51
|
Wang X, Xu X, Mao G, Guo Y, Wang G, Sun X, Xu N, Zhang Z. Structural Characterization of Gracilariopsis lemaneiformis Polysaccharide and Its Property in Delaying Cellular Senescence. Front Nutr 2022; 9:876992. [PMID: 35651509 PMCID: PMC9149564 DOI: 10.3389/fnut.2022.876992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 01/10/2023] Open
Abstract
The sulfated polysaccharide was isolated from the purified G. lemaneiformis polysaccharide (PGP), and its property in delaying H2O2-induced 2BS cellular senescence was studied. The results showed that PGP was a linear polysaccharide containing alternating α-(1 → 3)- and β-(1 → 4)-galactopyranose units. Most of the sulfate groups are at C6 of the -(1 → 4)-α-D-Galp, and a small part of them are at C3 and C6. PGP pretreatment could decrease SA-β-gal-positive cells and prevent the formation of senescence-associated heterochromatic foci (SAHF) induced by H2O2 in a dose-dependent manner. It is speculated that PGP may delay aging by downregulating the expression of p21 and p53 genes. The finding provides new insights into the beneficial role of G. lemaneiformis polysaccharide (GP) on retarding senescence process.
Collapse
Affiliation(s)
- Xiaomei Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Xiaogang Xu
- Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Genxiang Mao
- Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Yue Guo
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xue Sun
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Nianjun Xu
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| |
Collapse
|
52
|
Cruciani S, Garroni G, Pala R, Barcessat ARP, Facchin F, Ventura C, Fozza C, Maioli M. Melatonin finely tunes proliferation and senescence in hematopoietic stem cells. Eur J Cell Biol 2022; 101:151251. [PMID: 35772322 DOI: 10.1016/j.ejcb.2022.151251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Human hematopoietic stem/progenitor cells (HSPCs) are pluripotent cells that gradually lose their self-renewal and regenerative potential, to give rise to mature cells of the hematopoietic system by differentiation. HSPC infusion is used to restore hematopoietic function in patients with a variety of onco-hematologic and immune-mediated disorders. The functionality of these cells is therefore of great importance to ensure the homeostasis of the hematopoietic system. Melatonin plays an important role as immunomodulatory and oncostatic hormone. In the present manuscript, we aimed at evaluating the activity of melatonin in modulating HSPC senescence, in the attempt to improve their hemopoietic regenerative potential. We exposed HSPCs to melatonin, in different conditions, and then analyzed the expression of genes regulating cell cycle and cell senescence. Moreover, we assessed cell senescence by β-galactosidase and telomerase activity. Our results showed the ability of melatonin to counteract HSPC senescence, thus paving the way for enhanced efficiency in their clinical application.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi" (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma (RM).
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Renzo Pala
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Ana Rita Pinheiro Barcessat
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Health and Biological Sciences Department, Federal University of Amapá, Macapá, Brazil.
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, Eldor Lab, Istituto Nazionale di Biostrutture e Biosistemi (INBB), Innovation Accelerators, CNR, Bologna 40129, Italy.
| | - Claudio Fozza
- Blood Diseases Department of Clinical and Experimental Medicine University of Sassari, 07100 Sassari, Italy.
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi" (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma (RM); Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| |
Collapse
|
53
|
Marimastat alleviates cell senescence induced by oxidative stress by activation of autophagy. Biochem Biophys Res Commun 2022; 620:121-128. [DOI: 10.1016/j.bbrc.2022.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/23/2022] [Indexed: 12/09/2022]
|
54
|
Cellular senescence in the Aging Brain: A promising target for neurodegenerative diseases. Mech Ageing Dev 2022; 204:111675. [DOI: 10.1016/j.mad.2022.111675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 01/10/2023]
|
55
|
Chen Y, Lu X, Gao L, Dean DC, Liu Y. Spheroid-induced heterogeneity and plasticity of uveal melanoma cells. Cell Oncol (Dordr) 2022; 45:309-321. [PMID: 35404029 PMCID: PMC9050762 DOI: 10.1007/s13402-022-00671-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The mechanism underlying cancer heterogeneity and plasticity remains elusive, in spite of the fact that multiple hypotheses have been put forward. We intended to clarify this heterogeneity in uveal melanoma (UM) by looking for evidence of cancer stem cell involvement and a potential role of ZEB1 in cancer cell plasticity. METHODS Spheroids derived from human UM cells as well as xenograft tumors in nude mice were dissected for signs of heterogeneity and plasticity. Two human UM cell lines were studied: the epithelioid type C918 cell line and the spindle type OCM1 cell line. We knocked down ZEB1 in both cell lines to investigate its involvement in the regulation of stem-like cell formation and vascularization by qRT-PCR, immunohistochemistry, flow cytometry, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. RESULTS We found that a small side population (SP) in OCM1 showed stem cell-like properties such as heterogeneity, remote dissemination and nuclear dye exclusion after spheroid formation in vitro. ZEB1 regulated UM stem cell generation indirectly by promoting cell proliferation to form large size tumors in vivo and spheroid in vitro, and directly by binding to stemness genes such as TERT and ABCB1. In addition, we found that ZEB1 participates in vasculogenic mimicry system formation through the regulation of CD34 and VE-cadherin expression. CONCLUSIONS From our data we conclude that cancer stem cells may contribute to UM heterogeneity and plasticity and that ZEB1 may play a regulatory role in it.
Collapse
Affiliation(s)
- Yao Chen
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, National Clinical Medical Center for Geriatric Diseases of Xiangya Hospital, Changsha, China
| | - Xiaoqin Lu
- Department of Medicine, James Graham Brown Cancer Center, Birth Defects Center, University of Louisville School of Medicine, Louisville, KY USA
| | - Ling Gao
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Douglas C. Dean
- Department of Medicine, James Graham Brown Cancer Center, Birth Defects Center, University of Louisville School of Medicine, Louisville, KY USA
| | - Yongqing Liu
- Department of Medicine, James Graham Brown Cancer Center, Birth Defects Center, University of Louisville School of Medicine, Louisville, KY USA
| |
Collapse
|
56
|
Ozler K, Erel O, Gokalp O, Avcioglu G, Neselioglu S. Is there a relationship between dynamic thiol/disulfide homeostasis and osteoarthritis progression? Arch Physiol Biochem 2022; 128:431-437. [PMID: 31738582 DOI: 10.1080/13813455.2019.1689274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We aim to determine serum dynamic thiol/disulphide homeostasis with novel methods in early-stage osteoarthritis and late-stage osteoarthritis patients and investigated whether it was associated with the progression of osteoarthritis risk or not. One hundred eighteen patients were included in this prospective study. Osteoarthritis patients were divided into five stages, according to the Kellgren-Lawrence scale. Dynamic thiol/disulphide homeostasis was determined with a novel spectrophotometric method. Late-stage osteoarthritis patients had significantly lower levels of native and total thiol than the patients of early-stage osteoarthritis. Disulphide, index-1, index-2 levels, and WOMAC score of late-stage osteoarthritis patients were significantly higher than the ones belonging to patients of early-stage osteoarthritis. Decreased native thiol and total thiol levels and increased WOMAC score and disulphide levels were independently associated with increased risk of late-stage osteoarthritis. We suggest that both WOMAC score and dynamic thiol/disulphide homeostasis may be implicated in the pathogenesis and progression of osteoarthritis. We also recommend that dynamic thiol/disulphide homeostasis may have clinical utility as possible markers of differential diagnosis of early-stage and late-stage osteoarthritis.
Collapse
Affiliation(s)
- Kenan Ozler
- Department of Orthopedics, Konya Beysehir State Hospital, Konya, Turkey
| | - Ozcan Erel
- Department of Medical Biochemistry, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Oguzhan Gokalp
- Department of Orthopedics, Konya Beysehir State Hospital, Konya, Turkey
| | - Gamze Avcioglu
- Department of Medical Biochemistry, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Salim Neselioglu
- Department of Medical Biochemistry, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
57
|
Nikolajevic J, Ariaee N, Liew A, Abbasnia S, Fazeli B, Sabovic M. The Role of MicroRNAs in Endothelial Cell Senescence. Cells 2022; 11:cells11071185. [PMID: 35406749 PMCID: PMC8997793 DOI: 10.3390/cells11071185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/05/2022] Open
Abstract
Cellular senescence is a complex, dynamic process consisting of the irreversible arrest of growth and gradual deterioration of cellular function. Endothelial senescence affects the cell’s ability to repair itself, which is essential for maintaining vascular integrity and leads to the development of endothelial dysfunction, which has an important role in the pathogenesis of cardiovascular diseases. Senescent endothelial cells develop a particular, senescence-associated secretory phenotype (SASP) that detrimentally affects both surrounding and distant endothelial cells, thereby facilitating the ageing process and development of age-related disorders. Recent studies highlight the role of endothelial senescence and its dysfunction in the pathophysiology of several age-related diseases. MicroRNAs are small noncoding RNAs that have an important role in the regulation of gene expression at the posttranscriptional level. Recently, it has been discovered that miRNAs could importantly contribute to endothelial cell senescence. Overall, the research focus has been shifting to new potential mechanisms and targets to understand and prevent the structural and functional changes in ageing senescent endothelial cells in order to prevent the development and limit the progression of the wide spectrum of age-related diseases. The aim of this review is to provide some insight into the most important pathways involved in the modulation of endothelial senescence and to reveal the specific roles of several miRNAs involved in this complex process. Better understanding of miRNA’s role in endothelial senescence could lead to new approaches for prevention and possibly also for the treatment of endothelial cells ageing and associated age-related diseases.
