51
|
Schumacher JD, Kong B, Pan Y, Zhan L, Sun R, Aa J, Rizzolo D, Richardson JR, Chen A, Goedken M, Aleksunes LM, Laskin DL, Guo GL. The effect of fibroblast growth factor 15 deficiency on the development of high fat diet induced non-alcoholic steatohepatitis. Toxicol Appl Pharmacol 2017; 330:1-8. [PMID: 28673684 DOI: 10.1016/j.taap.2017.06.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/16/2017] [Accepted: 06/29/2017] [Indexed: 12/28/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is a form of non-alcoholic fatty liver disease (NAFLD) characterized by steatosis, inflammation, and fibrosis often associated with metabolic syndrome. Fibroblast growth factor 15 (FGF15), an endocrine factor mainly produced in the distal part of small intestine, has emerged to be a critical factor in regulating bile acid homeostasis, energy metabolism, and liver regeneration. We hypothesized that FGF15 alters the development of each of the listed features of NASH. To test this hypothesis, four-week old male Fgf15-/- and their corresponding wild-type (WT) mice were fed either a high fat diet (HFD) or a control chow diet for six months. The results confirmed that HFD feeding for six months in WT mice recapitulated human NASH phenotype, including macrovesicular steatosis, inflammation, and fibrosis. Whereas FGF15 deficiency had no effect on the severity of liver steatosis or inflammation, it was associated with decreased liver fibrosis. Furthermore, FGF15 deficiency resulted in abnormal bile acid homeostasis, increased insulin resistance, increased HFD-induced serum triglycerides, decreased inductions of hepatic cholesterol content by HFD, and altered gene expression of lipid metabolic enzymes. These data suggest that FGF15 improves lipid homeostasis and reduces bile acid synthesis, but promotes fibrosis during the development of NASH.
Collapse
Affiliation(s)
- J D Schumacher
- Department of Pharmacology and Toxicology, School of Pharmacy, EOHSI, Rutgers University, Piscataway, NJ 08854, United States
| | - B Kong
- Department of Pharmacology and Toxicology, School of Pharmacy, EOHSI, Rutgers University, Piscataway, NJ 08854, United States
| | - Y Pan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - L Zhan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States
| | - R Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - J Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - D Rizzolo
- Department of Pharmacology and Toxicology, School of Pharmacy, EOHSI, Rutgers University, Piscataway, NJ 08854, United States
| | - J R Richardson
- Department of Pharmacology and Toxicology, School of Pharmacy, EOHSI, Rutgers University, Piscataway, NJ 08854, United States
| | - A Chen
- Department of Pathology, St. Louis University, St. Louis, MO 63104, United States
| | - M Goedken
- Department of Pharmacology and Toxicology, School of Pharmacy, EOHSI, Rutgers University, Piscataway, NJ 08854, United States
| | - L M Aleksunes
- Department of Pharmacology and Toxicology, School of Pharmacy, EOHSI, Rutgers University, Piscataway, NJ 08854, United States
| | - D L Laskin
- Department of Pharmacology and Toxicology, School of Pharmacy, EOHSI, Rutgers University, Piscataway, NJ 08854, United States
| | - G L Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, EOHSI, Rutgers University, Piscataway, NJ 08854, United States.
| |
Collapse
|
52
|
Lakshmanan R, Ukani G, Rishi MT, Maulik N. Trimodal rescue of hind limb ischemia with growth factors, cells, and nanocarriers: fundamentals to clinical trials. Can J Physiol Pharmacol 2017; 95:1125-1140. [PMID: 28407473 DOI: 10.1139/cjpp-2016-0713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peripheral artery disease is a severe medical condition commonly characterized by critical or acute limb ischemia. Gradual accumulation of thrombotic plaques in peripheral arteries of the lower limb may lead to intermittent claudication or ischemia in muscle tissue. Ischemic muscle tissue with lesions may become infected, resulting in a non-healing wound. Stable progression of the non-healing wound associated with severe ischemia might lead to functional deterioration of the limb, which, depending on the severity, can result in amputation. Immediate rescue of ischemic muscles through revascularization strategies is considered the gold standard to treat critical limb ischemia. Growth factors offer multiple levels of protection in revascularization of ischemic tissue. In this review, the basic mechanism through which growth factors exert their beneficial properties to rescue the ischemic limb is extensively discussed. Moreover, clinical trials based on growth factor and stem cell therapy to treat critical limb ischemia are considered. The clinical utility of stem cell therapy for the treatment of limb ischemia is explained and recent advances in nanocarrier technology for selective growth factor and stem cell supplementation are summarized.
Collapse
Affiliation(s)
- Rajesh Lakshmanan
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Gopi Ukani
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Muhammad Tipu Rishi
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
53
|
Ijssennagger N, Janssen AWF, Milona A, Ramos Pittol JM, Hollman DAA, Mokry M, Betzel B, Berends FJ, Janssen IM, van Mil SWC, Kersten S. Gene expression profiling in human precision cut liver slices in response to the FXR agonist obeticholic acid. J Hepatol 2016; 64:1158-1166. [PMID: 26812075 DOI: 10.1016/j.jhep.2016.01.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS The bile acid-activated farnesoid X receptor (FXR) is a nuclear receptor regulating bile acid, glucose and cholesterol homeostasis. Obeticholic acid (OCA), a promising drug for the treatment of non-alcoholic steatohepatitis (NASH) and type 2 diabetes, activates FXR. Mouse studies demonstrated that FXR activation by OCA alters hepatic expression of many genes. However, no data are available on the effects of OCA in the human liver. Here we generated gene expression profiles in human precision cut liver slices (hPCLS) after treatment with OCA. METHODS hPCLS were incubated with OCA for 24 h. Wild-type or FXR(-/-) mice received OCA or vehicle by oral gavage for 7 days. RESULTS Transcriptomic analysis showed that well-known FXR target genes, including NR0B2 (SHP), ABCB11 (BSEP), SLC51A (OSTα) and SLC51B (OSTβ), and ABCB4 (MDR3) are regulated by OCA in hPCLS. Ingenuity pathway analysis confirmed that 'FXR/RXR activation' is the most significantly changed pathway upon OCA treatment. Comparison of gene expression profiles in hPCLS and mouse livers identified 18 common potential FXR targets. ChIP-sequencing in mouse liver confirmed FXR binding to IR1 sequences of Akap13, Cgnl1, Dyrk3, Pdia5, Ppp1r3b and Tbx6. CONCLUSIONS Our study shows that hPCLS respond to OCA treatment by upregulating well-known FXR target genes, demonstrating its suitability to study FXR-mediated gene regulation. We identified six novel bona-fide FXR target genes in both mouse and human liver. Finally, we discuss a possible explanation for changes in high or low density lipoprotein observed in NASH and primary biliary cholangitis patients treated with OCA based on the genomic expression profile in hPCLS.
Collapse
Affiliation(s)
- Noortje Ijssennagger
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Aafke W F Janssen
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition, Wageningen University, 6703 HD Wageningen, The Netherlands
| | - Alexandra Milona
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - José M Ramos Pittol
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Danielle A A Hollman
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Michal Mokry
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Bark Betzel
- Department of Surgery, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands
| | - Frits J Berends
- Department of Surgery, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands
| | - Ignace M Janssen
- Department of Surgery, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands
| | - Saskia W C van Mil
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands.
| | - Sander Kersten
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition, Wageningen University, 6703 HD Wageningen, The Netherlands
| |
Collapse
|
54
|
A pharmacogenomic profile of human neural progenitors undergoing differentiation in the presence of the traditional Chinese medicine NeuroAiD. THE PHARMACOGENOMICS JOURNAL 2016; 16:461-71. [PMID: 27044682 DOI: 10.1038/tpj.2016.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/11/2023]
Abstract
NeuroAiD, a traditional Chinese medicine widely used to treat stroke patients in China, was recently demonstrated in rodent models and in clinical trials to possess neuroregenerative and neuroprotective properties. In order to understand the mechanisms employed by NeuroAiD to bring about its neuroproliferative and neuroprotective effects, we investigated the impact of MLC901, a reformulated version of MLC601, on human neural progenitors undergoing neural differentiation at the molecular level by performing three independent microarray experiments. Functional annotations of the genes regulated by MLC901 that were associated with neurogenesis were found to be enriched. We also identified potential targets (FGF19, GALR2, MMP10, FGF3 and TDO2) of MLC901 that could promote neurogenesis and neuroprotection in the human brain. This work highlighted some interesting targets and offered some insights into the possible mechanism of action of MLC901. The discovery could also provide a platform to the development of future therapeutic targets.
Collapse
|
55
|
Li X, Wang C, Xiao J, McKeehan WL, Wang F. Fibroblast growth factors, old kids on the new block. Semin Cell Dev Biol 2016; 53:155-67. [PMID: 26768548 DOI: 10.1016/j.semcdb.2015.12.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
Abstract
The fibroblast growth factors (FGFs) are a family of cell intrinsic regulatory peptides that control a broad spectrum of cellular activities. The family includes canonic FGFs that elicit their activities by activating the FGF receptor (FGFR) tyrosine kinase and non-canonic members that elicit their activities intracellularly and via FGFR-independent mechanisms. The FGF signaling axis is highly complex due to the existence of multiple isoforms of both ligands and receptors, as well as cofactors that include the chemically heterogeneous heparan sulfate (HS) cofactors, and in the case of endocrine FGFs, the Klotho coreceptors. Resident FGF signaling controls embryonic development, maintains tissue homeostasis, promotes wound healing and tissue regeneration, and regulates functions of multiple organs. However, ectopic or aberrant FGF signaling is a culprit for various diseases, including congenital birth defects, metabolic disorder, and cancer. The molecular mechanisms by which the specificity of FGF signaling is achieved remain incompletely understood. Since its application as a druggable target has been gradually recognized by pharmaceutical companies and translational researchers, understanding the determinants of FGF signaling specificity has become even more important in order to get into the position to selectively suppress a particular pathway without affecting others to minimize side effects.
