51
|
Geva-Sagiv M, Las L, Yovel Y, Ulanovsky N. Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nat Rev Neurosci 2015; 16:94-108. [PMID: 25601780 DOI: 10.1038/nrn3888] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spatial orientation and navigation rely on the acquisition of several types of sensory information. This information is then transformed into a neural code for space in the hippocampal formation through the activity of place cells, grid cells and head-direction cells. These spatial representations, in turn, are thought to guide long-range navigation. But how the representations encoded by these different cell types are integrated in the brain to form a neural 'map and compass' is largely unknown. Here, we discuss this problem in the context of spatial navigation by bats and rats. We review the experimental findings and theoretical models that provide insight into the mechanisms that link sensory systems to spatial representations and to large-scale natural navigation.
Collapse
Affiliation(s)
- Maya Geva-Sagiv
- 1] Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel. [2] Edmond and Lily Safra Center for Brain Research, Hebrew University, Jerusalem 91904, Israel
| | - Liora Las
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yossi Yovel
- Department of Zoology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nachum Ulanovsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
52
|
Rucci M, Victor JD. The unsteady eye: an information-processing stage, not a bug. Trends Neurosci 2015; 38:195-206. [PMID: 25698649 PMCID: PMC4385455 DOI: 10.1016/j.tins.2015.01.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 11/25/2022]
Abstract
How is space represented in the visual system? At first glance, the answer to this fundamental question appears straightforward: spatial information is directly encoded in the locations of neurons within maps. This concept has long dominated visual neuroscience, leading to mainstream theories of how neurons encode information. However, an accumulation of evidence indicates that this purely spatial view is incomplete and that, even for static images, the representation is fundamentally spatiotemporal. The evidence for this new understanding centers on recent experimental findings concerning the functional role of fixational eye movements, the tiny movements humans and other species continually perform, even when attending to a single point. We review some of these findings and discuss their functional implications.
Collapse
Affiliation(s)
- Michele Rucci
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA; Graduate Program in Neuroscience, Boston University, Boston, MA 02215, USA.
| | - Jonathan D Victor
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
53
|
Lacey S, Sathian K. CROSSMODAL AND MULTISENSORY INTERACTIONS BETWEEN VISION AND TOUCH. SCHOLARPEDIA 2015; 10:7957. [PMID: 26783412 DOI: 10.4249/scholarpedia.7957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Simon Lacey
- Departments of Neurology, Emory University, Atlanta, GA, USA
| | - K Sathian
- Departments of Neurology, Emory University, Atlanta, GA, USA; Rehabilitation Medicine, Emory University, Atlanta, GA, USA; Psychology, Emory University, Atlanta, GA, USA; Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA, USA
| |
Collapse
|
54
|
Ahissar E, Arieli A, Fried M, Bonneh Y. On the possible roles of microsaccades and drifts in visual perception. Vision Res 2014; 118:25-30. [PMID: 25535005 DOI: 10.1016/j.visres.2014.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/07/2014] [Accepted: 12/05/2014] [Indexed: 11/30/2022]
Abstract
During natural viewing large saccades shift the visual gaze from one target to another every few hundreds of milliseconds. The role of microsaccades (MSs), small saccades that show up during long fixations, is still debated. A major debate is whether MSs are used to redirect the visual gaze to a new location or to encode visual information through their movement. We argue that these two functions cannot be optimized simultaneously and present several pieces of evidence suggesting that MSs redirect the visual gaze and that the visual details are sampled and encoded by ocular drifts. We show that drift movements are indeed suitable for visual encoding. Yet, it is not clear to what extent drift movements are controlled by the visual system, and to what extent they interact with saccadic movements. We analyze several possible control schemes for saccadic and drift movements and propose experiments that can discriminate between them. We present the results of preliminary analyses of existing data as a sanity check to the testability of our predictions.
Collapse
Affiliation(s)
- Ehud Ahissar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | - Amos Arieli
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Fried
- Goldschleger Eye Research Institute, Tel Aviv University, Tel Hashomer, Israel
| | - Yoram Bonneh
- Department of Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
55
|
Haidarliu S, Kleinfeld D, Deschênes M, Ahissar E. The Musculature That Drives Active Touch by Vibrissae and Nose in Mice. Anat Rec (Hoboken) 2014; 298:1347-58. [PMID: 25408106 DOI: 10.1002/ar.23102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/21/2014] [Accepted: 10/26/2014] [Indexed: 11/06/2022]
Abstract
Coordinated action of facial muscles during whisking, sniffing, and touching objects is an important component of active sensing in rodents. Accumulating evidence suggests that the anatomical schemes that underlie active sensing are similar across the majority of whisking rodents. Intriguingly, however, muscle architecture in the mystacial pad of the mouse was reported to be different, possessing only one extrinsic vibrissa protracting muscle (M. nasalis) in the rostral part of the snout. In this study, the organization of the muscles that move the nose and the mystacial vibrissae in mice was re-examined and compared with that reported previously in other rodents. We found that muscle distribution within the mystacial pad and around the tip of the nose in mice is isomorphic with that found in other whisking rodents. In particular, in the rostral part of the mouse snout, we describe both protractors and retractors of the vibrissae. Nose movements are controlled by the M. dilator nasi and five subunits of the M. nasolabialis profundus, with involvement of the nasal cartilaginous skeleton as a mediator in the muscular effort translation.