Collapse
Affiliation(s)
- Jovana Nikolajevic
- Department of Vascular Diseases, University Medical Center, 1000 Ljubljana, Slovenia;
- Correspondence:
| | - Nazila Ariaee
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Aaron Liew
- Department of Medicine, National University of Galway, H91 CF50 Galway, Ireland;
| | - Shadi Abbasnia
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Bahare Fazeli
- Vascular Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Miso Sabovic
- Department of Vascular Diseases, University Medical Center, 1000 Ljubljana, Slovenia;
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
58
|
Osawa Y, Tanaka T, Semba RD, Fantoni G, Moaddel R, Candia J, Simonsick EM, Bandinelli S, Ferrucci L. Proteins in the pathway from high red blood cell width distribution to all-cause mortality. EBioMedicine 2022; 76:103816. [PMID: 35065420 PMCID: PMC8784626 DOI: 10.1016/j.ebiom.2022.103816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 01/01/2023] Open
Abstract
Background The pathophysiological mechanisms underlying the association between red blood cell distribution width (RDW) and all-cause mortality are unknown. We conducted a data-driven discovery investigation to identify plasma proteins that mediate the association between RDW and time to death in community-dwelling adults. Methods At baseline, 962 adults (women, 54·4%; age range, 21–98 years) participated in the InCHIANTI, “Aging in the Chianti Area” study, and proteomics data were generated from their plasma specimens. Of these, 623 participants had proteomics data available at the 9-year follow-up. For each visit, a total of 1301 plasma proteins were measured using SOMAscan technology. Complete data on vital status were available up to the 15-year follow-up period. Protein-specific exponential distribution accelerated failure time, and linear regression analyses adjusted for possible covariates were used for mortality and mediation analyses, respectively (survival data analysis). Findings Baseline values of EGFR, GHR, NTRK3, SOD2, KLRF1, THBS2, TIMP1, IGFBP2, C9, APOB, and LRP1B mediated the association between baseline RDW and all-cause mortality. Changes in IGFBP2 and C7 over 9 years mediated the association between changes in RDW and 6-year all-cause mortality. Interpretation Cellular senescence may contribute to the association between RDW and mortality. Funding This study was funded by grants from the National Institutes of Health (NIH) and the National Institute on Aging (NIA) contract and was supported by the Intramural Research Program of the NIA, NIH. The InCHIANTI study was supported as a ‘targeted project’ by the Italian Ministry of Health and in part by the U.S. NIA.
Collapse
Affiliation(s)
- Yusuke Osawa
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD 21225 USA; Graduate School of Health Management, Keio University, Kanagawa, Japan; Sports Medicine Research Center, Keio University, Kanagawa, Japan.
| | - Toshiko Tanaka
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD 21225 USA
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Giovanna Fantoni
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD 21225 USA
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD 21225 USA
| | - Julián Candia
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Eleanor M Simonsick
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD 21225 USA
| | | | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD 21225 USA.
| |
Collapse
|
59
|
Contribution of senescent and reactive astrocytes on central nervous system inflammaging. Biogerontology 2022; 23:21-33. [PMID: 35084630 DOI: 10.1007/s10522-022-09952-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 01/10/2023]
Abstract
Astrocytes, the most predominant cells in the central nervous system (CNS), have well-recognized neuroprotective functions. However, during the CNS aging, astrocytes can become neurotoxic and contribute to chronic inflammation in age-associated brain deterioration and disease. Astrocytes are known to become senescent or reactive due to the exposure to stressful stimuli, in both cases they contribute to an impaired cognitive function through the production of pro-inflammatory mediators. Although both scenarios (senescence and reactive gliosis) have been studied independently, there are no direct studies comparing their secretomes simultaneously in the aging-brain. In this review we discuss the most recent studies in that respect, in order to analyze their simultaneous participation in brain aging.
Collapse
|
60
|
Hou X, Shi J, Sun L, Song L, Zhao W, Xiong X, Lu Y. The involvement of ERK1/2 and p38 MAPK in the premature senescence of melanocytes induced by H 2O 2 through a p53-independent p21 pathway. J Dermatol Sci 2022; 105:88-97. [PMID: 35042627 DOI: 10.1016/j.jdermsci.2022.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The pathogenesis of vitiligo is still unknown and oxidative stress is an important factor that can damage or incapacitate melanocytes. OBJECTIVE To investigate the role of oxidative stress in the premature senescence of melanocytes and their transfer of melanosomes. METHODS Cultured human melanocytes were treated with H2O2 after which cell viability and apoptosis were assessed. We investigated whether exposure to H2O2 induces premature senescence. RNA sequencing was used to screen aging-related signaling pathways. The expression of dendritic regulatory proteins, adhesion molecules and cell cytoskeletal proteins, as well as melanosome distribution were characterized. The ROS scavenger NAC was used to study the role of ROS in cell senescence and in melanosome transfer. RESULTS Cell viability decreased progressively and cell apoptosis increased after treatment with H2O2. H2O2 treatment tended to induce premature senescence in melanocytes through a p53-independent p21 pathway. RNA sequencing analysis showed that H2O2 treatment induced the differential expression of MAPK signaling pathway components. Western blotting and qRT-PCR confirmed that H2O2 treatment increased the phosphorylation of ERK1/2 and p38 MAPK, which are involved in inducing the senescence of melanocytes, but not JNK. The expression of cell cytoskeleton and adhesion molecules decreased after H2O2 treatment. p21 siRNA treatment reversed these changes. Treatment with NAC improved the premature senescence and the impaired melanosome transfer induced by H2O2. CONCLUSION H2O2 increases ROS levels, which activates the ERK1/2 and p38 MAPK pathways to induce the premature senescence of melanocytes through p21 via a p53-independent pathway and consequently disrupts melanosome transfer.
Collapse
Affiliation(s)
- Xiaoyuan Hou
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Jiaqi Shi
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Li Sun
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Lebin Song
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Wene Zhao
- Nanjing Medical University, Analysis and Testing Center, Nanjing 210029, China.
| | - Xixi Xiong
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yan Lu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
61
|
|
62
|
Kim YE, Kim J. ROS-Scavenging Therapeutic Hydrogels for Modulation of the Inflammatory Response. ACS APPLIED MATERIALS & INTERFACES 2021; 14:23002-23021. [PMID: 34962774 DOI: 10.1021/acsami.1c18261] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although reactive oxygen species (ROS) are essential for cellular processes, excessive ROS could be a major cause of various inflammatory diseases because of the oxidation of proteins, DNA, and membrane lipids. It has recently been suggested that the amount of ROS could thus be regulated to treat such physiological disorders. A ROS-scavenging hydrogel is a promising candidate for therapeutic applications because of its high biocompatibility, 3D matrix, and ability to be modified. Approaches to conferring antioxidant properties to normal hydrogels include embedding ROS-scavenging catalytic nanoparticles, modifying hydrogel polymer chains with ROS-adsorbing organic moieties, and incorporating ROS-labile linkers in polymer backbones. Such therapeutic hydrogels can be used for wound healing, cardiovascular diseases, bone repair, ocular diseases, and neurodegenerative disorders. ROS-scavenging hydrogels could eliminate oxidative stress, accelerate the regeneration process, and show synergetic effects with other drugs or therapeutic molecules. In this review, the mechanisms by which ROS are generated and scavenged in the body are outlined, and the effects of high levels of ROS and the resulting oxidative stress on inflammatory diseases are described. Next, the mechanism of ROS scavenging by hydrogels is explained depending on the ROS-scavenging agents embedded within the hydrogel. Lastly, the recent achievements in the development of ROS-scavenging hydrogels to treat various inflammation-associated diseases are presented.
Collapse
Affiliation(s)
- Ye Eun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
63
|
Salovska B, Kondelova A, Pimkova K, Liblova Z, Pribyl M, Fabrik I, Bartek J, Vajrychova M, Hodny Z. Peroxiredoxin 6 protects irradiated cells from oxidative stress and shapes their senescence-associated cytokine landscape. Redox Biol 2021; 49:102212. [PMID: 34923300 PMCID: PMC8688892 DOI: 10.1016/j.redox.2021.102212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Cellular senescence is a complex stress response defined as an essentially irreversible cell cycle arrest mediated by the inhibition of cell cycle-specific cyclin dependent kinases. The imbalance in redox homeostasis and oxidative stress have been repeatedly observed as one of the hallmarks of the senescent phenotype. However, a large-scale study investigating protein oxidation and redox signaling in senescent cells in vitro has been lacking. Here we applied a proteome-wide analysis using SILAC-iodoTMT workflow to quantitatively estimate the level of protein sulfhydryl oxidation and proteome level changes in ionizing radiation-induced senescence (IRIS) in hTERT-RPE-1 cells. We observed that senescent cells mobilized the antioxidant system to buffer the increased oxidation stress. Among the antioxidant proteins with increased relative abundance in IRIS, a unique 1-Cys peroxiredoxin family member, peroxiredoxin 6 (PRDX6), was identified as an important contributor to protection against oxidative stress. PRDX6 silencing increased ROS production in senescent cells, decreased their resistance to oxidative stress-induced cell death, and impaired their viability. Subsequent SILAC-iodoTMT and secretome analysis after PRDX6 silencing showed the downregulation of PRDX6 in IRIS affected protein secretory pathways, decreased expression of extracellular matrix proteins, and led to unexpected attenuation of senescence-associated secretory phenotype (SASP). The latter was exemplified by decreased secretion of pro-inflammatory cytokine IL-6 which was also confirmed after treatment with an inhibitor of PRDX6 iPLA2 activity, MJ33. In conclusion, by combining different methodological approaches we discovered a novel role of PRDX6 in senescent cell viability and SASP development. Our results suggest PRDX6 could have a potential as a drug target for senolytic or senomodulatory therapy. SILAC-iodoTMT is a powerful tool to quantify redox imbalance in IRIS. Senescence in hTERT-RPE-1 cells is not accompanied by bulk cysteine oxidation. Antioxidant proteins are upregulated in senescent hTERT-RPE-1 cells. PRDX6 silencing affects redox homeostasis and viability of senescent cells. PRDX6 silencing alters secretome of senescent RPE-1 cells and suppresses IL-6.
Collapse
Affiliation(s)
- Barbora Salovska
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandra Kondelova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Pimkova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; BIOCEV, 1st Medical Faculty, Charles University, Vestec, Czech Republic
| | - Zuzana Liblova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslav Pribyl
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marie Vajrychova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
64
|
Roger I, Milara J, Belhadj N, Cortijo J. Senescence Alterations in Pulmonary Hypertension. Cells 2021; 10:3456. [PMID: 34943963 PMCID: PMC8700581 DOI: 10.3390/cells10123456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is the arrest of normal cell division and is commonly associated with aging. The interest in the role of cellular senescence in lung diseases derives from the observation of markers of senescence in chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (IPF), and pulmonary hypertension (PH). Accumulation of senescent cells and the senescence-associated secretory phenotype in the lung of aged patients may lead to mild persistent inflammation, which results in tissue damage. Oxidative stress due to environmental exposures such as cigarette smoke also promotes cellular senescence, together with additional forms of cellular stress such as mitochondrial dysfunction and endoplasmic reticulum stress. Growing recent evidence indicate that senescent cell phenotypes are observed in pulmonary artery smooth muscle cells and endothelial cells of patients with PH, contributing to pulmonary artery remodeling and PH development. In this review, we analyze the role of different senescence cell phenotypes contributing to the pulmonary artery remodeling process in different PH clinical entities. Different molecular pathway activation and cellular functions derived from senescence activation will be analyzed and discussed as promising targets to develop future senotherapies as promising treatments to attenuate pulmonary artery remodeling in PH.