Collapse
Affiliation(s)
- Xiaokun Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cong Wang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian Xiao
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wallace L McKeehan
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, United States
| | - Fen Wang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, United States.
| |
Collapse
|
56
|
Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 2015; 15:51-69. [PMID: 26567701 DOI: 10.1038/nrd.2015.9] [Citation(s) in RCA: 317] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocrine fibroblast growth factors (FGFs), FGF19, FGF21 and FGF23, are critical for maintaining whole-body homeostasis, with roles in bile acid, glucose and lipid metabolism, modulation of vitamin D and phosphate homeostasis and metabolic adaptation during fasting. Given these functions, the endocrine FGFs have therapeutic potential in a wide array of chronic human diseases, including obesity, type 2 diabetes, cancer, and kidney and cardiovascular disease. However, the safety and feasibility of chronic endocrine FGF administration has been challenged, and FGF analogues and mimetics are now being investigated. Here, we discuss current knowledge of the complex biology of the endocrine FGFs and assess how this may be harnessed therapeutically.
Collapse
|
57
|
Naugler WE, Tarlow BD, Fedorov LM, Taylor M, Pelz C, Li B, Darnell J, Grompe M. Fibroblast Growth Factor Signaling Controls Liver Size in Mice With Humanized Livers. Gastroenterology 2015; 149:728-40.e15. [PMID: 26028580 PMCID: PMC4550566 DOI: 10.1053/j.gastro.2015.05.043] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/07/2015] [Accepted: 05/20/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS The ratio of liver size to body weight (hepatostat) is tightly controlled, but little is known about how the physiologic functions of the liver help determine its size. Livers of mice repopulated with human hepatocytes (humanized livers) grow to larger than normal; the human hepatocytes do not recognize the fibroblast growth factor (FGF)-15 produced by mouse intestine. This results in up-regulation of bile acid synthesis in the human hepatocytes and enlargement of the bile acid pool. We investigated whether abnormal bile acid signaling affects the hepatostat in mice. METHODS We crossed Fah(-/-), Rag2(-/-), Il2r(-/-) mice with nonobese diabetic mice to create FRGN mice, whose livers can be fully repopulated with human hepatocytes. We inserted the gene for human FGF19 (ortholog to mouse Fgf15), including regulatory sequences, into the FRGN mice to create FRGN19(+) mice. Livers of FRGN19(+) mice and their FRGN littermates were fully repopulated with human hepatocytes. Liver tissues were collected and bile acid pool sizes and RNA sequences were analyzed and compared with those of mice without humanized livers (controls). RESULTS Livers were larger in FRGN mice with humanized livers (13% of body weight), compared with control FRGN mice; they also had much larger bile acid pools and aberrant bile acid signaling. Livers from FRGN19(+) normalized to 7.8% of body weight, and their bile acid pool and signaling more closely resembled that of control FRGN19(+) mice. RNA sequence analysis showed activation of the Hippo pathway, and immunohistochemical and transcription analyses revealed increased hepatocyte proliferation, but not apoptosis, in the enlarged humanized livers of FRGN mice. Cell sorting experiments showed that although healthy human liver does not produce FGF19, nonparenchymal cells from cholestatic livers produce FGF19. CONCLUSIONS In mice with humanized livers, expression of an FGF19 transgene corrects bile acid signaling defects, resulting in normalization of bile acid synthesis, the bile acid pool, and liver size. These findings indicate that liver size is, in part, regulated by the size of the bile acid pool that the liver must circulate.
Collapse
Affiliation(s)
- Willscott E. Naugler
- Dept. of Medicine, Division of GI & Hepatology, Oregon Health & Science Center, Portland, OR,Oregon Stem Cell Center, Oregon Health & Science Center, Portland, OR
| | - Branden D. Tarlow
- Dept. of Cell, Developmental, and Cancer Biology, Oregon Health & Science Center, Portland, OR
| | - Lev M. Fedorov
- OHSU Transgenic Mouse Models Shared Resource, Oregon Health & Science Center, Portland, OR
| | - Matthew Taylor
- Dept. of Hematology & Oncology, Oregon Health & Science Center, Portland, OR
| | - Carl Pelz
- Dept. of Pediatrics, Papé Family Pediatric Research Institute Oregon Health & Science Center, Portland, OR
| | - Bin Li
- Oregon Stem Cell Center, Oregon Health & Science Center, Portland, OR
| | - Jennifer Darnell
- Dept. of Medicine, Division of GI & Hepatology, Oregon Health & Science Center, Portland, OR
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health & Science Center, Portland, OR,Dept. of Hematology & Oncology, Oregon Health & Science Center, Portland, OR
| |
Collapse
|
58
|
Zhang F, Yu L, Lin X, Cheng P, He L, Li X, Lu X, Tan Y, Yang H, Cai L, Zhang C. Minireview: Roles of Fibroblast Growth Factors 19 and 21 in Metabolic Regulation and Chronic Diseases. Mol Endocrinol 2015; 29:1400-13. [PMID: 26308386 DOI: 10.1210/me.2015-1155] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fibroblast growth factor (FGF)19 and FGF21 are hormones that regulate metabolic processes particularly during feeding or starvation, thus ultimately influencing energy production. FGF19 is secreted by the intestines during feeding and negatively regulates bile acid synthesis and secretion, whereas FGF21 is produced in the liver during fasting and plays a crucial role in regulating glucose and lipid metabolism, as well as maintaining energy homeostasis. FGF19 and FGF21 are regarded as late-acting hormones because their functions are only used after insulin and glucagon have completed their actions. Although FGF19 and FGF21 are activated under different conditions, they show extensively functional overlap in terms of improving glucose tolerance, insulin sensitivity, weight loss, and lipid, and energy metabolism, particularly in pathological conditions such as diabetes, obesity, metabolic syndrome, and cardiovascular and renal diseases. Most patients with these metabolic diseases exhibit reduced serum FGF19 levels, which might contribute to its etiology. In addition, the simultaneous increase in serum FGF21 levels is likely a compensatory response to reduced FGF19 levels, and the 2 proteins concertedly maintain metabolic homeostasis. Here, we review the physiological and pharmacological cross talk between FGF19 and FGF21 in relation to the regulation of endocrine metabolism and various chronic diseases.
Collapse
Affiliation(s)
- Fangfang Zhang
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Lechu Yu
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Xiufei Lin
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Peng Cheng
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Luqing He
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Xiaokun Li
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Xuemian Lu
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Yi Tan
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Hong Yang
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Lu Cai
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Chi Zhang
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
59
|
Expression of hepatic Fibroblast Growth Factor 19 is enhanced in Primary Biliary Cirrhosis and correlates with severity of the disease. Sci Rep 2015; 5:13462. [PMID: 26293907 PMCID: PMC4544021 DOI: 10.1038/srep13462] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022] Open
Abstract
Cholestasis induces adaptive mechanisms protecting the liver against bile acids (BA) toxicity including modulation of BA synthesis. Whether fibroblast growth factor 19 (FGF19) or farnesoid X receptor (FXR) dependent signaling are involved in the regulation of BA homeostasis in primary biliary cirrhosis (PBC) remains unknown. Here we analyzed hepatic expression of FGF19 and other genes relevant to the adaptive response to cholestasis in tissues from non-cirrhotic (n = 24) and cirrhotic (n = 21) patients along with control tissues (n = 21). Moreover we searched for relationships between serum FGF19 and laboratory/clinical findings in 51 patients. Hepatic FGF19 mRNA expression was increased in non-cirrhotic and cirrhotic tissues (9-fold,p = 0.01; 69-fold,p < 0.0001, respectively). Protein levels of FGF19, FGF receptor 4, FXR and short heterodimer partner were increased in cirrhotic livers (9-fold, p < 0.001; 3.5-fold,p = 0.007; 2.4-fold,p < 0.0001; 2.8-fold,p < 0.0001 vs controls, respectively) which was accompanied by down-regulation of CYP7A1 (50% reduction, p = 0.006). Serum and liver levels of FGF19 correlated with worse liver biochemistry, BAs, quality of life and Mayo Risk Score. Serum FGF19 was elevated in UDCA non-responders. We conclude that PBC induces characteristic changes in liver expression of BAs synthesis regulatory molecules. FGF19 correlates with severity of liver disease and can potentially serve as an indicator of chronic cholestatic liver injury.
Collapse
|
60
|
Rysz J, Gluba-Brzózka A, Mikhailidis DP, Banach M. Fibroblast growth factor 19-targeted therapies for the treatment of metabolic disease. Expert Opin Investig Drugs 2015; 24:603-10. [PMID: 25604607 DOI: 10.1517/13543784.2015.1006357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Fibroblast growth factors (FGFs) belong to the FGF superfamily with diverse biological functions, including proliferation, cellular differentiation, wound repair, angiogenesis and tumorigenesis. The ability to reduce liver fat content and concentrations of triglycerides, total cholesterol and plasma glucose, and to improve sensitivity and limit pro-lipogenic properties of insulin, makes FGF19 a promising therapeutic target for the treatment of metabolic syndrome. FGF19 regulates bile acid biosynthesis in the bile duct, glucose metabolism and vitamin D and phosphate homeostasis, raises the metabolic rate, reduces body weight, and ameliorates diabetes in mice. The therapeutic potential of FGF19 to treat metabolic disorders has been widely studied in animal models, but currently there are no reports concerning its use in humans. AREAS COVERED The following article highlights the metabolic effects and mechanism of action of FGF19. It also discusses the potential therapies that target FGF19. EXPERT OPINION FGF19 is emerging as a new target for the therapy of metabolic disorders, including diabetes. The results obtained from animal models are promising. However, there is still much to be done before the translation of these effects into practice will be possible.
