51
|
Corp ES, McQuade J, Krasnicki S, Conze DB. Feeding after fourth ventricular administration of neuropeptide Y receptor agonists in rats. Peptides 2001; 22:493-9. [PMID: 11287106 DOI: 10.1016/s0196-9781(01)00359-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuropeptide Y (NPY) and peptide YY (PYY) stimulate food intake after injection into the fourth cerebral ventricle, suggesting that NPY receptors in the hindbrain are targets for the stimulatory effect of these peptides on food intake. However, the NPY/PYY receptor subtype mediating the feeding response in the hindbrain is not known. To approach to this question we compared dose-effect of several NPY receptor agonists to stimulate food intake in freely-feeding rats 60- and 120-min after injection into the fourth cerebral ventricle. At the 120-min time point, PYY was 2- to 10-times as potent as NPY over the dose-response range and stimulated twice the total intake at the maximally effective dose (2-fold greater efficacy). NPY was 2-times as potent as the Y1, Y5 receptor agonist, [Leu(31)Pro(34)]NPY but acted with comparable efficacy. The Y5-, Y2-differentiating receptor agonist, NPY 2-36, was comparable in potency to PYY at low doses but equal in efficacy NPY and [Leu(31)Pro(34)]NPY. The Y2 receptor agonist, NPY 13-36, produced only a marginal effect on total food intake. The profile of agonist potency after fourth cerebral ventricle administration is similar to the profile obtained when these or related agonists are injected in the region of the hypothalamus. Agonists at both Y1 and Y5 receptors stimulated food intake with a rank order of potency that does not conclusively favor the exclusive involvement of a single known NPY receptor subtype. Thus it is possible that the ingestive effects of NPY and PYY are mediated by multiple or novel receptor subtypes in the hindbrain. And the relatively greater potency and efficacy of PYY raises the possibility that a novel PYY-preferring receptor in the hindbrain is involved in the stimulation of food intake.
Collapse
Affiliation(s)
- E S Corp
- Department of Psychology, Neuroscience and Behavior Program and the Center for Neuroendocrine Studies, University of Massachusetts-Amherst, Amherst, MA 01003, USA.
| | | | | | | |
Collapse
|
52
|
Abstract
Feeding behavior results from complex interactions arising between numerous neuromediators, including classical neurotransmitters and neuropeptides present in hypothalamic networks. One way to unravel these complex mechanisms is to examine animal models with a deletion of genes coding for the different neuropeptides involved in the regulation of feeding. The aim of this review is to focus on feeding and body weight regulation in mice lacking neuropeptide Y (NPY), melanocortins (POMC), corticotropin-releasing hormone, melanin-concentrating hormone, or bombesin-like peptides respectively. The phenotypes, which relate to the deletion of gene coding for the peptides, rarely include changes in body weight and food intake, indicating therefore the existence of redundant mechanisms to compensate for the loss of the peptide. The phenotype is much more marked when the gene deletion is targeted towards the functioning of the peptidergic machinery, e.g. the receptors and especially the POMC and NPY receptors, as well as one subtype of bombesin receptor (BRS-3). These knockout models are also interesting when examining the role of environmental and social factors in the determination of feeding behavior. They have granted us better knowledge of all these integrated and complex mechanisms. Moreover, they are also valuable tools for pharmacological studies when specific antagonists are lacking. From the information obtained by the study of knockouts, it is possible to determine certain targets for selective drugs that could be efficient for the pharmacological treatment of obesity. However, at the present state of our knowledge, it seems necessary to target several peptides in order to get good results with weight loss. It will also be imperative to associate these multitherapies with changes in eating and behavioral habits, in order to obtain complete effectiveness and long-lasting results.