Collapse
Affiliation(s)
- Inés Roger
- Centro de Investigación en Red Enfermedades Respiratorias CIBERES, Health Institute Carlos III, 28029 Valencia, Spain;
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Javier Milara
- Centro de Investigación en Red Enfermedades Respiratorias CIBERES, Health Institute Carlos III, 28029 Valencia, Spain;
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
- Pharmacy Unit, University General Hospital Consortium of Valencia, 46014 Valencia, Spain
| | - Nada Belhadj
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Julio Cortijo
- Centro de Investigación en Red Enfermedades Respiratorias CIBERES, Health Institute Carlos III, 28029 Valencia, Spain;
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
- Research and Teaching Unit, University General Hospital Consortium, 46014 Valencia, Spain
| |
Collapse
|
65
|
Wu G, Li S, Qu G, Hua J, Zong J, Li X, Xu F. Genistein alleviates H 2O 2-induced senescence of human umbilical vein endothelial cells via regulating the TXNIP/NLRP3 axis. PHARMACEUTICAL BIOLOGY 2021; 59:1388-1401. [PMID: 34663173 PMCID: PMC8526007 DOI: 10.1080/13880209.2021.1979052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
CONTEXT Genistein (Gen) has shown protective effects against ageing process. OBJECTIVE To explore the role of Gen on the senescence of H2O2-induced human umbilical vein endothelial cells (HUVECs) and investigate the possible mechanism. MATERIALS AND METHODS HUVECs were treated with different concentrations of H2O2 (50, 100, 200 and 400 μmol/L) for 1 h or Gen administration (20, 40, 80 and 160 μg/mL) for 24 h. Functional experiments (cell counting kit-8, β-galactosidase staining and flow cytometry) were used to detect the effect of Gen on H2O2-induced HUVECs. After HUVECs were transfected with TXNIP overexpression plasmids, the expression of p16, p21, thioredoxin-interacting protein (TXNIP), nucleotide-binding and oligomerization domain-like receptor 3 (NLRP3), cleaved caspase-3 and cleaved caspase-1 in HUVECs were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. RESULTS H2O2 (200 and 400 μmol/L) inhibited the proliferation of HUVECs. At concentrations of >50 μmol/L, H2O2 induced the cell cycle progression arrests in G1 phase and promoted cell senescence of HUVECs. Gen had no obvious cytotoxicity to HUVECs below 160 µg/mL. H2O2-induced HUVEC senescence and the expression of TXNIP and NLRP3 in HUVECs were down-regulated by Gen (40 and 80 µg/mL). Expressions of TXNIP and NLRP3 in HUVECs were up-regulated by H2O2 but down-regulated by Gen. Overexpressed TXNIP partially reversed the suppressive effect of Gen on H2O2-induced senescence and apoptosis of HUVECs. Expressions of p16, p21, TXNIP, NLRP3, cleaved caspase-3 and cleaved caspase-1 in H2O2-treated HUVECs were inhibited by Gen, while the inhibition as such was partially reversed by overexpressed TXNIP. DISCUSSION AND CONCLUSIONS H2O2-induced HUVEC senescence was alleviated by Gen via suppressing the TXNIP/NLRP3 axis, which may offer a potential therapeutic approach for improving HUVEC senescence and provide a new direction for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Guihua Wu
- Department of Geriatrics, Nantong First Geriatric Hospital, Nantong City, China
| | - Siming Li
- Department of Geriatrics, Harbin Second Hospital, Harbin, China
| | - Guangjin Qu
- Cadre Ward of The First Affiliated Hospital of Harbin Medical University, Harbin City, China
| | - Jiajia Hua
- Department of Traditional Chinese Medicine, Nantong First Elderly Hospital, Nantong City, China
| | - Jing Zong
- Department of Geriatrics, Nantong First Geriatric Hospital, Nantong City, China
| | - Xiaofeng Li
- Department of Otolaryngology, East Hospital, Shanghai Sixth People's Hospital, Nanhui New City, China
| | - Fanghui Xu
- Department of Geriatrics, Harbin Second Hospital, Harbin, China
- CONTACT Fanghui Xu Department of Geriatrics, Harbin Second Hospital, No. 38 Weixing Road, Daowai District, Harbin 150020, China
| |
Collapse
|
66
|
Merdji H, Schini-Kerth V, Meziani F, Toti F. Long-term cardiovascular complications following sepsis: is senescence the missing link? Ann Intensive Care 2021; 11:166. [PMID: 34851467 PMCID: PMC8636544 DOI: 10.1186/s13613-021-00937-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Among the long-term consequences of sepsis (also termed “post-sepsis syndrome”) the increased risk of unexplained cardiovascular complications, such as myocardial infarction, acute heart failure or stroke, is one of the emerging specific health concerns. The vascular accelerated ageing also named premature senescence is a potential mechanism contributing to atherothrombosis, consequently leading to cardiovascular events. Indeed, vascular senescence-associated major adverse cardiovascular events (MACE) are a potential feature in sepsis survivors and of the elderly at cardiovascular risk. In these patients, accelerated vascular senescence could be one of the potential facilitating mechanisms. This review will focus on premature senescence in sepsis regardless of age. It will highlight and refine the potential relationships between sepsis and accelerated vascular senescence. In particular, key cellular mechanisms contributing to cardiovascular events in post-sepsis syndrome will be highlighted, and potential therapeutic strategies to reduce the cardiovascular risk will be further discussed. With improved management of patients, sepsis survivors are increasing each year. Early cardiovascular complications, of yet undeciphered mechanisms, are an emerging health issue in post-sepsis syndrome. Premature senescence of endothelium and vascular tissue is proven an accelerated process of atherogenesis in young septic rats. An increasing body of clinical evidence point at endothelial senescence in the initiation and development of atherosclerosis. Prevention of premature senescence by senotherapy and cardiological follow-up could improve long-term septic patients’ outcomes.
Collapse
Affiliation(s)
- Hamid Merdji
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France.,Department of Intensive Care (Service de Médecine Intensive-Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, 1, place de l'Hôpital, 67091, Strasbourg Cedex, France
| | - Valérie Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France.,Faculté de Pharmacie, Université de Strasbourg, Strasbourg, France
| | - Ferhat Meziani
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France. .,Department of Intensive Care (Service de Médecine Intensive-Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, 1, place de l'Hôpital, 67091, Strasbourg Cedex, France.
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France.,Faculté de Pharmacie, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
67
|
Zhao Y, Seluanov A, Gorbunova V. Revelations About Aging and Disease from Unconventional Vertebrate Model Organisms. Annu Rev Genet 2021; 55:135-159. [PMID: 34416119 PMCID: PMC8903061 DOI: 10.1146/annurev-genet-071719-021009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging is a major risk factor for multiple diseases. Understanding the underlying mechanisms of aging would help to delay and prevent age-associated diseases. Short-lived model organisms have been extensively used to study the mechanisms of aging. However, these short-lived species may be missing the longevity mechanisms that are needed to extend the lifespan of an already long-lived species such as humans. Unconventional long-lived animal species are an excellent resource to uncover novel mechanisms of longevity and disease resistance. Here, we review mechanisms that evolved in nonmodel vertebrate species to counteract age-associated diseases. Some antiaging mechanisms are conserved across species; however, various nonmodel species also evolved unique mechanisms to delay aging and prevent disease. This variety of antiaging mechanisms has evolved due to the remarkably diverse habitats and behaviors of these species. We propose that exploring a wider range of unconventional vertebrates will provide important resources to study antiaging mechanisms that are potentially applicable to humans.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| |
Collapse
|
68
|
Csekes E, Račková L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int J Mol Sci 2021; 22:12641. [PMID: 34884444 PMCID: PMC8657738 DOI: 10.3390/ijms222312641] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
The skin, being the barrier organ of the body, is constitutively exposed to various stimuli impacting its morphology and function. Senescent cells have been found to accumulate with age and may contribute to age-related skin changes and pathologies. Natural polyphenols exert many health benefits, including ameliorative effects on skin aging. By affecting molecular pathways of senescence, polyphenols are able to prevent or delay the senescence formation and, consequently, avoid or ameliorate aging and age-associated pathologies of the skin. This review aims to provide an overview of the current state of knowledge in skin aging and cellular senescence, and to summarize the recent in vitro studies related to the anti-senescent mechanisms of natural polyphenols carried out on keratinocytes, melanocytes and fibroblasts. Aged skin in the context of the COVID-19 pandemic will be also discussed.
Collapse
Affiliation(s)
- Erika Csekes
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
69
|
Li BS, Jin AL, Zhou Z, Seo JH, Choi BM. DRG2 Accelerates Senescence via Negative Regulation of SIRT1 in Human Diploid Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7301373. [PMID: 34777693 PMCID: PMC8580627 DOI: 10.1155/2021/7301373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
Accumulating evidence suggests that developmentally regulated GTP-binding protein 2 (DRG2), an evolutionarily conserved GTP-binding protein, plays an important role in regulating cell growth, inflammation, and mitochondria dynamics. However, the effect of DRG2 in aging remains unclear. In this study, we found that endogenous DRG2 protein expression is upregulated in oxidative stress-induced premature senescence models and tissues of aged mice. Ectopic expression of DRG2 significantly promoted senescence-associated β-galactosidase (SA-β-gal) activity and inhibited cell growth, concomitant with increase in levels of acetyl (ac)-p53 (Lys382), ac-nuclear factor-kB (NF-κB) p65 (Lys310), p21 Waf1/Cip1 , and p16 Ink4a and a decrease in cyclin D1. In this process, reactive oxygen species (ROS) and phosphorylation of H2A histone family member X (H2A.X), forming γ-H2A.X, were enhanced. Mechanistically, ectopic expression of DRG2 downregulated Sirtuin-1 (SIRT1), resulting in augmented acetylation of p53 and NF-κB p65. Additionally, DRG2 knockdown significantly abolished oxidative stress-induced premature senescence. Our results provide a possible molecular mechanism for investigation of cellular senescence and aging regulated by DRG2.
Collapse
Affiliation(s)
- Bing Si Li
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ai Lin Jin
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - ZiQi Zhou
- Department of Herbology, Wonkwang University School of Korean Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jae Ho Seo
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
- Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Byung-Min Choi
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
70
|
Šínová R, Pavlík V, Ondrej M, Velebný V, Nešporová K. Hyaluronan: A key player or just a bystander in skin photoaging? Exp Dermatol 2021; 31:442-458. [PMID: 34726319 DOI: 10.1111/exd.14491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Photoaged skin exhibits signs of inflammation, DNA damage and changes in morphology that are visible at the macroscopic and microscopic levels. Photoaging also affects the extracellular matrix (ECM) including hyaluronan (HA), the main polysaccharide component thereof. HA is a structurally simple but biologically complex molecule that serves as a water-retaining component and provides both a scaffold for a number of the proteins of the ECM and the ligand for cellular receptors. The study provides an overview of the literature concerning the changes in HA amount, size and metabolism, and the potential role of HA in photoaging. We also suggest novel HA contributions to photoaging based on our knowledge of the role of HA in other pathological processes, including the senescence and inflammation-triggered ECM reorganization. Moreover, we discuss potential direct or indirect intervention to mitigate photoaging that targets the hyaluronan metabolism, as well as supplementation.