Collapse
Affiliation(s)
- Sebastian Haidarliu
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - David Kleinfeld
- Department of Physics and Section of Neurobiology, University of California at San Diego, La Jolla, California
| | - Martin Deschênes
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, Canada
| | - Ehud Ahissar
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
56
|
Abstract
Head and eye movements incessantly modulate the luminance signals impinging onto the retina during natural intersaccadic fixation. Yet, little is known about how these fixational movements influence the statistics of retinal stimulation. Here, we provide the first detailed characterization of the visual input to the human retina during normal head-free fixation. We used high-resolution recordings of head and eye movements in a natural viewing task to examine how they jointly transform spatial information into temporal modulations. In agreement with previous studies, we report that both the head and the eyes move considerably during fixation. However, we show that fixational head and eye movements mostly compensate for each other, yielding a spatiotemporal redistribution of the input power to the retina similar to that previously observed under head immobilization. The resulting retinal image motion counterbalances the spectral distribution of natural scenes, giving temporal modulations that are equalized in power over a broad range of spatial frequencies. These findings support the proposal that "ocular drift," the smooth fixational motion of the eye, is under motor control, and indicate that the spatiotemporal reformatting caused by fixational behavior is an important computational element in the encoding of visual information.
Collapse
|
57
|
Optic flow instructs retinotopic map formation through a spatial to temporal to spatial transformation of visual information. Proc Natl Acad Sci U S A 2014; 111:E5105-13. [PMID: 25385606 DOI: 10.1073/pnas.1416953111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retinotopic maps are plastic in response to changes in sensory input; however, the experience-dependent instructive cues that organize retinotopy are unclear. In animals with forward-directed locomotion, the predominant anterior to posterior optic flow activates retinal ganglion cells in a stereotyped temporal to nasal sequence. Here we imaged retinotectal axon arbor location and structural plasticity to assess map refinement in vivo while exposing Xenopus tadpoles to visual stimuli. We show that the temporal sequence of retinal activity driven by natural optic flow organizes retinotopy by regulating axon arbor branch dynamics, whereas the opposite sequence of retinal activity prevents map refinement. Our study demonstrates that a spatial to temporal to spatial transformation of visual information controls experience-dependent topographic map plasticity. This organizational principle is likely to apply to other sensory modalities and projections in the brain.
Collapse
|
58
|
Modeling forces and moments at the base of a rat vibrissa during noncontact whisking and whisking against an object. J Neurosci 2014; 34:9828-44. [PMID: 25057187 DOI: 10.1523/jneurosci.1707-12.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During exploratory behavior, rats brush and tap their whiskers against objects, and the mechanical signals so generated constitute the primary sensory variables upon which these animals base their vibrissotactile perception of the world. To date, however, we lack a general dynamic model of the vibrissa that includes the effects of inertia, damping, and collisions. We simulated vibrissal dynamics to compute the time-varying forces and bending moment at the vibrissa base during both noncontact (free-air) whisking and whisking against an object (collision). Results show the following: (1) during noncontact whisking, mechanical signals contain components at both the whisking frequency and also twice the whisking frequency (the latter could code whisking speed); (2) when rats whisk rhythmically against an object, the intrinsic dynamics of the vibrissa can be as large as many of the mechanical effects of the collision, however, the axial force could still generate responses that reliably indicate collision based on thresholding; and (3) whisking velocity will have only a small effect on the transient response generated during a whisker-object collision. Instead, the transient response will depend in large part on how the rat chooses to decelerate its vibrissae after the collision. The model allows experimentalists to estimate error bounds on quasi-static descriptions of vibrissal shape, and its predictions can be used to bound realistic expectations from neurons that code vibrissal sensing. We discuss the implications of these results under the assumption that primary sensory neurons of the trigeminal ganglion are sensitive to various combinations of mechanical signals.
Collapse
|
59
|
Ennis R, Cao D, Lee BB, Zaidi Q. Eye movements and the neural basis of context effects on visual sensitivity. J Neurosci 2014; 34:8119-29. [PMID: 24920617 PMCID: PMC4051970 DOI: 10.1523/jneurosci.1048-14.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/24/2014] [Accepted: 04/30/2014] [Indexed: 11/21/2022] Open
Abstract
The effects of context on visual sensitivity are well established (e.g., sensitivity to luminance flicker is substantially higher on mean-gray surrounds than on white or black surrounds). The neural mechanisms generating context effects, however, remain unresolved. In the absence of direct tests, some theories invoke enhancement of edges by lateral inhibition, whereas others rely on transients caused by miniature eye movements that maintain fixation. We first replicated the luminance results on human observers and found unexpectedly that sensitivity to red-green flicker is also affected by surround color, being substantially higher on mean-gray surrounds than on red or green surrounds. To identify the neural bases of both context effects, we used in vivo electrophysiological recordings of primate magnocellular and parvocellular ganglion cell responses to luminance and red-green modulations, respectively. To test neuronal sensitivity to stationary edge contrast, neuronal responses were measured at various distances from the modulation edge against various surrounds. We found no evidence of enhanced responses to stationary edges on any surrounds, ruling out lateral inhibition-type explanations. To simulate the effects of eye movements, target patches were abruptly displaced while measuring responses. Abruptly displaced edges evoked vigorous transient responses that were selective for modulation-phase on mean-gray surrounds, but were phase-invariant on other surrounds. Eye movements could thus enhance detection of flicker on mean-gray surrounds, and neurometric analyses supported a primary role for eye movements in enhancing sensitivity. In addition, the transformation of spatial edges to transient neuronal responses by eye movements provides the signals for detecting luminance and color edges in natural scenes.
