51
|
Sheehan JJ, Zhou C, Gravanis I, Rogove AD, Wu YP, Bogenhagen DF, Tsirka SE. Proteolytic activation of monocyte chemoattractant protein-1 by plasmin underlies excitotoxic neurodegeneration in mice. J Neurosci 2007; 27:1738-45. [PMID: 17301181 PMCID: PMC6673734 DOI: 10.1523/jneurosci.4987-06.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exposure of neurons to high concentrations of excitatory neurotransmitters causes them to undergo excitotoxic death via multiple synergistic injury mechanisms. One of these mechanisms involves actions undertaken locally by microglia, the CNS-resident macrophages. Mice deficient in the serine protease plasmin exhibit decreased microglial migration to the site of excitatory neurotransmitter release and are resistant to excitotoxic neurodegeneration. Microglial chemotaxis can be signaled by the chemokine monocyte chemoattractant protein-1 (MCP-1)/CCL2 (CC chemokine ligand 2). We show here that mice genetically deficient for MCP-1 phenocopy plasminogen deficiency by displaying decreased microglial recruitment and resisting excitotoxic neurodegeneration. Connecting these pathways, we demonstrate that MCP-1 undergoes a proteolytic processing step mediated by plasmin. The processing, which consists of removal of the C terminus of MCP-1, enhances the potency of MCP-1 in in vitro migration assays. Finally, we show that infusion of the cleaved form of MCP-1 into the CNS restores microglial recruitment and excitotoxicity in plasminogen-deficient mice. These findings identify MCP-1 as a key downstream effector in the excitotoxic pathway triggered by plasmin and identify plasmin as an extracellular chemokine activator. Finally, our results provide a mechanism that explains the resistance of plasminogen-deficient mice to excitotoxicity.
Collapse
Affiliation(s)
- John J. Sheehan
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Chun Zhou
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Iordanis Gravanis
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Andrew D. Rogove
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Yan-Ping Wu
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Daniel F. Bogenhagen
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Stella E. Tsirka
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| |
Collapse
|
52
|
Damiani CL, O'Callaghan JP. Recapitulation of cell signaling events associated with astrogliosis using the brain slice preparation. J Neurochem 2007; 100:720-6. [PMID: 17176261 DOI: 10.1111/j.1471-4159.2006.04321.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Astroglial activation constitutes a dominant response to all types of injuries of the CNS. Despite the ubiquitous nature of this cellular reaction to neural injury, a little is known concerning the signaling mechanisms that initiate it. Recently, we demonstrated that astrocytic hypertrophy and enhanced expression of glial fibrillary acidic protein resulting from toxicant-induced neurodegeneration are linked to activation of the janus kinase (JAK)-signal transducer and activator of transcription-3 (STAT3) pathway. These observations implicate ligands at the gp130 receptor as potential upstream effectors of astrogliosis. Here we used the brain slice preparation to examine potential activators of the JAK-STAT3 pathway. Following incubation of freshly cut striatal slices in phosphate-free oxygenated buffer for up to 75 min, we found that slicing the striatum itself was a sufficient stimulus to initiate a rapid activation of the JAK-STAT3 pathway as assessed with immunoblots of pSTAT3((tyr705)) using phospho-state specific antibodies. The mRNA for the gp130 cytokines, leukemia inhibitory factor, interleukin-6 and oncostatin M or the beta-chemokine, monocyte chemoattractive protein (CCl2) also were up-regulated in the slice. Moreover, we could enhance the activation of STAT3((tyr705)) by adding exogenous cytokines to the slice and we could inhibit phosphorylation of STAT3((tyr705)) by addition of tyrosine kinase inhibitors (Lav A and AG490) or neutralizing antibodies directed against leukemia inhibitory factor or oncostatin M. These data suggest that STAT3 activation is an early event in slice-induced glial activation and establishes the brain slice preparation method as a reliable model to examine the signaling mechanisms that underlie glial activation.
Collapse
Affiliation(s)
- Candice L Damiani
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health (CDC-NIOSH), Morgantown, WV 26505, USA
| | | |
Collapse
|
53
|
Fragoso-Loyo H, Richaud-Patin Y, Orozco-Narváez A, Dávila-Maldonado L, Atisha-Fregoso Y, Llorente L, Sánchez-Guerrero J. Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. ACTA ACUST UNITED AC 2007; 56:1242-50. [PMID: 17393453 DOI: 10.1002/art.22451] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To define the cytokine and chemokine profile in cerebrospinal fluid (CSF) from patients with neuropsychiatric systemic lupus erythematosus (NPSLE). METHODS Forty-two SLE patients who had been hospitalized because of NP manifestations were studied. Patients were evaluated at hospitalization and 6 months later; a CSF sample was obtained at each evaluation. As controls, CSF from 6 SLE patients with septic meningitis, 16 SLE patients with no history of NP manifestations (non-NPSLE), and 25 patients with nonautoimmune diseases were also studied. Soluble molecules, including cytokines (interleukin-2 [IL-2], IL-4, IL-6, IL-10, tumor necrosis factor alpha [TNFalpha], and interferon-gamma [IFNgamma]) and chemokines (monocyte chemotactic protein 1 [MCP-1], RANTES, IL-8, monokine induced by IFNgamma [MIG], and interferon-gamma-inducible 10-kd protein [IP-10]), were measured with the use of cytometric bead array kits. RESULTS CSF levels of the following molecules were significantly increased in NPSLE patients as compared with non-NPSLE and nonautoimmune diseases control patients, respectively: IL-6 (32.7 versus 3.0 and 2.96 pg/ml), IL-8 (102.8 versus 29.97 and 19.7 pg/ml), IP-10 (888.2 versus 329.7 [P not significant] and 133.6 pg/ml), RANTES (3.8 versus 2.5 and 2.2 pg/ml), MCP-1 (401.7 versus 257.9 [P not significant] and 136.9 pg/ml), and MIG (35.4 versus 11.4 and 3.5 pg/ml). Low levels of IL-2, IL-4, IL-10, TNFalpha, and IFNgamma were found in all groups. All cytokines and chemokines, except TNFalpha, were significantly higher among the SLE patients with septic meningitis than among the NPSLE patients. Six months later and in the absence of NP manifestations, all elevated molecule levels, except RANTES, in patients with NPSLE had decreased significantly, and no differences were noted between the NPSLE and non-NPSLE groups. CONCLUSION A central nervous system response composed of IL-6 and chemokines, but not Th1/Th2 cytokines, is associated with NP manifestations in SLE patients.