Collapse
Affiliation(s)
- Romana Šínová
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vojtěch Pavlík
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Ondrej
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Department of Radiobiology, Faculty of Military Health Sciences, University of Defense in Brno, Hradec Kralove, Czech Republic
| | | | | |
Collapse
|
71
|
Sikora E, Bielak-Zmijewska A, Mosieniak G. A common signature of cellular senescence; does it exist? Ageing Res Rev 2021; 71:101458. [PMID: 34500043 DOI: 10.1016/j.arr.2021.101458] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Cellular senescence is a stress response, which can be evoked in all type of somatic cells by different stimuli. Senescent cells accumulate in the body and participate in aging and aging-related diseases mainly by their secretory activity, commonly known as senescence-associated secretory phenotype-SASP. Senescence is typically described as cell cycle arrest. This definition stems from the original observation concerning limited cell division potential of human fibroblasts in vitro. At present, the process of cell senescence is attributed also to cancer cells and to non-proliferating post-mitotic cells. Many cellular signaling pathways and specific and unspecific markers contribute to the complex, dynamic and heterogeneous phenotype of senescent cells. Considering the diversity of cells that can undergo senescence upon different inducers and variety of mechanisms involved in the execution of this process, we ask if there is a common signature of cell senescence. It seems that cell cycle arrest in G0, G1 or G2 is indispensable for cell senescence; however, to ensure irreversibility of divisions, the exit from the cell cycle to the state, which we call a GS (Gero Stage), is necessary. The DNA damage, changes in nuclear architecture and chromatin rearrangement are involved in signaling pathways leading to altered gene transcription and secretion of SASP components. Thus, nuclear changes and SASP are vital features of cell senescence that, together with temporal arrest in the cell cycle (G1 or/and G2), which may be followed by polyploidisation/depolyploidisation or exit from the cell cycle leading to permanent proliferation arrest (GS), define the signature of cellular senescence.
Collapse
|
72
|
Nguyen DDN, Zain SM, Kamarulzaman MH, Low TY, Chilian WM, Pan Y, Ting KN, Hamid A, Abdul Kadir A, Pung YF. Intracellular and exosomal microRNAome profiling of human vascular smooth muscle cells during replicative senescence. Am J Physiol Heart Circ Physiol 2021; 321:H770-H783. [PMID: 34506226 DOI: 10.1152/ajpheart.00058.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular aging is highly associated with cardiovascular morbidity and mortality. Although the senescence of vascular smooth muscle cells (VSMCs) has been well established as a major contributor to vascular aging, intracellular and exosomal microRNA (miRNA) signaling pathways in senescent VSMCs have not been fully elucidated. This study aimed to identify the differential expression of intracellular and exosomal miRNA in human VSMCs (hVSMCs) during replicative senescence. To achieve this aim, intracellular and exosomal miRNAs were isolated from hVSMCs and subsequently subjected to whole genome small RNA next-generation sequencing, bioinformatics analyses, and qPCR validation. Three significant findings were obtained. First, senescent hVSMC-derived exosomes tended to cluster together during replicative senescence and the molecular weight of the exosomal protein tumor susceptibility gene 101 (TSG-101) increased relative to the intracellular TSG-101, suggesting potential posttranslational modifications of exosomal TSG-101. Second, there was a significant decrease in both intracellular and exosomal hsa-miR-155-5p expression [n = 3, false discovery rate (FDR) < 0.05], potentially being a cell type-specific biomarker of hVSMCs during replicative senescence. Importantly, hsa-miR-155-5p was found to associate with cell-cycle arrest and elevated oxidative stress. Lastly, miRNAs from the intracellular pool, that is, hsa-miR-664a-3p, hsa-miR-664a-5p, hsa-miR-664b-3p, hsa-miR-4485-3p, hsa-miR-10527-5p, and hsa-miR-12136, and that from the exosomal pool, that is, hsa-miR-7704, were upregulated in hVSMCs during replicative senescence (n = 3, FDR < 0.05). Interestingly, these novel upregulated miRNAs were not functionally well annotated in hVSMCs to date. In conclusion, hVSMC-specific miRNA expression profiles during replicative senescence potentially provide valuable insights into the signaling pathways leading to vascular aging.NEW & NOTEWORTHY This is the first study on intracellular and exosomal miRNA profiling on human vascular smooth muscle cells during replicative senescence. Specific dysregulated sets of miRNAs were identified from human vascular smooth muscle cells. Hsa-miR-155-5p was significantly downregulated in both intracellular and exosomal hVSMCs, suggesting its crucial role in cellular senescence. Hsa-miR-155-5p might be the mediator in linking cellular senescence to vascular aging and atherosclerosis.
Collapse
Affiliation(s)
- Diem Duong Ngoc Nguyen
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Shamsul Mohd Zain
- The Pharmacogenomics Laboratory, Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - William M Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Yan Pan
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Kang Nee Ting
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Aini Hamid
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Arifah Abdul Kadir
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, University Putra Malaysia, Selangor, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| |
Collapse
|
73
|
Merdji H, Kassem M, Chomel L, Clere-Jehl R, Helms J, Kurihara K, Chaker AB, Auger C, Schini-Kerth V, Toti F, Meziani F. Septic shock as a trigger of arterial stress-induced premature senescence: A new pathway involved in the post sepsis long-term cardiovascular complications. Vascul Pharmacol 2021; 141:106922. [PMID: 34592427 DOI: 10.1016/j.vph.2021.106922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Major adverse cardiovascular events among sepsis survivors is an emerging health issue. Because endothelial senescence leads to vascular dysfunction and atherothrombosis, sepsis could be associated to vascular stress-induced premature senescence and thus with long-term cardiovascular events. MATERIALS & METHODS Adult Wistar male rats were submitted to cecal ligation and puncture, or a SHAM operation. Markers of inflammation, oxidative stress and endothelial senescence were assessed at 3, 7 and 90 days (D), and vascular reactivity was assessed in conductance and resistance vessels at D90. Expression of proteins involved in senescence and inflammation was assessed by Western blot analysis and confocal microscopy, oxidative stress by dihydroethidium probing. RESULTS Pro-inflammatory endothelial ICAM-1 and VCAM-1 were up-regulated by three-fold in CLP vs. SHAM at D7 and remained elevated at D90. Oxidative stress followed a similar pattern but was detected in the whole vascular wall. Sepsis accelerated premature senescence in aorta vascular tissue as shown by the significant up-regulation of p53 and down-stream p21 and p16 senescent markers at D7, values peaking at D90 whereas the absence of significant variation in activated caspase-3 confirmed p53 as a prime inducer of senescence. In addition, p53 was mainly expressed in the endothelium. Sepsis-induced long-term vascular dysfunction was confirmed in aorta and main mesenteric artery, with a major alteration of the endothelial-dependent nitric oxide pathway. CONCLUSIONS Septic shock-induced long-term vascular dysfunction is associated with endothelial and vascular senescence. Our model could prove useful for investigating senotherapies aiming at reducing long-term cardiovascular consequences of septic shock.
Collapse
Affiliation(s)
- Hamid Merdji
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France; Department of Intensive Care (Service de Médecine Intensive - Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Louise Chomel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Raphaël Clere-Jehl
- Department of Intensive Care (Service de Médecine Intensive - Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Julie Helms
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France; Department of Intensive Care (Service de Médecine Intensive - Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Kei Kurihara
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France; Aichi Medical University, Department of Transplantation and Regenerative Medicine, Fujita Health University, School of Medicine, Aichi, Japan
| | - Ahmed Bey Chaker
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Valérie Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Ferhat Meziani
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France; Department of Intensive Care (Service de Médecine Intensive - Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, Strasbourg, France.
| |
Collapse
|
74
|
Zhou R, Xie X, Qin Z, Li X, Liu J, Li H, Zheng Q, Luo Y. Cytosolic dsDNA is a novel senescence marker associated with pyroptosis activation. Tissue Cell 2021; 72:101554. [PMID: 33991763 DOI: 10.1016/j.tice.2021.101554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023]
Abstract
Cellular senescence has become a research focus because of its dual roles in ageing and tumorigenesis. The biomarkers of senescence are essential for detecting senescent cells and understanding the ageing process and its regulation. Here, we identify cytosolic double-stranded DNA (dsDNA) as a novel sensitive biomarker for cellular senescence of mouse embryonic fibroblasts (MEFs) in response to common types of stimuli, including replicative stress, genetic modification and oxidative stress. We found that the accumulation of cytosolic dsDNA was positively correlated with the senescence process in MEFs and was detectable earlier than senescence-associated β-galactosidase (SA-β-Gal) staining, which is the current gold standard for senescence detection. Due to the immunogenicity of dsDNA, we further investigated the stimulation of two dsDNA sensors, cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS) and absent in melanoma-2 (AIM2). The results showed that the cGAS protein level did not significantly change upon senescence stimulation, while AIM2 expression was significantly upregulated in senescent cells. Surprisingly, we found that ageing-related cytosolic dsDNA induced significant pyroptosis activation in the senescent MEFs. These data reveal novel easy-to-detect biomarker for cellular senescence. The activation of downstream immunological response pathways might add new experimental evidence for inflammatory ageing.
