)
- Markus B Sikkel
- Myocardial Function Section, National Heart and Lung Institute, Imperial CollegeLondon, UK
| | - Carl Hayward
- Myocardial Function Section, National Heart and Lung Institute, Imperial CollegeLondon, UK
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton HospitalLondon, UK
| | - Kenneth T MacLeod
- Myocardial Function Section, National Heart and Lung Institute, Imperial CollegeLondon, UK
| | - Sian E Harding
- Myocardial Function Section, National Heart and Lung Institute, Imperial CollegeLondon, UK
| | - Alexander R Lyon
- Myocardial Function Section, National Heart and Lung Institute, Imperial CollegeLondon, UK
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton HospitalLondon, UK
| |
Collapse
|
95
|
Begum G, Harvey L, Dixon CE, Sun D. ER stress and effects of DHA as an ER stress inhibitor. Transl Stroke Res 2013; 4:635-42. [PMID: 24323417 PMCID: PMC3864671 DOI: 10.1007/s12975-013-0282-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 11/30/2022]
Abstract
The endoplasmic reticulum (ER) functions in the synthesis, folding, modification, and transport of newly synthesized transmembrane and secretory proteins. The ER also has important roles in the storage of intracellular Ca(2+) and regulation of Ca(2+) homeostasis. The integrity of the Ca(2+) homeostasis in the ER lumen is vital for proper folding of proteins. Dysregulation of ER Ca(2+) could result in an increase in unfolded or misfolded proteins and ER stress. ER stress triggers activation of the unfolded protein response (UPR), which is a fundamentally adaptive cell response and functions as a cytoprotective mechanism by over-expression of relevant chaperones and the global shutdown of protein synthesis. UPR activation occurs when three key ER membrane-sensor proteins detect an accumulation of aberrant proteins. The UPR acts to alleviate ER stress, but if the stress is too severe or prolonged, apoptosis will be triggered. In this review, we focused on ER stress and the effects of docosahexaenoic acid (DHA) on ER stress. DHA and its bioactive compounds, such as protectins and resolvins, provide neuroprotection against oxidative stress and apoptosis and have the ability to resolve inflammation in neurological diseases. New studies reveal that DHA blocks inositol trisphosphate receptor (IP3R)-mediated ER Ca(2+) depletion and ER stress. The administration of DHA post-traumatic brain injury (TBI) reduces ER stress, aberrant protein accumulation, and neurological deficits. Therefore, DHA presents therapeutic potentials for TBI via its pleiotropic effects including inhibition of ER stress.
Collapse
Affiliation(s)
- Gulnaz Begum
- Dept. of Neurology, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Lloyd Harvey
- Dept. of Neurology, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - C. Edward Dixon
- Dept. of Neurosurgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Dandan Sun
- Dept. of Neurology, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
96
|
Prell T, Lautenschläger J, Grosskreutz J. Calcium-dependent protein folding in amyotrophic lateral sclerosis. Cell Calcium 2013; 54:132-43. [DOI: 10.1016/j.ceca.2013.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 12/25/2022]
|
97
|
Beca S, Ahmad F, Shen W, Liu J, Makary S, Polidovitch N, Sun J, Hockman S, Chung YW, Movesian M, Murphy E, Manganiello V, Backx PH. Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with sarcoplasmic reticulum calcium ATPase type 2a signaling complexes in mouse heart. Circ Res 2013; 112:289-97. [PMID: 23168336 PMCID: PMC3579621 DOI: 10.1161/circresaha.111.300003] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/19/2012] [Indexed: 11/16/2022]
Abstract
RATIONALE cAMP is an important regulator of myocardial function, and regulation of cAMP hydrolysis by cyclic nucleotide phosphodiesterases (PDEs) is a critical determinant of the amplitude, duration, and compartmentation of cAMP-mediated signaling. The role of different PDE isozymes, particularly PDE3A vs PDE3B, in the regulation of heart function remains unclear. OBJECTIVE To determine the relative contribution of PDE3A vs PDE3B isozymes in the regulation of heart function and to dissect the molecular basis for this regulation. METHODS AND RESULTS Compared with wild-type littermates, cardiac contractility and relaxation were enhanced in isolated hearts from PDE3A(-/-), but not PDE3B(-/-), mice. Furthermore, PDE3 inhibition had no effect on PDE3A(-/-) hearts but increased contractility in wild-type (as expected) and PDE3B(-/-) hearts to levels indistinguishable from PDE3A(-/-). The enhanced contractility in PDE3A(-/-) hearts was associated with cAMP-dependent elevations in Ca(2+) transient amplitudes and increased sarcoplasmic reticulum (SR) Ca(2+) content, without changes in L-type Ca(2+) currents of cardiomyocytes, as well as with increased SR Ca(2+)-ATPase type 2a activity, SR Ca(2+) uptake rates, and phospholamban phosphorylation in SR fractions. Consistent with these observations, PDE3 activity was reduced ≈8-fold in SR fractions from PDE3A(-/-) hearts. Coimmunoprecipitation experiments further revealed that PDE3A associates with both SR calcium ATPase type 2a and phospholamban in a complex that also contains A-kinase anchoring protein-18, protein kinase type A-RII, and protein phosphatase type 2A. CONCLUSIONS Our data support the conclusion that PDE3A is the primary PDE3 isozyme modulating basal contractility and SR Ca(2+) content by regulating cAMP in microdomains containing macromolecular complexes of SR calcium ATPase type 2a-phospholamban-PDE3A.