Collapse
Affiliation(s)
- H Fragoso-Loyo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, DF, Tlalpan, Mexico
| | | | | | | | | | | | | |
Collapse
|
54
|
Straiko MMW, Gudelsky GA, Coolen LM, Harrison R, Zemlan FP. Treatment with trimethyltin promotes the formation of cleaved tau in the rat brain. J Neurosci Res 2006; 84:1116-23. [PMID: 16917841 DOI: 10.1002/jnr.21002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trimethyltin (TMT) is a well-documented neurotoxin that affects primarily limbic system structures. Most previous studies have relied on histological approaches to examine TMT neurotoxicity, so the aim of this study was to employ the novel biomarker cleaved MAP-tau (C-tau) to assess TMT-induced CNS injury both quantitatively and qualitatively. Immunoblot studies indicated that cleaved MAP-tau proteins with molecular weights of 45-50 kD were present in the hippocampus of rats treated with TMT but not vehicle 21 days after treatment. Quantitative ELISA revealed that C-tau concentration in rats treated with TMT was greatest at 14 and 21 days in the piriform cortex and hippocampus, respectively; TMT did not significantly increase C-tau concentration in the mesencephalon. C-tau immunocytochemistry demonstrated the greatest TMT-induced damage in the hippocampus and piriform cortex. Additional studies utilizing dual immunocytochemistry revealed that C-tau-labeled cells were also glial fibrillary acidic protein-positive, leading to identification of these cells as astrocytes. Although the origin of C-tau in astrocytes of rats treated with TMT is currently unknown, increased C-tau concentration and the presence of C-tau positive cells in limbic system structures of TMT-treated rats further supports the view that C-tau is a reliable marker of CNS toxicity.
Collapse
Affiliation(s)
- M M W Straiko
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
55
|
Straiko MMW, Coolen LM, Zemlan FP, Gudelsky GA. The effect of amphetamine analogs on cleaved microtubule-associated protein-tau formation in the rat brain. Neuroscience 2006; 144:223-31. [PMID: 17084036 PMCID: PMC1817812 DOI: 10.1016/j.neuroscience.2006.08.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 08/26/2006] [Accepted: 08/29/2006] [Indexed: 11/16/2022]
Abstract
The present study quantified the cleaved form of the microtubule-associated protein tau (cleaved MAP-tau, C-tau), a previously demonstrated marker of CNS toxicity, following the administration of monoamine-depleting regimens of the psychostimulant drugs amphetamine (AMPH), methamphetamine (METH), +/-3,4-methylenedioxymethamphetamine (MDMA), or para-methoxyamphetamine (PMA) in an attempt to further characterize psychostimulant-induced toxicity. A dopamine (DA)-depleting regimen of AMPH produced an increase in C-tau immunoreactivity in the striatum, while a DA- and serotonin (5-HT)-depleting regimen of METH produced an increase in the number of C-tau immunoreactive cells in the striatum and CA2/CA3 and dentate gyrus regions of the hippocampus. MDMA and PMA, two psychostimulant drugs that produce selective 5-HT depletion in the striatum, had no effect on C-tau immunoreactivity in the striatum or hippocampus. Furthermore, 5,7-dihydroxytryptamine (5,7-DHT), an established 5-HT selective neurotoxin, did not produce an increase in C-tau immunoreactivity. Dual fluorescent immunocytochemistry with antibodies to glial fibrillary acidic protein (GFAP) and C-tau indicated that C-tau immunoreactivity was present in astrocytes, not neurons, suggesting that increased C-tau may be an alternative indicator of reactive gliosis. The present results are consistent with previous findings that the DA-depleting psychostimulants AMPH and METH produce reactive gliosis whereas the 5-HT-depleting drugs MDMA and PMA, as well as the known 5-HT selective neurotoxin 5,7-DHT, do not produce an appreciable glial response.
Collapse
Affiliation(s)
- M M W Straiko
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
56
|
Rankine EL, Hughes PM, Botham MS, Perry VH, Felton LM. Brain cytokine synthesis induced by an intraparenchymal injection of LPS is reduced in MCP-1-deficient mice prior to leucocyte recruitment. Eur J Neurosci 2006; 24:77-86. [PMID: 16882009 DOI: 10.1111/j.1460-9568.2006.04891.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have previously shown that ischaemic lesions are smaller in monocyte chemoattractant protein-1-deficient (MCP-1(-/-)) mice than in wild-type (wt) controls. In addition to its role as a monocyte chemoattractant, monocyte chemoattractant protein-1 (MCP-1) has been proposed to contribute to lesion progression after focal ischaemia by driving local cytokine synthesis by resident glia. To investigate this hypothesis we injected lipopolysaccharide (LPS) into the brain parenchyma of MCP-1(-/-) mice and compared the resulting inflammatory response and production of proinflammatory cytokines to those in wt mice. Microglial and astrocyte morphological activation was the same in the two strains, but MCP-1(-/-) mice showed significantly lower levels of proinflammatory cytokine synthesis; interleukin-1beta (IL-1beta) and tumour necrosis factor-alpha (TNF-alpha) levels were up to 50% lower than in wt controls after 6 h. This reduced synthesis of proinflammatory cytokines occurred well before leucocyte recruitment to the central nervous system (CNS) is observed in this model of acute inflammation and thus cannot be attributed to lower numbers of recruited monocytes at the site of injury. We propose that MCP-1 contributes to acute CNS inflammation by pleiotropic mechanisms. In addition to being a potent chemoattractant for monocytes, we provide evidence here that MCP-1 can modify the responsiveness of CNS glia to acute inflammatory stimuli prior to leucocyte recruitment, thereby acting as a priming stimulus for cytokine synthesis in cells such as microglia.
Collapse
Affiliation(s)
- E L Rankine
- Nurin Ltd, School of Biological Sciences, University of Southampton, Southampton, SO16 7PX, UK
| | | | | | | | | |
Collapse
|
57
|
Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O'Callaghan JP. Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-alpha. FASEB J 2006; 20:670-82. [PMID: 16581975 DOI: 10.1096/fj.05-5106com] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enhanced expression of tumor necrosis factor (TNF) -alpha, is associated with the neuropathological effects underlying disease-, trauma- and chemically induced neurodegeneration. Previously, we have shown that deficiency of TNF receptors protects against MPTP-induced striatal dopaminergic neurotoxicity, findings suggestive of a role for TNF-alpha in neurodegeneration. Here, we demonstrate that deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP. MPTP-induced expression of microglia-derived factors, TNF-alpha, MCP-1, and IL-1alpha, preceded the degeneration of striatal dopaminergic nerve terminals and astrogliosis, as assessed by loss of striatal dopamine and TH, and an increase in striatal GFAP. Pharmacological neuroprotection with the dopamine reuptake inhibitor, nomifensine, abolished striatal dopaminergic neurotoxicity and associated microglial activation. Similarly, in mice lacking TNF receptors, microglial activation was suppressed, findings consistent with a role for TNF-alpha in striatal MPTP neurotoxicity. In the hippocampus, however, TNF receptor-deficient mice showed exacerbated neuronal damage after MPTP, as evidenced by Fluoro Jade-B staining (to identify degenerating neurons) and decreased microtubule-associated protein-2 (MAP-2) immunoreactivity. These effects were not accompanied by microglial activation, but were associated with increased oxidative stress (nitrosylation of tyrosine residues). These findings suggest that TNF-alpha exerts a neurotrophic/neuroprotective effect in hippocampus. The marked differences we observed in the regional density, distribution and/or activity of microglia and microglia-derived factors may influence the region-specific role for this cell type. Taken together, our results are indicative of a region-specific and dual role for TNF-alpha in the brain: a promoter of neurodegeneration in striatum and a protector against neurodegeneration in hippocampus.