Collapse
Affiliation(s)
- Ruoyu Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China; Laboratory of Molecular Genetics of Ageing & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Xiaoli Xie
- Laboratory of Molecular Genetics of Ageing & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Ziyi Qin
- Laboratory of Molecular Genetics of Ageing & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Xinbo Li
- Laboratory of Molecular Genetics of Ageing & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jing Liu
- Laboratory of Molecular Genetics of Ageing & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Haili Li
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shangdong, 250000, China
| | - Quan Zheng
- Laboratory of Molecular Genetics of Ageing & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Ying Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China; Laboratory of Molecular Genetics of Ageing & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Development on Common Chronic Diseases, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550000, China.
| |
Collapse
|
75
|
Zia A, Farkhondeh T, Sahebdel F, Pourbagher-Shahri AM, Samarghandian S. Key miRNAs in Modulating Aging and Longevity: A Focus on Signaling Pathways and Cellular Targets. Curr Mol Pharmacol 2021; 15:736-762. [PMID: 34533452 DOI: 10.2174/1874467214666210917141541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Aging is a multifactorial procedure accompanied by gradual deterioration of most biological procedures of cells. MicroRNAs (miRNAs) are a class of short non-coding RNAs that post-transcriptionally regulate the expression of mRNAs through sequence-specific binding, and contributing to many crucial aspects of cell biology. Several miRNAs are expressed differently in various organisms through aging. The function of miRNAs in modulating aging procedures has been disclosed recently with the detection of miRNAs that modulate longevity in the invertebrate model organisms, through the IIS pathway. In these model organisms, several miRNAs have been detected to both negatively and positively regulate lifespan via commonly aging pathways. miRNAs modulate age-related procedures and disorders in different mammalian tissues by measuring their tissue-specific expression in older and younger counterparts, including heart, skin, bone, brain, and muscle tissues. Moreover, several miRNAs have been contributed to modulating senescence in different human cells, and the roles of these miRNAs in modulating cellular senescence have allowed illustrating some mechanisms of aging. The review discusses the available data on miRNAs through the aging process and we highlight the roles of miRNAs as aging biomarkers and regulators of longevity in cellular senescence, tissue aging, and organism lifespan.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
76
|
Zuo SQ, Li C, Liu YL, Tan YH, Wan X, Xu T, Li Q, Wang L, Wu YL, Deng FM, Tang B. Cordycepin inhibits cell senescence by ameliorating lysosomal dysfunction and inducing autophagy through the AMPK and mTOR-p70S6K pathway. FEBS Open Bio 2021; 11:2705-2714. [PMID: 34448542 PMCID: PMC8487049 DOI: 10.1002/2211-5463.13263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/10/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
Cell senescence is closely related to autophagy. In this article, we identified a natural nucleoside analogue, cordycepin, that has the ability to significantly improve lysosomal function, enhance the activity of the lysosomal representative protease cathepsin B (CTSB), and promote the expression of the functional protein lysosomal‐associated membrane protein 2 (LAMP2) on the lysosomal membrane. Cordycepin then restores the damaged autophagy level of aging cells by activating the classic AMPK and mTOR–p70S6K signaling pathways, thus inhibiting cell senescence in an H2O2‐induced stress‐induced premature senescence (SIPS) cell model. This study provides new theoretical support for the further development of cordycepin and clinical antiaging drugs to inhibit cell senescence and suggests that the regulatory mechanisms of lysosomes in senescent cells should be considered when treating age‐related diseases.
Collapse
Affiliation(s)
- Shi Qi Zuo
- School of Clinical Medicine, Chengdu Medical College, China
| | - Can Li
- School of Basic Medical Science, Chengdu Medical College, China.,Sichuan Clinical Research Center for Geriatrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, China
| | - Yi Lun Liu
- Sichuan Clinical Research Center for Geriatrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, China.,People's Hospital of Mingshan District, Ya'an, China
| | - Yue Hao Tan
- School of Basic Medical Science, Chengdu Medical College, China
| | - Xing Wan
- School of Clinical Medicine, Chengdu Medical College, China
| | - Tian Xu
- Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Li
- Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li Wu
- Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Feng Mei Deng
- School of Basic Medical Science, Chengdu Medical College, China
| | - Bin Tang
- School of Basic Medical Science, Chengdu Medical College, China
| |
Collapse
|
77
|
Cayo A, Segovia R, Venturini W, Moore-Carrasco R, Valenzuela C, Brown N. mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership. Int J Mol Sci 2021; 22:ijms22158149. [PMID: 34360912 PMCID: PMC8347619 DOI: 10.3390/ijms22158149] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a form of proliferative arrest triggered in response to a wide variety of stimuli and characterized by unique changes in cell morphology and function. Although unable to divide, senescent cells remain metabolically active and acquire the ability to produce and secrete bioactive molecules, some of which have recognized pro-inflammatory and/or pro-tumorigenic actions. As expected, this “senescence-associated secretory phenotype (SASP)” accounts for most of the non-cell-autonomous effects of senescent cells, which can be beneficial or detrimental for tissue homeostasis, depending on the context. It is now evident that many features linked to cellular senescence, including the SASP, reflect complex changes in the activities of mTOR and other metabolic pathways. Indeed, the available evidence indicates that mTOR-dependent signaling is required for the maintenance or implementation of different aspects of cellular senescence. Thus, depending on the cell type and biological context, inhibiting mTOR in cells undergoing senescence can reverse senescence, induce quiescence or cell death, or exacerbate some features of senescent cells while inhibiting others. Interestingly, autophagy—a highly regulated catabolic process—is also commonly upregulated in senescent cells. As mTOR activation leads to repression of autophagy in non-senescent cells (mTOR as an upstream regulator of autophagy), the upregulation of autophagy observed in senescent cells must take place in an mTOR-independent manner. Notably, there is evidence that autophagy provides free amino acids that feed the mTOR complex 1 (mTORC1), which in turn is required to initiate the synthesis of SASP components. Therefore, mTOR activation can follow the induction of autophagy in senescent cells (mTOR as a downstream effector of autophagy). These functional connections suggest the existence of autophagy regulatory pathways in senescent cells that differ from those activated in non-senescence contexts. We envision that untangling these functional connections will be key for the generation of combinatorial anti-cancer therapies involving pro-senescence drugs, mTOR inhibitors, and/or autophagy inhibitors.
Collapse
Affiliation(s)
- Angel Cayo
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Raúl Segovia
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Whitney Venturini
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile;
| | - Rodrigo Moore-Carrasco
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile;
| | - Claudio Valenzuela
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Nelson Brown
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
- Correspondence:
| |
Collapse
|
78
|
Nagane M, Yasui H, Kuppusamy P, Yamashita T, Inanami O. DNA damage response in vascular endothelial senescence: Implication for radiation-induced cardiovascular diseases. JOURNAL OF RADIATION RESEARCH 2021; 62:564-573. [PMID: 33912932 PMCID: PMC8273807 DOI: 10.1093/jrr/rrab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/24/2021] [Indexed: 05/27/2023]
Abstract
A post-exposure cohort study in Hiroshima and Nagasaki reported that low-dose exposure to radiation heightened the risk of cardiovascular diseases (CVD), such as stroke and myocardial infarction, by 14-18% per Gy. Moreover, the risk of atherosclerosis in the coronary arteries reportedly increases with radiation therapy of the chest, including breast and lung cancer treatment. Cellular senescence of vascular endothelial cells (ECs) is believed to play an important role in radiation-induced CVDs. The molecular mechanism of age-related cellular senescence is believed to involve genomic instability and DNA damage response (DDR); the chronic inflammation associated with senescence causes cardiovascular damage. Therefore, vascular endothelial cell senescence is believed to induce the pathogenesis of CVDs after radiation exposure. The findings of several prior studies have revealed that ionizing radiation (IR) induces cellular senescence as well as cell death in ECs. We have previously reported that DDR activates endothelial nitric oxide (NO) synthase, and NO production promotes endothelial senescence. Endothelial NO synthase (eNOS) is a major isoform expressed in ECs that maintains cardiovascular homeostasis. Therefore, radiation-induced NO production, a component of the DDR in ECs, may be involved in CVDs after radiation exposure. In this article, we describe the pathology of radiation-induced CVD and the unique radio-response to radiation exposure in ECs.
Collapse
Affiliation(s)
- Masaki Nagane
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Periannan Kuppusamy
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, US
| | - Tadashi Yamashita
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
79
|
Shin EY, Soung NK, Schwartz MA, Kim EG. Altered endocytosis in cellular senescence. Ageing Res Rev 2021; 68:101332. [PMID: 33753287 PMCID: PMC8131247 DOI: 10.1016/j.arr.2021.101332] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence occurs in response to diverse stresses (e.g., telomere shortening, DNA damage, oxidative stress, oncogene activation). A growing body of evidence indicates that alterations in multiple components of endocytic pathways contribute to cellular senescence. Clathrin-mediated endocytosis (CME) and caveolae-mediated endocytosis (CavME) represent major types of endocytosis that are implicated in senescence. More recent research has also identified a chromatin modifier and tumor suppressor that contributes to the induction of senescence via altered endocytosis. Here, molecular regulators of aberrant endocytosis-induced senescence are reviewed and discussed in the context of their capacity to serve as senescence-inducing stressors or modifiers.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju, 28644, South Korea
| | - Nak-Kyun Soung
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Cheongju, 28116, South Korea
| | - Martin Alexander Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, And Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06511, USA; Wellcome Trust Centre for Cell-matrix Research, University of Manchester, Manchester, UK.
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju, 28644, South Korea.
| |
Collapse
|
80
|
Kaiser M, Semeraro MD, Herrmann M, Absenger G, Gerger A, Renner W. Immune Aging and Immunotherapy in Cancer. Int J Mol Sci 2021; 22:7016. [PMID: 34209842 PMCID: PMC8269421 DOI: 10.3390/ijms22137016] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Immune functions decline as we age, while the incidence of cancer rises. The advent of immune checkpoint blockade (ICB) has not only revolutionized cancer therapy, but also spawned great interest in identifying predictive biomarkers, since only one third of patients show treatment response. The aging process extensively affects the adaptive immune system and thus T cells, which are the main target of ICB. In this review, we address age-related changes regarding the adaptive immune system with a focus on T cells and their implication on carcinogenesis and ICB. Differences between senescence, exhaustion, and anergy are defined and current knowledge, treatment strategies, and studies exploring T cell aging as a biomarker for ICB are discussed. Finally, novel approaches to improve immunotherapies and to identify biomarkers of response to ICB are presented and their potential is assessed in a comparative analysis.
Collapse
Affiliation(s)
- Melanie Kaiser
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (M.D.S.); (M.H.); (W.R.)
| | - Maria Donatella Semeraro
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (M.D.S.); (M.H.); (W.R.)
