51
|
Yamamoto T, Setsu T, Okuyama-Yamamoto A, Terashima T. Histological study in the brain of the reelin/Dab1-compound mutant mouse. Anat Sci Int 2009; 84:200-9. [DOI: 10.1007/s12565-008-0009-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 11/06/2008] [Indexed: 10/20/2022]
|
52
|
Laguna A, Aranda S, Barallobre MJ, Barhoum R, Fernández E, Fotaki V, Delabar JM, de la Luna S, de la Villa P, Arbonés ML. The protein kinase DYRK1A regulates caspase-9-mediated apoptosis during retina development. Dev Cell 2008; 15:841-53. [PMID: 19081073 DOI: 10.1016/j.devcel.2008.10.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 10/23/2008] [Accepted: 10/31/2008] [Indexed: 11/29/2022]
Abstract
The precise regulation of programmed cell death is critical for the normal development of the nervous system. We show here that DYRK1A (minibrain), a protein kinase essential for normal growth, is a negative regulator of the intrinsic apoptotic pathway in the developing retina. We provide evidence that changes in Dyrk1A gene dosage in the mouse strongly alter the cellularity of inner retina layers and result in severe functional alterations. We show that DYRK1A does not affect the proliferation or specification of retina progenitor cells, but rather regulates the number of cells that die by apoptosis. We demonstrate that DYRK1A phosphorylates caspase-9 on threonine residue 125, and that this phosphorylation event is crucial to protect retina cells from apoptotic cell death. Our data suggest a model in which dysregulation of the apoptotic response in differentiating neurons participates in the neuropathology of diseases that display DYRK1A gene-dosage imbalance effects, such as Down's syndrome.
Collapse
Affiliation(s)
- Ariadna Laguna
- Center for Genomic Regulation, UPF, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
The development of distinct cellular layers and precise synaptic circuits is essential for the formation of well functioning cortical structures in the mammalian brain. The extracellular protein Reelin, through the activation of a core signaling pathway, including the receptors ApoER2 and VLDLR (very low density lipoprotein receptor) and the adapter protein Dab1 (Disabled-1), controls the positioning of radially migrating principal neurons, promotes the extension of dendritic processes in immature forebrain neurons, and affects synaptic transmission. Here we report for the first time that the Reelin signaling pathway promotes the development of postsynaptic structures such as dendritic spines in hippocampal pyramidal neurons. Our data underscore the importance of Reelin as a factor that promotes the maturation of target neuronal populations and the development of excitatory circuits in the postnatal hippocampus. These findings may have implications for understanding the origin of cognitive disorders associated with Reelin deficiency.
Collapse
|
54
|
Losh M, Sullivan PF, Trembath D, Piven J. Current developments in the genetics of autism: from phenome to genome. J Neuropathol Exp Neurol 2008; 67:829-37. [PMID: 18716561 PMCID: PMC2649757 DOI: 10.1097/nen.0b013e318184482d] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Despite compelling evidence from twin and family studies indicating a strong genetic involvement in the etiology of autism, the unequivocal detection of autism susceptibility genes remains an elusive goal. The purpose of this review is to evaluate the current state of autism genetics research, with attention focused on new techniques and analytic approaches. We first present a brief overview of evidence for the genetic basis of autism, followed by an appraisal of linkage and candidate gene study findings and consideration of new analytic approaches to the study of complex psychiatric conditions, namely, genome-wide association studies, assessment of structural variation within the genome, and the incorporation of endophenotypes in genetic analysis.
Collapse
Affiliation(s)
- Molly Losh
- Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7190, USA.
| | | | | | | |
Collapse
|
55
|
Díaz-Ruiz C, Parlato R, Aguado F, Ureña JM, Burgaya F, Martínez A, Carmona MA, Kreiner G, Bleckmann S, Del Río JA, Schütz G, Soriano E. Regulation of neural migration by the CREB/CREM transcription factors and altered Dab1 levels in CREB/CREM mutants. Mol Cell Neurosci 2008; 39:519-28. [PMID: 18786638 DOI: 10.1016/j.mcn.2008.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 07/11/2008] [Accepted: 07/14/2008] [Indexed: 01/27/2023] Open
Abstract
The family of CREB transcription factors is involved in a variety of biological processes including the development and plasticity of the nervous system. To gain further insight into the roles of CREB family members in the development of the embryonic brain, we examined the migratory phenotype of CREB1(Nescre)CREM(-/-) mutants. We found that the lack of CREB/CREM genes is accompanied by anatomical defects in specific layers of the olfactory bulb, hippocampus and cerebral cortex. These changes are associated with decreased Dab1 expression in CREB1(Nescre)CREM(-/-) mutants. Our results indicate that the lack of CREB/CREM genes, specifically in neural and glial progenitors, leads to migration abnormalities during brain development, suggesting that unidentified age-dependent factors modulate the role of CREB/CREM genes in neural development.
Collapse
Affiliation(s)
- Carmen Díaz-Ruiz
- Institute for Research in Biomedicine-Barcelona (IRB), Department of Cell Biology and CIBERNED (ISCIII), University of Barcelona, Barcelona Science Park, Lab A1-S1, Josep Samitier 1-5, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Raven MA, Orton NC, Nassar H, Williams GA, Stell WK, Jacobs GH, Bech-Hansen NT, Reese BE. Early afferent signaling in the outer plexiform layer regulates development of horizontal cell morphology. J Comp Neurol 2008; 506:745-58. [DOI: 10.1002/cne.21526] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
57
|
Akopians AL, Babayan AH, Beffert U, Herz J, Basbaum AI, Phelps PE. Contribution of the Reelin signaling pathways to nociceptive processing. Eur J Neurosci 2008; 27:523-37. [DOI: 10.1111/j.1460-9568.2008.06056.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
58
|
Hack I, Hellwig S, Junghans D, Brunne B, Bock HH, Zhao S, Frotscher M. Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons. Development 2007; 134:3883-91. [PMID: 17913789 DOI: 10.1242/dev.005447] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reelin, its lipoprotein receptors [very low density lipoprotein receptor (Vldlr) and apolipoprotein E receptor 2 (ApoER2; also known as Lrp8)], and the cytoplasmic adaptor protein disabled 1 (Dab1) are important for the correct formation of layers in the cerebral cortex. Reeler mice lacking the reelin protein show altered radial neuronal migration resulting in an inversion of cortical layers. ApoER2 Vldlr double-knockout mutants and Dab1 mutants show a reeler-like phenotype, whereas milder phenotypes are found if only one of the two lipoprotein receptors for reelin is absent. However, the precise role of the individual reelin receptors in neuronal migration remained unclear. In the study reported here, we performed fate mapping of newly generated cortical neurons in single and double receptor mutants using bromodeoxyuridine-labeling and layer-specific markers. We present evidence for divergent roles of the two reelin receptors Vldlr and ApoER2, with Vldlr mediating a stop signal for migrating neurons and ApoER2 being essential for the migration of late generated neocortical neurons.
Collapse
Affiliation(s)
- Iris Hack
- Institut für Anatomie und Zellbiologie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
59
|
Katyal S, Gao Z, Liu RZ, Godbout R. Evolutionary conservation of alternative splicing in chicken. Cytogenet Genome Res 2007; 117:146-57. [PMID: 17675855 PMCID: PMC3726401 DOI: 10.1159/000103175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/13/2006] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing represents a source of great diversity for regulating protein expression and function. It has been estimated that one-third to two-thirds of mammalian genes are alternatively spliced. With the sequencing of the chicken genome and analysis of transcripts expressed in chicken tissues, we are now in a position to address evolutionary conservation of alternative splicing events in chicken and mammals. Here, we compare chicken and mammalian transcript sequences of 41 alternatively-spliced genes and 50 frequently accessed genes. Our results support a high frequency of splicing events in chicken, similar to that observed in mammals.