Collapse
Affiliation(s)
- Jacek Rysz
- WAM University Hospital of Lodz, Department of Nephrology, Hypertension and Family Medicine , Zeromskiego 113, 90-549 Lodz , Poland +48 42 639 37 50 ; +48 42 639 37 50 ;
| | | | | | | |
Collapse
|
61
|
Owen BM, Mangelsdorf DJ, Kliewer SA. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab 2015; 26:22-9. [PMID: 25476453 PMCID: PMC4277911 DOI: 10.1016/j.tem.2014.10.002] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (FGFs) 15/19 and 21 belong to a subfamily of FGFs that function as hormones. Produced in response to specific nutritional cues, they act on overlapping sets of cell surface receptors composed of classic FGF receptors in complex with βKlotho, and regulate metabolism and related processes during periods of fluctuating energy availability. Pharmacologically, both FGF15/19 and FGF21 cause weight loss and improve both insulin-sensitivity and lipid parameters in rodent and primate models of metabolic disease. Recently, FGF21 was shown to have similar effects in obese patients with type 2 diabetes. We discuss here emerging concepts in FGF15/19 and FGF21 tissue-specific actions and critically assess their putative role as candidate targets for treating metabolic disease.
Collapse
Affiliation(s)
- Bryn M Owen
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David J Mangelsdorf
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Steven A Kliewer
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
62
|
Itoh N, Ohta H, Konishi M. Endocrine FGFs: Evolution, Physiology, Pathophysiology, and Pharmacotherapy. Front Endocrinol (Lausanne) 2015; 6:154. [PMID: 26483756 PMCID: PMC4586497 DOI: 10.3389/fendo.2015.00154] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/14/2015] [Indexed: 01/19/2023] Open
Abstract
The human fibroblast growth factor (FGF) family comprises 22 structurally related polypeptides that play crucial roles in neuronal functions, development, and metabolism. FGFs are classified as intracrine, paracrine, and endocrine FGFs based on their action mechanisms. Paracrine and endocrine FGFs are secreted signaling molecules by acting via cell-surface FGF receptors (FGFRs). Paracrine FGFs require heparan sulfate as a cofactor for FGFRs. In contrast, endocrine FGFs, comprising FGF19, FGF21, and FGF23, require α-Klotho or β-Klotho as a cofactor for FGFRs. Endocrine FGFs, which are specific to vertebrates, lost heparan sulfate-binding affinity and acquired a systemic signaling system with α-Klotho or β-Klotho during early vertebrate evolution. The phenotypes of endocrine FGF knockout mice indicate that they play roles in metabolism including bile acid, energy, and phosphate/active vitamin D metabolism. Accumulated evidence for the involvement of endocrine FGFs in human genetic and metabolic diseases also indicates their pathophysiological roles in metabolic diseases, potential risk factors for metabolic diseases, and useful biomarkers for metabolic diseases. The therapeutic utility of endocrine FGFs is currently being developed. These findings provide new insights into the physiological and pathophysiological roles of endocrine FGFs and potential diagnostic and therapeutic strategies for metabolic diseases.
Collapse
Affiliation(s)
- Nobuyuki Itoh
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- *Correspondence: Nobuyuki Itoh, Medical Innovation Center, Kyoto University Graduate School of Medicine, Shogoin-Kawara-cho, Sakyo, Kyoto 606-8507, Japan,
| | - Hiroya Ohta
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Morichika Konishi
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
63
|
Abstract
While it has long been recognized that bile acids are essential for solubilizing lipophilic nutrients in the small intestine, the discovery in 1999 that bile acids serve as ligands for the nuclear receptor farnesoid X receptor (FXR) opened the floodgates in terms of characterizing their actions as selective signaling molecules. Bile acids act on FXR in ileal enterocytes to induce the expression of fibroblast growth factor (FGF)15/19, an atypical FGF that functions as a hormone. FGF15/19 subsequently acts on a cell surface receptor complex in hepatocytes to repress bile acid synthesis and gluconeogenesis, and to stimulate glycogen and protein synthesis. FGF15/19 also stimulates gallbladder filling. Thus, the bile acid-FXR-FGF15/19 signaling pathway regulates diverse aspects of the postprandial enterohepatic response. Pharmacologically, this endocrine pathway provides exciting new opportunities for treating metabolic disease and bile acid-related disorders such as primary biliary cirrhosis and bile acid diarrhea. Both FXR agonists and FGF19 analogs are currently in clinical trials.
Collapse
Affiliation(s)
- Steven A. Kliewer
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX USA,Address correspondence to SAK () and DJM ()
| | - David J. Mangelsdorf
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX USA,Address correspondence to SAK () and DJM ()
| |
Collapse
|
64
|
Liu WY, Xie DM, Zhu GQ, Huang GQ, Lin YQ, Wang LR, Shi KQ, Hu B, Braddock M, Chen YP, Zheng MH. Targeting fibroblast growth factor 19 in liver disease: a potential biomarker and therapeutic target. Expert Opin Ther Targets 2014; 19:675-85. [PMID: 25547779 DOI: 10.1517/14728222.2014.997711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Fibroblast growth factor 19 (FGF19) is a member of the hormone-like FGF family and has activity as an ileum-derived postprandial hormone. It shares high binding affinity with β-Klotho and together with the FGF receptor (FGFR) 4, is predominantly targeted to the liver. The main function of FGF19 in metabolism is the negative control of bile acid synthesis, promotion of glycogen synthesis, lipid metabolism and protein synthesis. AREAS COVERED Drawing on in vitro and in vivo studies, this review discusses FGF19 and some underlying mechanisms of action of FGF19 as an endocrine hormone in several liver diseases. The molecular pathway of the FGF19-FGFR4 axis in non-alcoholic liver disease and hepatocellular carcinoma are discussed. Furthermore, definition of function and pharmacological effects of FGF19 for liver disease are also presented. EXPERT OPINION A series of studies have highlighted a crucial role of FGF19 in liver disease. However, the conclusions of these studies are partly paradoxical and controversial. An understanding of the underlying biological mechanisms which may explain inconsistent findings is especially important for consideration of potential biomarker strategies and an exploration of the putative therapeutic efficacy of FGF19 for human liver disease.
Collapse
Affiliation(s)
- Wen-Yue Liu
- The First Affiliated Hospital of Wenzhou Medical University, Liver Research Center, Department of Infection and Liver Diseases , No. 2 Fuxue Lane, Wenzhou 325000 , China +86 577 88078232 ; +86 577 88078262 ;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Dowell KG, Simons AK, Bai H, Kell B, Wang ZZ, Yun K, Hibbs MA. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks. Stem Cells 2014; 32:1161-72. [PMID: 24307629 DOI: 10.1002/stem.1612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/11/2013] [Indexed: 12/25/2022]
Abstract
Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation.
Collapse
Affiliation(s)
- Karen G Dowell
- The Jackson Laboratory, Bar Harbor, Maine, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Laestander C, Engström W. Role of fibroblast growth factors in elicitation of cell responses. Cell Prolif 2014; 47:3-11. [PMID: 24354576 PMCID: PMC6495704 DOI: 10.1111/cpr.12084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/04/2013] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factors (FGFs) are signalling peptides that control important cell processes such as proliferation, differentiation, migration, adhesion and survival. Through binding to different types of receptor on the cell surface, these peptides can have different effects on a target cell, the effect achieved depending on many features. Thus, each of the known FGFs elicits specific biological responses. FGF receptors (FGFR 1-5) initiate diverse intracellular pathways, which in turn lead to a variety of results. FGFs also bind the range of FGFRs with a series of affinities and each type of cells expresses FGFRs in different qualitative and quantitative patterns, which also affect responses. To summarize, cell response to binding of an FGF ligand depends on type of FGF, FGF receptor and target cell, all interacting in concert. This review aims to examine properties of the FGF family and its members receptors. It also aims to summarize features of intracellular signalling and highlight differential effects of the various FGFs in different circumstances.
Collapse
Affiliation(s)
- C. Laestander
- Department of Biomedical Sciences and Veterinary Public HealthFaculty of Veterinary MedicineSwedish University of Agricultural SciencesUppsalaSweden
| | - W. Engström
- Department of Biomedical Sciences and Veterinary Public HealthFaculty of Veterinary MedicineSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
67
|
Kong B, Guo GL. Soluble expression of disulfide bond containing proteins FGF15 and FGF19 in the cytoplasm of Escherichia coli. PLoS One 2014; 9:e85890. [PMID: 24465767 PMCID: PMC3896424 DOI: 10.1371/journal.pone.0085890] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/06/2013] [Indexed: 01/30/2023] Open
Abstract
Fibroblast growth factor 19 (FGF19) is the human ortholog of mouse FGF15, and both proteins function as an endocrine signal to regulate various liver functions. FGF15/FGF19 protein contains two disulfide bonds. It is unfavorable to form disulfide bonds in Escherichia coli (E. coli) cytoplasm because of the bacterial cytoplasmic reducing environment. Modification of the cytoplasmic reducing environment and/or co-expression of protein chaperones are common strategies to express disulfide bond containing proteins in E. coli. In the current study, we report a method to produce soluble FGF15/FGF19 protein in cytoplasm of E. coli. Several commercial available strains with the disruption of thiol-redox pathways, and/or co-expression of redoxase or refolding chaperones were used to develop this novel method for expression of FGF15/FGF19 in E. coli. Mutation of the thiol-disulfide bond reducing pathway in E. coli or N-terminal fusion of thioredox (TRX) alone is not enough to support disulfide bond formation in FGF15/19 proteins. However, TRX fusion protein improved FGF19 solubility in strains of thiol-redox system mutants. In addition, DsbC co-expressed in thiol-redox system mutants alone improved and further enhanced FGF19 solubility with combination of TRX fusion tag. The soluble FGF19 proteins were easily purified through Ni-NTA affinity chromatography and anion exchange chromatography, and the purified protein maintained its biological activities, confirmed by suppressing hepatic Cyp7a1 gene transcription in mice and by activating ERK1/2 signaling pathway in HepG2 cells. In contrast, soluble FGF15 protein in cytoplasm remained very low using these strategies. In summary, we have successfully developed a method to express functional FGF19 protein in prokaryotic cells, and this strategy may be adapted for the expression of other disulfide-containing proteins.