Collapse
Affiliation(s)
- Krishnan Sriram
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | | | | | | | | | | |
Collapse
|
58
|
Quintana A, Giralt M, Rojas S, Penkowa M, Campbell IL, Hidalgo J, Molinero A. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury. J Neurosci Res 2006; 82:701-16. [PMID: 16267827 DOI: 10.1002/jnr.20680] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracellular signaling. This cytokine exerts its functions via interaction with two receptors: type-1 receptor (TNFR1) and type-2 receptor (TNFR2). In this work, the inflammatory response after a freeze injury (cryolesion) in the cortex was studied in wild-type (WT) animals and in mice lacking TNFR1 (TNFR1 KO) or TNFR2 (TNFR2 KO). Lack of TNFR1, but not of TNFR2, significantly decreased the inflammatory response and tissue damage elicited by the cryolesion at both 3 and 7 days postlesion, with decreased gliosis, lower IL-1beta immunostaining, and a reduction of apoptosis markers. Cryolesion produced a clear induction of the proinflammatory cytokines interleukin (IL)-1alpha, IL-1beta, IL-6, and TNF-alpha; this induction was significantly lower in the TNFR1 KO mice. Host response genes (ICAM-1, A20, EB22/5, and GFAP) were also induced by the cryolesion, but to a lesser extent in TNFR1 KO mice. Lack of TNFR1 signaling also affected the expression of apoptosis/cell death-related genes (Fas, Rip, p53), matrix metalloproteinases (MMP3, MMP9, MMP12), and their inhibitors (TIMP1), suggesting a role of TNFR1 in extracellular matrix remodeling after injury. However, GDNF, NGF, and BDNF expression were not affected by TNFR1 deficiency. Overall, these results suggest that TNFR1 is involved in the early establishment of the inflammatory response and that its deficiency causes a decreased inflammatory response and tissue damage following brain injury.
Collapse
Affiliation(s)
- Albert Quintana
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Sciences, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
59
|
Cohly HHP, Panja A. Immunological findings in autism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 71:317-41. [PMID: 16512356 DOI: 10.1016/s0074-7742(05)71013-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The immunopathogenesis of autism is presented schematically in Fig. 1. Two main immune dysfunctions in autism are immune regulation involving pro-inflammatory cytokines and autoimmunity. Mercury and an infectious agent like the measles virus are currently two main candidate environmental triggers for immune dysfunction in autism. Genetically immune dysfunction in autism involves the MHC region, as this is an immunologic gene cluster whose gene products are Class I, II, and III molecules. Class I and II molecules are associated with antigen presentation. The antigen in virus infection initiated by the virus particle itself while the cytokine production and inflammatory mediators are due to the response to the putative antigen in question. The cell-mediated immunity is impaired as evidenced by low numbers of CD4 cells and a concomitant T-cell polarity with an imbalance of Th1/Th2 subsets toward Th2. Impaired humoral immunity on the other hand is evidenced by decreased IgA causing poor gut protection. Studies showing elevated brain specific antibodies in autism support an autoimmune mechanism. Viruses may initiate the process but the subsequent activation of cytokines is the damaging factor associated with autism. Virus specific antibodies associated with measles virus have been demonstrated in autistic subjects. Environmental exposure to mercury is believed to harm human health possibly through modulation of immune homeostasis. A mercury link with the immune system has been postulated due to the involvement of postnatal exposure to thimerosal, a preservative added in the MMR vaccines. The occupational hazard exposure to mercury causes edema in astrocytes and, at the molecular level, the CD95/Fas apoptotic signaling pathway is disrupted by Hg2+. Inflammatory mediators in autism usually involve activation of astrocytes and microglial cells. Proinflammatory chemokines (MCP-1 and TARC), and an anti-inflammatory and modulatory cytokine, TGF-beta1, are consistently elevated in autistic brains. In measles virus infection, it has been postulated that there is immune suppression by inhibiting T-cell proliferation and maturation and downregulation MHC class II expression. Cytokine alteration of TNF-alpha is increased in autistic populations. Toll-like-receptors are also involved in autistic development. High NO levels are associated with autism. Maternal antibodies may trigger autism as a mechanism of autoimmunity. MMR vaccination may increase risk for autism via an autoimmune mechanism in autism. MMR antibodies are significantly higher in autistic children as compared to normal children, supporting a role of MMR in autism. Autoantibodies (IgG isotype) to neuron-axon filament protein (NAFP) and glial fibrillary acidic protein (GFAP) are significantly increased in autistic patients (Singh et al., 1997). Increase in Th2 may explain the increased autoimmunity, such as the findings of antibodies to MBP and neuronal axonal filaments in the brain. There is further evidence that there are other participants in the autoimmune phenomenon. (Kozlovskaia et al., 2000). The possibility of its involvement in autism cannot be ruled out. Further investigations at immunological, cellular, molecular, and genetic levels will allow researchers to continue to unravel the immunopathogenic mechanisms' associated with autistic processes in the developing brain. This may open up new avenues for prevention and/or cure of this devastating neurodevelopmental disorder.
Collapse
|
60
|
Henkel JS, Beers DR, Siklós L, Appel SH. The chemokine MCP-1 and the dendritic and myeloid cells it attracts are increased in the mSOD1 mouse model of ALS. Mol Cell Neurosci 2006; 31:427-37. [PMID: 16337133 DOI: 10.1016/j.mcn.2005.10.016] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 10/07/2005] [Accepted: 10/19/2005] [Indexed: 11/18/2022] Open
Abstract
We recently demonstrated increased dendritic cells (potent antigen-presenting cells) and MCP-1 (monocyte, T-cell, and dendritic cell attracting chemokine) levels in ALS spinal cord tissue. Additionally, we presented data suggesting that dendritic cells might be contributing to the pathogenesis. To determine whether MCP-1 and dendritic cells are present in the mSOD1 mouse and how early in the disease process they are involved, we examined mSOD1 and control spinal cord tissue at different ages using real-time RT-PCR and immunohistochemistry. Dendritic cells were present and transcripts elevated in mSOD1 spinal cord beginning at 110 days. MCP-1 mRNA and immunoreactivity were upregulated in mSOD1 neuronal and glial cells as early as 15 days, prior to any evidence of microglial activation. CD68+ cells were present at 39 days of age. Although it is not clear if these responses are protective or injurious, the early increased MCP-1 expression and CD68+ cell presence indicate early preexisting injury.
