51
|
Platzbecker U, Meredyth-Stewart M, Ehninger G. The pathogenesis of myelodysplastic syndromes (MDS). Cancer Treat Rev 2007. [DOI: 10.1016/j.ctrv.2007.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
52
|
Osorio C, Sullivan PM, He DN, Mace BE, Ervin JF, Strittmatter WJ, Alzate O. Mortalin is regulated by APOE in hippocampus of AD patients and by human APOE in TR mice. Neurobiol Aging 2006; 28:1853-62. [PMID: 17050040 DOI: 10.1016/j.neurobiolaging.2006.08.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 06/22/2006] [Accepted: 08/24/2006] [Indexed: 12/15/2022]
Abstract
Mortalin is a chaperone protein associated with cell survival, stress response, intracellular trafficking, control of cell proliferation, mitochondrial biogenesis, and cell fate determination. Human APOE targeted replacement (TR) mice have been used to elucidate the role of APOE4 in Alzheimer's disease (AD), since these animals express the APOE4 gene without the classical pathological signatures of AD. Using proteomics we found that mortalin isoforms are differentially expressed in the hippocampus of APOE4 TR mice compared with the APOE3 (control) TR mice. We also observed that these mortalin isoforms are differentially phosphorylated. Then we studied mortalin expression in patients with AD (genotypes APOE 3/3 and APOE 4/4) compared with patients without AD (genotype APOE 3/3). We observed that mortalin isoforms are also differentially expressed in the hippocampi of patients with AD, and that the expression of these mortalin isoforms is regulated by the APOE genotype. We propose that the differential regulation of mortalin in AD and by the APOE genotype is a cellular defense mechanism responding to increases in oxidative stress.
Collapse
Affiliation(s)
- Cristina Osorio
- Neuroproteomics Laboratory, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
53
|
Wadhwa R, Takano S, Kaur K, Deocaris CC, Pereira-Smith OM, Reddel RR, Kaul SC. Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer 2006; 118:2973-80. [PMID: 16425258 DOI: 10.1002/ijc.21773] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mortalin, also known as mthsp70/GRP75/PBP74, interacts with the tumor suppressor protein p53 and inactivates its transcriptional activation and apoptotic functions. Here, we examined the level of mortalin expression in a large variety of tumor tissues, tumor-derived and in vitro immortalized human cells. It was elevated in many human tumors, and in all of the tumor-derived and in vitro immortalized cells. In human embryonic fibroblasts immortalized with an expression plasmid for hTERT, the telomerase catalytic subunit, with or without human papillomavirus E6 and E7 genes, we found that subclones with spontaneously increased mortalin expression levels became anchorage-independent and acquired the ability to form tumors in nude mice. Furthermore, overexpression of mortalin was sufficient to increase the malignancy of breast carcinoma cells. The study demonstrates that upregulation of mortalin contributes significantly to tumorigenesis, and thus is a good candidate target for cancer therapy.
Collapse
Affiliation(s)
- Renu Wadhwa
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
54
|
Pizzatti L, Sá LA, de Souza JM, Bisch PM, Abdelhay E. Altered protein profile in chronic myeloid leukemia chronic phase identified by a comparative proteomic study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:929-42. [PMID: 16581319 DOI: 10.1016/j.bbapap.2006.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
Chronic myeloid leukemia is a hematological disorder in which the Ph chromosome is a marker of the disease, detected virtually in all cases. The chimeric transcripts encode a 210-kDa chimeric protein with altered tyrosine kinase activity, responsible for the disease phenotype. In this work, we tried to identify which are the molecular changes common to chronic phase patients, those that represent the chronic phase molecular phenotype. To address this problem we analyzed through a comparative proteomic approach, several CML bone marrow cells protein profile from patients in chronic phase and healthy bone marrow donors. From these results, we identified 31 differentially expressed proteins. Among these proteins, we pointed out c-Myc binding protein 1, 53BP1, Mdm4, OSBP-related protein 3 and Mortalin as putative candidates to BCR-ABL targets in chronic phase. Moreover, we describe for the first time the cytoplasmic protein map from bone marrow cells that helped in the elucidation of the changes we were looking for.