Collapse
Affiliation(s)
- Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
68
|
Wang TR, Yan LY, Yan J, Lu CL, Xia X, Yin TL, Zhu XH, Gao JM, Ding T, Hu WH, Guo HY, Li R, Qiao J. Basic fibroblast growth factor promotes the development of human ovarian early follicles during growth in vitro. Hum Reprod 2014; 29:568-76. [PMID: 24408318 DOI: 10.1093/humrep/det465] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION What is the effect of basic fibroblast growth factor (bFGF) on the growth of individual early human follicles in a three-dimensional (3D) culture system in vitro? SUMMARY ANSWER The addition of 200 ng bFGF/ml improves human early follicle growth, survival and viability during growth in vitro. WHAT IS KNOWN ALREADY It has been demonstrated that bFGF enhances primordial follicle development in human ovarian tissue culture. However, the growth and survival of individual early follicles in encapsulated 3D culture have not been reported. STUDY DESIGN, SIZE, DURATION The maturation in vitro of human ovarian follicles was investigated. Ovarian tissue (n= 11) was obtained from 11 women during laparoscopic surgery for gynecological disease, after obtaining written informed consent. One hundred and fifty-four early follicles were isolated by enzymic digestion and mechanical disruption. They were individually encapsulated into alginate (1% w/v) and randomly assigned to be cultured with 0, 100, 200 or 300 ng bFGF/ml for 8 days. PARTICIPANTS/MATERIALS, SETTING, METHODS Individual follicles were cultured in minimum essential medium α (αMEM) supplemented with bFGF. Follicle survival and growth were assessed by microscopy. Follicle viability was evaluated under confocal laser scanning microscope following Calcein-AM and Ethidium homodimer-I (Ca-AM/EthD-I) staining. MAIN RESULTS AND THE ROLE OF CHANCE After 8 days in culture, all 154 follicles had increased in size. The diameter and survival rate of the follicles and the percentage with good viability were significantly higher in the group cultured with 200 ng bFGF/ml than in the group without bFGF (P < 0.05). The percentage of follicles in the pre-antral stage was significantly higher in the 200 ng bFGF/ml group than in the group without bFGF (P < 0.05), while the percentages of primordial and primary follicles were significantly lower (P < 0.05). LIMITATIONS, REASONS FOR CAUTION The study focuses on the effect of bFGF on the development of individual human early follicles in 3D culture in vitro and has limited ability to reveal the specific effect of bFGF at each different stage. The findings highlight the need to improve the acquisition and isolation of human ovarian follicles. WIDER IMPLICATIONS OF THE FINDINGS The in vitro 3D culture of human follicles with appropriate dosage of bFGF offers an effective method to investigate their development. Moreover, it allows early follicles to be cultured to an advanced stage and therefore has the potential to become an important source of mature oocytes for assisted reproductive technology; particularly as an option for fertility preservation in women, including patients with cancer. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Basic Research Program of China (2011|CB944504, 2011CB944503) and the National Natural Science Foundation of China (81200470, 81000275, 31230047, 8110197). There are no conflicts of interest to declare.
Collapse
Affiliation(s)
- Tian-ren Wang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Hsuchou H, Pan W, Kastin AJ. Fibroblast growth factor 19 entry into brain. Fluids Barriers CNS 2013; 10:32. [PMID: 24176017 PMCID: PMC3818657 DOI: 10.1186/2045-8118-10-32] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/13/2013] [Indexed: 12/27/2022] Open
Abstract
Background Fibroblast growth factor (FGF)-19, an endocrine FGF protein mainly produced by the ileum, stimulates metabolic activity and alleviates obesity. FGF19 modulates metabolism after either intravenous or intracerebroventricular injection, and its receptor FGFR4 is present in the hypothalamus. This led to the question whether blood-borne FGF19 crosses the blood-brain barrier (BBB) to exert its metabolic effects. Methods We determined the pharmacokinetics of FGF19 permeation from blood to brain in comparison with its distribution in peripheral organs. Multiple-time regression analysis after intravenous bolus injection, in-situ brain perfusion, and HPLC assays were performed. Results FGF19 was relatively stable in blood and in the brain compartment. Significant influx was seen in the presence of excess unlabeled FGF19 in blood. This coincided with a slower decline of 125I-FGF19 in blood which suggested there was decreased clearance or peripheral tissue uptake. In support of an altered pattern of peripheral processing of 125I-FGF19 by excess unlabeled FGF19, the high influx to liver was significantly attenuated, whereas the minimal renal uptake was linearly accelerated. In the present setting, we did not detect a saturable transport of FGF19 across the BBB, as the entry rate of 125I-FGF19 was not altered by excess unlabeled FGF19 or its mouse homologue FGF15 during in-situ brain perfusion. Conclusion FGF19 remained stable in the blood and brain compartments for up to 10 min. Its influx to the brain was non-linear, non-saturable, and affected by its blood concentration and distribution in peripheral organs. Liver showed a robust and specific uptake of FGF19 that could be inhibited by the presence of excess unlabeled FGF19, whereas kidney clearance was dose-dependent.
Collapse
Affiliation(s)
| | - Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
70
|
Fibroblast growth factor 21: a novel metabolic regulator from pharmacology to physiology. Front Med 2013; 7:25-30. [DOI: 10.1007/s11684-013-0244-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/07/2012] [Indexed: 02/06/2023]
|
71
|
Cicione C, Degirolamo C, Moschetta A. Emerging role of fibroblast growth factors 15/19 and 21 as metabolic integrators in the liver. Hepatology 2012; 56:2404-11. [PMID: 22753116 DOI: 10.1002/hep.25929] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 06/14/2012] [Indexed: 12/07/2022]
Abstract
Fibroblast growth factors (FGFs) 15/19 and 21 belong to the FGF endocrine subfamily. They present the intriguing characteristic to be transcribed and secreted in certain tissues and to act as hormones. The insulin-mimetic properties of FGF21 and the regulatory role of FGF15/19 in bile acid and glucose homeostasis endorse these hormones as druggable targets in metabolic disorders. Here, we present details on discoveries, identification, transcriptional regulation, and mechanism of actions of FGF15/19 and FGF21 with a critical perspective view on their putative role as metabolic integrators in the liver.
Collapse
Affiliation(s)
- Claudia Cicione
- Laboratory of Lipid Metabolism and Cancer, Department of Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro (CH), Italy
| | | | | |
Collapse
|
72
|
Szpalski C, Sagebin F, Barbaro M, Warren SM. The influence of environmental factors on bone tissue engineering. J Biomed Mater Res B Appl Biomater 2012; 101:663-75. [PMID: 23165885 DOI: 10.1002/jbm.b.32849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/28/2012] [Accepted: 10/05/2012] [Indexed: 12/14/2022]
Abstract
Bone repair and regeneration are dynamic processes that involve a complex interplay between the substrate, local and systemic cells, and the milieu. Although each constituent plays an integral role in faithfully recreating the skeleton, investigators have long focused their efforts on scaffold materials and design, cytokine and hormone administration, and cell-based therapies. Only recently have the intangible aspects of the milieu received their due attention. In this review, we highlight the important influence of environmental factors on bone tissue engineering.
Collapse
Affiliation(s)
- Caroline Szpalski
- Department of Plastic Surgery, New York University Langone Medical Center, New York, New York, USA
| | | | | | | |
Collapse
|
73
|
Nakamura M, Uehara Y, Asada M, Suzuki M, Imamura T. Sulfated glycosaminoglycan-assisted receptor specificity of human fibroblast growth factor (FGF) 19 signaling in a mouse system is different from that in a human system. ACTA ACUST UNITED AC 2012; 18:321-30. [PMID: 23064887 DOI: 10.1177/1087057112463820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The endocrine action of human (h) intestine-derived fibroblast growth factor 19 (hFGF19) toward liver cells necessitates a highly specific recognition system. We previously reported that at physiological concentrations (~30 pM), hFGF19 requires sulfated glycosaminoglycans (sGAGs) for its signaling via human FGF receptor 4 (hFGFR4) in the presence of a co-receptor, human βKlotho (hKLB), thus establishing specific targeting. Here we report that the specificity of hFGF19 signaling is greatly altered in a mouse model system. In in vitro cellular systems, at concentrations achievable in transgenic animals and in pharmacologic animal experiments (1-100 nM), hFGF19 activates mouse (m)FGFR1c, mFGFR2c, and mFGFR3c but not mFGFR4 in the presence of mKLB and nonheparin authentic sGAGs. Furthermore, in the presence of hepatic sGAGs or heparin, nanomolar hFGF19 activates mFGFR4, even in the absence of co-expressed mKLB. Taken together, these results indicate that the sGAG-assisted receptor specificity of hFGF19 signaling achieved in experimental mouse systems differs greatly from that in physiological human systems. This suggests the function and mechanism of hFGF19 signaling identified using mouse systems should be reevaluated.