Collapse
Affiliation(s)
- S Katyal
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
60
|
Wu ML, Chiao CC. Light deprivation delays morphological differentiation of bipolar cells in the rabbit retina. Brain Res 2007; 1170:13-9. [PMID: 17716634 DOI: 10.1016/j.brainres.2007.06.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/15/2007] [Accepted: 06/20/2007] [Indexed: 01/22/2023]
Abstract
Bipolar cells are responsible for transmitting light signals from the photoreceptors to the ganglion cells in the vertebrate retina. Their maturation process is not only important for establishing normal visual function, but may also underlie the dendritic remodeling of ganglion cells during development. It is known that light deprivation affects the synaptic connections of ganglion cells in the mammalian retina, but little is known about impact of visual experience on bipolar cell development. We used dye injection and gene gun labeling to identify bipolar cells, and characterized their morphological differentiation in normal-reared and dark-reared rabbits. Our results show that immature bipolar cells can be found as early as P1-3, and most characteristic bipolar cells can be identified during P4-6. More importantly, we found that light deprivation causes a delay rather than a permanent arrest of bipolar cell maturation in the rabbit retina. By eye opening at P10-11, both normal-reared and dark-reared rabbits possessed adult-like bipolar cells. This suggests that visual experience has a facilitating effect on the morphological differentiation of bipolar cells.
Collapse
Affiliation(s)
- Mu-Ling Wu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | | |
Collapse
|
61
|
Katyal S, Gao Z, Monckton E, Glubrecht D, Godbout R. Hierarchical disabled-1 tyrosine phosphorylation in Src family kinase activation and neurite formation. J Mol Biol 2007; 368:349-64. [PMID: 17350651 PMCID: PMC4071145 DOI: 10.1016/j.jmb.2007.01.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 01/23/2007] [Accepted: 01/25/2007] [Indexed: 01/11/2023]
Abstract
There are two developmentally regulated alternatively spliced forms of Disabled-1 (Dab1) in the chick retina: an early form (Dab1-E) expressed in retinal precursor cells and a late form (Dab1-L) expressed in neuronal cells. The main difference between these two isoforms is the absence of two Src family kinase (SFK) recognition sites in Dab1-E. Both forms retain two Abl/Crk/Nck recognition sites implicated in the recruitment of SH2 domain-containing signaling proteins. One of the Dab1-L-specific SFK recognition sites, at tyrosine(Y)-198, has been shown to be phosphorylated in Reelin-stimulated neurons. Here, we use Reelin-expressing primary retinal cultures to investigate the role of the four Dab1 tyrosine phosphorylation sites on overall tyrosine phosphorylation, Dab1 phosphorylation, SFK activation and neurite formation. We show that Y198 is essential but not sufficient for maximal Dab1 phosphorylation, SFK activation and neurite formation, with Y232 and Y220 playing particularly important roles in SFK activation and neuritogenesis, and Y185 having modifying effects secondary to Y232 and Y220. Our data support a role for all four Dab1 tyrosine phosphorylation sites in mediating the spectrum of activities associated with Reelin-Dab1 signaling in neurons.
Collapse
|
62
|
Yamagata M, Weiner JA, Dulac C, Roth KA, Sanes JR. Labeled lines in the retinotectal system: markers for retinorecipient sublaminae and the retinal ganglion cell subsets that innervate them. Mol Cell Neurosci 2006; 33:296-310. [PMID: 16978878 DOI: 10.1016/j.mcn.2006.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/31/2006] [Accepted: 08/01/2006] [Indexed: 11/27/2022] Open
Abstract
Axons of retinal ganglion cells (RGCs) carry visual information to the brain. In most vertebrates, the major synaptic target of RGCs is the optic tectum. In the chick, RGC axons form synapses in just 4 of 16 histologically recognizable laminae (the retinorecipient laminae [RRLs]), and arbors of individual RGCs are confined to a single RRL. To analyze the development and function of these parallel pathways, markers are required that selectively label them. Here, we have identified molecular markers for individual RRLs and for RGCs that project to them. Some of the markers may mediate or modulate signaling through the separate pathways: neuropeptides (substance P, neuromedin B, somatostatin-I and -II) and their receptors (substance P receptor), neurotransmitter synthetic enzymes (choline acetyltransferase) and the corresponding receptors (acetylcholine receptor beta2) and calcium-binding proteins (parvalbumin and calbindin). Other markers are adhesive proteins that could mediate selective connectivity of RGC subsets within specific RRLs (cadherin-7, cadherin-11, reelin and neuropilin-1). We further show that RGC subsets whose axons project to specific RRLs are heterogeneous with respect to the retinal sublaminae within which their dendrites arborize. Our results define laminar-specified circuits from retina to brain and support a model in which RGCs transmit information from multiple sources to single central laminae, where it can be integrated.
Collapse
Affiliation(s)
- Masahito Yamagata
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
63
|
Dorrell MI, Friedlander M. Mechanisms of endothelial cell guidance and vascular patterning in the developing mouse retina. Prog Retin Eye Res 2006; 25:277-95. [PMID: 16515881 DOI: 10.1016/j.preteyeres.2006.01.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Accepted: 01/04/2006] [Indexed: 01/12/2023]
Abstract
The appropriate guidance and patterning of vessels during vascular development is critical for proper tissue function. The loss of these guidance mechanisms can lead to abnormal vascularization and a number of pathological conditions. The molecular basis of endothelial cell guidance and subsequent tissue specific vascular patterning remains largely unknown in spite of its clinical relevance and biological importance. In this regard, retinal vascular development offers many advantages for studying endothelial cell guidance and the mechanisms by which characteristic vascular patterns are formed. In this review, we will provide an overview of the known mechanisms that mediate vascular patterning during mouse retinal development, synthesizing these data to formulate a model of how growth factors, cellular adhesion molecules, and vascular-associated cells mediate directed endothelial cell migration and appropriate vascular remodeling. Finally, we will discuss the many aspects of retinal vascular development that remain unknown and cite evidence that many of these gaps may be addressed by further studying the guidance cues shared by vascular and neuronal elements in the retina and other parts of the central nervous system.
Collapse
Affiliation(s)
- Michael I Dorrell
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd. MB216, La Jolla, CA 92037, USA
| | | |
Collapse
|
64
|
Ramos-Moreno T, Galazo MJ, Porrero C, Martínez-Cerdeño V, Clascá F. Extracellular matrix molecules and synaptic plasticity: immunomapping of intracellular and secreted Reelin in the adult rat brain. Eur J Neurosci 2006; 23:401-22. [PMID: 16420448 DOI: 10.1111/j.1460-9568.2005.04567.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reelin, a large extracellular matrix glycoprotein, is secreted by several neuron populations in the developing and adult rodent brain. Secreted Reelin triggers a complex signaling pathway by binding lipoprotein and integrin membrane receptors in target cells. Reelin signaling regulates migration and dendritic growth in developing neurons, while it can modulate synaptic plasticity in adult neurons. To identify which adult neural circuits can be modulated by Reelin-mediated signaling, we systematically mapped the distribution of Reelin in adult rat brain using sensitive immunolabeling techniques. Results show that the distribution of intracellular and secreted Reelin is both very widespread and specific. Some interneuron and projection neuron populations in the cerebral cortex contain Reelin. Numerous striatal neurons are weakly immunoreactive for Reelin and these cells are preferentially located in striosomes. Some thalamic nuclei contain Reelin-immunoreactive cells. Double-immunolabeling for GABA and Reelin reveals that the Reelin-immunoreactive cells in the visual thalamus are the intrinsic thalamic interneurons. High local concentrations of extracellular Reelin selectively outline several dendrite spine-rich neuropils. Together with previous mRNA data, our observations suggest abundant axoplasmic transport and secretion in pathways such as the retino-collicular tract, the entorhino-hippocampal ('perforant') path, the lateral olfactory tract or the parallel fiber system of the cerebellum. A preferential secretion of Reelin in these neuropils is consistent with reports of rapid, activity-induced structural changes in adult brain circuits.