Collapse
Affiliation(s)
- Sanja Beca
- Department of Physiology, University of Toronto, Toronto, Ontario
| | - Faiyaz Ahmad
- The Cardiovascular Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, Bethesda
| | - Weixing Shen
- The Cardiovascular Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, Bethesda
| | - Jie Liu
- Department of Physiology, University of Toronto, Toronto, Ontario
| | - Samy Makary
- Department of Physiology, University of Toronto, Toronto, Ontario
- Division of Cardiology, University Health Network, Toronto, Ontario
| | | | - Junhui Sun
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda
| | - Steven Hockman
- The Cardiovascular Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, Bethesda
| | - Youn Wook Chung
- The Cardiovascular Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, Bethesda
| | - Matthew Movesian
- Cardiology Section, VA Salt Lake City Health Care System, Salt Lake City, UT
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda
| | - Vincent Manganiello
- The Cardiovascular Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, Bethesda
| | - Peter H. Backx
- Department of Physiology, University of Toronto, Toronto, Ontario
- Department of Medicine, University of Toronto, Toronto, Ontario
- Division of Cardiology, University Health Network, Toronto, Ontario
| |
Collapse
|
98
|
Transport and distribution of 45Ca2+ in the perfused rat liver and the influence of adjuvant-induced arthritis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:249-62. [DOI: 10.1016/j.bbadis.2012.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/30/2012] [Accepted: 10/06/2012] [Indexed: 12/22/2022]
|
99
|
Altshuler I, Vaillant JJ, Xu S, Cristescu ME. The evolutionary history of sarco(endo)plasmic calcium ATPase (SERCA). PLoS One 2012; 7:e52617. [PMID: 23285113 PMCID: PMC3527596 DOI: 10.1371/journal.pone.0052617] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/20/2012] [Indexed: 12/18/2022] Open
Abstract
Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na+/K+ transporters, H+/K+ transporters, and plasma membrane Ca2+ pumps. Here, we examine the evolutionary history of one such transporter, the Sarco(endo)plasmic reticulum calcium ATPase (SERCA), which maintains calcium homeostasis in the cell by actively pumping Ca2+ into the sarco(endo)plasmic reticulum. Our protein-based phylogenetic analyses across Eukaryotes revealed two monophyletic clades of SERCA proteins, one containing animals, fungi, and plants, and the other consisting of plants and protists. Our analyses suggest that the three known SERCA proteins in vertebrates arose through two major gene duplication events after the divergence from tunicates, but before the separation of fishes and tetrapods. In plants, we recovered two SERCA clades, one being the sister group to Metazoa and the other to Apicomplexa clade, suggesting an ancient duplication in an early eukaryotic ancestor, followed by subsequent loss of one copy in Opisthokonta, the other in protists, and retention of both in plants. We also report relatively recent and independent gene duplication events within invertebrate taxa including tunicates and the leech Helobdella robusta. Thus, it appears that both ancient and recent gene duplication events have played an important role in the evolution of this ubiquitous gene family across the eukaryotic domain.
Collapse
Affiliation(s)
- Ianina Altshuler
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada.
| | | | | | | |
Collapse
|
100
|
Arbabian A, Brouland JP, Apáti Á, Pászty K, Hegedűs L, Enyedi Á, Chomienne C, Papp B. Modulation of endoplasmic reticulum calcium pump expression during lung cancer cell differentiation. FEBS J 2012; 280:5408-18. [PMID: 23157274 DOI: 10.1111/febs.12064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/23/2012] [Accepted: 11/07/2012] [Indexed: 12/14/2022]
Abstract
Cellular calcium signaling plays important roles in several signal transduction pathways that control proliferation, differentiation and apoptosis. In epithelial cells calcium signaling is initiated mainly by calcium release from endoplasmic-reticulum-associated intracellular calcium pools. Because calcium is accumulated in the endoplasmic reticulum by sarco/endoplasmic reticulum calcium ATPases (SERCA), these enzymes play a critical role in the control of calcium-dependent cell activation, growth and survival. We investigated the modulation of SERCA expression and function in human lung adenocarcinoma cells. In addition to the ubiquitous SERCA2 enzyme, the SERCA3 isoform was also expressed at variable levels. SERCA3 expression was selectively enhanced during cell differentiation in lung cancer cells, and marked SERCA3 expression was found in fully differentiated normal bronchial epithelium. As studied by using a recombinant fluorescent calcium probe, induction of the expression of SERCA3, a lower calcium affinity pump, was associated with decreased intracellular calcium storage, whereas the amplitude of capacitative calcium influx remained unchanged. Our observations indicate that the calcium homeostasis of the endoplasmic reticulum in lung adenocarcinoma cells presents a functional defect due to decreased SERCA3 expression that is corrected during pharmacologically induced differentiation. The data presented in this work show, for the first time, that endoplasmic reticulum calcium storage is anomalous in lung cancer cells, and suggest that SERCA3 may serve as a useful new phenotypic marker for the study of lung epithelial differentiation.
Collapse
Affiliation(s)
- Atousa Arbabian
- Institut National de la Santé et de la Recherche Médicale, UMR-S 940, Paris, France; Institut Universitaire d'Hématologie, Université Paris Diderot, PRES Sorbonne Paris-Cité, France
| | | | | | | | | | | | | | | |
Collapse
|