Collapse
Affiliation(s)
- Masao Nakamura
- National Institute of Advanced Industrial Science and Technology AIST, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | |
Collapse
|
74
|
Miyata M, Hata T, Yamakawa H, Kagawa T, Yoshinari K, Yamazoe Y. Involvement of multiple elements in FXR-mediated transcriptional activation of FGF19. J Steroid Biochem Mol Biol 2012; 132:41-7. [PMID: 22561792 DOI: 10.1016/j.jsbmb.2012.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 12/14/2022]
Abstract
The intestinal endocrine hormone human fibroblast growth factor 19 (FGF19) is involved in the regulation of not only hepatic bile acid metabolism but also carbohydrate and lipid metabolism. In the present study, bile acid/farnesoid X receptor (FXR) responsiveness in the FGF19 promoter region was investigated by a reporter assay using the human colon carcinoma cell line LS174T. The assay revealed the presence of bile acid/FXR-responsive elements in the 5'-flanking region up to 8.8 kb of FGF19. Deletion analysis indicated that regions from -1866 to -1833, from -1427 to -1353, and from -75 to +262 were involved in FXR responsiveness. Four, four, and two consecutive half-sites of nuclear receptors were observed in the three regions, respectively. An electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay revealed FXR/retinoid X receptor α (RXRα) heterodimer binding in these three regions. EMSA and reporter assays using mutated constructs indicated that the nuclear receptor IR1, ER2, and DR8 motifs in the 5'-flanking region were involved in FXR responsiveness of FGF19. Lithocholic acid (LCA) (10 μM), chenodeoxycholic acid (CDCA) (10 μM), or GW4064 (0.1 μM) treatment increased reporter activity in a construct including the three motifs under FXR-expressing conditions whereas LCA and not CDCA or GW4064 treatment increased the reporter activity under pregnane X receptor (PXR)-expressing conditions. These results suggest that FGF19 is transcriptionally activated through multiple FXR-responsive elements in the promoter region.
Collapse
Affiliation(s)
- Masaaki Miyata
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
75
|
Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev 2012; 26:312-24. [PMID: 22302876 PMCID: PMC3289879 DOI: 10.1101/gad.184788.111] [Citation(s) in RCA: 333] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We review the physiology and pharmacology of two atypical fibroblast growth factors (FGFs)-FGF15/19 and FGF21-that can function as hormones. Both FGF15/19 and FGF21 act on multiple tissues to coordinate carbohydrate and lipid metabolism in response to nutritional status. Whereas FGF15/19 is secreted from the small intestine in response to feeding and has insulin-like actions, FGF21 is secreted from the liver in response to extended fasting and has glucagon-like effects. FGF21 also acts in an autocrine fashion in several tissues, including adipose. The pharmacological actions of FGF15/19 and FGF21 make them attractive drug candidates for treating metabolic disease.
Collapse
Affiliation(s)
| | - Steven A. Kliewer
- Department of Pharmacology
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
76
|
Zweers SJLB, Booij KAC, Komuta M, Roskams T, Gouma DJ, Jansen PLM, Schaap FG. The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract. Hepatology 2012; 55:575-83. [PMID: 21953282 DOI: 10.1002/hep.24702] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/14/2011] [Indexed: 12/15/2022]
Abstract
UNLABELLED Fibroblast growth factor 19 (FGF19) plays a crucial role in the negative feedback regulation of bile salt synthesis. In the postprandial state, activation of ileal farnesoid X receptor (FXR) by bile salts results in transcriptional induction of FGF19 and elevation of circulating FGF19 levels. An intestinal-liver axis of FGF19 signaling results in down-regulation of bile salt synthesis. The aim of this study was to explore a broader signaling activity of FGF19 in organs engaged in the enterohepatic circulation of bile salts. For this aim, FGF19 expression and aspects of FGF19 signaling were studied in surgical specimens and in cell lines of hepatobiliary and intestinal origin. FGF19 messenger RNA was found to be abundantly expressed in the human gallbladder and in the common bile duct, with only minor expression observed in the ileum. Interestingly, human gallbladder bile contains high levels of FGF19 (21.9 ± 13.3 versus 0.22 ± 0.14 ng/mL in the systemic circulation). Gallbladder explants secrete 500 times more FGF19 than FXR agonist-stimulated ileal explants. Factors required for FGF19 signaling (i.e., FGFR4 and βKlotho) are expressed in mucosal epithelial cells of the gallbladder and small intestine. FGF19 was found to activate signaling pathways in cell lines of cholangiocytic, enteroendocrine, and enterocytic origin. CONCLUSION The combined findings raise the intriguing possibility that biliary FGF19 has a signaling function in the biliary tract that differs from its established signaling function in the portal circulation. Delineation of the target cells in bile-exposed tissues and the affected cellular pathways, as well as a possible involvement in biliary tract disorders, require further studies.
Collapse
Affiliation(s)
- Serge J L B Zweers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
77
|
Understanding the structure-function relationship between FGF19 and its mitogenic and metabolic activities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 728:195-213. [PMID: 22396171 DOI: 10.1007/978-1-4614-0887-1_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
FGF19 differs from the classical FGFs in that it has a much-reduced heparan sulfate proteoglycan binding affinity that allows it to act as endocrine hormone. Although FGF19 regulates several different metabolic activities, it still activates downstream signaling pathways through FGF receptors, in a similar manner to that seen in classical FGFs. Aberrant FGF signaling has been implicated in tumor development, and mouse models have confirmed that FGF19 has the potential to induce hepatocellular carcinoma. Treatment with anti-FGF19 antibody suppressed tumor progression in both FGF19 transgenic mice and colon cancer cell xenograft models. FGFR4, the predominant FGF receptor expressed in the liver, may play an important role in FGF19-mediated tumorigenesis. This review reports the current advances in understanding the structure-function relationship between FGF19 and its interactions with FGFRs, its physiological activities, and its differences from FGF21. The review also discusses strategies to separate the mitogenic and metabolic activities for the development of potential therapeutic molecules based on FGF19.
Collapse
|
78
|
Abstract
Fibroblast growth factors (FGFs) and their cognate receptors, FGF receptors (FGFRs), play critical roles in a variety of normal developmental and physiological processes. Numerous reports support a role for deregulation of FGF-FGFR signaling, whether it is at the ligand and/or receptor level, in tumor development and progression. The FGF19-FGFR4 signaling axis has been implicated in the pathogenesis of several cancers, including hepatocellular carcinomas in mice and potentially in humans. This chapter focuses on recent progress in the understanding of the molecular mechanisms of FGF19 action and its potential involvement in cancer.
Collapse
|
79
|
MRÁZ M, LACINOVÁ Z, KAVÁLKOVÁ P, HALUZÍKOVÁ D, TRACHTA P, DRÁPALOVÁ J, HANUŠOVÁ V, HALUZÍK M. Serum Concentrations of Fibroblast Growth Factor 19 in Patients With Obesity and Type 2 Diabetes Mellitus: the Influence of Acute Hyperinsulinemia, Very-Low Calorie Diet and PPAR-α Agonist Treatment. Physiol Res 2011; 60:627-36. [DOI: 10.33549/physiolres.932099] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The aim of our study was to measure serum concentrations of fibroblast growth factor 19 (FGF-19) in patients with obesity (OB), obesity and type 2 diabetes mellitus (T2DM) and healthy subjects (C) at baseline and after selected interventions. We measured serum FGF-19 levels and other biochemical and hormonal parameters in 29 OB and 19 T2DM females and 30 sex- and age-matched control subjects. The interventions were acute hyperinsulinemia during isoglycemic-hyperinsulinemic clamp (n=11 for T2DM and 10 for C), very-low calorie diet (VLCD, n=12 for OB) and 3 months treatment with PPAR-α agonist fenofibrate (n=11 for T2DM). Baseline serum FGF-19 levels were significantly lower in OB relative to C group (132.1±12.7 vs. 202.2±16.7 pg/ml, p<0.05), while no significant difference was observed between T2DM and OB or control group. Acute hyperinsulinemia tended to decrease FGF-19 levels in both healthy and T2DM subjects. Three weeks of VLCD in OB group had no significant effect on FGF-19, whereas three months of fenofibrate treatment markedly reduced FGF-19 levels in T2DM patients (194.58±26.2 vs. 107.47±25.0 pg/ml, p<0.05). We conclude that FGF-19 levels in our study were at least partially dependent upon nutritional status, but were not related to parameters of glucose metabolism or insulin sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - M. HALUZÍK
- Third Department of Medicine, General University Hospital and First Medical Faculty, Charles University, Prague, Czech Republic
| |
Collapse
|
80
|
Passiatore G, Gentilella A, Rom S, Pacifici M, Bergonzini V, Peruzzi F. Induction of Id-1 by FGF-2 involves activity of EGR-1 and sensitizes neuroblastoma cells to cell death. J Cell Physiol 2011; 226:1763-70. [PMID: 21506108 DOI: 10.1002/jcp.22505] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inhibitor of differentiation-1 (Id-1) is a member of helix-loop-helix (HLH) family of proteins that regulate gene transcription through their inhibitory binding to basic-HLH transcription factors. Similarly to other members of this family, Id-1 is involved in the repression of cell differentiation and activation of cell growth. The dual function of Id-1, inhibition of differentiation, and stimulation of cell proliferation, might be interdependent, as cell differentiation is generally coupled with the exit from the cell cycle. Fibroblast growth factor-2 (FGF-2) has been reported to play multiple roles in different biological processes during development of the central nervous system (CNS). In addition, FGF-2 has been described to induce "neuronal-like" differentiation and trigger apoptosis in neuroblastoma SK-N-MC cells. Although regulation of Id-1 protein by several mitogenic factors is well-established, little is known about the role of FGF-2 in the regulation of Id-1. Using human neuroblastoma cell line, SK-N-MC, we found that treatment of these cells with FGF-2 resulted in early induction of both Id-1 mRNA and protein. The induction occurs within 1 h from FGF-2 treatment and is mediated by ERK1/2 pathway, which in turn stimulates expression of the early growth response-1 (Egr-1) transcription factor. We also demonstrate direct interaction of Egr-1 with Id-1 promoter in vitro and in cell culture. Finally, inhibition of Id-1 expression results in G(2) /M accumulation of FGF-2-treated cells and delayed cell death.