Collapse
Affiliation(s)
- Robert Ennis
- Graduate Center for Vision Research, State University of New York, New York, New York
| | - Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Barry B Lee
- Graduate Center for Vision Research, State University of New York, New York, New York, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany, and
| | - Qasim Zaidi
- Graduate Center for Vision Research, State University of New York, New York, New York,
| |
Collapse
|
60
|
Wilkinson NM, Metta G. Capture of fixation by rotational flow; a deterministic hypothesis regarding scaling and stochasticity in fixational eye movements. Front Syst Neurosci 2014; 8:29. [PMID: 24616670 PMCID: PMC3935396 DOI: 10.3389/fnsys.2014.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/09/2014] [Indexed: 11/13/2022] Open
Abstract
Visual scan paths exhibit complex, stochastic dynamics. Even during visual fixation, the eye is in constant motion. Fixational drift and tremor are thought to reflect fluctuations in the persistent neural activity of neural integrators in the oculomotor brainstem, which integrate sequences of transient saccadic velocity signals into a short term memory of eye position. Despite intensive research and much progress, the precise mechanisms by which oculomotor posture is maintained remain elusive. Drift exhibits a stochastic statistical profile which has been modeled using random walk formalisms. Tremor is widely dismissed as noise. Here we focus on the dynamical profile of fixational tremor, and argue that tremor may be a signal which usefully reflects the workings of oculomotor postural control. We identify signatures reminiscent of a certain flavor of transient neurodynamics; toric traveling waves which rotate around a central phase singularity. Spiral waves play an organizational role in dynamical systems at many scales throughout nature, though their potential functional role in brain activity remains a matter of educated speculation. Spiral waves have a repertoire of functionally interesting dynamical properties, including persistence, which suggest that they could in theory contribute to persistent neural activity in the oculomotor postural control system. Whilst speculative, the singularity hypothesis of oculomotor postural control implies testable predictions, and could provide the beginnings of an integrated dynamical framework for eye movements across scales.
Collapse
Affiliation(s)
| | - Giorgio Metta
- iCub Facility, Fondazione Istituto Italiano di TecnologiaGenova, Italy
- Centre for Robotics and Neural Systems, School of Computing and Mathematics, University of PlymouthPlymouth, UK
| |
Collapse
|
61
|
Mameli O, Stanzani S, Russo A, Pellitteri R, Manca P, De Riu PL, Caria MA. Involvement of trigeminal mesencephalic nucleus in kinetic encoding of whisker movements. Brain Res Bull 2014; 102:37-45. [PMID: 24518654 DOI: 10.1016/j.brainresbull.2014.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/22/2014] [Accepted: 01/31/2014] [Indexed: 01/02/2023]
Abstract
In previous experiments performed on anaesthetised rats, we demonstrated that whisking neurons responsive to spontaneous movement of the macrovibrissae are located within the trigeminal mesencephalic nucleus (Me5) and that retrograde tracers injected into the mystacial pad of the rat muzzle extensively labelled a number of Me5 neurons. In order to evaluate the electrophysiological characteristics of the Me5-whisker pad neural connection, the present study analysed the Me5 neurons responses to artificial whisking induced by electrical stimulation of the peripheral stump of the facial nerve. Furthermore, an anterograde tracer was injected into the Me5 to identify and localise the peripheral terminals of these neurons in the mystacial structures. The electrophysiological data demonstrated that artificial whisking induced Me5 evoked potentials as well as single and multiunit Me5 neurons responses consistent with a direct connection. Furthermore, the neuroanatomical findings showed that the peripheral terminals of the Me5 stained neurons established direct connections with the upper part of the macrovibrissae, at the conical body level, with fibres spiralling around the circumference of the vibrissae shaft. As for the functional role of this sensory innervation, we speculated that the Me5 neurons are possibly involved in encoding and relaying proprioceptive information related to vibrissae movements to other CNS structures.
Collapse
Affiliation(s)
- Ombretta Mameli
- Department of Clinical and Experimental Medicine, Human Physiology, School of Medicine, Sassari University, viale San Pietro 8, 07100 Sassari, Italy.
| | - Stefania Stanzani
- Department of Biomedical Sciences, Physiology Division, Catania University, 95125 Catania, Italy
| | - Antonella Russo
- Department of Biomedical Sciences, Physiology Division, Catania University, 95125 Catania, Italy
| | - Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Section of Catania, 95125 Catania, Italy
| | - Paolo Manca
- Department of Clinical and Experimental Medicine, Human Physiology, School of Medicine, Sassari University, viale San Pietro 8, 07100 Sassari, Italy
| | - Pier Luigi De Riu
- Department of Clinical and Experimental Medicine, Human Physiology, School of Medicine, Sassari University, viale San Pietro 8, 07100 Sassari, Italy
| | - Marcello Alessandro Caria
- Department of Clinical and Experimental Medicine, Human Physiology, School of Medicine, Sassari University, viale San Pietro 8, 07100 Sassari, Italy
| |
Collapse
|
62
|
Overton PG, Vautrelle N, Redgrave P. Sensory regulation of dopaminergic cell activity: Phenomenology, circuitry and function. Neuroscience 2014; 282:1-12. [PMID: 24462607 DOI: 10.1016/j.neuroscience.2014.01.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 01/11/2023]
Abstract
Dopaminergic neurons in a range of species are responsive to sensory stimuli. In the anesthetized preparation, responses to non-noxious and noxious sensory stimuli are usually tonic in nature, although long-duration changes in activity have been reported in the awake preparation as well. However, in the awake preparation, short-latency, phasic changes in activity are most common. These phasic responses can occur to unconditioned aversive and non-aversive stimuli, as well as to the stimuli which predict them. In both the anesthetized and awake preparations, not all dopaminergic neurons are responsive to sensory stimuli, however responsive neurons tend to respond to more than a single stimulus modality. Evidence suggests that short-latency sensory information is provided to dopaminergic neurons by relatively primitive subcortical structures - including the midbrain superior colliculus for vision and the mesopontine parabrachial nucleus for pain and possibly gustation. Although short-latency visual information is provided to dopaminergic neurons by the relatively primitive colliculus, dopaminergic neurons can discriminate between complex visual stimuli, an apparent paradox which can be resolved by the recently discovered route of information flow through to dopaminergic neurons from the cerebral cortex, via a relay in the colliculus. Given that projections from the cortex to the colliculus are extensive, such a relay potentially allows the activity of dopaminergic neurons to report the results of complex stimulus processing from widespread areas of the cortex. Furthermore, dopaminergic neurons could acquire their ability to reflect stimulus value by virtue of reward-related modification of sensory processing in the cortex. At the forebrain level, sensory-related changes in the tonic activity of dopaminergic neurons may regulate the impact of the cortex on forebrain structures such as the nucleus accumbens. In contrast, the short latency of the phasic responses to sensory stimuli in dopaminergic neurons, coupled with the activation of these neurons by non-rewarding stimuli, suggests that phasic responses of dopaminergic neurons may provide a signal to the forebrain which indicates that a salient event has occurred (and possibly an estimate of how salient that event is). A stimulus-related salience signal could be used by downstream systems to reinforce behavioral choices.