Collapse
Affiliation(s)
- Jenny S Henkel
- Department of Neurology, Methodist Research Institute, 6560 Fannin St., Suite # 902, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
61
|
Little AR, Sriram K, O'Callaghan JP. Corticosterone regulates expression of CCL2 in the intact and chemically injured hippocampus. Neurosci Lett 2006; 399:162-6. [PMID: 16504399 DOI: 10.1016/j.neulet.2006.01.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 01/25/2006] [Accepted: 01/26/2006] [Indexed: 11/25/2022]
Abstract
Expression of the chemokine (C-C motif) ligand 2 (CCL2), also known as, monocyte chemoattractant protein (MCP)-1, increases in response to disease-, trauma-, or toxicant-induced damage to the central nervous system (CNS). In the periphery, endogenous and exogenous glucocorticoids are known to suppress CCL2 expression associated with inflammatory conditions. However, such actions of glucocorticoids on CCL2 expression in the CNS remain unknown. Here, we explored the effects of the glucocorticoid, corticosterone (CORT), on the expression of CCL2 and its receptors, CCR2 and CCR5, in the hippocampal formation using intact, adrenalectomized (ADX) and trimethyltin (TMT)-treated rats. An immunosuppressive regimen of CORT did not alter the mRNA expression of CCL2 or its receptors in the hippocampus. ADX, however, markedly increased the expression of CCL2 and CCR2 mRNAs in the hippocampus, while CORT replacement reversed the effects of ADX on CCL2 gene expression. Hippocampal damage resulting from systemic administration of the organometallic neurotoxicant, TMT, was associated with microglial activation, as evidenced by enhanced expression of microglial markers integrin alphaM (CD11b) and F4/80, as well as, microglia-associated factors, CCL2 and IL-1alpha. An immunosuppressive dose of CORT, suppressed TMT-induced expression of CCL2. Given the association of CCL2 with microglial activation, it appears that CORT may play a role in regulating microglial activation. However, CORT treatment did not alter TMT-mediated neuronal damage and astrogliosis. Such observations suggest that injury-related expression of microglia-associated chemokines and cytokines may subserve a role unrelated to neuronal damage. In summary, our data indicate that in the CNS, CCL2 gene expression is under negative regulation by glucocorticoids.
Collapse
Affiliation(s)
- Alvin R Little
- Molecular Neurotoxicology Laboratory, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, CDC-NIOSH, TMBB-HELD, MS 3014, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | | | | |
Collapse
|
62
|
Abou-Donia MB, Khan WA, Dechkovskaia AM, Goldstein LB, Bullman SL, Abdel-Rahman A. In utero exposure to nicotine and chlorpyrifos alone, and in combination produces persistent sensorimotor deficits and Purkinje neuron loss in the cerebellum of adult offspring rats. Arch Toxicol 2006; 80:620-31. [PMID: 16482470 DOI: 10.1007/s00204-006-0077-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 12/23/2005] [Indexed: 10/25/2022]
Abstract
This study was carried out to investigate the effect of in utero exposure to the cholinotoxicants, nicotine and chlorpyrifos, alone or in combination on neurobehavioral alterations and neuronal morphology latter in adult age. In the present study, 90 days old (corresponding to a human adult age) male and female offspring rats were evaluated for neurobehavioral, and neuropathological alterations following maternal, gestational exposure to nicotine and chlorpyrifos (O,O-diethyl-O-3,5,6-trichloro-2-pyridinyl phosphorothioate), alone and in combination. Female Sprague-Dawley rats (300-350 g) with timed-pregnancy were treated with nicotine (3.3 mg/kg/day, in bacteriostatic water via s.c. implantation of mini osmotic pump), chlorpyrifos (1.0 mg/kg, daily, dermal, in 75% ethanol, 1.0 ml/kg) or a combination of both chemicals, on gestational days (GD) 4-20. Control animals received bacteriostatic water via s.c. implantation of mini osmotic pump and dermal application of 70% ethanol. The offspring at postnatal day (PND) 90 were evaluated for neurobehavioral performance, changes in the activity of plasma butyrylcholinesterase (BChE) and acetylcholinesterase (AChE), and neuropathological alterations in the brain. Neurobehavioral evaluations included beam-walk score, beam-walk time, incline plane performance and forepaw grip time. Male and female offspring from mothers treated with nicotine and CPF, alone or in combination showed impairments in the performance of neurobehavioral tests, indicating sensorimotor deficits. Female offspring from mothers treated with a combination of nicotine and chlorpyrifos showed significant increase in plasma BChE activity. Brain regional AChE activity showed differential increases in male and female offspring. Brainstem and cerebellum of female offspring from mothers treated with nicotine or chlorpyrifos, alone or in combination showed increased AChE activity, whereas brainstem of male offspring from mothers treated with nicotine alone or a combination of nicotine and chlorpyrifos showed increase in AChE activity. Also, male offspring exposed in utero to nicotine exhibited increased AChE activity. Histopathological evaluations using cresyl violet staining showed a decrease in surviving Purkinje neurons in the cerebellum in offspring of all treatments groups. An increase in glial fibrillary acidic protein (GFAP) immuno-staining was observed in cerebellum white matter as well as granular cell layer (GCL) of cerebellum following all exposures. These results indicate that in utero exposure to nicotine and chlorpyrifos, alone and in combination produced significant sensorimotor deficits in male and female offspring, differential increase in brain AChE activity, a decrease in the surviving neurons and an increased expression of GFAP in cerebellum in adult offspring rats at a corresponding human adult age. Collectively, this study demonstrates that maternal exposure to environmental neurotoxic chemicals, i.e., nicotine and chlorpyrifos leads to developmental abnormalities in the offspring that persist latter into adulthood.
Collapse
Affiliation(s)
- Mohamed B Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
63
|
O'Callaghan JP, Sriram K. Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Expert Opin Drug Saf 2006; 4:433-42. [PMID: 15934851 DOI: 10.1517/14740338.4.3.433] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A variety of '-omic' technologies are being increasingly applied in preclinical safety assessments. Such approaches, however, have not been implemented in neurotoxicity safety evaluations. Current regulatory guidelines for assessing neurotoxicity emphasise reliance on traditional histopathological stains and behavioural testing batteries. Although these methods may be sufficient to detect some neurotoxic effects, they lack both the sensitivity and specificity required for broad-scale neurotoxicity screening. The glial reaction to nervous system damage, often termed gliosis, represents a hallmark of all types of nervous system injury. As such, the development and implementation of gliosis biomarkers represents a broadly applicable approach for neurotoxicity safety assessment. Using a panel of known neurotoxic agents, the authors have shown that the astroglial protein, glial fibrillary acidic protein (GFAP), can serve as one such biomarker of neurotoxicity. Qualitative and quantitative analysis of GFAP has shown this biomarker to be a sensitive and specific indicator of the neurotoxic condition. The implementation of GFAP and related glial biomarkers in neurotoxicity screens may serve as the basis for further development of molecular signatures predictive of adverse effects on the nervous system.