Collapse
Affiliation(s)
- Giovanni Passiatore
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
81
|
Enhanced in vitro refolding of fibroblast growth factor 15 with the assistance of SUMO fusion partner. PLoS One 2011; 6:e20307. [PMID: 21655243 PMCID: PMC3105028 DOI: 10.1371/journal.pone.0020307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/28/2011] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor 15 (Fgf15) is the mouse orthologue of human FGF19. Fgf15 is highly expressed in the ileum and functions as an endocrine signal to regulate liver function, including bile acid synthesis, hepatocyte proliferation and insulin sensitivity. In order to fully understand the function of Fgf15, methods are needed to produce pure Fgf15 protein in the prokaryotic system. However, when expressed in Escherichia coli (E. coli), the recombinant Fgf15 protein was insoluble and found only in inclusion bodies. In the current study, we report a method to produce recombinant Fgf15 protein in E. coli through the use of small ubiquitin-related modifier (SUMO) fusion tag. Even though the SUMO has been shown to strongly improve protein solubility and expression levels, our studies suggest that the SUMO does not improve Fgf15 protein solubility. Instead, proper refolding of Fgf15 protein was achieved when Fgf15 was expressed as a partner protein of the fusion tag SUMO, followed by in vitro dialysis refolding. After refolding, the N-terminal SUMO tag was cleaved from the recombinant Fgf15 fusion protein by ScUlp1 (Ubiquitin-Like Protein-Specific Protease 1 from S. cerevisiae). With or without the SUMO tag, the refolded Fgf15 protein was biologically active, as revealed by its ability to reduce hepatic Cyp7a1 mRNA levels in mice. In addition, recombinant Fgf15 protein suppressed Cyp7a1 mRNA levels in a dose-dependent manner. In summary, we have developed a successful method to express functional Fgf15 protein in prokaryotic cells.
Collapse
|
82
|
|
83
|
Long YC, Kharitonenkov A. Hormone-like fibroblast growth factors and metabolic regulation. Biochim Biophys Acta Mol Basis Dis 2011; 1812:791-5. [PMID: 21504790 DOI: 10.1016/j.bbadis.2011.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/25/2011] [Accepted: 04/01/2011] [Indexed: 01/13/2023]
Abstract
The family of fibroblast growth factors (FGFs) consisting now of 22 members is generally considered to control a wide range of biological functions such as development, differentiation and survival. However, research during the past decade provided substantial evidence that a so called "hormone-like" subgroup of FGFs, comprised of FGF19, FGF21 and FGF23, is involved in the regulation of diverse metabolic pathways to control glucose, lipid, bile acid, phosphate and vitamin D metabolism. The unique properties of these FGFs include predominant production of the factors in selective tissues, their abundance in the blood due to the lack of extracellular heparin-mediated sequestration, and highly specific tissue-targeted action via engagement of their respective co-receptors. The important metabolic context of FGF19, FGF21, and FGF23 actions has revealed important novel roles for FGFs and provided significant means to explore an opportunity for therapeutic targeting of these factors and their corresponding pathways.
Collapse
Affiliation(s)
- Yun Chau Long
- Eli Lilly and company, Lilly Research Laboratory, Lilly Corporate Center, Indianapolis Indiana 46285, USA
| | | |
Collapse
|
84
|
Fischer T, Faus-Kessler T, Welzl G, Simeone A, Wurst W, Prakash N. Fgf15-mediated control of neurogenic and proneural gene expression regulates dorsal midbrain neurogenesis. Dev Biol 2011; 350:496-510. [DOI: 10.1016/j.ydbio.2010.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/14/2010] [Accepted: 12/13/2010] [Indexed: 12/16/2022]
|
85
|
Feito MJ, Lozano RM, Alcaide M, Ramírez-Santillán C, Arcos D, Vallet-Regí M, Portolés MT. Immobilization and bioactivity evaluation of FGF-1 and FGF-2 on powdered silicon-doped hydroxyapatite and their scaffolds for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:405-416. [PMID: 21132351 DOI: 10.1007/s10856-010-4193-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/19/2010] [Indexed: 05/30/2023]
Abstract
Fibroblast growth factors (FGFs) are polypeptides that control the proliferation and differentiation of various cell types including osteoblasts. FGFs are also strong inducers of angiogenesis, necessary to obtain oxygen and nutrients during tissue repair. With the aim to incorporate these desirable FGF biological properties into bioceramics for bone repair, silicon substituted hydroxyapatites (Si-HA) were used as materials to immobilize bioactive FGF-1 and FGF-2. Thus, the binding of these growth factors to powdered Si-HA and Si-HA scaffolds was carried out efficiently in the present study and both FGFs maintained its biological activity on osteoblasts after its immobilization. The improvement of cell adhesion and proliferation onto Si-HA scaffolds suggests the potential utility of these FGF/scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- María José Feito
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Universidad Complutense, 28040, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
86
|
Lin Z, Wu Z, Yin X, Liu Y, Yan X, Lin S, Xiao J, Wang X, Feng W, Li X. Serum levels of FGF-21 are increased in coronary heart disease patients and are independently associated with adverse lipid profile. PLoS One 2010; 5:e15534. [PMID: 21206918 PMCID: PMC3012070 DOI: 10.1371/journal.pone.0015534] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/13/2010] [Indexed: 01/07/2023] Open
Abstract
Background Fibroblast growth factor 21 (FGF-21) is a metabolic regulator with multiple beneficial effects on glucose homeostasis and lipid metabolism in animal models. The relationship between plasma levels of FGF-21 and coronary heart disease (CHD) in unknown. Methodology/Principal Findings This study aimed to investigate the correlation of serum FGF-21 levels and lipid metabolism in the patients with coronary heart disease. We performed a logistic regression analysis of the relation between serum levels of FGF-21 and CHD patients with and without diabetes and hypertension. This study was conducted in the Departments of Endocrinology and Cardiovascular Diseases at two University Hospitals. Participants consisted of one hundred and thirty-five patients who have been diagnosed to have CHD and sixty-one control subjects. Serum FGF-21 level and levels of fasting blood glucose; triglyceride; apolipoprotein B100; HOMA-IR; insulin; total cholesterol; HDL-cholesterol; LDL-cholesterol; and C-reactive protein were measured. We found that median serum FGF-21 levels were significantly higher in CHD than that of control subjects (P<0.0001). Serum FGF-21 levels in CHD patients with diabetes, hypertension, or both were higher than that of patients without these comorbidities. Serum FGF-21 levels correlated positively with triglycerides, fasting blood glucose, apolipoprotein B100, insulin and HOMA-IR but negatively with HDL-C and apolipoprotein A1 after adjusting for BMI, diabetes and hypertension. Logistic regression analysis demonstrated that FGF-21 showed an independent association with triglyceride and apolipoprotein A1. Conclusions/Significance High levels of FGF-21 are associated with adverse lipid profiles in CHD patients. The paradoxical increase of serum FGF-21 in CHD patients may indicate a compensatory response or resistance to FGF-21.
Collapse
Affiliation(s)
- Zhuofeng Lin
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Zhen Wu
- Department of Endocrinology, the 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojing Yin
- Department of Cardiovascular Diseases, the 6th Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanlong Liu
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
- School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Xinxin Yan
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | - Shaoqiang Lin
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | - Jian Xiao
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | - Xiaojie Wang
- Bioreator Engineering Research Center, Minister of Education, Jilin Agricultural University, Changchun, China
| | - Wenke Feng
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
- School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail: (XL); (WF)
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
- Bioreator Engineering Research Center, Minister of Education, Jilin Agricultural University, Changchun, China
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
- * E-mail: (XL); (WF)
| |
Collapse
|
87
|
Tulin S, Stathopoulos A. Extending the family table: Insights from beyond vertebrates into the regulation of embryonic development by FGFs. ACTA ACUST UNITED AC 2010; 90:214-27. [PMID: 20860061 DOI: 10.1002/bdrc.20182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the discovery of fibroblast growth factors (FGFs) much focus has been placed on elucidating the roles for each vertebrate FGF ligand, receptor, and regulating molecules in the context of vertebrate development, human disorders and cancer. Studies in human, mouse, frog, chick, and zebrafish have made great contributions to our understanding of the role of FGFs in specific processes. However, in recent years, as more genomes are sequenced, information is becoming available from many non-vertebrate models and a more complete picture of the FGF superfamily as a whole is emerging. In some cases, less redundancy in these FGF signaling systems may allow for more mechanistic insights. Studies in sea anemones have highlighted how ancient FGF signaling is and helped provide insight into the evolution of the FGF gene family. Work in nematodes has shown that different splice forms can be used for functional specificity in invertebrate FGF signaling. Comparing FGFs between urochordates and vertebrates as well as between different insect species reveals important clues into the process of gene loss, duplication and subfunctionalization of FGFs throughout evolution. Finally, comparing all members of the FGF ligand superfamily reveals variability in many properties, which may point to a feature of FGFs as being highly adaptable with regards to protein structure and signaling mechanism. Further studies on FGF signaling outside of vertebrates is likely to continue to complement work in vertebrates by contributing additional insights to the FGF field and providing unexpected information that could be used for medical applications.