Collapse
Affiliation(s)
- Luciana Pizzatti
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
55
|
Ma Z, Izumi H, Kanai M, Kabuyama Y, Ahn NG, Fukasawa K. Mortalin controls centrosome duplication via modulating centrosomal localization of p53. Oncogene 2006; 25:5377-90. [PMID: 16619038 DOI: 10.1038/sj.onc.1209543] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abnormal amplification of centrosomes, commonly found in human cancer, is the major cause of mitotic defects and chromosome instability in cancer cells. Like DNA, centrosomes duplicate once in each cell cycle, hence the defect in the mechanism that ensures centrosome duplication to occur once and only once in each cell cycle results in abnormal amplification of centrosomes and mitotic defects. Centrosomes are non-membranous organelles, and undergo dynamic changes in its constituents during the centrosome duplication cycle. Through a comparative mass spectrometric analysis of unduplicated and duplicated centrosomes, we identified mortalin, a member of heat shock protein family, as a protein that associates preferentially with duplicated centrosomes. Further analysis revealed that mortalin localized to centrosomes in late G1 before centrosome duplication, remained at centrosomes during S and G2, and dissociated from centrosomes during mitosis. Overexpression of mortalin overrides the p53-dependent suppression of centrosome duplication, and mortalin-driven centrosome duplication requires physical interaction between mortalin and p53. Moreover, mortalin promotes dissociation of p53 from centrosomes through physical interaction. The p53 mutant that lacks the ability to bind to mortalin remains at centrosomes, and suppresses centrosome duplication in a transactivation function-independent manner. Thus, our present findings not only identify mortalin as an upstream molecule of p53 but also provide evidence for the involvement of centrosomally localized p53 in the regulation of centrosome duplication.
Collapse
Affiliation(s)
- Z Ma
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | | | | | |
Collapse
|
56
|
Wang XF, Gao GD, Liu J, Guo R, Lin YX, Chu YL, Han FC, Zhang WH, Bai YJ. Identification of differentially expressed genes induced by angiotensin II in rat cardiac fibroblasts. Clin Exp Pharmacol Physiol 2006; 33:41-6. [PMID: 16445697 DOI: 10.1111/j.1440-1681.2006.04321.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Cardiac fibroblasts play an important regulatory role in cardiac remodelling by undergoing proliferation, differentiation and upregulating various gene products, including some cytokines and extracellular matrix (ECM) proteins. A highly potent mediator of cardiac remodelling is angiotensin (Ang) II. 2. In the present study, the suppression subtractive hybridization method was used to identify differentially expressed cDNAs in adult rat cardiac fibroblasts induced by AngII. 3. Following mRNA isolation of non-stimulated and AngII-stimulated cells, cDNAs of both populations were prepared and subtracted by suppression polymerase chain reaction. Sequencing of the partially enriched cDNAs identified 36 genes differentially expressed, including ECM proteins (pro-alpha(1) collagen type III, fibronectin), structural protein (spectrin), enzyme (GTP-specific succinyl-CoA synthetase), transcriptional regulators (glucocorticoid-induced leucine zipper, inhibitor of DNA binding 3) and proteins involved in cell division control (cdc2) or cell signalling (insulin-like growth factor binding protein-3, mutant p53-binding protein, grp75, CGI-121, protein phosphatase type 2A, tspan-2 and Sam68). 4. The diversity of genes identified in the present study further emphasises the central role of AngII in the regulation of cardiac remodelling.
Collapse
Affiliation(s)
- X F Wang
- Department of Pathophysiology, Medical College of Xi'an Jiaotong University, 76 Yanta West Road, Xi'an 710061, Shannxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Kaul SC, Aida S, Yaguchi T, Kaur K, Wadhwa R. Activation of wild type p53 function by its mortalin-binding, cytoplasmically localizing carboxyl terminus peptides. J Biol Chem 2005; 280:39373-9. [PMID: 16176931 DOI: 10.1074/jbc.m500022200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Hsp70 family member mortalin (mot-2/mthsp70/GRP75) binds to a carboxyl terminus region of the tumor suppressor protein p53. By in vivo co-immunoprecipitation of mot-2 with p53 and its deletion mutants, we earlier mapped the mot-2-binding site of p53 to its carboxyl terminus 312-352 amino acid residues. In the present study we attempted to disrupt mot-2-p53 interactions by overexpression of short p53 carboxyl-terminal peptides. We report that p53 carboxyl-terminal peptides (amino acid residues 312-390, 312-352, 323-390, and 323-352) localize in the cytoplasm, whereas 312-322, 337-390, 337-352, and 352-390 locate mostly in the nucleus. Most interestingly, the cytoplasmically localizing p53 peptides harboring the residues 323-337 activated the endogenous p53 function by displacing it from p53-mortalin complexes and relocating it to the nucleus. Such activation of p53 function was sufficient to cause growth arrest of human osteosarcoma and breast carcinoma cells.