Collapse
Affiliation(s)
- B Beck
- Centre de Recherches INSERM, Systèmes Neuromodulateurs des Comportements Ingestifs, 38 rue Lionnois. 54000, Nancy, France.
| |
Collapse
|
53
|
Della Zuana O, Sadlo M, Germain M, Félétou M, Chamorro S, Tisserand F, de Montrion C, Boivin JF, Duhault J, Boutin JA, Levens N. Reduced food intake in response to CGP 71683A may be due to mechanisms other than NPY Y5 receptor blockade. Int J Obes (Lond) 2001; 25:84-94. [PMID: 11244462 DOI: 10.1038/sj.ijo.0801472] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The purpose of this study was to test the continuing validity of the hypothesis that neuropeptide Y (NPY) produced in the brain controls food intake through an interaction with the NPY Y(5) receptor subtype. METHODS The hypothesis was tested using CGP 71683A a potent and highly selective non-peptide antagonist of the NPY Y(5) receptor which was administered into the right lateral ventricle of obese Zucker fa/fa rats. RESULTS Intraventricular injection of 3.4 nmol/kg NPY increased food intake during a 2 h test period. Doses of CGP 71683A in excess of 15 nmol/kg (i.cv.) resulted in blockade of the increase in food intake produced by NPY. Repeated daily injection of CGP 71683A (30--300 nmol/kg, i.cv.) immediately before the dark phase produced a dose-dependent and slowly developing decrease in food intake. CGP 71683A has a low affinity for NPY Y(1), Y(2) and Y(4) receptors but a very high affinity for the NPY Y(5) receptor (Ki, 1.4 nM). Surprisingly, CGP 71683A had similarly high affinity for muscarinic receptors (Ki, 2.7 nM) and for the serotonin uptake recognition site (Ki, 6.2 nM) in rat brain. Anatomic analysis of the brain after treatment with CGP 71683A demonstrated an inflammatory response associated with the fall in food intake. CONCLUSIONS While the fall in food intake in response to CGP 71683A may have a Y(5) component, interactions with other receptors or inflammatory mediators may also play a role. It is concluded that CGP 71683A is an imprecise tool for investigating the role of the NPY Y(5) receptor in the control of physiological processes including food intake. International Journal of Obesity (2001) 25, 84-94
Collapse
Affiliation(s)
- O Della Zuana
- Metabolic Diseases, Institut de Recherches Servier, Suresnes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Although numerous epidemiological studies have provided convincing evidence for the inverse association between tobacco smoking and body weight, the molecular mechanisms underlying this relationship are not well-understood. Nicotine, as a potent secretagogue, could be expected to influence the levels and expression of many classes of neurotransmitters, as well as of cell-membrane constituents linked to neurotransmission, including signal transducers and related effectors. A potentially major group of candidate molecules that could be involved in feeding-related actions of nicotine are the numerous neuropeptides and peptide hormones shown in the past two decades to regulate food intake and energy expenditure. These could include neuropeptide Y (NPY), orexins, leptins, and uncoupling proteins (UCPs). Some of these peptides were already shown to respond to nicotine treatment in terms of regulation of levels and of activity at the level of cell-membrane receptors. The primary objective of this review is to summarize our current understanding of the regulatory effects of nicotine on the food intake and energy expenditure as related to the expression levels of leptin, NPY, orexin, uncoupling proteins, and of NPY and orexin receptors.
Collapse
Affiliation(s)
- M D Li
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis 38163, USA.
| | | | | |
Collapse
|
55
|
Lin X, Volkoff H, Narnaware Y, Bernier NJ, Peyon P, Peter RE. Brain regulation of feeding behavior and food intake in fish. Comp Biochem Physiol A Mol Integr Physiol 2000; 126:415-34. [PMID: 10989336 DOI: 10.1016/s1095-6433(00)00230-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In mammals, the orexigenic and anorexigenic neuronal systems are morphologically and functionally connected, forming an interconnected network in the hypothalamus to govern food intake and body weight. However, there are relatively few studies on the brain control of feeding behavior in fish. Recent studies using mammalian neuropeptides or fish homologs of mammalian neuropeptides indicate that brain orexigenic signal molecules include neuropeptide Y, orexins, galanin and beta-endorphin, whereas brain anorexigenic signal molecules include cholecystokinin, bombesin, corticotropin-releasing factor, cocaine- and amphetamine-regulated transcript, and serotonin. Tachykinins may also have an anorectic action in fish. The brain hypothalamic area is associated with regulation of food intake, while sites outside the hypothalamus are also involved in this function. There is correlation between short-term changes in serum growth hormone levels and feeding behavior, although possible mechanisms integrating these functions remain to be defined.