Collapse
Affiliation(s)
- Sarah Tulin
- California Institute of Technology, Pasadena, USA.
| | | |
Collapse
|
88
|
Wischmeijer A, Magini P, Giorda R, Gnoli M, Ciccone R, Cecconi L, Franzoni E, Mazzanti L, Romeo G, Zuffardi O, Seri M. Olfactory Receptor-Related Duplicons Mediate a Microdeletion at 11q13.2q13.4 Associated with a Syndromic Phenotype. Mol Syndromol 2010; 1:176-184. [PMID: 21373257 DOI: 10.1159/000322054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2010] [Indexed: 11/19/2022] Open
Abstract
By array-CGH, we identified a cryptic deletion of about 3.4 Mb involving the chromosomal region 11q13.2q13.4 in a child with speech and developmental delay. Highly homologous segmental duplications related to the well-known olfactory receptor (OR)-containing clusters at 8p and 4p are located at the breakpoints of the imbalance and may be involved in its occurrence. Although these structural features are known to promote recurrent chromosomal rearrangements and previous studies had included the 11q13.2q13.4 deletion region among those considered potentially more unstable, neither deletions nor duplications of this region had been reported until now. Among the deleted genes, SHANK2 might play a role in the phenotype of the patient since it encodes a postsynaptic scaffolding protein similar to SHANK3, whose haploinsufficiency is a well-known cause of severe speech delay and autistic-like behavior, and recently deletions and mutations of SHANK2 have been described in patients with an autistic spectrum disorder or mental retardation.
Collapse
|
89
|
Itoh N. Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res 2010; 342:1-11. [PMID: 20730630 PMCID: PMC2948652 DOI: 10.1007/s00441-010-1024-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/14/2010] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factors (Fgfs) are proteins with diverse functions in development, repair, and metabolism. The human Fgf gene family with 22 members can be classified into three groups, canonical, intracellular, and hormone-like Fgf genes. In contrast to canonical and intracellular Fgfs identified in invertebrates and vertebrates, hormone-like Fgfs, Fgf15/19, Fgf21, and Fgf23, are vertebrate-specific. The ancestral gene of hormone-like Fgfs was generated from the ancestral gene of canonical Fgfs by gene duplication early in vertebrate evolution. Later, Fgf15/19, Fgf21, and Fgf23 were generated from the ancestral gene by genome duplication events. Canonical Fgfs act as autocrine/paracrine factors in an Fgf receptor (Fgfr)-dependent manner. In contrast, hormone-like Fgfs act as endocrine factors in an Fgfr-dependent manner. Canonical Fgfs have a heparin-binding site necessary for the stable binding of Fgfrs and local signaling. In contrast, hormone-like Fgfs acquired endocrine functions by reducing their heparin-binding affinity during their evolution. Fgf15/19 and Fgf23 require βKlotho and αKlotho as cofactors, respectively. However, Fgf21 might physiologically require neither. Hormone-like Fgfs play roles in metabolism at postnatal stages, although they also play roles in development at embryonic stages. Fgf15/19 regulates bile acid metabolism in the liver. Fgf21 regulates lipid metabolism in the white adipose tissue. Fgf23 regulates serum phosphate and active vitamin D levels. Fgf23 signaling disorders caused by hereditary diseases or tumors result in metabolic disorders. In addition, serum Fgf19 or Fgf21 levels are significantly increased by metabolic disorders. Hormone-like Fgfs are newly emerging and quite unique in their evolution and function.
Collapse
Affiliation(s)
- Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan.
| |
Collapse
|
90
|
Pereira TN, Walsh MJ, Lewindon PJ, Ramm GA. Paediatric cholestatic liver disease: Diagnosis, assessment of disease progression and mechanisms of fibrogenesis. World J Gastrointest Pathophysiol 2010; 1:69-84. [PMID: 21607144 PMCID: PMC3097948 DOI: 10.4291/wjgp.v1.i2.69] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/26/2010] [Accepted: 04/02/2010] [Indexed: 02/06/2023] Open
Abstract
Cholestatic liver disease causes significant morbidity and mortality in children. The diagnosis and management of these diseases can be complicated by an inability to detect early stages of fibrosis and a lack of adequate interventional therapy. There is no single gold standard test that accurately reflects the presence of liver disease, or that can be used to monitor fibrosis progression, particularly in conditions such as cystic fibrosis. This has lead to controversy over how suspected liver disease in children is detected and diagnosed. This review discusses the challenges in using commonly available methods to diagnose hepatic fibrosis and monitor disease progression in children with cholestatic liver disease. In addition, the review examines the mechanisms hypothesised to be involved in the development of hepatic fibrogenesis in paediatric cholestatic liver injury which may ultimately aid in identifying new modalities to assist in both disease detection and therapeutic intervention.
Collapse
|
91
|
Abstract
Alpha-Klotho (alpha-Kl) and its homolog, beta-Klotho (beta-Kl) are key regulators of mineral homeostasis and bile acid/cholesterol metabolism, respectively. FGF15/ humanFGF19, FGF21, and FGF23, members of the FGF19 subfamily, are believed to act as circulating metabolic regulators. Analyses of functional interactions between alpha- and beta-Kl and FGF19 factors in wild-type, alpha-kl(-/-), and beta-kl(-/-) mice revealed a comprehensive regulatory scheme of mineral homeostasis involving the mutually regulated positive/negative feedback actions of alpha-Kl, FGF23, and 1,25(OH)(2)D and an analogous regulatory network composed of beta-Kl, FGF15/humanFGF19, and bile acids that regulate bile acid/cholesterol metabolism. Contrary to in vitro data, beta-Kl is not essential for FGF21 signaling in adipose tissues in vivo, because (i) FGF21 signals are transduced in the absence of beta-Kl, (ii) FGF21 could not be precipitated by beta-Kl, and (iii) essential phenotypes in Fgf21(-/-) mice (decreased expressions of Hsl and Atgl in WAT) were not replicated in beta-kl(-/-) mice. These findings suggest the existence of Klotho-independent FGF21 signaling pathway(s) where undefined cofactors are involved. One-to-one functional interactions such as alpha-Klotho/FGF23, beta-Klotho/FGF15 (humanFGF19), and undefined cofactor/FGF21 would result in tissue-specific signal transduction of the FGF19 subfamily.
Collapse
|
92
|
Allori AC, Sailon AM, Warren SM. Biological basis of bone formation, remodeling, and repair-part I: biochemical signaling molecules. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:259-73. [PMID: 18665803 DOI: 10.1089/ten.teb.2008.0082] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The bony biochemical environment is an active and dynamic system that permits and promotes cellular functions that lead to matrix production and ossification. Each component is capable of conveying important regulatory cues to nearby cells, thus effecting gene expression and changes at the cytostructural level. Here, we review the various signaling molecules that contribute to the active and dynamic nature of the biochemical system. These components include hormones, cytokines, and growth factors. We describe their role in regulating bone metabolism. Certain growth factors (i.e., TGF-beta, IGF-1, and VEGF) are described in greater detail because of their potential importance in developing successful tissue-engineering strategies.
Collapse
Affiliation(s)
- Alexander C Allori
- Institute of Reconstructive Plastic Surgery, New York University Medical Center, New York, New York, USA
| | | | | |
Collapse
|
93
|
Rydén M. Fibroblast growth factor 21: an overview from a clinical perspective. Cell Mol Life Sci 2009; 66:2067-73. [PMID: 19277467 PMCID: PMC11115664 DOI: 10.1007/s00018-009-0003-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 02/11/2009] [Accepted: 02/13/2009] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor 21 (FGF21) has been proposed as a novel putative therapeutic agent in type 2 diabetes. A large amount of data, predominantly obtained from murine models but also from non-human primates, suggest that FGF21 ameliorates obesity-associated hyperglycemia and hyperlipidemia primarily via effects on adipose tissue and the pancreas. In addition, FGF21 has been reported to play a pivotal regulatory role in starvation and ketosis. However, while it is clear that FGF21 has potent effects in vivo in several animal models, the exact mechanisms remain elusive. Moreover, very recent results from different human cohort studies have shown a paradoxical regulation of plasma FGF21 in obesity and type 2 diabetes as well as other important qualitative differences in the effects and regulation of FGF21 between rodents and humans. This review focuses on the most recently published data on FGF21 with emphasis on results obtained in humans.