Collapse
Affiliation(s)
- Sunil C Kaul
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | | | |
Collapse
|
58
|
Sadacharan SK, Singh B, Bowes T, Gupta RS. Localization of mitochondrial DNA encoded cytochrome c oxidase subunits I and II in rat pancreatic zymogen granules and pituitary growth hormone granules. Histochem Cell Biol 2005; 124:409-21. [PMID: 16133117 DOI: 10.1007/s00418-005-0056-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
Cytochrome c oxidase (COX) complex is an integral part of the electron transport chain. Three subunits of this complex (COX I, COX II and COX III) are encoded by mitochondrial (mit-) DNA. High-resolution immunogold electron microscopy has been used to study the subcellular localization of COX I and COX II in rat tissue sections, embedded in LR Gold resin, using monoclonal antibodies for these proteins. Immunofluorescence labeling of BS-C-1 monkey kidney cells with these antibodies showed characteristic mitochondrial labeling. In immunogold labeling studies, the COX I and COX II antibodies showed strong and specific mitochondrial labeling in the liver, kidney, heart and pancreas. However, in rat pancreatic acinar tissue, in addition to mitochondrial labeling, strong and specific labeling was also observed in the zymogen granules (ZGs). In the anterior pituitary, strong labeling with these antibodies was seen in the growth hormone secretory granules. In contrast to these compartments, the COX I or COX II antibodies showed only minimal labeling (five- to tenfold lower) of the cytoplasm, endoplasmic reticulum and the nucleus. Strong labeling with the COX I or COX II antibodies was also observed in highly purified ZGs from bovine pancreas. The observed labeling, in all cases, was completely abolished upon omission of the primary antibodies. These results provide evidence that, similar to a number of other recently studied mit-proteins, COX I and COX II are also present outside the mitochondria. The presence of mit-DNA encoded COX I and COX II in extramitochondrial compartments, provides strong evidence that proteins can exit, or are exported, from the mitochondria. Although the mechanisms responsible for protein exit/export remain to be elucidated, these results raise fundamental questions concerning the roles of mitochondria and mitochondrial proteins in diverse cellular processes in different compartments.
Collapse
Affiliation(s)
- Skanda K Sadacharan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada, L8N 3Z5
| | | | | | | |
Collapse
|
59
|
Cariello NF, Romach EH, Colton HM, Ni H, Yoon L, Falls JG, Casey W, Creech D, Anderson SP, Benavides GR, Hoivik DJ, Brown R, Miller RT. Gene expression profiling of the PPAR-alpha agonist ciprofibrate in the cynomolgus monkey liver. Toxicol Sci 2005; 88:250-64. [PMID: 16081524 DOI: 10.1093/toxsci/kfi273] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fibrates, such as ciprofibrate, fenofibrate, and clofibrate, are peroxisome proliferator-activated receptor-alpha (PPARalpha) agonists that have been in clinical use for many decades for treatment of dyslipidemia. When mice and rats are given PPARalpha agonists, these drugs cause hepatic peroxisome proliferation, hypertrophy, hyperplasia, and eventually hepatocarcinogenesis. Importantly, primates are relatively refractory to these effects; however, the mechanisms for the species differences are not clearly understood. Cynomolgus monkeys were exposed to ciprofibrate at various dose levels for either 4 or 15 days, and the liver transcriptional profiles were examined using Affymetrix human GeneChips. Strong upregulation of many genes relating to fatty acid metabolism and mitochondrial oxidative phosphorylation was observed; this reflects the known pharmacology and activity of the fibrates. In addition, (1) many genes related to ribosome and proteasome biosynthesis were upregulated, (2) a large number of genes downregulated were in the complement and coagulation cascades, (3) a number of key regulatory genes, including members of the JUN, MYC, and NFkappaB families were downregulated, which appears to be in contrast to the rodent, where JUN and MYC are reported to upregulated after PPARalpha agonist treatment, (4) no transcriptional signal for DNA damage or oxidative stress was observed, and (5) transcriptional signals consistent with an anti-proliferative and a pro-apoptotic effect were seen. We also compared the primate data to literature reports of hepatic transcriptional profiling in PPARalpha-treated rodents, which showed that the magnitude of induction in beta-oxidation pathways was substantially greater in the rodent than the primate.