Collapse
Affiliation(s)
- P G Overton
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - N Vautrelle
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - P Redgrave
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
63
|
Bertram C, Dahan L, Boorman LW, Harris S, Vautrelle N, Leriche M, Redgrave P, Overton PG. Cortical regulation of dopaminergic neurons: role of the midbrain superior colliculus. J Neurophysiol 2013; 111:755-67. [PMID: 24225541 PMCID: PMC3921396 DOI: 10.1152/jn.00329.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopaminergic (DA) neurons respond to stimuli in a wide range of modalities, although the origin of the afferent sensory signals has only recently begun to emerge. In the case of vision, an important source of short-latency sensory information seems to be the midbrain superior colliculus (SC). However, longer-latency responses have been identified that are less compatible with the primitive perceptual capacities of the colliculus. Rather, they seem more in keeping with the processing capabilities of the cortex. Given that there are robust projections from the cortex to the SC, we examined whether cortical information could reach DA neurons via a relay in the colliculus. The somatosensory barrel cortex was stimulated electrically in the anesthetized rat with either single pulses or pulse trains. Although single pulses produced small phasic activations in the colliculus, they did not elicit responses in the majority of DA neurons. However, after disinhibitory intracollicular injections of the GABAA antagonist bicuculline, collicular responses were substantially enhanced and previously unresponsive DA neurons now exhibited phasic excitations or inhibitions. Pulse trains applied to the cortex led to phasic changes (excitations to inhibitions) in the activity of DA neurons at baseline. These were blocked or attenuated by intracollicular administration of the GABAA agonist muscimol. Taken together, the results indicate that the cortex can communicate with DA neurons via a relay in the SC. As a consequence, DA neuronal activity reflecting the unexpected occurrence of salient events and that signaling more complex stimulus properties may have a common origin.
Collapse
Affiliation(s)
- C Bertram
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, United Kingdom; and
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Poletti M, Listorti C, Rucci M. Microscopic eye movements compensate for nonhomogeneous vision within the fovea. Curr Biol 2013; 23:1691-5. [PMID: 23954428 DOI: 10.1016/j.cub.2013.07.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
Abstract
Humans rely on the fovea, the small region of the retina where receptors are most densely packed, for seeing fine spatial detail. Outside the fovea, it is well established that a variety of visual functions progressively decline with eccentricity. In contrast, little is known about how vision varies within the central fovea, as incessant microscopic eye movements prevent isolation of adjacent foveal locations. Using a new method for restricting visual stimulation to a selected retinal region, we examined the discrimination of fine patterns at different eccentricities within the foveola. We show that high-acuity judgments are impaired when stimuli are presented just a few arcminutes away from the preferred retinal locus of fixation. Furthermore, we show that this dependence on eccentricity is normally counterbalanced by the occurrence of precisely directed microsaccades, which bring the preferred fixation locus onto the stimulus. Thus, contrary to common assumptions, vision is not uniform within the foveola, but targeted microscopic eye movements compensate for this lack of homogeneity. Our results reveal that microsaccades, like larger saccades, enable examination of the stimulus at a finer level of detail and suggest that a reduced precision in oculomotor control may be responsible for the visual acuity impairments observed in various disorders.
Collapse
Affiliation(s)
- Martina Poletti
- Department of Psychology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
65
|
Buzsáki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. DIALOGUES IN CLINICAL NEUROSCIENCE 2013. [PMID: 23393413 PMCID: PMC3553572 DOI: 10.31887/dcns.2012.14.4/gbuzsaki] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The perpetual activity of the cerebral cortex is largely supported by the variety of oscillations the brain generates, spanning a number of frequencies and anatomical locations, as well as behavioral correlates. First, we review findings from animal studies showing that most forms of brain rhythms are inhibition-based, producing rhythmic volleys of inhibitory inputs to principal cell populations, thereby providing alternating temporal windows of relatively reduced and enhanced excitability in neuronal networks. These inhibition-based mechanisms offer natural temporal frames to group or "chunk" neuronal activity into cell assemblies and sequences of assemblies, with more complex multi-oscillation interactions creating syntactical rules for the effective exchange of information among cortical networks. We then review recent studies in human psychiatric patients demonstrating a variety alterations in neural oscillations across all major psychiatric diseases, and suggest possible future research directions and treatment approaches based on the fundamental properties of brain rhythms.
Collapse
Affiliation(s)
- György Buzsáki
- NYU Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA.
| | | |
Collapse
|
66
|
Abstract
Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.
Collapse
|
67
|
Abstract
The basic circuitry of auditory, visual, somatosensory and other cortical areas is highly stereotyped (Douglas and Martin, 2004). However, it remains unclear whether this anatomical stereotypy implies functional homogeneity, or whether instead different cortical areas are specialized to process the diverse sensory inputs they receive. Here we have used a two alternative forced choice task to assess modality-specific differences in the ability of rats to exploit precise neuronal timing. We delivered pairs of electrical pulses directly to different areas of cortex to determine the minimum timing differences subjects could detect. By stimulating the cortex directly, we isolated differences due to cortical circuitry rather than to sensory transduction and subcortical processing. Surprisingly, the minimum detectable timing differences varied over more than an order of magnitude, ranging from 1 ms in barrel cortex to 15 ms in visual cortex. Furthermore, these modality-specific differences depended upon sensory experience: although animals subjected to whisker clipping initially showed an impaired ability to exploit fine timing in barrel cortical stimulation, behavioral training partially rescued this deficit. Our results suggest that different cortical areas are adapted to the specific structure of the input signals they process, and that precise spike timing may play a more important role for some cortical areas than for others.