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (M.D.S.); (M.H.); (W.R.)
| | - Gudrun Absenger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (G.A.); (A.G.)
| | - Armin Gerger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (G.A.); (A.G.)
| | - Wilfried Renner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (M.D.S.); (M.H.); (W.R.)
| |
Collapse
|
81
|
Giri S, Takada A, Paudel D, Yoshida K, Furukawa M, Kuramitsu Y, Matsushita K, Abiko Y, Furuichi Y. An in vitro senescence model of gingival epithelial cell induced by hydrogen peroxide treatment. Odontology 2021; 110:44-53. [PMID: 34143349 DOI: 10.1007/s10266-021-00630-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
Gingival tissue shows progressive changes with aging and an in vitro model of gingival tissue could be useful in understanding age-associated oral diseases. The present study aims to establish a hydrogen peroxide (H2O2) treatment model to induce aging in human gingival epithelial cells. In addition, fisetin, a flavonoid component studied for the anti-aging property is used to examine if it could reverse the induced senescence. Primary human gingival epithelial progenitor (HGEPp) cells were cultured and treated with different concentrations of H2O2. A cell vitality and morphology, senescence-associated beta-galactosidase (SA-β-gal) staining, mRNA and protein expression analysis of known senescence markers p16, p21, and p53, and cell cycle assay were performed. The cells showed dose-dependent changes in vitality and morphology, SA-β-gal staining, relative mRNA and protein expression, and cell cycle assay after H2O2 treatment. Based on these results, 400 μM H2O2 was considered as an optimal concentration to induce senescence. Treatment of senescence-induced cells with fisetin downregulated all the senescence markers used in this study. In conclusion, a senescence model of gingival epithelial cells induced by hydrogen peroxide treatment was established which could be employed to study age-related periodontal diseases.
Collapse
Affiliation(s)
- Sarita Giri
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, 061-0293, Japan
| | - Ayuko Takada
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Durga Paudel
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Koki Yoshida
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Masae Furukawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yasuhiro Kuramitsu
- Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Yasushi Furuichi
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, 061-0293, Japan.
| |
Collapse
|
82
|
Idiopathic pulmonary fibrosis and systemic sclerosis: pathogenic mechanisms and therapeutic interventions. Cell Mol Life Sci 2021; 78:5527-5542. [PMID: 34145462 PMCID: PMC8212897 DOI: 10.1007/s00018-021-03874-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/07/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022]
Abstract
Fibrotic diseases take a very heavy toll in terms of morbidity and mortality equal to or even greater than that caused by metastatic cancer. In this review, we examine the pathogenesis of fibrotic diseases, mainly addressing triggers for induction, processes that lead to progression, therapies and therapeutic trials. For the most part, we have focused on two fibrotic diseases with lung involvement, idiopathic pulmonary fibrosis, in which the contribution of inflammatory mechanisms may be secondary to non-immune triggers, and systemic sclerosis in which the contribution of adaptive immunity may be predominant.
Collapse
|
83
|
Sokolov AS, Nekrasov PV, Shaposhnikov MV, Moskalev AA. Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous. Ageing Res Rev 2021; 67:101262. [PMID: 33516916 DOI: 10.1016/j.arr.2021.101262] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is one of the biologically active gases (gasotransmitters), which plays an important role in various physiological processes and aging. Its production in the course of methionine and cysteine catabolism and its degradation are finely balanced, and impairment of H2S homeostasis is associated with various pathologies. Despite the strong geroprotective action of exogenous H2S in C. elegans, there are controversial effects of hydrogen sulfide and its donors on longevity in other models, as well as on stress resistance, age-related pathologies and aging processes, including regulation of senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Here we discuss that the translation potential of H2S as a geroprotective compound is influenced by a multiplicity of its molecular targets, pleiotropic biological effects, and the overlapping ranges of toxic and beneficial doses. We also consider the challenges of the targeted delivery of H2S at the required dose. Along with this, the complexity of determining the natural levels of H2S in animal and human organs and their ambiguous correlations with longevity are reviewed.
Collapse
|
84
|
Down-Regulation of the Proteoglycan Decorin Fills in the Tumor-Promoting Phenotype of Ionizing Radiation-Induced Senescent Human Breast Stromal Fibroblasts. Cancers (Basel) 2021; 13:cancers13081987. [PMID: 33924197 PMCID: PMC8074608 DOI: 10.3390/cancers13081987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Ionizing radiation (a typical remedy for breast cancer) results in the premature senescence of the adjacent to the neoplastic cells stromal fibroblasts. Here, we showed that these senescent fibroblasts are characterized by the down-regulation of the small leucine-rich proteoglycan decorin, a poor prognostic factor for the progression of the disease. Decorin down-regulation is mediated by secreted growth factors in an autocrine and paracrine (due to the interaction with breast cancer cells) manner, with bFGF and VEGF being the key players of this regulation in young and senescent breast stromal fibroblasts. Autophagy activation increases decorin mRNA levels, indicating that impaired autophagy is implicated in the reduction in decorin in this cell model. Decorin down-regulation acts additively to the already tumor-promoting phenotype of ionizing radiation-induced prematurely senescent human stromal fibroblasts, confirming that stromal senescence is a side-effect of radiotherapy that should be taken into account in the design of anticancer treatments. Abstract Down-regulation of the small leucine-rich proteoglycan decorin in the stroma is considered a poor prognostic factor for breast cancer progression. Ionizing radiation, an established treatment for breast cancer, provokes the premature senescence of the adjacent to the tumor stromal fibroblasts. Here, we showed that senescent human breast stromal fibroblasts are characterized by the down-regulation of decorin at the mRNA and protein level, as well as by its decreased deposition in the pericellular extracellular matrix in vitro. Senescence-associated decorin down-regulation is a long-lasting process rather than an immediate response to γ-irradiation. Growth factors were demonstrated to participate in an autocrine manner in decorin down-regulation, with bFGF and VEGF being the critical mediators of the phenomenon. Autophagy inhibition by chloroquine reduced decorin mRNA levels, while autophagy activation using the mTOR inhibitor rapamycin enhanced decorin transcription. Interestingly, the secretome from a series of both untreated and irradiated human breast cancer cell lines with different molecular profiles inhibited decorin expression in young and senescent stromal fibroblasts, which was annulled by SU5402, a bFGF and VEGF inhibitor. The novel phenotypic trait of senescent human breast stromal fibroblasts revealed here is added to their already described cancer-promoting role via the formation of a tumor-permissive environment.
Collapse
|
85
|
Mannarino M, Cherif H, Li L, Sheng K, Rabau O, Jarzem P, Weber MH, Ouellet JA, Haglund L. Toll-like receptor 2 induced senescence in intervertebral disc cells of patients with back pain can be attenuated by o-vanillin. Arthritis Res Ther 2021; 23:117. [PMID: 33863359 PMCID: PMC8051055 DOI: 10.1186/s13075-021-02504-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/03/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND There is an increased level of senescent cells and toll-like teceptor-1, -2, -4, and -6 (TLR) expression in degenerating intervertebral discs (IVDs) from back pain patients. However, it is currently not known if the increase in expression of TLRs is related to the senescent cells or if it is a more general increase on all cells. It is also not known if TLR activation in IVD cells will induce cell senescence. METHODS Cells from non-degenerate human IVD were obtained from spine donors and cells from degenerate IVDs came from patients undergoing surgery for low back pain. Gene expression of TLR-1,2,4,6, senescence and senescence-associated secretory phenotype (SASP) markers was evaluated by RT-qPCR in isolated cells. Matrix synthesis was verified with safranin-O staining and Dimethyl-Methylene Blue Assay (DMMB) confirmed proteoglycan content. Protein expression of p16INK4a, SASP factors, and TLR-2 was evaluated by immunocytochemistry (ICC) and/or by enzyme-linked immunosorbent assay (ELISA). RESULTS An increase in senescent cells was found following 48-h induction with a TLR-2/6 agonist in cells from both non-degenerate and degenerating human IVDs. Higher levels of SASP factors, TLR-2 gene expression, and protein expression were found following 48-h induction with TLR-2/6 agonist. Treatment with o-vanillin reduced the number of senescent cells, and increased matrix synthesis in IVD cells from back pain patients. Treatment with o-vanillin after induction with TLR-2/6 agonist reduced gene and protein expression of SASP factors and TLR-2. Co-localized staining of p16INK4a and TLR-2 demonstrated that senescent cells have a high TLR-2 expression. CONCLUSIONS Taken together our data demonstrate that activation of TLR-2/6 induce senescence and increase TLR-2 and SASP expression in cells from non-degenerate IVDs of organ donors without degeneration and back pain and in cells from degenerating human IVD of patients with disc degeneration and back pain. The senescent cells showed high TLR-2 expression suggesting a link between TLR activation and cell senescence in human IVD cells. The reduction in senescence, SASP, and TLR-2 expression suggest o-vanillin as a potential disease-modifying drug for patients with disc degeneration and back pain.
Collapse
Affiliation(s)
- Matthew Mannarino
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, Canada
- Department of Surgery, McGill Scoliosis and Spine Group, McGill University, Montreal, Canada
- Department of Surgery, The Research Institute of McGill University Health Center, Montreal, Canada
| | - Hosni Cherif
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, Canada
- Department of Surgery, McGill Scoliosis and Spine Group, McGill University, Montreal, Canada
- Department of Surgery, The Research Institute of McGill University Health Center, Montreal, Canada
| | - Li Li
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, Canada
- Department of Surgery, McGill Scoliosis and Spine Group, McGill University, Montreal, Canada
- Department of Surgery, The Research Institute of McGill University Health Center, Montreal, Canada
| | - Kai Sheng
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, Canada
- Department of Surgery, McGill Scoliosis and Spine Group, McGill University, Montreal, Canada
- Shriner's Hospital for Children, Montreal, Canada
| | - Oded Rabau
- Department of Surgery, McGill Scoliosis and Spine Group, McGill University, Montreal, Canada
- Shriner's Hospital for Children, Montreal, Canada
| | - Peter Jarzem
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, Canada
- Department of Surgery, McGill Scoliosis and Spine Group, McGill University, Montreal, Canada
- Department of Surgery, The Research Institute of McGill University Health Center, Montreal, Canada
| | - Michael H Weber
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, Canada
- Department of Surgery, McGill Scoliosis and Spine Group, McGill University, Montreal, Canada
- Department of Surgery, The Research Institute of McGill University Health Center, Montreal, Canada
| | - Jean A Ouellet
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, Canada
- Department of Surgery, McGill Scoliosis and Spine Group, McGill University, Montreal, Canada
- Department of Surgery, The Research Institute of McGill University Health Center, Montreal, Canada
- Shriner's Hospital for Children, Montreal, Canada
| | - Lisbet Haglund
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, Canada.
- Department of Surgery, McGill Scoliosis and Spine Group, McGill University, Montreal, Canada.
- Department of Surgery, The Research Institute of McGill University Health Center, Montreal, Canada.
- Shriner's Hospital for Children, Montreal, Canada.