Collapse
Affiliation(s)
- Neal F Cariello
- GlaxoSmithKline Inc., Safety Assessment, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Liu Y, Liu W, Song XD, Zuo J. Effect of GRP75/mthsp70/PBP74/mortalin overexpression on intracellular ATP level, mitochondrial membrane potential and ROS accumulation following glucose deprivation in PC12 cells. Mol Cell Biochem 2005; 268:45-51. [PMID: 15724436 DOI: 10.1007/s11010-005-2996-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glucose regulated protein 75 (GRP75) is an important molecular chaperon belonged to the heat shock protein (HSP) family. To evaluate the effect of GRP75 overexpression on PC12 cells under glucose deprivation, cell viability and mitochondrial function of GRP75-overexpressing PC12 cells and the vector transfected control PC12 cells were monitored during glucose deprivation. Upon exposure to glucose deprivation, GRP75-overexpressing PC12 cells exhibited more moderate cell damage than control PC12 cells. Both of the two groups of cells showed a decreased ATP level following an early increase in the condition of glucose deprivation, and the mitochondrial potential were also reduced in the similar manner in the two groups of cells. Control PC12 cells showed an immediate and rapid increase in ROS accumulation after the onset of GD treatment, and this accumulation was slowed and reduced in GRP75-overexpressing PC12 cells. These findings suggested that GRP75 could inhibit the ROS accumulation, and it may be associated with the cytoprotective effect of GRP75 overexpression upon glucose deprivation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cellular and Genetic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | | | | | | |
Collapse
|
61
|
Saretzki G, Armstrong L, Leake A, Lako M, von Zglinicki T. Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. ACTA ACUST UNITED AC 2005; 22:962-71. [PMID: 15536187 DOI: 10.1634/stemcells.22-6-962] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A very small number of embryonic stem (ES) cells gives rise to all tissues of the embryo proper. This means that ES cells should be equipped with highly efficient mechanisms to defend themselves against various stresses and to prevent or repair DNA damage. One of these mechanisms is a high activity of a verapamil-sensitive multidrug efflux pump. Because reactive oxygen species are a major source of DNA damage, we further tested the idea that murine ES cells might differ from their more differentiated counterparts by high levels of antioxidant defense and good DNA strand break repair capacity. This was confirmed by comparing cellular peroxide levels, total antioxidant capacity, and activity of radiation-induced strand break repair between murine ES cells and embryoid bodies or embryonic fibroblasts. Using microarrays and confirmation by reverse transcription-polymerase chain reaction, we identified several candidate antioxidant and stress-resistance genes that become downregulated during differentiation of ES cells into embryoid bodies.
Collapse
Affiliation(s)
- Gabriele Saretzki
- Henry Wellcome Laboratory for Biogerontology, Newcastle General Hospital, University of Newcastle upon Tyne, Newcastle upon Tyne NE4 6BE, UK
| | | | | | | | | |
Collapse
|
62
|
Deocaris CC, Taira K, Kaul SC, Wadhwa R. Mimotope-hormesis and mortalin/grp75/mthsp70: a new hypothesis on how infectious disease-associated epitope mimicry may explain low cancer burden in developing nations. FEBS Lett 2004; 579:586-90. [PMID: 15670812 DOI: 10.1016/j.febslet.2004.11.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 11/25/2004] [Accepted: 11/29/2004] [Indexed: 01/13/2023]
Abstract
It is generally observed that countries with heavy infectious burden show lower cancer incidence as compared to more affluent nations. With the emerging paradigm on microbial heat shock proteins (hsps) as molecular link between infections and autoimmune diseases, we posit a new hypothesis, the "mimotope-hormesis", on the immunologic impact of infections on regional cancer prevention. According to this, assaults of infection during early adulthood could fortify the immune system to evoke more potent defenses against late-onset diseases, such as cancer, via autoimmunity. Interestingly, both experimental and clinical data support the beneficial role of autoimmunity in long-term cancer survivors. We illustrate this by a comprehensive in silico mimotope (epitope mimicry) analysis of human infectious pathogens against mortalin (mthsp70/PB74/GRP75), a type of hsp70 protein involved in control of cell proliferation, immortalization and tumorigenesis.