Collapse
|
68
|
Ahissar E, Arieli A. Seeing via Miniature Eye Movements: A Dynamic Hypothesis for Vision. Front Comput Neurosci 2012; 6:89. [PMID: 23162458 PMCID: PMC3492788 DOI: 10.3389/fncom.2012.00089] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/05/2012] [Indexed: 11/20/2022] Open
Abstract
During natural viewing, the eyes are never still. Even during fixation, miniature movements of the eyes move the retinal image across tens of foveal photoreceptors. Most theories of vision implicitly assume that the visual system ignores these movements and somehow overcomes the resulting smearing. However, evidence has accumulated to indicate that fixational eye movements cannot be ignored by the visual system if fine spatial details are to be resolved. We argue that the only way the visual system can achieve its high resolution given its fixational movements is by seeing via these movements. Seeing via eye movements also eliminates the instability of the image, which would be induced by them otherwise. Here we present a hypothesis for vision, in which coarse details are spatially encoded in gaze-related coordinates, and fine spatial details are temporally encoded in relative retinal coordinates. The temporal encoding presented here achieves its highest resolution by encoding along the elongated axes of simple-cell receptive fields and not across these axes as suggested by spatial models of vision. According to our hypothesis, fine details of shape are encoded by inter-receptor temporal phases, texture by instantaneous intra-burst rates of individual receptors, and motion by inter-burst temporal frequencies. We further describe the ability of the visual system to readout the encoded information and recode it internally. We show how reading out of retinal signals can be facilitated by neuronal phase-locked loops (NPLLs), which lock to the retinal jitter; this locking enables recoding of motion information and temporal framing of shape and texture processing. A possible implementation of this locking-and-recoding process by specific thalamocortical loops is suggested. Overall it is suggested that high-acuity vision is based primarily on temporal mechanisms of the sort presented here and low-acuity vision is based primarily on spatial mechanisms.
Collapse
Affiliation(s)
- Ehud Ahissar
- Department of Neurobiology, Weizmann Institute of Science Rehovot, Israel
| | | |
Collapse
|
69
|
Abstract
The significance of the miniature eye movements that we make during visual fixation has been intensely debated for the last 80 years. Recent studies have revealed that these motions of the eyes fulfill an important functional role: helping to extract useful information from natural scenes.
Collapse
Affiliation(s)
- Igor Kagan
- German Primate Center, Kellnerweg 4, 37077 Goettingen, Germany.
| |
Collapse
|
70
|
Cherici C, Kuang X, Poletti M, Rucci M. Precision of sustained fixation in trained and untrained observers. J Vis 2012; 12:31. [PMID: 22728680 PMCID: PMC3489479 DOI: 10.1167/12.6.31] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 05/05/2012] [Indexed: 11/24/2022] Open
Abstract
During visual fixation, microscopic eye movements shift the image on the retina over a large number of photoreceptors. Although these movements have been investigated for almost a century, the amount of retinal image motion they create remains unclear. Currently available estimates rely on assumptions about the probability distributions of eye movements that have never been tested. Furthermore, these estimates were based on data collected with only a few, highly experienced and motivated observers and may not be representative of the instability of naive and inexperienced subjects in experiments that require steady fixation. In this study, we used a high-resolution eye-tracker to estimate the probability distributions of gaze position in a relatively large group of human observers, most of whom were untrained, while they were asked to maintain fixation at the center of a uniform field in the presence/absence of a fixation marker. In all subjects, the probability distribution of gaze position deviated from normality, the underlying assumption of most previous studies. The resulting fixational dispersion of gaze was much larger than previously reported and varied greatly across individuals. Unexpectedly, the precision by which different observers maintained fixation on the marker was best predicted by the properties of ocular drift rather than those of microsaccades. Our results show that, during fixation, the eyes move by larger amounts and at higher speeds than commonly assumed and highlight the importance of ocular drift in maintaining accurate fixation.
Collapse
Affiliation(s)
- Claudia Cherici
- Department of Psychology, Boston University, Boston, MA, USA
| | - Xutao Kuang
- Department of Psychology, Boston University, Boston, MA, USA
| | - Martina Poletti
- Department of Psychology, Boston University, Boston, MA, USA
| | - Michele Rucci
- Department of Psychology, Boston University, Boston, MA, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
71
|
Solomon JH, Hartmann MJZ. Radial distance determination in the rat vibrissal system and the effects of Weber's law. Philos Trans R Soc Lond B Biol Sci 2012; 366:3049-57. [PMID: 21969686 DOI: 10.1098/rstb.2011.0166] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rats rhythmically tap and brush their vibrissae (whiskers) against objects to tactually explore the environment. To extract a complex feature such as the contour of an object, the rat must at least implicitly estimate radial object distance, that is, the distance from the base of the vibrissa to the point of object contact. Radial object distance cannot be directly measured, however, because there are no mechanoreceptors along the vibrissa. Instead, the mechanical signals generated by the vibrissa's interaction with the environment must be transmitted to mechanoreceptors near the vibrissa base. The first part of this paper surveys the different mechanical methods by which the rat could determine radial object distance. Two novel methods are highlighted: one based on measurement of bending moment and axial force at the vibrissa base, and a second based on measurement of how far the vibrissa rotates beyond initial contact. The second part of the paper discusses the application of Weber's law to two methods for radial distance determination. In both cases, Weber's law predicts that the rat will have greatest sensing resolution close to the vibrissa tip. These predictions could be tested with behavioural experiments that measure the perceptual acuity of the rat.