Collapse
Affiliation(s)
- James P O'Callaghan
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA.
| | | |
Collapse
|
64
|
van Calker D, Biber K. The Role of Glial Adenosine Receptors in Neural Resilience and the Neurobiology of Mood Disorders. Neurochem Res 2005; 30:1205-17. [PMID: 16341582 DOI: 10.1007/s11064-005-8792-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2005] [Indexed: 10/25/2022]
Abstract
Adenosine receptors were classified into A1- and A2-receptors in the laboratory of Bernd Hamprecht more than 25 years ago. Adenosine receptors are instrumental to the neurotrophic effects of glia cells. Both microglia and astrocytes release after stimulation via adenosine receptors factors that are important for neuronal survival and growth. Neuronal resilience is now considered as of pivotal importance in the neurobiology of mood disorders and their treatment. Both sleep deprivation and electroconvulsive therapy, two effective therapeutic measures in mood disorders, are associated with an increase of adenosine and upregulation of adenosine A1-receptors in the brain. Parameters closely related to adenosine receptor activation such as cerebral metabolic rate and delta power in the sleep EEG provide indirect evidence that adenosinergic signaling may be associated with the therapeutic response to these measures. Thus, neurotrophic effects evoked by adenosine receptors might be important in the mechanism of action of ECT and perhaps also sleep deprivation.
Collapse
Affiliation(s)
- Dietrich van Calker
- Department of Psychiatry and Psychotherapy, University of Freiburg, D-79104 Freiburg, Germany.
| | | |
Collapse
|
65
|
Sano R, Tessitore A, Ingrassia A, d'Azzo A. Chemokine-induced recruitment of genetically modified bone marrow cells into the CNS of GM1-gangliosidosis mice corrects neuronal pathology. Blood 2005; 106:2259-68. [PMID: 15941905 PMCID: PMC1895262 DOI: 10.1182/blood-2005-03-1189] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bone marrow cells (BMCs) could correct some pathologic conditions of the central nervous system (CNS) if these cells would effectively repopulate the brain. One such condition is G(M1)-gangliosidosis, a neurodegenerative glycosphingolipidosis due to deficiency of lysosomal beta-galactosidase (beta-gal). In this disease, abnormal build up of G(M1)-ganglioside in the endoplasmic reticulum of brain cells results in calcium imbalance, induction of an unfolded protein response (UPR), and neuronal apoptosis. These processes are accompanied by the activation/proliferation of microglia and the production of inflammatory cytokines. Here we demonstrate that local neuroinflammation promotes the selective activation of chemokines, such as stromal-cell-derived factor 1 (SDF-1), macrophage inflammatory protein 1-alpha (MIP-1alpha), and MIP-1beta, which chemoattract genetically modified BMCs into the CNS. Mice that underwent bone marrow transplantation showed increased beta-gal activity in different brain regions and reduced lysosomal storage. Decreased production of chemokines and effectors of the UPR as well as restoration of neurologic functions accompanied this phenotypic reversion. Our results suggest that beta-gal-expressing bone marrow (BM)-derived cells selectively migrate to the CNS under a gradient of chemokines and become a source of correcting enzyme to deficient neurons. Thus, a disease condition such as G(M1)-gangliosidosis, which is characterized by neurodegeneration and neuroinflammation, may influence the response of the CNS to ex vivo gene therapy.
Collapse
Affiliation(s)
- Renata Sano
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
66
|
van Gassen KLI, Netzeband JG, de Graan PNE, Gruol DL. The chemokine CCL2 modulates Ca2+dynamics and electrophysiological properties of cultured cerebellar Purkinje neurons. Eur J Neurosci 2005; 21:2949-57. [PMID: 15978006 DOI: 10.1111/j.1460-9568.2005.04113.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemokine CCL2 is produced at high levels in the central nervous system (CNS) during infection, injury, neuroinflammation and other pathological conditions. Cells of the CNS including neurons and glia express receptors for CCL2 and these receptors may contribute to a signaling system through which pathologic conditions in the CNS are communicated. However, our understanding of the consequences of activation of chemokine signaling in the CNS is limited, especially for neurons. In many cell types, chemokine signaling alters intracellular Ca(2+) dynamics. Therefore, we investigated the potential involvement of this mechanism in neuronal signaling activated by CCL2. In addition, we examined the effects of CCL2 on neuronal excitability. The studies focused on the rat cerebellar Purkinje neuron, an identified CNS neuronal type reported to express both CCL2 and its receptor, CCR2. Immunohistochemical studies of Purkinje neurons in situ confirmed that they express CCR2 and CCL2. The effect of exogenous application on Purkinje neurons was studied in a cerebellar culture preparation. CCL2 was tested by micropressure or bath application, at high concentrations (13-100 nm) to simulate conditions during a pathologic state. Results show that Purkinje neurons express receptors for CCL2 and that activation of these receptors alters several neuronal properties. CCL2 increased resting Ca(2+) levels, enhanced the Ca(2+) response evoked by activation of metabotropic glutamate receptor 1 and depressed action potential generation in the cultured Purkinje neurons. Passive membrane properties were unaltered. These modulatory effects of CCL2 on neuronal properties are likely to contribute to the altered CNS function associated with CNS disease and injury.
Collapse
Affiliation(s)
- K L I van Gassen
- Department of Neuropharmacology, CVN-11, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
67
|
Abdel-Rahman A, Dechkovskaia AM, Sutton JM, Chen WC, Guan X, Khan WA, Abou-Donia MB. Maternal exposure of rats to nicotine via infusion during gestation produces neurobehavioral deficits and elevated expression of glial fibrillary acidic protein in the cerebellum and CA1 subfield in the offspring at puberty. Toxicology 2005; 209:245-61. [PMID: 15795061 DOI: 10.1016/j.tox.2004.12.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 12/21/2004] [Accepted: 12/30/2004] [Indexed: 11/23/2022]
Abstract
Maternal smoking during pregnancy is known to be a significant contributor to developmental neurological health problems in the offspring. In animal studies, nicotine treatment via injection during gestation has been shown to produce episodic hypoxia in the developing fetus. Nicotine delivery via mini osmotic pump, while avoiding effects due to hypoxia-ischemia, it also provides a steady level of nicotine in the plasma. In the present study timed-pregnant Sprague-Dawley rats (300-350 g) were treated with nicotine (3.3 mg/kg, in bacteriostatic water via s.c. implantation of mini osmotic pump) from gestational days (GD) 4-20. Control animals were treated with bacteriostatic water via s.c. implantation of mini osmotic pump. Offspring on postnatal day (PND) 30 and 60, were evaluated for changes in the ligand binding for various types of nicotinic acetylcholine receptors and neuropathological alterations. Neurobehavioral evaluations for sensorimotor functions, beam-walk score, beam-walk time, incline plane and grip time response were carried out on PND 60 offspring. Beam-walk time and forepaw grip time showed significant impairments in both male and female offspring. Ligand binding densities for [3H]epibatidine, [3H]cytisine and [3H]alpha-bungarotoxin did not show any significant changes in nicotinic acetylcholine receptors subtypes in the cortex at PND 30 and 60. Histopathological evaluation using cresyl violet staining showed significant decrease in surviving Purkinje neurons in the cerebellum and a decrease in surviving neurons in the CA1 subfield of hippocampus on PND 30 and 60. An increase in glial fibrillary acidic protein (GFAP) immuno-staining was observed in cerebellum white matter as well as granular cell layer of cerebellum and the CA1 subfield of hippocampus on PND 30 and 60 of both male and female offspring. These results indicate that maternal exposure to nicotine produces significant neurobehavioral deficits, a decrease in the surviving neurons and an increased expression of GFAP in cerebellum and CA1 subfield of hippocampus of the offspring on PND 30 and 60. The results show that although 60-day-old male and female rat offspring of mothers exposed to nicotine during gestation did not differ from control in body weight gain or nicotinic acetylcholine receptors ligand binding, they exhibited significant sensorimotor deficits that were consistent with the neuropathological alterations seen in the brain. These neurobehavioral and pathological deficits indicate that maternal nicotine exposure may produce long-term adverse health effects in the offspring.