- Department of Surgery, Montreal General Hospital, McGill University Health Centre, Room C9.173,1650 Cedar Ave, Montreal, QC, H3G 1A4, Canada.
| |
Collapse
|
86
|
Marcheggiani F, Kordes S, Cirilli I, Orlando P, Silvestri S, Vogelsang A, Möller N, Blatt T, Weise JM, Damiani E, Tiano L. Anti-ageing effects of ubiquinone and ubiquinol in a senescence model of human dermal fibroblasts. Free Radic Biol Med 2021; 165:282-288. [PMID: 33482334 DOI: 10.1016/j.freeradbiomed.2021.01.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Coenzyme Q10 (CoQ10) is an endogenous lipophilic quinone found in equilibrium between its oxidised (ubiquinone) and reduced (ubiquinol) form, ubiquitous in biological membranes and endowed with antioxidant and bioenergetic properties, both crucial to the ageing process. CoQ10 biosynthesis decreases with age in different tissues including skin and its biosynthesis can be modulated by 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors such as statins. Statin-induced CoQ10 deprivation has previously been shown to be associated with the development of a senescence phenotype in cultured human dermal fibroblasts (HDF), hence this model was used to further investigate the role of CoQ10 in skin ageing. The present study aimed to compare the bioavailability of exogenously added CoQ10, in the form of ubiquinone or ubiquinol, to CoQ10-deprived HDF, and to determine their efficacy in rescuing the senescent phenotype induced by CoQ10 deprivation. First, additional senescence markers were implemented to further support the pro-ageing effect of statin-induced CoQ10 deprivation in HDF. Indeed, numerous senescence-associated secretory phenotype (SASP) markers such as p21, IL-8, CXCL1, and MMP-1 were upregulated, whereas components of the extracellular matrix were downregulated (elastin, collagen type 1). Next, we showed that CoQ10 supplementation to statin-treated HDF was able to counteract CoQ10 deprivation and rescued the development of selected senescence/ageing markers in HDF. Ubiquinol resulted more bioavailable than ubiquinone at the same concentration (15 μg/mL) and it significantly improved the cellular oxidative status even within isolated mitochondria highlighting an effective subcellular delivery. Ubiquinol was also more efficient compared to ubiquinone in reverting the expression of the senescent phenotype, quantified in terms of β-galactosidase positivity, p21, collagen type 1, and elastin at the gene and protein expression levels. In conclusion, our results highlight the pivotal role of CoQ10 for skin vitality and strongly support the use of both forms as a beneficial and effective anti-ageing skin care treatment.
Collapse
Affiliation(s)
- Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, I-60131, Italy.
| | - Sebastian Kordes
- Research and Development, Beiersdorf AG, Unnastrasse 48, Hamburg, 20245, Germany.
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, I-60131, Italy; School of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino, 62032, Italy.
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, I-60131, Italy.
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, I-60131, Italy.
| | - Alexandra Vogelsang
- Research and Development, Beiersdorf AG, Unnastrasse 48, Hamburg, 20245, Germany.
| | - Nadine Möller
- Research and Development, Beiersdorf AG, Unnastrasse 48, Hamburg, 20245, Germany.
| | - Thomas Blatt
- Research and Development, Beiersdorf AG, Unnastrasse 48, Hamburg, 20245, Germany.
| | - Julia M Weise
- Research and Development, Beiersdorf AG, Unnastrasse 48, Hamburg, 20245, Germany.
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, I-60131, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, I-60131, Italy.
| |
Collapse
|
87
|
FK866 Protects Human Dental Pulp Cells against Oxidative Stress-Induced Cellular Senescence. Antioxidants (Basel) 2021; 10:antiox10020271. [PMID: 33578781 PMCID: PMC7916510 DOI: 10.3390/antiox10020271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/12/2023] Open
Abstract
FK866 possesses various functional properties, such as anti-angiogenic, anti-cancer, and anti-inflammatory activities. We previously demonstrated that premature senescence of human dental pulp cells (hDPCs) was induced by hydrogen peroxide (H2O2). The present study aimed to investigate whether H2O2-induced premature senescence of hDPCs is affected by treatment with FK866. We found that FK866 markedly inhibited the senescent characteristics of hDPCs after exposure to H2O2, as revealed by an increase in the number of senescence-associated β-galactosidase (SA-β-gal)-positive hDPCs and the upregulation of the p21 and p53 proteins, which acts as molecular indicators of cellular senescence. Moreover, the stimulatory effects of H2O2 on cellular senescence are associated with oxidative stress induction, such as excessive ROS production and NADPH consumption, telomere DNA damage induction, and upregulation of senescence-associated secretory phenotype factors (IL-1β, IL-6, IL-8, COX-2, and TNF-α) as well as NF-κB activation, which were all blocked by FK866. Thus, FK866 might antagonize H2O2-induced premature senescence of hDPCs, acting as a potential therapeutic antioxidant by attenuating oxidative stress-induced pathologies in dental pulp, including inflammation and cellular senescence.
Collapse
|
88
|
The role of curcumin in aging and senescence: Molecular mechanisms. Biomed Pharmacother 2021; 134:111119. [DOI: 10.1016/j.biopha.2020.111119] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
|
89
|
Abstract
Significance: Cell senescence was originally defined by an acute loss of replicative capacity and thus believed to be restricted to proliferation-competent cells. More recently, senescence has been recognized as a cellular stress and damage response encompassing multiple pathways or senescence domains, namely DNA damage response, cell cycle arrest, senescence-associated secretory phenotype, senescence-associated mitochondrial dysfunction, autophagy/mitophagy dysfunction, nutrient and stress signaling, and epigenetic reprogramming. Each of these domains is activated during senescence, and all appear to interact with each other. Cell senescence has been identified as an important driver of mammalian aging. Recent Advances: Activation of all these senescence domains has now also been observed in a wide range of post-mitotic cells, suggesting that senescence as a stress response can occur in nondividing cells temporally uncoupled from cell cycle arrest. Here, we review recent evidence for post-mitotic cell senescence and speculate about its possible relevance for mammalian aging. Critical Issues: Although a majority of senescence domains has been found to be activated in a range of post-mitotic cells during aging, independent confirmation of these results is still lacking for most of them. Future Directions: To define whether post-mitotic senescence plays a significant role as a driver of aging phenotypes in tissues such as brain, muscle, heart, and others. Antioxid. Redox Signal. 34, 308-323.
Collapse
Affiliation(s)
- Thomas von Zglinicki
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Molecular Biology and Genetics, Arts and Sciences Faculty, Near East University, Nicosia, Turkey
| | - Tengfei Wan
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Satomi Miwa
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
90
|
Principles of the Molecular and Cellular Mechanisms of Aging. J Invest Dermatol 2021; 141:951-960. [PMID: 33518357 DOI: 10.1016/j.jid.2020.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Aging can be defined as a state of progressive functional decline accompanied by an increase in mortality. Time-dependent accumulation of cellular damage, namely lesions and mutations in the DNA and misfolded proteins, impair organellar and cellular function. Ensuing cell fate alterations lead to the accumulation of dysfunctional cells and hamper homeostatic processes, thus limiting regenerative potential; trigger low-grade inflammation; and alter intercellular and intertissue communication. The accumulation of molecular damage together with modifications in the epigenetic landscape, dysregulation of gene expression, and altered endocrine communication, drive the aging process and establish age as the main risk factor for age-associated diseases and multimorbidity.
Collapse
|
91
|
Duy C, Li M, Teater M, Meydan C, Garrett-Bakelman FE, Lee TC, Chin CR, Durmaz C, Kawabata KC, Dhimolea E, Mitsiades CS, Doehner H, D'Andrea RJ, Becker MW, Paietta EM, Mason CE, Carroll M, Melnick AM. Chemotherapy Induces Senescence-Like Resilient Cells Capable of Initiating AML Recurrence. Cancer Discov 2021; 11:1542-1561. [PMID: 33500244 DOI: 10.1158/2159-8290.cd-20-1375] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Patients with acute myeloid leukemia (AML) frequently relapse after chemotherapy, yet the mechanism by which AML reemerges is not fully understood. Herein, we show that primary AML cells enter a senescence-like phenotype following chemotherapy in vitro and in vivo. This is accompanied by induction of senescence/inflammatory and embryonic diapause transcriptional programs, with downregulation of MYC and leukemia stem cell genes. Single-cell RNA sequencing suggested depletion of leukemia stem cells in vitro and in vivo, and enrichment for subpopulations with distinct senescence-like cells. This senescence effect was transient and conferred superior colony-forming and engraftment potential. Entry into this senescence-like phenotype was dependent on ATR, and persistence of AML cells was severely impaired by ATR inhibitors. Altogether, we propose that AML relapse is facilitated by a senescence-like resilience phenotype that occurs regardless of their stem cell status. Upon recovery, these post-senescence AML cells give rise to relapsed AMLs with increased stem cell potential. SIGNIFICANCE: Despite entering complete remission after chemotherapy, relapse occurs in many patients with AML. Thus, there is an urgent need to understand the relapse mechanism in AML and the development of targeted treatments to improve outcome. Here, we identified a senescence-like resilience phenotype through which AML cells can survive and repopulate leukemia.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
- Cihangir Duy
- Cancer Signaling and Epigenetics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Meng Li
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Matt Teater
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Francine E Garrett-Bakelman
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York.,Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Tak C Lee
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Christopher R Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Ceyda Durmaz
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Kimihito C Kawabata
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | | | | | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | | | - Ari M Melnick
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
92
|
In Vitro Evaluation of Antioxidant Potential of the Invasive Seagrass Halophila stipulacea. Mar Drugs 2021; 19:md19010037. [PMID: 33467094 PMCID: PMC7830009 DOI: 10.3390/md19010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Marine organisms with fast growth rates and great biological adaptive capacity might have biotechnological interests, since ecological competitiveness might rely on enhanced physiological or biochemical processes’ capability promoting protection, defense, or repair intracellular damages. The invasive seagrass Halophila stipulacea, a non-indigenous species widespread in the Mediterranean Sea, belongs to this category. This is the premise to investigate the biotechnological interest of this species. In this study, we investigated the antioxidant activity in vitro, both in scavenging reactive oxygen species and in repairing damages from oxidative stress on the fibroblast human cell line WI-38. Together with the biochemical analysis, the antioxidant activity was characterized by the study of the expression of oxidative stress gene in WI-38 cells in presence or absence of the H. stipulacea extract. Concomitantly, the pigment pool of the extracts, as well as their macromolecular composition was characterized. This study was done separately on mature and young leaves. Results indicated that mature leaves exerted a great activity in scavenging reactive oxygen species and repairing damages from oxidative stress in the WI-38 cell line. This activity was paralleled to an enhanced carotenoids content in the mature leaf extracts and a higher carbohydrate contribution to organic matter. Our results suggest a potential of the old leaves of H. stipulacea as oxidative stress damage protecting or repair agents in fibroblast cell lines. This study paves the way to transmute the invasive H. stipulacea environmental threat in goods for human health.