Collapse
Affiliation(s)
- Tania Ramos-Moreno
- Department of Anatomy and Neuroscience, School of Medicine, Autónoma University, Ave. Arzobispo Morcillo s/n., Madrid 28029, Spain
| | | | | | | | | |
Collapse
|
65
|
Miettinen R, Riedel A, Kalesnykas G, Kettunen HP, Puoliväli J, Soininen H, Arendt T. Reelin-immunoreactivity in the hippocampal formation of 9-month-old wildtype mouse: effects of APP/PS1 genotype and ovariectomy. J Chem Neuroanat 2006; 30:105-18. [PMID: 16081247 DOI: 10.1016/j.jchemneu.2005.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 06/01/2005] [Accepted: 06/10/2005] [Indexed: 11/16/2022]
Abstract
Reelin, an extracellular matrix protein has an important role in the migration, correct positioning and maturation of neurons during development. Though it is generally down-regulated in the postnatal period, expression of this large glycoprotein continues in the adult brain in some cell populations. In the present study, we examined the distribution of reelin-immunoreactivity (-ir) in the hippocampal formation of 9-month-old wildtype mice (WT). Then, reelin-ir in normal mice was compared to that of transgenic mice (APP/PS1) carrying mutated human APP and PS1 genes, which are linked to the familial form of Alzheimer's disease (AD). The APP/PS1 mice were additionally burdened with a second risk factor for AD, namely depletion of circulating gonadal hormones by ovariectomy (APP/PS1 + OVX). The analyses revealed that in adult WT reelin-ir is expressed by Cajal-Retzius cells and a subgroup of interneurons throughout the hippocampal formation. In addition, layer II projection neurons in the lateral entorhinal subfields are reelin-ir. Interestingly, ovariectomy decreases the number of reelin-ir cells in the hilus in WT mice, whereas AD-related genotype alone induces only a non-significant reduction. Unexpectedly, additional stress, e.g., depletion of gonadal hormones, does not aggravate the slight reduction in the reelin cell number in the APP/PS1 mice. We propose that the changes in normal reelin-ir are linked to disturbances in repair mechanisms in which APP/PS1 and gonadal hormones are involved and which are perturbed in neurodegenerative conditions, namely AD.
Collapse
Affiliation(s)
- Riitta Miettinen
- Department of Neuroscience and Neurology, University of Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
66
|
Liedtke T, Naskar R, Eisenacher M, Thanos S. Transformation of adult retina from the regenerative to the axonogenesis state activates specific genes in various subsets of neurons and glial cells. Glia 2006; 55:189-201. [PMID: 17078023 DOI: 10.1002/glia.20447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to identify the gene expression profile of the regenerating retina in vitro. To achieve this goal, three experimental groups were studied: (1) an injury control group (OC-LI group) that underwent open crush (OC) of the optic nerve and lens injury (LI) in vivo; (2) an experimental group (OC-LI-R group) that comprised animals treated like those in the OC-LI group except that retinal axons were allowed to regenerate (R) in vitro; and (3) an experimental group (OC-LI-NR group) that comprised animals treated as those in the OC-LI group, except that the retinas were cultured in vitro with the retinal ganglion cell (RGC) layer facing upwards to prevent axonal regeneration (NR). Gene expression in each treatment group was compared to that of untreated controls. Immunohistochemistry was used to examine whether expression of differentially regulated genes also occurred at the protein level and to localize these proteins to the respective retinal cells. Genes that were regulated belonged to different functional categories such as antioxidants, antiapoptotic molecules, transcription factors, secreted signaling molecules, inflammation-related genes, and others. Comparison of changes in gene expression among the various treatment groups revealed a relatively small cohort of genes that was expressed in different subsets of cells only in the OC-LI-R group; these genes can be considered to be regeneration-specific. Our findings demonstrate that axonal regeneration of RGC involves an orchestrated response of all retinal neurons and glia, and could provide a platform for the development of therapeutic strategies for the regeneration of injured ganglion cells.
Collapse
Affiliation(s)
- Thomas Liedtke
- Department of Experimental Ophthalmology, University Eye Hospital Münster Domagkstrasse, Muenster, Germany
| | | | | | | |
Collapse
|
67
|
Villeda SA, Akopians AL, Babayan AH, Basbaum AI, Phelps PE. Absence of Reelin results in altered nociception and aberrant neuronal positioning in the dorsal spinal cord. Neuroscience 2006; 139:1385-96. [PMID: 16580148 DOI: 10.1016/j.neuroscience.2006.01.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/31/2005] [Accepted: 01/16/2006] [Indexed: 11/23/2022]
Abstract
Mutations in reeler, the gene coding for the Reelin protein, result in pronounced motor deficits associated with positioning errors (i.e. ectopic locations) in the cerebral and cerebellar cortices. In this study we provide the first evidence that the reeler mutant also has profound sensory defects. We focused on the dorsal horn of the spinal cord, which receives inputs from small diameter primary afferents and processes information about noxious, painful stimulation. We used immunocytochemistry to map the distribution of Reelin and Disabled-1 (the protein product of the reeler gene, and the intracellular adaptor protein, Dab1, involved in its signaling pathway) in adjacent regions of the developing dorsal horn, from early to late embryonic development. As high levels of Dab1 accumulate in cells that sustain positioning errors in reeler mutants, our findings of increased Dab1 immunoreactivity in reeler laminae I-III, lamina V and the lateral spinal nucleus suggest that there are incorrectly located neurons in the reeler dorsal horn. Subsequently, we identified an aberrant neuronal compaction in reeler lamina I and a reduction of neurons in the lateral spinal nucleus throughout the spinal cord. Additionally, we detected neurokinin-1 receptors expressed by Dab1-labeled neurons in reeler laminae I-III and the lateral spinal nucleus. Consistent with these anatomical abnormalities having functional consequences, we found a significant reduction in mechanical sensitivity and a pronounced thermal hyperalgesia (increased pain sensitivity) in reeler compared with control mice. As the nociceptors in control and reeler dorsal root ganglia are similar, our results indicate that Reelin signaling is an essential contributor to the normal development of central circuits that underlie nociceptive processing and pain.
Collapse
Affiliation(s)
- S A Villeda
- Department of Physiological Science, UCLA, Los Angeles, CA 90095-1606, USA
| | | | | | | | | |
Collapse
|
68
|
Morgan JL, Dhingra A, Vardi N, Wong ROL. Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar cells. Nat Neurosci 2005; 9:85-92. [PMID: 16341211 DOI: 10.1038/nn1615] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 11/16/2005] [Indexed: 11/09/2022]
Abstract
The cellular mechanisms underlying axogenesis and dendritogenesis are not completely understood. The axons and dendrites of retinal bipolar cells, which contact their synaptic partners within specific laminae in the inner and outer retina, provide a good system for exploring these issues. Using transgenic mice expressing enhanced green fluorescent protein (GFP) in a subset of bipolar cells, we determined that axonal and dendritic arbors of these interneurons develop directly from apical and basal processes attached to the outer and inner limiting membranes, respectively. Selective stabilization of processes contributed to stratification of axonal and dendritic arbors within the appropriate synaptic layer. This unusual mode of axogenesis and dendritogenesis from neuroepithelial-like processes may act to preserve neighbor-neighbor relationships in synaptic wiring between the outer and inner retina.
Collapse
Affiliation(s)
- Josh L Morgan
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
69
|
Roberts RC, Xu L, Roche JK, Kirkpatrick B. Ultrastructural localization of reelin in the cortex in post-mortem human brain. J Comp Neurol 2005; 482:294-308. [PMID: 15690491 DOI: 10.1002/cne.20408] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reelin is a glycoprotein that plays a critical role in brain development, including proper cortical lamination. In adult animals, reelin continues to be expressed in different neuronal populations in many brain regions. We performed labeling for reelin immunoreactivity (-i) in post-mortem cerebral cortex from five adults and two fetuses with three different antibodies. The tissue was then processed for light and electron microscopy. In cell bodies, reelin-i was found in pyramidal and nonpyramidal neurons on the outer nuclear membrane, rough endoplasmic reticulum (rER), and ribosomes. In dendrites, labeling was found in the rER and ribosomes and was diffusely distributed in spines. In the neuropil, diffuse labeling was seen in small axon terminals and unmyelinated axons, and the postsynaptic density (PSD) frequently had discrete labeling. Reelin-i was also found in glial somata and in small astrocytic processes. With rare exceptions, reelin-i in the adult was conspicuously absent from both the extracellular matrix (ECM) and the subcellular organelles, where secreted proteins are modified and taken back into the cell. Labeling in fetal cortex was similar to that in the adult except for prominent labeling in the ECM. The presence of reelin in adult spines, PSD, and terminals suggests that in the adult human reelin has a role in synaptic remodeling, which is consistent with the evidence for its role in long-term potentiation in the adult brain.