Collapse
Affiliation(s)
- X Lin
- Department of Biological Sciences, University of Alberta, Alta., T6G 2E9, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
56
|
Duhault J, Boulanger M, Chamorro S, Boutin JA, Zuana OD, Douillet E, Fauchère JL, Félétou M, Germain M, Husson B, Vega AM, Renard P, Tisserand F. Food intake regulation in rodents: Y5 or Y1 NPY receptors or both? Can J Physiol Pharmacol 2000. [DOI: 10.1139/y99-131] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropeptide Y (NPY), one of the most abundant peptides in rat and human brains, appears to act in the hypothalamus to stimulate feeding. It was first suggested that the NPY Y1 receptor (Y1R) was involved in feeding stimulated by NPY. More recently a novel NPY receptor subtype (Y5R) was identified in rat and human as the NPY feeding receptor subtype. There is, however, no absolute consensus since selective Y1R antagonists also antagonize NPY-induced hyperphagia. Nevertheless, new anti-obesity drugs may emerge from further pharmacological characterization of the NPY receptors and their antagonists. A large panel of Y1R and Y5R antagonists (such as CGP71683A, BIBO3304, BIBP3226, 1229U91, and SYNAPTIC and BANYU derivatives but also patentable in-house-synthesized compounds) have been evaluated through in vitro and in vivo tests in an attempt to establish a predictive relationship between the binding selectivity for human receptors, the potency in isolated organs assays, and the inhibitory effect on food intake in both normal and obese hyperphagic rodents. Although these results do not allow one to conclude on the implication of a single receptor subtype at the molecular level, this approach is crucial for the design of novel NPY receptor antagonists with potential use as anti-obesity drugs and for evaluation of their possible adverse peripheral side effects, such as hypotension.Key words: obesity, weight reduction, food intake, neuropeptide Y, rodents.
Collapse
|
57
|
Polidori C, Ciccocioppo R, Regoli D, Massi M. Neuropeptide Y receptor(s) mediating feeding in the rat: characterization with antagonists. Peptides 2000; 21:29-35. [PMID: 10704716 DOI: 10.1016/s0196-9781(99)00170-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study evaluated the effect of the neuropeptide Y (NPY) Y1 receptor antagonists BIBO 3304 and SR 120562A and of the Y5 receptor antagonists JCF 104, JCF 109, and CGP 71683A on feeding induced either by NPY or food deprivation. In a preliminary experiment, NPY was injected into the third cerebroventricle (3V) at doses of 0.07, 0.15, 0.3, or 0.6 nmol/rat. The dose of 0.3 nmol/rat, which produced a cumulative 2-h food intake of 11.2 +/- 1.9 g/kg body weight, was chosen for the following experiments. The antagonists were injected in the 3V 1 min before NPY. The Y1 receptor antagonist BIBO 3304 significantly inhibited NPY-induced feeding at doses of 1 or 10 nmol/rat. The Y1 receptor antagonist SR 120562A, at the dose of 10 but not of 1 nmol/rat, significantly reduced the hyperphagic effect of NPY, 0.3 nmol/rat. The Y5 receptor antagonists JCF 104 and JCF 109 (1 or 10 nmol/rat) and CGP 71683A (10 or 100 nmol/rat) did not significantly modify the effect of NPY, 0.3 nmol/rat. However, JCF 104 (10 nmol/rat) and CGP 71683A (100 nmol/rat), but not JCF 109 (10 nmol/rat), significantly reduced food intake during the interval from 2 to 4 h after injection of a higher dose, 0.6 nmol/rat, of NPY. Feeding induced by 16 h of food deprivation was significantly reduced by the Y1 receptor antagonist BIBO 3304 (10 nmol/rat), but it was not significantly modified by the same dose of SR 120562A or JCF 104. These findings support the idea that the hyperphagic effect of NPY is mainly mediated by Y1 receptors. The results obtained with JCF 104 and CGP 71683A suggest that Y5 receptors may have a modulatory role in the maintenance of feeding induced by rather high doses of NPY after the main initial feeding response.