Collapse
Affiliation(s)
- Joseph H Solomon
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | | |
Collapse
|
72
|
Horev G, Saig A, Knutsen PM, Pietr M, Yu C, Ahissar E. Motor-sensory convergence in object localization: a comparative study in rats and humans. Philos Trans R Soc Lond B Biol Sci 2012; 366:3070-6. [PMID: 21969688 DOI: 10.1098/rstb.2011.0157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to identify basic aspects in the process of tactile perception, we trained rats and humans in similar object localization tasks and compared the strategies used by the two species. We found that rats integrated temporally related sensory inputs ('temporal inputs') from early whisk cycles with spatially related inputs ('spatial inputs') to align their whiskers with the objects; their perceptual reports appeared to be based primarily on this spatial alignment. In a similar manner, human subjects also integrated temporal and spatial inputs, but relied mainly on temporal inputs for object localization. These results suggest that during tactile object localization, an iterative motor-sensory process gradually converges on a stable percept of object location in both species.
Collapse
Affiliation(s)
- Guy Horev
- The Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
73
|
Zuo Y, Perkon I, Diamond ME. Whisking and whisker kinematics during a texture classification task. Philos Trans R Soc Lond B Biol Sci 2012; 366:3058-69. [PMID: 21969687 DOI: 10.1098/rstb.2011.0161] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rats explore objects by rhythmically whisking with their vibrissae. The goal of the present study is to learn more about the motor output used by rats to acquire texture information as well as the whisker motion evoked by texture contact. We trained four rats to discriminate between different grooved textures and used high-speed video to characterize whisker motion during the task. The variance in whisking parameters among subjects was notable. After whisker trimming, the animals changed their behaviour in ways that appear consistent with an optimization of whisker movement to compensate for lost information. These results lead to the intriguing notion that the rats use an information-seeking 'cognitive' motor strategy, instead of a rigid motor programme. Distinct stick/slip events occurred during texture palpation and their frequency increased in relation to the spatial frequency of the grooves. The results allow a preliminary assessment of three candidate texture-coding mechanisms-the number of grooves encountered during each touch, the temporal difference between groove contacts and the spatial pattern of groove contacts across the whiskers.
Collapse
Affiliation(s)
- Yanfang Zuo
- International School for Advanced Studies (SISSA), Cognitive Neuroscience Sector, Italian Institute of Technology-SISSA Unit, Via Bonomea 265, 34136 Trieste, Italy
| | | | | |
Collapse
|
74
|
Temporal encoding of spatial information during active visual fixation. Curr Biol 2012; 22:510-4. [PMID: 22342751 DOI: 10.1016/j.cub.2012.01.050] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/25/2012] [Accepted: 01/25/2012] [Indexed: 11/23/2022]
Abstract
Humans and other species continually perform microscopic eye movements, even when attending to a single point. These movements, which include drifts and microsaccades, are under oculomotor control, elicit strong neural responses, and have been thought to serve important functions. The influence of these fixational eye movements on the acquisition and neural processing of visual information remains unclear. Here, we show that during viewing of natural scenes, microscopic eye movements carry out a crucial information-processing step: they remove predictable correlations in natural scenes by equalizing the spatial power of the retinal image within the frequency range of ganglion cells' peak sensitivity. This transformation, which had been attributed to center-surround receptive field organization, occurs prior to any neural processing and reveals a form of matching between the statistics of natural images and those of normal eye movements. We further show that the combined effect of microscopic eye movements and retinal receptive field organization is to convert spatial luminance discontinuities into synchronous firing events, beginning the process of edge detection. Thus, microscopic eye movements are fundamental to two goals of early visual processing: redundancy reduction and feature extraction.
Collapse
|
75
|
Gordon G, Ahissar E. Hierarchical curiosity loops and active sensing. Neural Netw 2012; 32:119-29. [PMID: 22386787 DOI: 10.1016/j.neunet.2012.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/01/2012] [Accepted: 02/07/2012] [Indexed: 11/19/2022]
Abstract
A curious agent acts so as to optimize its learning about itself and its environment, without external supervision. We present a model of hierarchical curiosity loops for such an autonomous active learning agent, whereby each loop selects the optimal action that maximizes the agent's learning of sensory-motor correlations. The model is based on rewarding the learner's prediction errors in an actor-critic reinforcement learning (RL) paradigm. Hierarchy is achieved by utilizing previously learned motor-sensory mapping, which enables the learning of other mappings, thus increasing the extent and diversity of knowledge and skills. We demonstrate the relevance of this architecture to active sensing using the well-studied vibrissae (whiskers) system, where rodents acquire sensory information by virtue of repeated whisker movements. We show that hierarchical curiosity loops starting from optimally learning the internal models of whisker motion and then extending to object localization result in free-air whisking and object palpation, respectively.
Collapse
Affiliation(s)
- Goren Gordon
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | |
Collapse
|
76
|
Synapse formation in adult barrel cortex following naturalistic environmental enrichment. Neuroscience 2011; 199:143-52. [PMID: 22061424 DOI: 10.1016/j.neuroscience.2011.10.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/05/2011] [Accepted: 10/21/2011] [Indexed: 11/22/2022]
Abstract
Environmental enrichment paradigms in adult laboratory animals, consisting of physical, perceptual, and social stimulation, have been shown to affect synapse and cell morphology in sensory cortex and enhance learning ability, whereas enrichment, which is in harmony with the animal's natural habitat may have even greater implications for plasticity. Previous studies in our laboratory have shown that whisker stimulation induced the formation of synapses and spines in the corresponding barrel. In the present study adult C57/Bl6J female laboratory mice at 6 weeks of age were placed during 2 months in a protected enrichment enclosure in a forest clearing at the Chisti Les Biological Station, Tvier, Russia. We analyzed neuropil ultrastructure in the C2 barrel using serial-section electron microscopy on a total of eight mice (n=4 enriched, n=4 standard cagemate controls). Quantitative analyses of volumes of neuropil showed a significant increase in excitatory and inhibitory synapses on spines and excitatory synapses on dendritic shafts in the C2 barrel in the enriched group compared with standard cagemate controls. These results demonstrate that naturalistic experience alters the synaptic circuitry in layer IV of the somatosensory cortex, the first cortical relay of sensory information, leaving a lasting trace that may guide subsequent behavior.