Collapse
Affiliation(s)
- Rosalinda C Roberts
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21228, USA.
| | | | | | | |
Collapse
|
70
|
Jossin Y. Neuronal migration and the role of reelin during early development of the cerebral cortex. Mol Neurobiol 2005; 30:225-51. [PMID: 15655250 DOI: 10.1385/mn:30:3:225] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 04/29/2004] [Indexed: 11/11/2022]
Abstract
During development, neurons migrate to the cortex radially from periventricular germinative zones as well as tangentially from ganglionic eminences. The vast majority of cortical neurons settle radially in the cortical plate. Neuronal migration requires an exquisite regulation of leading edge extension, nuclear translocation (nucleokinesis), and retraction of trailing processes. During the past few years, several genes and proteins have been identified that are implicated in neuronal migration. Many have been characterized by reference to known mechanisms of neuronal and non-neuronal cell migration in culture; however, probably the most interesting have been identified by gene inactivation or modification in mice and by positional cloning of brain malformation genes in humans and mice. Although it is impossible to provide a fully integrated view, some patterns clearly emerge and are the subject of this article. Specific emphasis is placed on three aspects: first, the role of the actin treadmill, with cyclic formation of filopodial and lamellipodial extensions, in relation to surface events that occur at the leading edge of radially migrating neurons; second, the regulation of microtubule dynamics, which seems to play a key role in nucleokinesis; and third, the mechanisms by which the extracellular protein Reelin regulates neuronal positioning at the end of migration.
Collapse
Affiliation(s)
- Yves Jossin
- Developmental Neurobiology Unit, University of Louvain Medical School, Brussels, Belgium.
| |
Collapse
|
71
|
Vig J, Goldowitz D, Steindler DA, Eisenman LM. Compartmentation of the reeler cerebellum: segregation and overlap of spinocerebellar and secondary vestibulocerebellar fibers and their target cells. Neuroscience 2005; 130:735-44. [PMID: 15590156 DOI: 10.1016/j.neuroscience.2004.09.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
The cerebellum of the reeler mutant mouse has an abnormal organization; its single lobule is composed of a severely hypogranular cortex and a central cerebellar mass (CCM) consisting of Purkinje cell clusters intermixing with the cerebellar nuclei. As such the reeler represents an excellent model in which to examine the effect of the abnormal distribution of cerebellar cells on afferent-target relationships. To this effect we studied the organization of the spinocerebellar and secondary vestibulocerebellar afferent projections in homozygous reeler mice (rl/rl) using anterograde tracing techniques. Spinal cord injections resulted in labeled spinocerebellar mossy fiber rosettes in specific anterior and posterior regions of the cerebellar cortex. Some vestiges of parasagittal organization may be present in the anterior projection area. Within the CCM, labeled fibers appeared to terminate on distinct groups of Purkinje cells. Thus, the spinocerebellar mossy fibers seem to form both normal and heterologous synapses in the reeler cerebellum. Secondary vestibular injections resulted in both retrograde and anterograde labeling. Retrograde labeling was seen in clusters of Purkinje cells and cerebellar nuclear cells; anterograde labeling was distributed in the white matter and in specific regions of the anterior and posterior cortex of the cerebellum. The labeled spinocerebellar and secondary vestibulocerebellar afferents overlapped in the anterior region but in the posterior region the vestibulocerebellar termination area was ventral to the spinocerebellar area. An area devoid of labeled terminals was also observed ventral to the posterior secondary vestibulocerebellar termination field. Using calretinin immunostaining it was determined that this area contains unipolar brush cells, a cell type found primarily in the vestibulocerebellum of normal mice. Our data indicate that despite of the lack of known landmarks (fissures, lobules) the spinocerebellar and vestibulocerebellar afferent projections in the reeler cerebellum do not distribute randomly but have specific target regions, and the position of these regions, relative to each other, appears to be conserved. Two caveats to this were the finding of overlapping terminal fields of these afferents in the anterior region, and a posteroventral region that contains unipolar brush cells yet is devoid of secondary vestibulocerebellar afferents. The distribution of Purkinje cells and cerebellar nuclear cells is not random either; those that give rise to cerebellovestibular efferents form distinct groups within the central cerebellar mass.
Collapse
Affiliation(s)
- J Vig
- Neurobiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary
| | | | | | | |
Collapse
|
72
|
Candal EM, Caruncho HJ, Sueiro C, Anadón R, Rodríguez-Moldes I. Reelin expression in the retina and optic tectum of developing common brown trout. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 154:187-97. [PMID: 15707672 DOI: 10.1016/j.devbrainres.2004.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 10/08/2004] [Accepted: 10/12/2004] [Indexed: 11/17/2022]
Abstract
Reelin (RELN) is an extracellular matrix protein largely related with laminar organization in several brain areas. The development of RELN immunoreactivity in the retina and the optic tectum of the brown trout are analyzed with a monoclonal (142) antibody against RELN whose suitability has been ascertained by western blot. In the retina of embryos and alevins, RELN immunoreactivity is detected in cells of the ganglion cell layer (GCL) and inner nuclear layer (INL), and in the inner plexiform layer (IPL), where it appears as "diffuse" material confined to the ON-sublayer. In juveniles, RELN expression becomes restricted to a stripe of cells in the INL. RELN-immunoreactive (RELN-ir) cells are absent from the outer nuclear layer (ONL) at any developmental stage. The developmental pattern of RELN expression in the trout retina shows many similarities with that of amniotes: (a) RELN expression parallels the vitreal to scleral progression of differentiation of the retina and, within each cell layer, RELN immunoreactivity appears confined to a subpopulation of postmitotic cells; (b) at early stages RELN expression is exclusively observed in the central retina and as maturation progresses from the center to the periphery, more RELN-ir cells are observed following the same spatial pattern. Differences with amniotes are noted regarding the absence of RELN expression in the GCL and INL in adulthood, and in the ONL at any developmental stage. In the optic tectum (OT) of trout, as in amniotes, RELN immunoreactivity increases within specific cell layers as lamination proceeds, and decreases when it is complete, except in the stratum opticum (SO), where RELN-ir cells are observed throughout life. Time-course expression of RELN in the OT suggests a role in the early modeling of synaptic contacts and the accommodation of new retinal arriving axons throughout life.