Collapse
Affiliation(s)
- Ali Abdel-Rahman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Lefebvre d'Hellencourt C, Harry GJ. Molecular profiles of mRNA levels in laser capture microdissected murine hippocampal regions differentially responsive to TMT-induced cell death. J Neurochem 2005; 93:206-20. [PMID: 15773920 DOI: 10.1111/j.1471-4159.2004.03017.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Using a chemical-induced model of dentate granule (DG) cell death, cDNA microarray analysis was used to identify gene profiles from the laser-captured microdissected (LCM) hippocampal DG cell region versus the CA pyramidal cell layer (CA) from 21-day-old male CD1 mice injected with trimethyltin hydroxide (TMT; 3.0 mg/kg, i.p.). At 6 h post-TMT, lectin + microglia displaying a reactive morphology were in contact with active caspase 3+ neurons. By 18 h, amoeboid microglia and signs of phagocytosis, and a mild astrocytic response were present in the DG. There was no evidence of IgG extravasation in the hippocampus, or cell death and glial reactivity in the CA. Atlas 1.2K Clontech array detected 115 genes changed in the hippocampus with TMT and included genes associated with immediate-early responses, calcium homeostasis, cellular signaling, cell cycle, immunomodulation and DNA repair. Early responses localized to LCM DG samples consisted of elevations in inflammatory factors such as tumor necrosis factor-alpha and receptors, as well as MIP1alpha, CD14, CD18, and a decrease in factors associated with calcium buffering. By 18 h, in the DG, changes occurred in transcripts associated with apoptosis, cell adhesion, DNA repair, cell proliferation and growth. In the CA, a differential level of elevation was seen in CD86 antigen, zinc finger protein 38 and DNA damage inducible transcript 3. A significant number of genes was decreased at these early time points in both hippocampal regions.
Collapse
Affiliation(s)
- Christian Lefebvre d'Hellencourt
- Neurotoxicology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
69
|
Abstract
It has been known for some time that cytokines made and released during systemic illness can result in a constellation of symptoms strikingly similar to those observed in depression. The overlap of the symptoms of depression and systemic illness raises the intriguing possibility that cytokines may be involved in the development and maintenance of mood disorders. Cytokines are small ubiquitous pleiotropic molecules that are made and released in response to a variety of stimuli. They have a multitude of actions throughout the body, including actions on the central and peripheral nervous systems. Alterations in the levels of circulating cytokines, especially the key proinflammatory cytokines, interleukin 6 and tumor necrosis factor alpha , have been linked to a variety of disease states including those involving central nervous system depression. In this brief review, epidemiological and clinical data on depression, as well as findings from relevant animal models, are examined for links between cytokine expression and depression. We suggest that glial cells, both as a source and target of cytokines, represent the overlooked targets involved in the etiology of depression.
Collapse
Affiliation(s)
- Diane B Miller
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | | |
Collapse
|
70
|
Miller DB, O'Callaghan JP. Aging, stress and the hippocampus. Ageing Res Rev 2005; 4:123-40. [PMID: 15964248 DOI: 10.1016/j.arr.2005.03.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 03/05/2005] [Indexed: 02/02/2023]
Abstract
Functional loss often occurs in many body systems (e.g., endocrine, cognitive, motor) with the passage of years, but there is great individual variation in the degree of compromise shown. The current focus on brain aging will continue because demographic trends indicate that the average lifespan will show a continued increase. There is increasing emphasis on understanding how aging contributes to a decline in brain functions, cognition being a prime example. This is due in part to the fact that dementias and other losses in brain function that sometimes accompany aging cause an obvious decline in the quality of life and these deficits are of more concern as the number of elderly increase. Stress also is a ubiquitous aspect of life and there is now a greater interest in understanding the role of stress and the stress response in brain aging. The key role of the hippocampus and its related brain structures in cognition, as well as in the feedback control of the response to stress, have made this brain area a logical focus of investigation for those interested in the impact of stress on brain aging. Here, we describe how the hippocampus changes with age and we examine the idea that age-related changes in the secretion patterns of the hypothalamic-pituitary adrenal (HPA) axis can contribute to aging of this structure. We also examine the proposal that stress, perhaps due to compromised HPA axis function, can contribute to hippocampal aging through exposure to excessive levels of glucocorticoids. The aging hippocampus does not appear to suffer a generalized loss of cells or synapses, although atrophy of the structure may occur in humans. Thus, age-related cognitive impairments are likely related to other neurobiological alterations that could include changes in the signaling, information encoding, plasticity, electrophysiological or neurochemical properties of neurons or glia. Although excessive levels of glucocorticoids are able to interfere with cognition, as well as hippocampal neuronal integrity, and aging is sometimes accompanied by an increase in these steroids because of inadequate feedback control of the HPA axis, none of these are a foregone consequence of aging. The general preservation of cells and the plastic potential of the hippocampus provide a focus for the development of pharmacological, nutritive or lifestyle strategies to combat age-related declines in the hippocampus as well as other brain areas.