Collapse
|
77
|
Synchrony makes neurons fire in sequence, and stimulus properties determine who is ahead. J Neurosci 2011; 31:8570-84. [PMID: 21653861 DOI: 10.1523/jneurosci.2817-10.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synchronized activity of cortical neurons often features spike delays of several milliseconds. Usually, these delays are considered too small to play a role in cortical computations. Here, we use simultaneous recordings of spiking activity from up to 12 neurons to show that, in the cat visual cortex, the pairwise delays between neurons form a preferred order of spiking, called firing sequence. This sequence spans up to ∼ 15 ms and is referenced not to external events but to the internal cortical activity (e.g., beta/gamma oscillations). Most importantly, the preferred sequence of firing changed consistently as a function of stimulus properties. During beta/gamma oscillations, the reliability of firing sequences increased and approached that of firing rates. This suggests that, in the visual system, short-lived spatiotemporal patterns of spiking defined by consistent delays in synchronized activity occur with sufficient reliability to complement firing rates as a neuronal code.
Collapse
|
78
|
Abstract
The rat vibrissal (whisker) system is an increasingly important model for the study of the sense of touch. This paper describes recent results obtained from high-speed videography of rat exploratory behavior and from modeling studies of vibrissal biomechanics. We review several features of vibrissal touch, including the mechanics of contact versus noncontact whisking, the coordination between head and whisker movements, and the use of information obtained from the whiskers to detect, localize, and extract the spatial properties of objects. This work highlights the idea that mechanics are critical to an understanding of sensory systems and describes some new tools to monitor the spatiotemporal patterns of whisker-object contact during natural tactile exploratory behavior.
Collapse
Affiliation(s)
- Mitra J Z Hartmann
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
79
|
Venkatraman S, Carmena JM. Active sensing of target location encoded by cortical microstimulation. IEEE Trans Neural Syst Rehabil Eng 2011; 19:317-24. [PMID: 21382769 DOI: 10.1109/tnsre.2011.2117441] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cortical microstimulation has been proposed as a method to deliver sensory percepts to circumvent damaged sensory receptors or pathways. However, much of perception involves the active movement of sensory organs and the integration of information across sensory and motor modalities. The efficacy of cortical microstimulation in such an active sensing paradigm has not been demonstrated. We report a novel behavioral paradigm which delivers microstimulation in real-time based on a rat's movements and show that rats can perform sensorimotor integration with electrically delivered stimuli. Using a real-time whisker tracking system, we delivered microstimulation in barrel cortex of actively whisking rats when their whisker crossed a particular spatial location which defined the target. Rats learned to integrate microstimulation cues with their knowledge of whisker position to infer target location along the rostro-caudal axis in less than 200 ms. In a separate experiment, we found that rats trained to respond to cortical microstimulation responded similarly to whisker deflections while ignoring auditory distracters, suggesting that barrel cortex stimulation may be perceptually similar to somatosensory stimuli. This ability to deliver sensory percepts using cortical microstimulation in an active sensing system might have significant implications for the development of sensorimotor neuroprostheses.
Collapse
|
80
|
Jurjuţ OF, Nikolić D, Singer W, Yu S, Havenith MN, Mureşan RC. Timescales of multineuronal activity patterns reflect temporal structure of visual stimuli. PLoS One 2011; 6:e16758. [PMID: 21346812 PMCID: PMC3035626 DOI: 10.1371/journal.pone.0016758] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/29/2010] [Indexed: 11/18/2022] Open
Abstract
The investigation of distributed coding across multiple neurons in the cortex remains to this date a challenge. Our current understanding of collective encoding of information and the relevant timescales is still limited. Most results are restricted to disparate timescales, focused on either very fast, e.g., spike-synchrony, or slow timescales, e.g., firing rate. Here, we investigated systematically multineuronal activity patterns evolving on different timescales, spanning the whole range from spike-synchrony to mean firing rate. Using multi-electrode recordings from cat visual cortex, we show that cortical responses can be described as trajectories in a high-dimensional pattern space. Patterns evolve on a continuum of coexisting timescales that strongly relate to the temporal properties of stimuli. Timescales consistent with the time constants of neuronal membranes and fast synaptic transmission (5–20 ms) play a particularly salient role in encoding a large amount of stimulus-related information. Thus, to faithfully encode the properties of visual stimuli the brain engages multiple neurons into activity patterns evolving on multiple timescales.