Collapse
Affiliation(s)
- Eva M Candal
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
73
|
Lee EJ, Mann LB, Rickman DW, Lim EJ, Chun MH, Grzywacz NM. AII amacrine cells in the distal inner nuclear layer of the mouse retina. J Comp Neurol 2005; 494:651-62. [PMID: 16374803 DOI: 10.1002/cne.20838] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We serendipitously found a distal Disabled-1 (Dab1)-immunoreactive cell in retina of the C57BL/6J black mouse. The somata of these cells are located in the outermost part of the inner nuclear layer (INL). Their processes extend toward the outer plexiform layer (OPL), receiving synaptic inputs from horizontal and interplexiform cells. In the current study, we name this cell the "distal Dab1-immunoreactive cell." Double-labeling experiments demonstrate that the distal Dab1-immunoreactive cell is not a horizontal cell. Rather, the distal Dab1 cell appears to be a misplaced AII cell, by being glycine transporter-1-immunoreactive and by resembling the latter cell in an electron microscopic analysis. A distal Dab1 cell had been reported in the FVB/N mouse retina, a model of retinitis pigmentosa (Park et al. [2004] Cell Tissue Res 315:407-412). However, here, we found this distal Dab1-immunoreactive cell in the adult and normal developing mouse retinas. Hence, we show that such cells do not require the loss of photoreceptors as suggested previously (Park et al. [2004] Cell Tissue Res 315:407-412). Instead, two other pieces of data suggest an alternative explanation sources for distal Dab1 cells. First, we find a correlation between the number of these cells in the left and right eyes Second, developmental analysis shows that the distal Dab1-immunoreactive cell is first observed shortly after birth. At the same time, AII cells emerge, extending their neurites into the inner retina. These data suggest that distal Dab1-immunoreactive cells are misplaced AII amacrine cells, resulting from genetically modulated anomalies owing to migration errors.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Engineering, Neuroscience Graduate Program, and Center for Vision Science and Technology, University of Southern California, Los Angeles, California 90089-1111, USA
| | | | | | | | | | | |
Collapse
|
74
|
Affiliation(s)
- Gabriella D'Arcangelo
- The Cain Foundation Laboratories, Texas Children's Hospital, Department of Pediatrics, Program in Developmental Biology, Baylor College of Medicine, Houston 77030, USA
| |
Collapse
|
75
|
Motoi Y, Itaya M, Mori H, Mizuno Y, Iwasaki T, Hattori H, Haga S, Ikeda K. Apolipoprotein E receptor 2 is involved in neuritic plaque formation in APP sw mice. Neurosci Lett 2004; 368:144-7. [PMID: 15351437 DOI: 10.1016/j.neulet.2004.06.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 06/15/2004] [Accepted: 06/29/2004] [Indexed: 11/22/2022]
Abstract
Apolipoprotein E receptor 2 (apoER2) is a receptor for apolipoprotein E containing lipoprotein and also for Reelin. Apolipoprotein E-associated risk of developing Alzheimer's disease (AD) may be related to its binding to and clearance by cell surface receptors, including members of the low-density lipoprotein receptor family. Otherwise there is circumstantial evidence that the Reelin signaling pathway may contribute to neurodegeneration in AD. To investigate the role of apoER2 on amyloid deposition and neurodegeneration in vivo, we examined the presence of apoER2 in the brains of APP sw transgenic mice (Tg2576) using three apoER2 monoclonal antibodies. Our immunohistochemical study revealed that apoER2 was localized in fine granular structure and reactive astrocytes surrounding amyloid plaques. The double labeling immunohistochemistry revealed that this granular structure overlaps synaptophysin-positive dystrophic neurites. These findings indicate that neuronal apoER2 may play a role for amyloid deposition and neuronal degeneration in AD.
Collapse
Affiliation(s)
- Yumiko Motoi
- Department of Neurology, Juntendo University School of Medicine, 3-1-3 Hongo Bunkyo-ku, Tokyo 113-8431, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Bramblett DE, Pennesi ME, Wu SM, Tsai MJ. The transcription factor Bhlhb4 is required for rod bipolar cell maturation. Neuron 2004; 43:779-93. [PMID: 15363390 DOI: 10.1016/j.neuron.2004.08.032] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 07/27/2004] [Accepted: 08/19/2004] [Indexed: 11/23/2022]
Abstract
Retinal bipolar cells are essential to the transmission of light information. Although bipolar cell dysfunction can result in blindness, little is known about the factors required for bipolar cell development and functional maturation. The basic helix-loop-helix (bHLH) transcription factor Bhlhb4 was found to be expressed in rod bipolar cells (RB). Electroretinograms (ERGs) in the adult Bhlhb4 knockout (Bhlhb4(-/-)) showed that the loss of Bhlhb4 resulted in disrupted rod signaling and profound retinal dysfunction resembling human congenital stationary night blindness (CSNB), characterized by the loss of the scotopic ERG b-wave. A depletion of inner nuclear layer (INL) cells in the adult Bhlhb4 knockout has been ascribed to the abolishment of the RB cell population during postnatal development. Other retinal cell populations including photoreceptors were unaltered. The timing of RB cell depletion in the Bhlhb4(-/-) mouse suggests that Bhlhb4 is essential for RB cell maturation.
Collapse
Affiliation(s)
- Debra E Bramblett
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
77
|
Bock HH, Jossin Y, May P, Bergner O, Herz J. Apolipoprotein E Receptors Are Required for Reelin-induced Proteasomal Degradation of the Neuronal Adaptor Protein Disabled-1. J Biol Chem 2004; 279:33471-9. [PMID: 15175346 DOI: 10.1074/jbc.m401770200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic adaptor protein Disabled-1 (Dab1) is necessary for the regulation of neuronal positioning in the developing brain by the secreted molecule Reelin. Binding of Reelin to the neuronal apolipoprotein E receptors apoER2 and very low density lipoprotein receptor induces tyrosine phosphorylation of Dab1 and the subsequent activation or relocalization of downstream targets like phosphatidylinositol 3 (PI3)-kinase and Nckbeta. Disruption of Reelin signaling leads to the accumulation of Dab1 protein in the brains of genetically modified mice, suggesting that Reelin limits its own action in responsive neurons by down-regulating the levels of Dab1 expression. Here, we use cultured primary embryonic neurons as a model to demonstrate that Reelin treatment targets Dab1 for proteolytic degradation by the ubiquitin-proteasome pathway. We show that tyrosine phosphorylation of Dab1 but not PI3-kinase activation is required for its proteasomal targeting. Genetic deficiency in the Dab1 kinase Fyn prevents Dab1 degradation. The Reelin-induced Dab1 degradation also depends on apoER2 and very low density lipoprotein receptor in a gene-dose dependent manner. Moreover, pharmacological blockade of the proteasome prevents the formation of a proper cortical plate in an in vitro slice culture assay. Our results demonstrate that signaling through neuronal apoE receptors can activate the ubiquitin-proteasome machinery, which might have implications for the role of Reelin during neurodevelopment and in the regulation of synaptic transmission.
Collapse
Affiliation(s)
- Hans H Bock
- Department of Medicine II, Albert-Ludwigs-Universität, Albertstrasse 23, 79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
78
|
Katyal S, Godbout R. Alternative splicing modulates Disabled-1 (Dab1) function in the developing chick retina. EMBO J 2004; 23:1878-88. [PMID: 15057276 PMCID: PMC394239 DOI: 10.1038/sj.emboj.7600185] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 03/04/2004] [Indexed: 11/10/2022] Open
Abstract
The Reelin-Disabled 1 (Dab1)-signaling pathway plays a critical role in neuronal cell positioning in the brain. We have isolated two alternatively spliced variants of Dab1 from chick retina, an early form (chDab1-E) expressed in undifferentiated cells and a late form (chDab1-L) expressed in amacrine and ganglion cells. A key difference between the two forms is the exclusion in chDab1-E of two Src-related tyrosine kinase recognition sites implicated in Reelin-mediated Dab1 tyrosine phosphorylation. Retinal cultures transfected with a chDab1-L expression construct undergo a dramatic change in morphology, accompanied by the formation of numerous thin elongated processes, increased tyrosine phosphorylation, activation of Src family kinase(s) and increased levels of the axonal outgrowth protein growth-associated protein-43. In contrast, chDab1-E transfectants retain an undifferentiated morphology. Mutational analysis implicates a specific tyrosine (tyr-198) in the morphological and biochemical alterations associated with chDab1-L expression. We propose that alternative splicing of chDab1 represents an effective and flexible way of regulating the Reelin-Dab1-signaling pathway in a mixed cell population, by ensuring that secreted Reelin activates the signaling cascade only in target neuronal cells.
Collapse
Affiliation(s)
- Sachin Katyal
- Department of Oncology, Cross Cancer Institute, University of Alberta, Alberta, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Alberta, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, CDN-Edmonton, Alberta, Canada T6G 1Z2. Tel.: +1 780 432 8901; Fax: +1 780 432 8892; E-mail:
| |
Collapse
|
79
|
Misaki K, Kikkawa S, Terashima T. Reelin-expressing neurons in the anterior commissure and corpus callosum of the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 148:89-96. [PMID: 14757522 DOI: 10.1016/j.devbrainres.2003.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Reelin is an extracellular matrix protein, which plays a crucial role for the formation of laminated and nonlaminated structures in the central nervous system. To elucidate its roles in the postnatal brain, in the present study, we raised a polyclonal antibody specific for rat Reelin, and investigated Reelin-expressing neurons in the rat brain during the postnatal periods in detail. We found that some Reelin-expressing cells existed in the anterior commissure and corpus callosum. These Reelin-expressing cells were also immunostained with the antibody specific for neurons, but not immunostained with the antibodies specific for astrocytes nor oligodendrocytes, suggesting that these Reelin-expressing cells in the white matter are neurons. They are also immunostained with anti-GAD67 antibody, indicating that Reelin-expressing cells in the commissure systems are GABAergic neurons. Reelin-expressing neurons in the anterior commissure had many conspicuous varicosities on their dendritic arbors and mimic to the interfascicular neurons. These results suggest that Reelin may participate in the regulatory mechanism of neuronal activities through the commissure structure during the postnatal periods.