Collapse
Affiliation(s)
- D B Miller
- Chronic Stress and Neurotoxicology Laboratories, TMBB-HELD, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health-CDC-NIOSH, Morgantown, WV 26505, USA.
| | | |
Collapse
|
71
|
Turrin NP, Rivest S. Innate immune reaction in response to seizures: implications for the neuropathology associated with epilepsy. Neurobiol Dis 2004; 16:321-34. [PMID: 15193289 DOI: 10.1016/j.nbd.2004.03.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2003] [Revised: 02/09/2004] [Accepted: 03/15/2004] [Indexed: 12/19/2022] Open
Abstract
In the present study, the expression of pro-inflammatory transcripts was assessed across the brain of mice having undertaken pilocarpine-induced seizures. Pilocarpine-induced marked neurodegeneration and demyelination in multiple regions of the forebrain. The pattern of genes encoding toll-like receptor type 2 (TLR2) and I kappa B alpha (index of NF-kappa B activation) was associated with the neurodegenerating areas, but this was not the case for the mRNA encoding other inflammatory proteins. Scattered tumor necrosis factor-alpha (TNF-alpha)-expressing cells were found across brain, whereas the signals for monocyte-chemoattractant protein-1 and microsomal prostaglandin mPGES E synthase were robust in thalamus and cerebral cortex and weak in the hippocampus and amygdala. TLR2 and TNF-alpha transcripts were expressed mainly in microglia/macrophages. Cyclooxygenase-2 was induced specifically in the hippocampus and piriform cortex. A low increase in interleukin-12 mRNA was detected in the brain, but the signal for interferon gamma (IFN-gamma) remained undetectable. Although pro-inflammatory markers were induced in a different manner across the CNS, their patterns were not characteristic of those caused by other inflammatory challenges, such as endotoxin. These data suggest a different mechanism involved in regulating the innate immune reaction in response to seizures and could have direct implications for the neuropathology associated with epilepsy.
Collapse
Affiliation(s)
- Nicolas P Turrin
- Laboratory of Molecular Endocrinology, Department of Anatomy and Physiology, CHUL Research Center, Laval University, Quebec, Canada G1V 4G2
| | | |
Collapse
|
72
|
Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B. How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: the role of microglia and astrocytes. Aging Cell 2004; 3:169-76. [PMID: 15268750 DOI: 10.1111/j.1474-9728.2004.00101.x] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A huge amount of evidence has implicated amyloid beta (A beta) peptides and other derivatives of the amyloid precursor protein (beta APP) as central to the pathogenesis of Alzheimer's disease (AD). It is also widely recognized that age is the most important risk factor for AD and that the innate immune system plays a role in the development of neurodegeneration. Little is known, however, about the molecular mechanisms that underlie age-related changes of innate immunity and how they affect brain pathology. Aging is characteristically accompanied by a shift within innate immunity towards a pro-inflammatory status. Pro-inflammatory mediators such as tumour necrosis factor-alpha or interleukin-1 beta can then in combination with interferon-gamma be toxic on neurons and affect the metabolism of beta APP such that increased concentrations of amyloidogenic peptides are produced by neuronal cells as well as by astrocytes. A disturbed balance between the production and the degradation of A beta can trigger chronic inflammatory processes in microglial cells and astrocytes and thus initiate a vicious circle. This leads to a perpetuation of the disease.
Collapse
Affiliation(s)
- Imrich Blasko
- Department of Psychiatry, University Hospital of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
73
|
Ke ZJ, Gibson GE. Selective response of various brain cell types during neurodegeneration induced by mild impairment of oxidative metabolism. Neurochem Int 2004; 45:361-9. [PMID: 15145550 DOI: 10.1016/j.neuint.2003.09.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 06/26/2003] [Accepted: 09/07/2003] [Indexed: 11/25/2022]
Abstract
Age-related neurodegenerative diseases are characterized by selective neuron loss, glial activation, inflammation and abnormalities in oxidative metabolism. Thiamine deficiency (TD) is a model of neurodegeneration induced by impairment of oxidative metabolism. TD produces a time-dependent, selective neuronal death in specific brain regions, while other cell types are either activated or unaffected. TD-induced neurodegeneration occurs first in a small, well-defined brain region, the submedial thalamic nucleus (SmTN). This discrete localization permits careful analysis of the relationship between neuronal loss and the response of other cell types. The temporal analysis of the changes in the region in combination with the use of transgenic mice permits testing of proposed mechanisms of how the interaction of neurons with other cell types produces neurodegeneration. Loss of neurons and elevation in markers of neurodegeneration are accompanied by changes in microglia including increased redox active iron, the induction of nitric oxide synthase (NOS) and hemeoxygenase-1, a marker of oxidative stress. Endothelial cells also show changes in early stages of TD including induction of intracellular adhesion molecule-1 (ICAM-1) and endothelial NOS. The number of degranulating mast cells also increases in early stages of TD. Alterations in astrocytes and neutrophils occur at later stages of TD. Studies with transgenic knockouts indicate that the endothelial cell changes are particularly important. We hypothesize that TD-induced abnormalities in oxidative metabolism promote release of neuronal inflammatory signals that activate microglia, astrocytes and endothelial cells. Although at early stages the responses of non-neuronal cells may be neuroprotective, at late phases they lead to entry of peripheral inflammatory cells into the brain and promote neurodegeneration.
Collapse
Affiliation(s)
- Zun-Ji Ke
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University at Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| | | |
Collapse
|
74
|
Sriram K, Benkovic SA, Hebert MA, Miller DB, O'Callaghan JP. Induction of gp130-related Cytokines and Activation of JAK2/STAT3 Pathway in Astrocytes Precedes Up-regulation of Glial Fibrillary Acidic Protein in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Model of Neurodegeneration. J Biol Chem 2004; 279:19936-47. [PMID: 14996842 DOI: 10.1074/jbc.m309304200] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive gliosis is a hallmark of disease-, trauma-, and chemical-induced damage to the central nervous system. The signaling pathways associated with this response to neural injury remain to be elucidated, but recent evidence implicates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. Here, we used the known dopaminergic neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), to selectively damage striatal dopaminergic nerve terminals and elicit a glial response. We then analyzed changes in gene expression and protein phosphorylation, in vivo, to identify ligands and mediators of the JAK-STAT pathway that accompany glial activation. Administration of MPTP caused rapid tyrosine (Tyr-705) phosphorylation and nuclear translocation of STAT3 in striatal astrocytes, prior to the induction of glial fibrillary acidic protein mRNA and protein. Pharmacological protection of dopaminergic nerve terminals with nomifensine abolished MPTP-mediated phosphorylation and translocation of STAT3 and prevented induction of astrogliosis. Among the Janus kinase family of tyrosine kinases, only JAK2 was associated with the phosphorylation of STAT3 after MPTP and, inhibition of JAK2 by AG490, in vivo, attenuated both the phosphorylation of STAT3 and induction of GFAP. The p44/42 mitogen-activated protein kinase (MAPK; ERK1/2) also was activated by MPTP, but was not associated with activation of STAT3, because serine (Ser-727) was not phosphorylated. The mRNA for ligands of the gp130-JAK/STAT3 signaling pathway, interleukin-6, leukemia inhibitory factor, and oncostatin M were elevated prior to activation of STAT3 and induction of astrogliosis; neuroprotection with nomifensine blocked these effects of MPTP. Taken together, our results suggest that the gp130-mediated activation of JAK2/STAT3 signaling pathway may play a key role in the induction of astrogliosis.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Active Transport, Cell Nucleus