Collapse
|
93
|
Severe COVID-19 Lung Infection in Older People and Periodontitis. J Clin Med 2021; 10:jcm10020279. [PMID: 33466585 PMCID: PMC7828740 DOI: 10.3390/jcm10020279] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Periodontal bacteria dissemination into the lower respiratory tract may create favorable conditions for severe COVID-19 lung infection. Once lung tissues are colonized, cells that survive persistent bacterial infection can undergo permanent damage and accelerated cellular senescence. Consequently, several morphological and functional features of senescent lung cells facilitate SARS-CoV-2 replication. The higher risk for severe SARS-CoV-2 infection, the virus that causes COVID-19, and death in older patients has generated the question whether basic aging mechanisms could be implicated in such susceptibility. Mounting evidence indicates that cellular senescence, a manifestation of aging at the cellular level, contributes to the development of age-related lung pathologies and facilitates respiratory infections. Apparently, a relationship between life-threatening COVID-19 lung infection and pre-existing periodontal disease seems improbable. However, periodontal pathogens can be inoculated during endotracheal intubation and/or aspirated into the lower respiratory tract. This review focuses on how the dissemination of periodontal bacteria into the lungs could aggravate age-related senescent cell accumulation and facilitate more efficient SARS-CoV-2 cell attachment and replication. We also consider how periodontal bacteria-induced premature senescence could influence the course of COVID-19 lung infection. Finally, we highlight the role of saliva as a reservoir for both pathogenic bacteria and SARS-CoV-2. Therefore, the identification of active severe periodontitis can be an opportune and valid clinical parameter for risk stratification of old patients with COVID-19.
Collapse
|
94
|
Deryabin PI, Shatrova AN, Borodkina AV. Apoptosis resistance of senescent cells is an intrinsic barrier for senolysis induced by cardiac glycosides. Cell Mol Life Sci 2021; 78:7757-7776. [PMID: 34714358 PMCID: PMC8629786 DOI: 10.1007/s00018-021-03980-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/24/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Targeted elimination of senescent cells, senolysis, is one of the core trends in the anti-aging therapy. Cardiac glycosides were recently proved to be a broad-spectrum senolytics. Here we tested senolytic properties of cardiac glycosides towards human mesenchymal stem cells (hMSCs). Cardiac glycosides had no senolytic ability towards senescent hMSCs of various origins. Using biological and bioinformatic approaches we compared senescence development in 'cardiac glycosides-sensitive' A549 and '-insensitive' hMSCs. The absence of senolysis was found to be mediated by the effective potassium import and increased apoptosis resistance in senescent hMSCs. Weakening "antiapoptotic defense" predisposes hMSCs to senolysis. We revealed that apoptosis resistance, previously recognized as a common characteristic of senescence, in fact, is not a general feature of senescent cells. Moreover, only apoptosis-prone senescent cells are sensitive to cardiac glycosides-induced senolysis. Thus, we can speculate that the effectiveness of senolysis might depend on whether senescent cells indeed become apoptosis-resistant as compared to their proliferating counterparts.
Collapse
Affiliation(s)
- Pavel I. Deryabin
- grid.418947.70000 0000 9629 3848Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
| | - Alla N. Shatrova
- grid.418947.70000 0000 9629 3848Laboratory of Intracellular Membranes Dynamic, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
| | - Aleksandra V. Borodkina
- grid.418947.70000 0000 9629 3848Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
| |
Collapse
|
95
|
Kim SG, Sung JY, Kim JR, Choi HC. Quercetin-induced apoptosis ameliorates vascular smooth muscle cell senescence through AMP-activated protein kinase signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:69-79. [PMID: 31908576 PMCID: PMC6940493 DOI: 10.4196/kjpp.2020.24.1.69] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
Aging is one of the risk factors for the development of cardiovascular diseases. During the progression of cellular senescence, cells enter a state of irreversible growth arrest and display resistance to apoptosis. As a flavonoid, quercetin induces apoptosis in various cells. Accordingly, we investigated the relationship between quercetin-induced apoptosis and the inhibition of cellular senescence, and determined the mechanism of oxidative stress-induced vascular smooth muscle cell (VSMC) senescence. In cultured VSMCs, hydrogen peroxide (H2O2) dose-dependently induced senescence, which was associated with increased numbers of senescence-associated β-galactosidase-positive cells, decreased expression of SMP30, and activation of p53-p21 and p16 pathways. Along with senescence, expression of the anti-apoptotic protein Bcl-2 was observed to increase and the levels of proteins related to the apoptosis pathway were observed to decrease. Quercetin induced apoptosis through the activation of AMP-activated protein kinase. This action led to the alleviation of oxidative stress-induced VSMC senescence. Furthermore, the inhibition of AMPK activation with compound C and siRNA inhibited apoptosis and aggravated VSMC senescence by reversing p53-p21 and p16 pathways. These results suggest that senescent VSMCs are resistant to apoptosis and quercetin-induced apoptosis attenuated the oxidative stress-induced senescence through activation of AMPK. Therefore, induction of apoptosis by polyphenols such as quercetin may be worthy of attention for its anti-aging effects.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu 42415, Korea.,Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415, Korea
| | - Jin Young Sung
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu 42415, Korea.,Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415, Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 42415, Korea.,Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415, Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu 42415, Korea.,Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415, Korea
| |
Collapse
|
96
|
Adamczyk-Grochala J, Lewinska A. Nano-Based Theranostic Tools for the Detection and Elimination of Senescent Cells. Cells 2020; 9:E2659. [PMID: 33322013 PMCID: PMC7764355 DOI: 10.3390/cells9122659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The progressive accumulation of apoptosis-resistant and secretory active senescent cells (SCs) in animal and human aged tissues may limit lifespan and healthspan and lead to age-related diseases such as cancer, neurodegenerative disorders, and metabolic syndrome. Thus, SCs are suggested targets in anti-aging therapy. In the last two decades, a number of nanomaterials have gained much attention as innovative tools in theranostic applications due to their unique properties improving target visualization, drug and gene delivery, controlled drug release, effective diagnosis, and successful therapy. Although the healthcare industry has focused on a plethora of applications of nanomaterials, it remains elusive how nanomaterials may modulate cellular senescence, a hallmark of aging. In this review paper, we consider novel nanotechnology-based strategies for healthspan promotion and the prevention of age-related dysfunctions that are based on the delivery of therapeutic compounds capable to preferentially killing SCs (nano-senolytics) and/or modulating a proinflammatory secretome (nano-senomorphics/nano-senostatics). Recent examples of SC-targeted nanomaterials and the mechanisms underlying different aspects of the nanomaterial-mediated senolysis are presented and discussed.
Collapse
Affiliation(s)
- Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Anna Lewinska
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
97
|
Liu Y, Chen Q. Senescent Mesenchymal Stem Cells: Disease Mechanism and Treatment Strategy. CURRENT MOLECULAR BIOLOGY REPORTS 2020; 6:173-182. [PMID: 33816065 PMCID: PMC8011589 DOI: 10.1007/s40610-020-00141-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Mesenchymal stem cells (MSCs) have been extensively studied for therapeutic application in tissue engineering and regenerative medicine. Despite their promise, recent findings suggest that MSC replication during repair process may lead to replicative senescence and stem cell exhaustion. Here, we review the basic mechanisms of MSC senescence, how it leads to degenerative diseases, and potential treatments for such diseases. RECENT FINDINGS Emerging evidence has shown a link between senescent MSCs and degenerative diseases, especially age-related diseases such as osteoarthritis and idiopathic pulmonary fibrosis. During these disease processes, MSCs undergo cell senescence and mediate Senescence Associated Secretory Phenotypes (SASP) to affect the surrounding microenvironment. Thus, senescent MSCs can accelerate tissue aging by increasing the number of senescent cells and spreading inflammation to neighboring cells. SUMMARY Senescent MSCs not only hamper tissue repair through cell senescence associated stem cell exhaustion, but also mediate tissue degeneration by initiating and spreading senescence-associated inflammation. It suggests new strategies of MSC-based cell therapy to remove, rejuvenate, or replace (3Rs) the senescent MSCs.
Collapse
Affiliation(s)
- Yajun Liu
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Qian Chen
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
98
|
Cellular senescence and failure of myelin repair in multiple sclerosis. Mech Ageing Dev 2020; 192:111366. [DOI: 10.1016/j.mad.2020.111366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023]
|
99
|
Molecular Mechanisms to Target Cellular Senescence in Hepatocellular Carcinoma. Cells 2020; 9:cells9122540. [PMID: 33255630 PMCID: PMC7761055 DOI: 10.3390/cells9122540] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer-related death and is the most common type of liver cancer. Due to the current paucity of drugs for HCC therapy there is a pressing need to develop new therapeutic concepts. In recent years, the role of Serum Response Factor (SRF) and its coactivators, Myocardin-Related Transcription Factors A and B (MRTF-A and -B), in HCC formation and progression has received considerable attention. Targeting MRTFs results in HCC growth arrest provoked by oncogene-induced senescence. The induction of senescence acts as a tumor-suppressive mechanism and therefore gains consideration for pharmacological interventions in cancer therapy. In this article, we describe the key features and the functional role of senescence in light of the development of novel drug targets for HCC therapy with a focus on MRTFs.
Collapse
|
100
|
Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, Zinellu A, Mangoni AA, Pintus G. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci 2020; 78:2031-2057. [PMID: 33201251 PMCID: PMC7669490 DOI: 10.1007/s00018-020-03693-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia, is a progressive, irreversible, and typically lethal disease characterized by an abnormal fibrotic response involving vast areas of the lungs. Given the poor knowledge of the mechanisms underpinning IPF onset and progression, a better understanding of the cellular processes and molecular pathways involved is essential for the development of effective therapies, currently lacking. Besides a number of established IPF-associated risk factors, such as cigarette smoking, environmental factors, comorbidities, and viral infections, several other processes have been linked with this devastating disease. Apoptosis, senescence, epithelial-mesenchymal transition, endothelial-mesenchymal transition, and epithelial cell migration have been shown to play a key role in IPF-associated tissue remodeling. Moreover, molecules, such as chemokines, cytokines, growth factors, adenosine, glycosaminoglycans, non-coding RNAs, and cellular processes including oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, hypoxia, and alternative polyadenylation have been linked with IPF development. Importantly, strategies targeting these processes have been investigated to modulate abnormal cellular phenotypes and maintain tissue homeostasis in the lung. This review provides an update regarding the emerging cellular and molecular mechanisms involved in the onset and progression of IPF.
Collapse
Affiliation(s)
- Thị Hằng Giang Phan
- Department of Immunology and Pathophysiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. .,Biomedical Research Center Qatar University, P.O Box 2713, Doha, Qatar.
| | - Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - Alessandro Giuseppe Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Arduino Aleksander Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates. .,Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|