Collapse
Affiliation(s)
- Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, 141 86, Huddinge, Stockholm, Sweden.
| |
Collapse
|
94
|
Garor R, Abir R, Erman A, Felz C, Nitke S, Fisch B. Effects of basic fibroblast growth factor on in vitro development of human ovarian primordial follicles. Fertil Steril 2009; 91:1967-75. [DOI: 10.1016/j.fertnstert.2008.04.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/24/2008] [Accepted: 04/24/2008] [Indexed: 10/21/2022]
|
95
|
Schaap FG, van der Gaag NA, Gouma DJ, Jansen PLM. High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology 2009; 49:1228-35. [PMID: 19185005 DOI: 10.1002/hep.22771] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Fibroblast growth factor 19 (FGF19) is an endocrine factor produced by the small intestine in response to uptake of luminal bile salts. In the liver, FGF19 binds to FGF receptor-4, resulting in down-regulation of cytochrome P (CYP) 7A1 and reduced bile salt synthesis. Down-regulation of CYP7A1 under cholestatic conditions has been attributed to bile salt-mediated induction of the transcriptional repressor short heterodimer partner (SHP), because the interrupted enterohepatic cycle of bile salts is thought to abrogate intestinal FGF19 production and thus result in lowering of plasma FGF19 levels. Unexpectedly, we observed marked elevation of plasma FGF19 in patients with extrahepatic cholestasis caused by a pancreatic tumor (2.3 +/- 2.3 in cholestatic versus 0.40 +/- 0.25 ng/mL and 0.29 +/- 0.12 ng/mL in postcholestatic patients who received preoperative drainage by biliary stenting, P = 0.004, and noncholestatic control patients, P = 0.04, respectively). Although FGF19 messenger RNA (mRNA) is virtually absent in normal liver, FGF19 mRNA was strongly increased (31-fold to 374-fold, P < 0.001) in the liver of cholestatic patients in comparison with drained and control patients. In the absence of changes in SHP mRNA, CYP7A1 mRNA was strongly reduced (7.2-fold to 24-fold, P < 0.005) in the liver of cholestatic patients in comparison with drained and control patients, indicating an alternative regulatory pathway. Alterations in transcripts encoding hepatobiliary transporters [adenosine triphosphate-binding cassette, subfamily C, member 3 (ABCC3)/multidrug resistance protein 3 (MRP3), organic solute transporter alpha/beta (OSTalpha/beta), organic anion-transporting polypeptide (OATP1B1)] further suggest that bile salts are secreted via a nonbiliary route in patients with extrahepatic cholestasis. CONCLUSION The liver expresses FGF19 under conditions of extrahepatic cholestasis. This is accompanied by a number of adaptations aimed at protecting the liver against bile salt toxicity. FGF19 signaling may be involved in some of these adaptations.
Collapse
|
96
|
Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009; 8:235-53. [PMID: 19247306 DOI: 10.1038/nrd2792] [Citation(s) in RCA: 1398] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The family of fibroblast growth factors (FGFs) regulates a plethora of developmental processes, including brain patterning, branching morphogenesis and limb development. Several mitogenic, cytoprotective and angiogenic therapeutic applications of FGFs are already being explored, and the recent discovery of the crucial roles of the endocrine-acting FGF19 subfamily in bile acid, glucose and phosphate homeostasis has sparked renewed interest in the pharmacological potential of this family. This Review discusses traditional applications of recombinant FGFs and small-molecule FGF receptor kinase inhibitors in the treatment of cancer and cardiovascular disease and their emerging potential in the treatment of metabolic syndrome and hypophosphataemic diseases.
Collapse
Affiliation(s)
- Andrew Beenken
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
97
|
Song KH, Li T, Owsley E, Strom S, Chiang JYL. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 2009; 49:297-305. [PMID: 19085950 PMCID: PMC2614454 DOI: 10.1002/hep.22627] [Citation(s) in RCA: 316] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Mouse fibroblast growth factor 15 (FGF15) and human ortholog FGF19 have been identified as the bile acid-induced intestinal factors that mediate bile acid feedback inhibition of cholesterol 7alpha-hydroxylase gene (C YP7A1) transcription in mouse liver. The mechanism underlying FGF15/FGF19 inhibition of bile acid synthesis in hepatocytes remains unclear. Chenodeoxycholic acid (CDCA) and the farnesoid X receptor (FXR)-specific agonist GW4064 strongly induced FGF19 but inhibited CYP7A1 messenger RNA (mRNA) levels in primary human hepatocytes. FGF19 strongly and rapidly repressed CYP7A1 but not small heterodimer partner (SHP) mRNA levels. Kinase inhibition and phosphorylation assays revealed that the mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (MAPK/Erk1/2) pathway played a major role in mediating FGF19 inhibition of CYP7A1. However, small interfering RNA (siRNA) knockdown of SHP did not affect FGF19 inhibition of CYP7A1. Interestingly, CDCA stimulated tyrosine phosphorylation of the FGF receptor 4 (FGFR4) in hepatocytes. FGF19 antibody and siRNA specific to FGFR4 abrogated GW4064 inhibition of CYP7A1. These results suggest that bile acid-activated FXR is able to induce FGF19 in hepatocytes to inhibit CYP7A1 by an autocrine/paracrine mechanism. CONCLUSION The hepatic FGF19/FGFR4/Erk1/2 pathway may inhibit CYP7A1 independent of SHP. In addition to inducing FGF19 in the intestine, bile acids in hepatocytes may activate the liver FGF19/FGFR4 signaling pathway to inhibit bile acid synthesis and prevent accumulation of toxic bile acid in human livers.
Collapse
Affiliation(s)
- Kwang-Hoon Song
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272
| | - Tiangang Li
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272
| | - Erika Owsley
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272
| | - Stephen Strom
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272
| |
Collapse
|
98
|
Li L, Yang G, Ning H, Yang M, Liu H, Chen W. Plasma FGF-21 levels in type 2 diabetic patients with ketosis. Diabetes Res Clin Pract 2008; 82:209-13. [PMID: 18722685 DOI: 10.1016/j.diabres.2008.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 07/09/2008] [Accepted: 07/11/2008] [Indexed: 01/10/2023]
Abstract
FGF-21 has been recently characterized as a potent metabolic regulator, but its pathophysiologic role in human remains unknown. In this study we investigate whether plasma FGF-21 level is different in patients with new-onset type 2 diabetes mellitus (T2DM) and diabetic ketosis (T2DK). Sixty-eight patients with T2DM, 41 subjects with T2DK, and 52 sex- and age-matched normal controls participated in the study. Plasma FGF-21 levels were measured with a radioimmunoassay. The relationship between plasma FGF-21 levels and anthropometric and metabolic parameters was also analyzed. Plasma FGF-21 levels were higher in patients with T2DK and T2DM than in controls (4.05+/-0.18microg/L and 2.82+/-0.14microg/L vs. 2.28+/-0.16microg/L, P<0.01 and P<0.05, respectively). Fasting plasma FGF-21 was found to correlate positively and significantly with SBP, DBP, FBG, 2hPBG, HbA(1)c, HDL-C and FFA, but negatively with fasting plasma insulin, 2hIns and HOMA(IS). Multiple regression analysis showed that DBP, WHR, 2hIns, 2hPBG and FFA were independent to the factors influencing plasma FGF-21 levels. Increasing concentrations of FGF-21 were independently and significantly associated with T2DM and T2DK. The present work suggests that FGF-21 may play a role in the pathogenesis of T2DM and T2DK.
Collapse
Affiliation(s)
- Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in Ministry of Education and Department of Clinical Biochemistry, Chongqing Medical University, 400016 Chongqing, China.
| | | | | | | | | | | |
Collapse
|
99
|
Dostálová I, Kaválková P, Haluzíková D, Lacinová Z, Mráz M, Papezová H, Haluzík M. Plasma concentrations of fibroblast growth factors 19 and 21 in patients with anorexia nervosa. J Clin Endocrinol Metab 2008; 93:3627-32. [PMID: 18559909 DOI: 10.1210/jc.2008-0746] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT Fibroblast growth factor 19 (FGF19) and FGF21 are novel metabolic regulators that improve insulin sensitivity and decrease adiposity in mice. However, little is known about the nutritional regulation of these factors in humans. OBJECTIVE The objective of this study was to measure plasma FGF19 and FGF21 levels in patients with anorexia nervosa (AN) and to explore its relationship with anthropometric and endocrine parameters. DESIGN This was a single-center cross-sectional study. SETTING The study was performed in a university hospital. PATIENTS Seventeen untreated women with a restrictive type of AN and 17 healthy women (control group) were included. MAIN OUTCOME MEASURES Fasting plasma FGF19 and FGF21, serum insulin, leptin, soluble leptin receptor, adiponectin, resistin, and C-reactive protein were the main outcome measures. RESULTS Plasma FGF19 levels did not significantly differ between the groups studied, whereas plasma FGF21 levels were significantly reduced in AN relative to the control group. Plasma FGF21 positively correlated with body mass index and serum leptin and insulin and was inversely related to serum adiponectin in both groups. In contrast, plasma FGF19 was not related to any of parameters studied. Partial realimentation significantly reduced plasma FGF21 levels in AN. CONCLUSION Circulating levels of FGF21 but not FGF19 are strongly related to body weight and serum levels of leptin, adiponectin, and insulin in both anorectic and normal-weight women. We suggest that reduced plasma FGF21 levels could be involved in the pathophysiology of AN or in a complex adaptive response to this disease.
Collapse
Affiliation(s)
- Ivana Dostálová
- Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
100
|
Alsmadi O, Meyer BF, Alkuraya F, Wakil S, Alkayal F, Al-Saud H, Ramzan K, Al-Sayed M. Syndromic congenital sensorineural deafness, microtia and microdontia resulting from a novel homoallelic mutation in fibroblast growth factor 3 (FGF3). Eur J Hum Genet 2008; 17:14-21. [PMID: 18701883 DOI: 10.1038/ejhg.2008.141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We identified a homozygous missense mutation (c.196G-->T) in fibroblast growth factor 3 (FGF3) in 21 affected individuals from a large extended consanguineous Saudi family, phenotypically characterized by autosomal recessive syndromic congenital sensorineural deafness, microtia and microdontia. All affected family members are descendents of a common ancestor who had lived six generations ago in a geographically isolated small village. This is the second report of FGF3 involvement in syndromic deafness in humans, and independently confirms the gene's positive role in inner ear development. The c.196G-->T mutation results in substitution of glycine by cysteine at amino acid 66 (p.G66C). This residue is conserved in several species and across 18 FGF family members. Conserved glycine/proline residues are central to the 'beta-trefoil fold' characteristic of the secondary structure of FGF family proteins and substitution of these residues is likely to disrupt structure and consequently function.
Collapse
Affiliation(s)
- Osama Alsmadi
- Department of Genetics, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|