Collapse
Affiliation(s)
- Custer C Deocaris
- Cell Proliferation Research Team, Gene Function Research Center, National Institute of Advanced Industrial Science & Technology (AIST), 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | |
Collapse
|
63
|
Kaur K, Rani G, Widodo N, Nagpal A, Taira K, Kaul SC, Wadhwa R. Evaluation of the anti-proliferative and anti-oxidative activities of leaf extract from in vivo and in vitro raised Ashwagandha. Food Chem Toxicol 2004; 42:2015-20. [PMID: 15500938 DOI: 10.1016/j.fct.2004.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 07/08/2004] [Indexed: 01/01/2023]
Abstract
Withania somnifera (Ashwagandha) is used in Indian traditional medicine, Ayurveda and is believed to have a variety of health promoting effects. Molecular mechanisms and pathways underlying these effects have not been studied. We tried to characterize various activities of leaf extract of Ashwagandha (Lash) raised in the field and in the laboratory. We found that the Lash from field-raised plants has a significant anti-proliferative activity in human tumorigenic cells. However, it did not impart any protection against the oxidative damage caused by high glucose and hydrogen peroxide to human tumor cells suggesting that it can be used as an anti-tumor, but not as an anti-oxidant, substance.
Collapse
Affiliation(s)
- K Kaur
- Cell Proliferation Research Team, Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
64
|
Um JH, Kim SJ, Kim DW, Ha MY, Jang JH, Kim DW, Chung BS, Kang CD, Kim SH. Tissue-specific changes of DNA repair protein Ku and mtHSP70 in aging rats and their retardation by caloric restriction. Mech Ageing Dev 2004; 124:967-75. [PMID: 14499502 DOI: 10.1016/s0047-6374(03)00169-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To provide an improved understanding of the molecular basis of the aging process, it is necessary to measure biological age on a tissue-specific basis. The role of DNA damage has emerged as a significant mechanism for determination of life span, and DNA repair genes and stress-response genes are also implicated in the aging process. In the present study, we investigated the changes of DNA-PK activity, especially Ku activity, in the various tissues including kidney, lung, testis and liver during aging and its correlation with mtHSP70 expression. We showed that the modulation of Ku activity during the aging process was highly tissue-specific as shown with highly impaired Ku activity in testis and unaffected Ku activity in liver with age, and the level of Ku70 or Ku80 was differentially expressed in each aging tissue. We found also that age-associated alteration of Ku70/80 was prevented or not prevented by caloric restriction (CR) in a tissue-specific manner. Age-related decline in Ku70 during the aging process was associated with the increase of mtHSP70, which could play a role as a predictive marker for aging related to Ku regulation, and CR retarded aging-induced mtHSP70.
Collapse
Affiliation(s)
- Jee Hyun Um
- Department of Biochemistry, College of Medicine, Pusan National University, Pusan 602-739, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Choi J, Forster MJ, McDonald SR, Weintraub ST, Carroll CA, Gracy RW. Proteomic identification of specific oxidized proteins in ApoE-knockout mice: relevance to Alzheimer's disease. Free Radic Biol Med 2004; 36:1155-62. [PMID: 15082069 DOI: 10.1016/j.freeradbiomed.2004.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 01/22/2004] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
We have examined oxidized proteins in the brain regions of wild-type (WT) and ApoE-knockout (KO) animals. Total protein oxidation in the hippocampus of young-KO (6 month) animals was approximately 2-fold greater than that of young-WT (6 month) animals and was similar to that of old-WT (18 month) and old-KO (18 month) animals. In the cortex of the same animals, the levels of total protein oxidation in all four groups were not significantly different. Two-dimensional electrophoresis (2-DE) coupled with immunostaining for protein carbonylation revealed six specific oxidation-sensitive proteins, the oxidation levels of which were increased in young-KO, old-WT, and old-KO mice compared with young-WT mice. These six oxidation-sensitive proteins were identified by mass spectrometry as glial fibrillary acidic protein, creatine kinase BB, disulfide isomerase, chaperonin subunit 5, dihydropyrimidase-related protein 2, and mortalin. These results indicate that the ApoE gene product offers protection against age-associated oxidative damage in the brain. Moreover, two of these proteins, creatine kinase and dihydropyrimidase-related protein 2, have recently been found to be oxidized in the brains of human subjects with Alzheimer's disease [Aksenov et al. J. Neurochem. 74: 2520-2527; 2000; Castegna et al. J. Neurochem. 82: 1524-1532; 2002]. These data suggest that the ApoE-knockout mouse serves as an appropriate model for studying pathogenic oxidative mechanisms influencing risk and progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Joungil Choi
- Molecular Aging Unit, Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | |
Collapse
|
66
|
Kaul Z, Yaguchi T, Kaul SC, Hirano T, Wadhwa R, Taira K. Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Res 2003; 13:503-7. [PMID: 14728808 DOI: 10.1038/sj.cr.7290194] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Quantum dots are the nanoparticles that are recently emerging as an alternative to organic fluorescence probes in cell biology and biomedicine, and have several predictive advantages. These include their i) broad absorption spectra allowing visualization with single light source, ii) exceptional photo-stability allowing long term studies and iii) narrow and symmetrical emission spectrum that is controlled by their size and material composition. These unique properties allow simultaneous excitation of different size of quantum dots with a single excitation light source, their simultaneous resolution and visualization as different colors. At present there are only a few studies that have tested quantum dots in cellular imaging. We describe here the use of quantum dots in mortalin imaging of normal and cancer cells. Mortalin staining pattern with quantum dots in both normal and cancer cells mimicked those obtained with organic florescence probes and were considerably stable.