Collapse
Affiliation(s)
- Kazuyo Misaki
- Department of Anatomy and Developmental Neurobiology, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe City 650-0017, Japan
| | | | | |
Collapse
|
80
|
Kikkawa S, Yamamoto T, Misaki K, Ikeda Y, Okado H, Ogawa M, Woodhams PL, Terashima T. Missplicing resulting from a short deletion in the reelin gene causes reeler-like neuronal disorders in the mutant shaking rat Kawasaki. J Comp Neurol 2003; 463:303-15. [PMID: 12820163 DOI: 10.1002/cne.10761] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The shaking rat Kawasaki (SRK) is an autosomal recessive mutant that exhibits reeler-like abnormal locomotor behaviors. The murine reeler mutants arise from several mutations in the specific gene called reelin, which result in defects of Reelin expression or secretion in the cerebral cortex and other regions of CNS. To address the issue of whether the SRK mutation also arises from a mutation in reelin, we analyzed the reelin gene in SRK. Northern analysis of reelin mRNA from normal rats showed that rat reelin was expressed as a approximately 12-kb transcript in both the cerebrum and the cerebellum, whereas reelin expression was markedly reduced in the SRK brains. In situ hybridization analysis showed that reelin mRNA in the SRK brains was expressed in Cajal-Retzius cells in the marginal zone of the cerebral cortex and outer granular cells in the cerebellar cortex in similar manners to normal controls, but its expression was considerably reduced. On Western blotting and immunohistochemical analyses using antibodies specific for the Reelin protein, no immunoproduct was recognized in the cerebral and cerebellar cortices. From the cDNA sequences, we found a 64-base heterologous sequence in SRK reelin, which contains a termination codon in the reading frame. Furthermore, genomic DNA analysis revealed that a 10-base deletion, which contains a predicted splice donor site, occurred in the SRK genomic reelin gene, resulting in "read through" into the following intron in SRK. Thus, the SRK mutation is another type of mutation that lacks expression of the functional Reelin protein and, therefore, causes the reeler phenotype.
Collapse
Affiliation(s)
- Satoshi Kikkawa
- Division of Anatomy and Developmental Neurobiology, Department of Neuroscience, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Quattrocchi CC, Huang C, Niu S, Sheldon M, Benhayon D, Cartwright J, Mosier DR, Keller F, D'Arcangelo G. Reelin promotes peripheral synapse elimination and maturation. Science 2003; 301:649-53. [PMID: 12893944 DOI: 10.1126/science.1082690] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Reelin is an extracellular protein that is crucial for layer formation in the embryonic brain. Here, we demonstrate that Reelin functions postnatally to regulate the development of the neuromuscular junction. Reelin is required for motor end-plate maturation and proper nerve-muscle connectivity, and it directly promotes synapse elimination. Unlike layer formation, neuromuscular junction development requires a function of Reelin that is not mediated by Disabled1 or very-low-density lipoprotein receptors and apolipoprotein E receptor 2 receptors but by a distinct mechanism involving its protease activity.
Collapse
MESH Headings
- Action Potentials
- Animals
- Axons/metabolism
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Adhesion Molecules, Neuronal/pharmacology
- Cell Adhesion Molecules, Neuronal/physiology
- Culture Media, Conditioned
- Diaphragm/innervation
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Extracellular Matrix Proteins/pharmacology
- Extracellular Matrix Proteins/physiology
- LDL-Receptor Related Proteins
- Mice
- Mice, Neurologic Mutants
- Microscopy, Confocal
- Microscopy, Electron
- Motor Endplate/ultrastructure
- Motor Neurons/metabolism
- Muscle, Skeletal/innervation
- Mutation
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuromuscular Junction/growth & development
- Neuromuscular Junction/metabolism
- Neuromuscular Junction/physiology
- Neuromuscular Junction/ultrastructure
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Receptors, Lipoprotein/genetics
- Receptors, Lipoprotein/metabolism
- Reelin Protein
- Schwann Cells/metabolism
- Serine Endopeptidases
- Serine Proteinase Inhibitors/pharmacology
- Sulfones/pharmacology
- Synapses/physiology
- Synapses/ultrastructure
Collapse
|
82
|
Homayouni R, Magdaleno S, Keshvara L, Rice DS, Curran T. Interaction of Disabled-1 and the GTPase activating protein Dab2IP in mouse brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 115:121-9. [PMID: 12877983 DOI: 10.1016/s0169-328x(03)00176-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Reelin signaling pathway controls neuronal positioning during mammalian brain development by binding to the very low density lipoprotein receptor and apolipoprotein E receptor-2, and signaling through the intracellular adapter protein Disabled-1 (Dab1). To identify new components in the Reelin signaling pathway, we used a yeast two-hybrid screen to select Dab1-interacting proteins. Here, we report the characterization of a new mouse Dab1-interacting protein that is orthologous to rat Dab2IP, a Ras-GTPase activating protein previously shown to bind to Dab2/DOC. The interaction of Dab1 and Dab2IP was confirmed in biochemical assays and by co-immunoprecipitation from brain lysates. The site of interaction between Dab1 and Dab2IP was narrowed to the Dab1-PTB domain and the NPxY motif in Dab2IP. The deduced amino acid sequence of mouse Dab2IP encompasses 1,208 residues containing several protein interaction motifs as well as a Ras-like GAP-related domain. Northern blot analysis revealed at least two isoforms of Dab2IP mRNA in the brain, both of which exhibited increased expression during development. In situ hybridization analyses indicated that Dab2IP mRNA is diffusely expressed throughout the developing and the adult brain. Using a polyclonal antiserum specific for Dab2IP, we observed protein expression in the soma and processes of neurons in a variety of brain structures, including the developing cerebral cortex. Our findings suggest that Dab2IP may function as a downstream effector in the Reelin signaling pathway that influences Ras signaling during brain development.
Collapse
Affiliation(s)
- Ramin Homayouni
- Department of Neurology, University of Tennessee, 855 Monroe Avenue, 416 Link Building, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
83
|
Nishikawa S, Goto S, Yamada K, Hamasaki T, Ushio Y. Lack of Reelin causes malpositioning of nigral dopaminergic neurons: evidence from comparison of normal and Reln(rl) mutant mice. J Comp Neurol 2003; 461:166-73. [PMID: 12724835 DOI: 10.1002/cne.10610] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The reeler gene (Reln(rl), formerly rl) product Reelin controls neuronal migration and positioning and thereby plays a key role in brain development. Mutation of Reln leads to widespread disruption of laminar cortical regions and ectopia in some brainstem nuclei. In the embryonic striatum of normal mice, a substantial expression of reelin mRNA has been documented; however, the anomalous positioning of neurons in the basal ganglia of reeler mice remains to be studied. We provide first evidence for a potential role of Reelin in the developmental formation of the substantia nigra. In reeler mutant mice lacking Reelin, dopaminergic neurons destined for the substantia nigra fail to migrate laterally and become anomalously clustered just lateral to the ventral tegmental area. Their axons appear to project to striatal patches forming "dopamine islands." Results from the normal mice show that, at the midembryonic stage, Reelin identified with CR-50 is highly concentrated in the ventral mesencephalon, where nigral dopaminergic neurons are in progress to migrate laterally to their eventual position of the adult brain. A combination of CR-50 labeling and anterograde axonal tracing provided evidence that embryonic striatal neurons may supply the ventral portion of the mesencephalon with Reelin through their axonal projections. We hypothesize that Reelin plays a role in the positioning of nigral dopaminergic neurons and that it can act as an environmental cue at a remote site far from its birthplace via a transaxonal delivery system.