Collapse
Affiliation(s)
- C Polidori
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, 62032, Camerino, Italy.
| | | | | | | |
Collapse
|
58
|
Dumont Y, Jacques D, St-Pierre JA, Tong Y, Parker R, Herzog H, Quirion R. Chapter IX Neuropeptide Y, peptide YY and pancreatic polypeptide receptor proteins and mRNAs in mammalian brains. HANDBOOK OF CHEMICAL NEUROANATOMY 2000. [DOI: 10.1016/s0924-8196(00)80011-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
59
|
Abstract
The 36-amino-acid peptide, neuropeptide Y (NPY), is the most abundant peptide in the rat brain. When administered into the brain, NPY produces a variety of physiological actions including a pronounced stimulation of feeding in satiated rats. Elevations in hypothalamic NPY have been reported after food deprivation and in genetically obese rodents. NPY is believed to produce its actions through a portfolio of G-protein coupled receptors, Y1, Y2, Y4 and Y5. Studies using peptide analogs, receptor knockout animals and specific receptor antagonists suggest the Y1 and Y5 receptors are important in mediating the effects of NPY on food intake in rats. Development of specific receptor antagonists with improved pharmacokinetic properties will be required to determine the importance of NPY in human obesity and appetite disorders.
Collapse
Affiliation(s)
- D R Gehlert
- Lilly Neuroscience, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| |
Collapse
|
60
|
Barrios VE, Sun J, Douglass J, Toombs CF. Evidence of a specific pancreatic polypeptide receptor in rat arterial smooth muscle. Peptides 1999; 20:1107-13. [PMID: 10499429 DOI: 10.1016/s0196-9781(99)00106-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pancreatic polypeptide (PP) is a member of the PP fold family of regulatory peptides. Studies have shown that neuropeptide Y, peptide YY, and PP increased gastrointestinal motility. The GI effects of neuropeptide Y and peptide YY were accompanied by an increase in mean arterial blood pressure; however, PP decreased mean arterial blood pressure. Cloning of a receptor of the neuropeptide Y family with high affinity for PP has been reported. This Y4 receptor is present in intestine, pancreas, and prostate, and its mRNA has been detected in brain and coronary artery. We found in vitro evidence of PP-mediated inhibition of arterial neurogenic vasoconstriction. We have also detected Y4 mRNA in rat peripheral arteries. These findings suggest a potential role for the Y4 receptor in regulating vascular tone.
Collapse
Affiliation(s)
- V E Barrios
- Department of Pharmacology, Amgen, Inc., Thousand Oaks, CA 91320, USA
| | | | | | | |
Collapse
|
61
|
Criscione L, Rigollier P, Batzl-Hartmann C, Rüeger H, Stricker-Krongrad A, Wyss P, Brunner L, Whitebread S, Yamaguchi Y, Gerald C, Heurich RO, Walker MW, Chiesi M, Schilling W, Hofbauer KG, Levens N. Food intake in free-feeding and energy-deprived lean rats is mediated by the neuropeptide Y5 receptor. J Clin Invest 1998; 102:2136-45. [PMID: 9854049 PMCID: PMC509168 DOI: 10.1172/jci4188] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The new neuropeptide Y (NPY) Y5 receptor antagonist CGP 71683A displayed high affinity for the cloned rat NPY Y5 subtype, but > 1, 000-fold lower affinity for the cloned rat NPY Y1, Y2, and Y4 subtypes. In LMTK cells transfected with the human NPY Y5 receptor, CGP 71683A was without intrinsic activity and antagonized NPY-induced Ca2+ transients. CGP 71683A was given intraperitoneally (dose range 1-100 mg/kg) to a series of animal models of high hypothalamic NPY levels. In lean satiated rats CGP 71683A significantly antagonized the increase in food intake induced by intracerebroventricular injection of NPY. In 24-h fasted and streptozotocin diabetic rats CGP 71683A dose-dependently inhibited food intake. During the dark phase, CGP 71683A dose-dependently inhibited food intake in free-feeding lean rats without affecting the normal pattern of food intake or inducing taste aversion. In free-feeding lean rats, intraperitoneal administration of CGP 71683A for 28 d inhibited food intake dose-dependently with a maximum reduction observed on days 3 and 4. Despite the return of food intake to control levels, body weight and the peripheral fat mass remained significantly reduced. The data demonstrate that the NPY Y5 receptor subtype plays a role in NPY-induced food intake, but also suggest that, with chronic blockade, counterregulatory mechanisms are induced to restore appetite.
Collapse
Affiliation(s)
- L Criscione
- Metabolic and Cardiovascular Diseases Research, Novartis Pharma AG, CH-4002 Basel, Switzerland. Leoluca.criscione@pharma,novartis.com
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|