Collapse
Affiliation(s)
- Zeenia Kaul
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 3058562, Japan
| | | | | | | | | | | |
Collapse
|
67
|
Kimura E, Abe K, Suzuki K, Sorimachi H. Heterogeneous nuclear ribonucleoprotein K interacts with and is proteolyzed by calpain in vivo. Biosci Biotechnol Biochem 2003; 67:1786-96. [PMID: 12951515 DOI: 10.1271/bbb.67.1786] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Calpain is a cytosolic "modulator protease" that modulates cellular functions in response to Ca2+. To identify in vivo substrates of calpain, yeast two-hybrid screening was done using the 5-EF-hand (penta-EF-hand; PEF) domain of the micro-calpain large subunit (domain IV), since several possible in vivo substrates for calpain have been previously reported to bind to the 5-EF-hand domains. Other than the regulatory subunit of calpain, which binds to the domain IV, heterogeneous nuclear ribonucleoproteins (hnRNP) K and R were identified, and shown to be proteolyzed by micro-calpain in vitro. When expressed in COS7 cells, hnRNP K and micro-calpain co-localized in the cytosol, and Ca2+-ionophore stimulation of the cells resulted in proteolysis of hnRNP K, indicating that hnRNP K is an in vivo substrate for calpain. Now, hnRNP K is considered to function as a scaffold protein for its binding proteins, such as PKCdelta and C/EBPbeta, which were reported to be calpain substrates, suggesting that hnRNP-K is a scaffold for calpain to proteolyze these proteins.
Collapse
Affiliation(s)
- Eiichi Kimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
68
|
Wadhwa R, Yaguchi T, Hasan MK, Taira K, Kaul SC. Mortalin-MPD (mevalonate pyrophosphate decarboxylase) interactions and their role in control of cellular proliferation. Biochem Biophys Res Commun 2003; 302:735-42. [PMID: 12646231 DOI: 10.1016/s0006-291x(03)00226-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mortalin (mot-2/GRP75/PBP74/mthsp70) is a member of the hsp70 family of proteins and is differentially distributed in normal and immortal cells. It was shown to be involved in pathways to cell senescence and immortalization. To elucidate its functional aspects, a yeast interactive screen for mortalin (mot-2) binding proteins was performed. Mevalonate pyrophosphate decarboxylase (MPD) was identified as one of the mortalin binding partners. The interactions were confirmed in mammalian cells by two-hybrid assay and in vivo coimmunoprecipitation. MPD is known to furnish prenyl groups required for prenylation, protein modification that is essential for the activity of many proteins including p21(Ras) (Ras). We have examined the effect of MPD-mot-2 interactions on the level and activity of p21(Ras) and its downstream effectors, p44 and p42 MAP kinases (ERK1/ERK2), in Ras-Raf pathway. An overexpression of mot-2 resulted in reduced level of Ras and phosphorylated ERK2. These were rescued by co-expression of MPD from an exogenous promoter demonstrating a functional link between mot-2, MPD, and Ras. Ras and its oncogenic forms act as key players in controlling proliferation of normal and cancerous cells. Assigning mot-2 upstream of p21(Ras) offers an important mechanism for influence over cell proliferation.
Collapse
Affiliation(s)
- Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | |
Collapse
|