Collapse
Affiliation(s)
- Shigeyuki Nishikawa
- Laboratory of Neurobiology, Department of Neurosurgery, Kumamoto University Medical School, Kumamoto 860-8556, 1-1-1 Honjo, Japan
| | | | | | | | | |
Collapse
|
84
|
Yip YP, Rinaman L, Capriotti C, Yip JW. Ectopic sympathetic preganglionic neurons maintain proper connectivity in the reeler mutant mouse. Neuroscience 2003; 118:439-50. [PMID: 12699780 DOI: 10.1016/s0306-4522(02)00945-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The location of sympathetic preganglionic neurons (SPN) in the spinal cord of the reeler mouse mutant is abnormal. Instead of their normal location in the intermediolateral column, the majority of SPN in the reeler cluster around the central canal. To determine whether ectopically located SPN in the reeler form appropriate synaptic connections with their pre- and postsynaptic partners, we examined 1). whether the axons of descending neural pathways that normally terminate on SPN follow them to their ectopic location, and 2). whether the central autonomic neural circuit that controls sympathetic output to the kidney is organized normally in the reeler. Using antibodies against tyrosine hydroxylase, serotonin, neuropeptide Y, substance P and calcitonin gene-related peptide as markers for adrenergic, serotonergic and peptidergic terminals, we found that axons which normally innervate SPN follow these neurons to their ectopic spinal location in the reeler. Injection of pseudorabies virus into the kidney of wild type and reeler mutant mice revealed similar patterns of renal sympathetic and pre-sympathetic control circuits in the spinal cord, brainstem and forebrain. These results indicate that the presynaptic inputs and postsynaptic targets of SPN in the reeler are normal, despite the ectopic spinal location of their cell bodies.
Collapse
Affiliation(s)
- Y P Yip
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
85
|
Yamamoto T, Sakakibara S, Mikoshiba K, Terashima T. Ectopic corticospinal tract and corticothalamic tract neurons in the cerebral cortex of yotari and reeler mice. J Comp Neurol 2003; 461:61-75. [PMID: 12722105 DOI: 10.1002/cne.10678] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reeler and yotari mice, which are mutant for Reelin or Dab1, respectively, show disorders of cerebral cortical lamination. We injected horseradish peroxidase (HRP) into the upper lumbar enlargement to label corticospinal tract (CST) neurons and wheat germ agglutinin-conjugated HRP (WGA-HRP) into the ventral lateral nucleus of the thalamus to label corticothalamic tract (CTT) neurons in both 19-day-old yotari and reeler mice with the aim of discovering whether or not they show differences in the distribution pattern of layer V or layer VI neurons. Similar injections of tracers were made in normal controls. HRP-labeled CST neurons, which were exclusively distributed in layer V of the normal cortex, were radially scattered in the cortex of both mutants, but those in reeler were more deeply distributed than in yotari. WGA-labeled CTT neurons, which were mainly located in layer VI in the normal cortex, were superficially distributed just beneath the pia mater in both reeler and yotari cortex. The present quantitative study shows that the distribution pattern of layer V neurons, but not layer VI neurons, differs between reeler and yotari mice, suggesting that the Reelin and Dab1 proteins may play different roles in the migration and cell positioning of layer V neurons.
Collapse
Affiliation(s)
- Tatsuro Yamamoto
- Division of Anatomy and Developmental Neurobiology, Department of Neuroscience, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | |
Collapse
|
86
|
Affiliation(s)
- Fadel Tissir
- Developmental Genetics Unit, Université Catholique de Louvain, UCL 7382, 73 Avenue E. Mounier, B1200 Brussels, Belgium
| | | |
Collapse
|
87
|
Eastwood SL, Law AJ, Everall IP, Harrison PJ. The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol Psychiatry 2003; 8:148-55. [PMID: 12610647 DOI: 10.1038/sj.mp.4001233] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neuropathological features of schizophrenia are suggestive of a developmentally induced impairment of synaptic connectivity. Semaphorin 3A (sema3A) might contribute to this process because it is a secreted chemorepellant which regulates axonal guidance. We have investigated sema3A in the cerebellum (an area in which expression persists in adulthood), and measured its abundance in 16 patients with schizophrenia and 16 controls. In adults, sema3A was predominantly localized to the inner part of the molecular layer neuropil, whereas infants and rats showed greater labelling of Purkinje cell bodies. Sema3A was increased in schizophrenia, as shown by enzyme-linked immunosorbent assay (+28%; P<0.05) and immunohistochemistry (+45%; P<0.01). We also measured reelin mRNA, since reelin is involved in related developmental processes and is decreased in other brain regions in schizophrenia. Reelin mRNA showed a trend reduction in the subjects with schizophrenia (-26%; P=0.07) and, notably, was negatively correlated with sema3A. Sema3A also correlated negatively with synaptophysin and complexin II mRNAs. The results show that sema3A is elevated in schizophrenia, and is associated with downregulation of genes involved in synaptic formation and maintenance. In this respect, sema3A appears to contribute to the synaptic pathology of schizophrenia, perhaps via ongoing effects of persistent sema3A elevation on synaptic plasticity. The findings are consistent with an early neurodevelopmental origin for the disorder, and the reciprocal changes in sema3A and reelin may be indicative of a pathogenic mechanism that affects the balance between trophic and inhibitory factors regulating synaptogenesis.
Collapse
Affiliation(s)
- S L Eastwood
- Departments of Psychiatry and Clinical Neurology, Warneford Hospital, University of Oxford, Oxford OX3 7JX, UK
| | | | | | | |
Collapse
|
88
|
Meyer G, De Rouvroit CL, Goffinet AM, Wahle P. Disabled-1 mRNA and protein expression in developing human cortex. Eur J Neurosci 2003; 17:517-25. [PMID: 12581169 DOI: 10.1046/j.1460-9568.2003.02480.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Disabled-1 (Dab1) forms part of the Reelin-Dab1 signalling pathway that controls neuronal positioning during brain development; Dab1 deficiency gives rise to a reeler-like inversion of cortical layers. To establish a timetable of Dab1 expression in developing human brain, Dab1 mRNA and protein expression were studied in prenatal human cortex. The earliest Dab1 signal was detected at 7 gestational weeks (GW), the stage of transition from preplate to cortical plate, suggesting a role of the Reelin-Dab1 signalling pathway in preplate partition. From 12 to 20 GW, the period of maximum cortical migration, Dab1 expression was prominent in the upper tiers of the cortical plate, to decline after midgestation. Radially orientated apical dendrites of Dab1-expressing neurons indicated a predominant pyramidal phenotype. Pyramidal cells in hippocampus and entorhinal cortex displayed a more protracted time of Dab1 expression compared to neocortex. In addition, at later stages (18-25 GW), Dab1 was also expressed in large neurons scattered throughout intermediate zone and subplate. From 14 to 22 GW, particularly high levels of Dab1 mRNA and protein were observed in cells of the ventricular/subventricular zone displaying the morphology of radial glia. The partial colocalization of vimentin and Dab1 in cells of the ventricular zone supported a radial glia phenotype. The concentration of Dab1 protein in ventricular endfeet and initial portions of radial processes of ventricular-zone cells points to a possible involvement of Dab1 in neurogenesis. Furthermore, a subset of Cajal-Retzius cells in the marginal zone colocalized Dab1 and Reelin, and may thus represent a novel target of the Reelin-Dab1 signalling pathway.
Collapse
Affiliation(s)
- Gundela Meyer
- Department of Anatomy, University La Laguna, Tenerife, Spain.
| | | | | | | |
Collapse
|
89
|
HAVERKAMP SILKE, GHOSH KRISHNAK, HIRANO ARLENEA, WÄSSLE HEINZ. Immunocytochemical description of five bipolar cell types of the mouse retina. J Comp Neurol 2003; 455:463-76. [PMID: 12508320 PMCID: PMC2834891 DOI: 10.1002/cne.10491] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the ever-growing number of transgenic mice being used in vision research, a precise knowledge of the cellular organization of the mouse retina is required. As with the cat, rabbit, rat, and primate retinae, as many as 10 cone bipolar types and one rod bipolar type can be expected to exist in the mouse retina; however, they still have to be defined. In the current study, several immunocytochemical markers were applied to sections of mouse retina, and the labeling of bipolar cells was studied using confocal microscopy and electron microscopy. By using antibodies against the neurokinin-3 receptor NK3R; the plasma membrane calcium ATPase1 (PMCA1); and the calcium (Ca)-binding proteins CaB1, CaB5, caldendrin, and recoverin, three different OFF-cone bipolar cells could be identified. One type of ON-cone bipolar cell was identified through its immunoreactivity for CaB5 and PMCA1. Rod bipolar cells, comparable in morphology to those of other mammalian retinae, expressed protein kinase Calpha and CaB5. It was also shown that putative OFF-cone bipolar cells receive light signals through flat contacts at the cone pedicle base, whereas ON-cone bipolar signaling involves invaginating contacts. The distribution of the kainate receptor subunit GluR5 was studied by confocal and electron microscopy. GluR5 was expressed at flat bipolar cell contacts; however, it appears to be involved with only certain types of OFF-cone bipolar cells. This suggests that different bipolar cell types receive their light signals through different sets of glutamate receptors.