- Animals
- Antigens, CD/biosynthesis
- Astrocytes/metabolism
- Astrocytes/physiology
- Chromatography, High Pressure Liquid
- Cytokine Receptor gp130
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Dimerization
- Dopamine/metabolism
- Dopamine Agents/pharmacology
- Dopamine Uptake Inhibitors/pharmacology
- Enzyme Activation
- Enzyme-Linked Immunosorbent Assay
- Gene Expression Regulation
- Glial Fibrillary Acidic Protein/metabolism
- Immunoblotting
- Immunohistochemistry
- Interleukin-6/metabolism
- Janus Kinase 2
- Leukemia Inhibitory Factor
- Ligands
- MAP Kinase Signaling System
- Male
- Membrane Glycoproteins/biosynthesis
- Mice
- Mice, Inbred C57BL
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Nomifensine/pharmacology
- Oncostatin M
- Peptides/metabolism
- Phosphorylation
- Protein Transport
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins
- RNA/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- STAT3 Transcription Factor
- Signal Transduction
- Time Factors
- Tissue Distribution
- Trans-Activators/metabolism
- Tyrosine/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Krishnan Sriram
- HELD/TMBB, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | | | | | | | | |
Collapse
|
75
|
Kassed CA, Butler TL, Patton GW, Demesquita DD, Navidomskis MT, Mémet S, Israël A, Pennypacker KR. Injury‐induced NF‐κB activation in the hippocampus: implications for neuronal survival. FASEB J 2004; 18:723-4. [PMID: 14766792 DOI: 10.1096/fj.03-0773fje] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear factor (NF)-kappaB p50 protein is involved in promoting survival in hippocampal neurons after trimethyltin (TMT)-injury. In the current study, hippocampal NF-kappaB activity was examined and quantitated from transgenic kappaB-lacZ reporter mice after chemical-induced injury. NF-kappaB activity was localized primarily to hippocampal neurons and significantly elevated over that in saline-treated mice between 4 and 21 days after TMT injection. Seven days after TMT injection, a timepoint of elevated NF-kappaB activity, gene expression in the hippocampus was studied by microarray analysis through comparison of expression profiles between treated nontransgenic and p50-null mice with their saline-injected controls. Seventeen genes increased in nontransgenic TMT-treated mice relative to saline-treated as well as showing no increase in p50-null mice, indicating a role for p50 in their regulation. One of these genes, the Na+, K+-ATPase-gamma subunit, was detected in brain for the first time. Several of the genes modulated by NF-kappaB are potentially related to neuroplasticity, providing additional evidence that this transcription factor is a neuroprotective signal in the hippocampus.
Collapse
Affiliation(s)
- C A Kassed
- Department of Pharmacology and Therapeutics, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Exposure to various chemicals and environmental hazards elicits changes in the expression of a variety of genes. The study of gene expression and transcriptional regulation is an important aspect of understanding the mechanisms associated with neurotoxicity. The availability of whole genome sequences and the development of new tools to identify and monitor transcriptional activity have accelerated the rate of discovery. This review surveys the historical steps taken to study gene expression in the brain and deals with recent advances in our understanding and classification of the roles of transcription factors. Disturbances in the regulation of gene expression associated with the neurotoxic response are also presented. Specific focus and detail is presented on the effects of heavy metals on the integrity and function of zinc finger proteins.
Collapse
Affiliation(s)
- Nasser H Zawia
- Department of Biomedical Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
77
|
MacPhail RC, O'Callaghan JP, Cohn J. Acquisition, steady-state performance, and the effects of trimethyltin on the operant behavior and hippocampal GFAP of Long-Evans and Fischer 344 rats. Neurotoxicol Teratol 2003; 25:481-90. [PMID: 12798965 DOI: 10.1016/s0892-0362(03)00012-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Strain differences represent an overlooked variable that may play an important role in neurotoxic outcomes that can impact regulatory decision making. Here, we examined the strain-dependent effects of trimethyltin (TMT), a compound used as a positive control for behavioral and neurochemical assessments of neurotoxicity. Adult male Long-Evans (LE) and Fischer 344 (F344) rats (n=12 each) were trained to respond under a multiple, fixed-interval 3-min fixed-ratio 10-response (multi FI 3-min FR10) schedule of milk reinforcement. Acquisition was characterized by time-dependent changes in several behavioral endpoints in both strains, although rate of acquisition of the fixed-interval pattern of responding was slower in F344 rats. Steady-state (baseline) performance was characterized by slower overall rates of responding in F344 rats. There was little evidence of strain differences in many of the other baseline performance measures. Rats of each strain were then divided into two equal groups that received either 1 ml/kg saline or 8.0 mg/kg iv TMT approximately 18 h before the next test session. TMT produced transient changes in the performance of LE and F344 rats that lasted for several sessions. For many behavioral measures, F344 rats were more affected by TMT than were LE rats. TMT-induced reactive gliosis, as assessed by assaying glial fibrillary acidic protein (GFAP), was also greater in F344 rats than in LE rats. These results suggest F344 rats may be more susceptible to TMT-induced neurotoxicity than are LE rats.
Collapse
Affiliation(s)
- R C MacPhail
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | |
Collapse
|
78
|
Eugenin EA, D'Aversa TG, Lopez L, Calderon TM, Berman JW. MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem 2003; 85:1299-311. [PMID: 12753088 DOI: 10.1046/j.1471-4159.2003.01775.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS)-associated dementia is often characterized by chronic inflammation, with infected macrophage infiltration of the CNS resulting in the production of human immunodeficiency virus type 1 (HIV-1) products, including tat, and neurotoxins that contribute to neuronal loss. In addition to their established role in leukocyte recruitment and activation, we identified an additional role for chemokines in the CNS. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and regulated upon activation normal T cell expressed and secreted (RANTES) were found to protect mixed cultures of human neurons and astrocytes from tat or NMDA-induced apoptosis. Neuronal and astrocytic apoptosis in these cultures was significantly inhibited by co-treatment with MCP-1 or RANTES but not IP-10. The protective effect of RANTES was blocked by antibodies to MCP-1, indicating that RANTES protection is mediated by the induction of MCP-1. The NMDA blocker, MK801, also abolished the toxic effects of both tat and NMDA. Tat or NMDA treatment of mixed cultures for 24 h resulted in increased extracellular glutamate ([Glu]e) and NMDA receptor 1 (NMDAR1) expression, potential contributors to apoptosis. Co-treatment with MCP-1 inhibited tat and NMDA-induced increases in [Glu]e and NMDAR1, and also reduced the levels and number of neurons containing intracellular tat. These data indicate that MCP-1 may play a novel role as a protective agent against the toxic effects of glutamate and tat.
Collapse
Affiliation(s)
- E A Eugenin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|