Collapse
Affiliation(s)
- SILKE HAVERKAMP
- Max-Planck-Institut für Hirnforschung, D-60528 Frankfurt/Main, Germany
| | - KRISHNA K. GHOSH
- Max-Planck-Institut für Hirnforschung, D-60528 Frankfurt/Main, Germany
| | - ARLENE A. HIRANO
- Departments of Neurobiology and Medicine, UCLA School of Medicine, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073
| | - HEINZ WÄSSLE
- Max-Planck-Institut für Hirnforschung, D-60528 Frankfurt/Main, Germany
- Correspondence to: Heinz Wässle, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, D-60528 Frankfurt/Main, Germany.
| |
Collapse
|
90
|
Galli-Resta L. Putting neurons in the right places: local interactions in the genesis of retinal architecture. Trends Neurosci 2002; 25:638-43. [PMID: 12446132 DOI: 10.1016/s0166-2236(02)02279-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Development of the nervous system can be schematically summarized as (1) making the necessary cells, (2) putting these cells in the right places, and then (3) connecting them appropriately. Each of these steps represents an enormous challenge to our understanding. Focusing on the vertebrate retina, I will consider the question of what defines the right place for a neuron to go. I will illustrate data pointing to the prominent role played by short-range cellular interactions, possibly coordinated by global factors, and will discuss how a few sets of local rules could control cell positioning and proper wiring in retinal circuits.
Collapse
|
91
|
Abstract
Ramon y Cajal proclaimed in 1928 that "once development was ended, the founts of growth and regeneration of the axons and dendrites dried up irrevocably. In the adult centers the nerve paths are something fixed, ended and immutable. Everything must die, nothing may be regenerated. It is for the science of the future to change, if possible, this harsh decree." (Ramon y Cajal, 1928). In large part, despite the extensive knowledge gained since then, the latter directive has not yet been achieved by 'modern' science. Although we know now that Ramon y Cajal's observation on CNS plasticity is largely true (for lower brain and primary cortical structures), there are mechanisms for recovery from CNS injury. These mechanisms, however, may contribute to the vulnerability to neurodegenerative disease. They may also be exploited therapeutically to help alleviate the suffering from neurodegenerative conditions.
Collapse
Affiliation(s)
- Bruce Teter
- Department of Medicine, University of California Los Angeles, California and Veteran's Affairs-Greater Los Angeles Healthcare System, Sepulveda, California 91343, USA
| | | |
Collapse
|
92
|
Rubin BP, Tucker RP, Brown-Luedi M, Martin D, Chiquet-Ehrismann R. Teneurin 2 is expressed by the neurons of the thalamofugal visual system in situ and promotes homophilic cell-cell adhesion in vitro. Development 2002; 129:4697-705. [PMID: 12361962 DOI: 10.1242/dev.129.20.4697] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transmembrane glycoprotein teneurin 2 is expressed by neurons in the developing avian thalamofugal visual system at periods that correspond with target recognition and synaptogenesis. Partial and full-length teneurin 2 constructs were expressed in cell lines in vitro. Expression of the cytoplasmic domain is required for the induction of filopodia, the transport of teneurin 2 into neurites and the co-localization of teneurin 2 with the cortical actin cytoskeleton. In addition, expression of the extracellular domain of teneurin 2 by HT1080 cells induced cell aggregation, and the extracellular domain of teneurin 2 became concentrated at sites of cell-cell contact in neuroblastoma cells. These observations indicate that the homophilic binding of teneurin 2 may play a role in the development of specific neuronal circuits in the developing visual system.
Collapse
Affiliation(s)
- Beatrix P Rubin
- Friedrich Miescher Institute, Novartis Research Foundation, PO Box 2543, CH-4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
93
|
Abstract
Two major signaling pathways that control neuronal positioning during brain development have been uncovered as a result of genetic and biochemical studies on neurological mouse mutants. Mice deficient in Reelin, Disabled 1 (Dab1), or both the very low-density lipoprotein receptor (VLDLR) and the apolipoprotein E receptor 2 (ApoER2) exhibit identical neuroanatomic defects in laminar structures throughout the brain. These proteins function as components of the Reelin signaling pathway. Reelin is a secreted glycoprotein that binds to VLDLR and ApoER2, inducing tyrosine phosphorylation of Dab1, an intracellular adapter protein. Neuronal migration is also regulated by cyclin-dependent kinase 5 (Cdk5) and its activating subunits p35 and p39. Mice deficient in Cdk5, p35, or both p35 and p39 exhibit lamination defects that are similar but not identical to those observed in mice with a defect in the Reelin signaling pathway. Cdk5 phosphorylates proteins that maintain cytoskeletal structures and promote cell motility. To explore the possibility that Cdk5 influences the Reelin pathway, we sought to determine whether Dab1 is a substrate for Cdk5. Here we show that Cdk5 phosphorylates Dab1 on serine 491 in vitro and in vivo, independently of Reelin signaling. We also show that ectopic neurons in Cdk5-deficient mice exhibit reduced levels of Reelin signaling during later stages of cortical development, although Cdk5 is not required for Reelin-induced tyrosine phosphorylation of Dab1. Although the functional significance of Dab1 serine phosphorylation is unclear, our results suggest that there is biochemical cross-talk between two signaling pathways that control cell positioning.
Collapse
|
94
|
Thom M, Sisodiya SM, Beckett A, Martinian L, Lin WR, Harkness W, Mitchell TN, Craig J, Duncan J, Scaravilli F. Cytoarchitectural abnormalities in hippocampal sclerosis. J Neuropathol Exp Neurol 2002; 61:510-9. [PMID: 12071634 DOI: 10.1093/jnen/61.6.510] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hippocampal sclerosis (HS) is the most common pathological substrate for temporal lobe epilepsy with a characteristic pattern of loss of principle neurons primarily in CA1 and hilar subfields. Other cytoarchitectural abnormalities have been identified in human HS specimens, including dispersion of dentate granule cells and cytoskeletal abnormalities in residual hilar cells. The incidence of these features, their relationship to the severity of HS and potential indication of underlying hippocampal maldevelopment is unverified. In a series of 183 hippocampectomies we identified classical HS (grades 3 and 4) in 90% of specimens, granule cell disorganization or severe dispersion in 40% of cases with a bilaminar pattern in 10%, and cytoskeletal abnormalities in hilar cells in 55% of cases. The severity of granule cell disorganization correlated closely with the degree of hippocampal neuronal loss but not with the age at first seizure or a history of a precipitating event for epilepsy such as prolonged febrile seizures. These findings suggest that granule cell disorganization is closely linked with the progression of HS rather than a hallmark of impaired hippocampal maturation. Furthermore, stereological quantitation of granule cells showed evidence of cell loss but greater numbers in regions of maximal dispersion, which may indicate enhanced neurogenesis of these cells. Quantitation of reelin-and calretinin-positive Cajal-Retzius cells in the dentate gyrus molecular layer in 26 cases showed no correlation between the number of these cells and the severity of granule cell dispersion, but increased numbers of these cells were present in HS with respect to control groups. Although a role for Cajal-Retzius cells is therefore not implicated in the mechanism of granule cell disorganization, their excess number may be indicative of underlying hippocampal maldevelopment in HS.
Collapse
Affiliation(s)
- Maria Thom
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College of London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Affiliation(s)
- B A Barres
- Department of Neurobiology, Stanford University School of Medicine, Fairchild Science Building, Stanford, CA 94305-5125, USA.
| | | |
Collapse
|