Collapse
Affiliation(s)
- Ovidiu F. Jurjuţ
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany
- Department of Experimental and Theoretical Neuroscience, Center for Cognitive and Neural Studies (Coneural), Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- Department of Neuroscience, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
| | - Danko Nikolić
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany
- Department of Neuroscience, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
| | - Wolf Singer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany
- Department of Neuroscience, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
| | - Shan Yu
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Martha N. Havenith
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Raul C. Mureşan
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany
- Department of Experimental and Theoretical Neuroscience, Center for Cognitive and Neural Studies (Coneural), Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- * E-mail:
| |
Collapse
|
81
|
Onat S, Nortmann N, Rekauzke S, König P, Jancke D. Independent encoding of grating motion across stationary feature maps in primary visual cortex visualized with voltage-sensitive dye imaging. Neuroimage 2011; 55:1763-70. [PMID: 21232616 DOI: 10.1016/j.neuroimage.2011.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/31/2010] [Accepted: 01/04/2011] [Indexed: 11/16/2022] Open
Abstract
In early visual cortex different stimulus parameters are represented in overlaid feature maps. Such functioning was extensively explored by the use of drifting gratings characterized by orientation, spatial-temporal frequency, and direction of motion. However surprisingly, the direct cortical visuotopic drift of the gratings' stripy pattern has never been detected simultaneously to these stationary feature maps. It therefore remains to be demonstrated how physical signals of grating motion across the cortex are represented independently of other parametric maps and thus, how multi-dimensional input is processed independently to enable effective read-out further downstream. Taking advantage of the high spatial and temporal resolution of voltage-sensitive dye imaging, we here show the real-time encoding of position and orientation. By decomposing the cortical responses to drifting gratings we visualize the typical emergence of stationary orientation maps in which specific domains exhibited highest amplitudes. Simultaneously to these patchy maps, we demonstrate coherently propagating waves of activity that precisely matched the actual movement of the gratings in space and time, most dominantly for spatial frequencies lower than the preferred range. Thus, the primary visual cortex multiplexes information about retinotopic motion by additional temporal modulation of stationary orientation signals. These signals may be used to variably extract coarse-grained object motion and form information at higher visual processing stages.
Collapse
Affiliation(s)
- Selim Onat
- Institute of Cognitive Science, Department of Neurobiopsychology, University Osnabrück, Osnabrück, Germany
| | | | | | | | | |
Collapse
|
82
|
Hooks BM, Hires SA, Zhang YX, Huber D, Petreanu L, Svoboda K, Shepherd GMG. Laminar analysis of excitatory local circuits in vibrissal motor and sensory cortical areas. PLoS Biol 2011; 9:e1000572. [PMID: 21245906 PMCID: PMC3014926 DOI: 10.1371/journal.pbio.1000572] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 11/18/2010] [Indexed: 11/26/2022] Open
Abstract
Optical and electrophysiological tools were used to map out the neural circuits within and between cortical layers in three different brain regions, and the results suggest regional specializations for sensory versus motor information processing. Rodents move their whiskers to locate and identify objects. Cortical areas involved in vibrissal somatosensation and sensorimotor integration include the vibrissal area of the primary motor cortex (vM1), primary somatosensory cortex (vS1; barrel cortex), and secondary somatosensory cortex (S2). We mapped local excitatory pathways in each area across all cortical layers using glutamate uncaging and laser scanning photostimulation. We analyzed these maps to derive laminar connectivity matrices describing the average strengths of pathways between individual neurons in different layers and between entire cortical layers. In vM1, the strongest projection was L2/3→L5. In vS1, strong projections were L2/3→L5 and L4→L3. L6 input and output were weak in both areas. In S2, L2/3→L5 exceeded the strength of the ascending L4→L3 projection, and local input to L6 was prominent. The most conserved pathways were L2/3→L5, and the most variable were L4→L2/3 and pathways involving L6. Local excitatory circuits in different cortical areas are organized around a prominent descending pathway from L2/3→L5, suggesting that sensory cortices are elaborations on a basic motor cortex-like plan. The neocortex of the mammalian brain is divided into different regions that serve specific functions. These include sensory areas for vision, hearing, and touch, and motor areas for directing aspects of movement. However, the similarities and differences in local circuit organization between these areas are not well understood. The cortex is a layered structure numbered in an outside-in fashion, such that layer 1 is closest to the cortical surface and layer 6 is deepest. Each layer harbors distinct cell types. The precise circuit wiring within and between these layers allows for specific functions performed by particular cortical regions. To directly compare circuits from distinct cortical areas, we combined optical and electrophysiological tools to map connections between layers in different brain regions. We examined three regions of mouse neocortex that are involved in active whisker sensation: vibrissal motor cortex (vM1), primary somatosensory cortex (vS1), and secondary somatosensory cortex (S2). Our results demonstrate that excitatory connections from layer 2/3 to layer 5 are prominent in all three regions. In contrast, strong ascending pathways from middle layers (layer 4) to superficial ones (layer 3) and local inputs to layer 6 were prominent only in the two sensory cortical areas. These results indicate that cortical circuits employ regional specializations when processing motor versus sensory information. Moreover, our data suggest that sensory cortices are elaborations on a basic motor cortical plan involving layer 2/3 to layer 5 pathways.
Collapse
Affiliation(s)
- B M Hooks
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America.
| | | | | | | | | | | | | |
Collapse
|
83
|
Mameli O, Stanzani S, Mulliri G, Pellitteri R, Caria MA, Russo A, De Riu P. Role of the trigeminal mesencephalic nucleus in rat whisker pad proprioception. Behav Brain Funct 2010; 6:69. [PMID: 21078134 PMCID: PMC2993642 DOI: 10.1186/1744-9081-6-69] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/15/2010] [Indexed: 11/23/2022] Open
Abstract
Background Trigeminal proprioception related to rodent macrovibrissae movements is believed to involve skin receptors on the whisker pad because pad muscles operate without muscle spindles. This study was aimed to investigate in rats whether the trigeminal mesencephalic nucleus (TMnu), which provides proprioceptive feedback for chewing muscles, may be also involved in whisker pad proprioception. Methods Two retrograde tracers, Dil and True Blue Chloride, were injected into the mystacial pad and the masseter muscle on the same side of deeply anesthetized rats to label the respective projecting sensory neurons. This double-labeling technique was used to assess the co-innervation of both structures by the trigeminal mesencephalic nucleus (TMnu). In a separate group of anesthetized animals, the spontaneous electrical activities of TMnu neurons were analyzed by extracellular recordings during spontaneous movements of the macrovibrissae. Mesencephalic neurons (TMne) were previously identified by their responses to masseter muscle stretching. Changes in TMne spontaneous electrical activities, analyzed under baseline conditions and during whisking movements, were statistically evaluated using Student's t-test for paired observations. Results Neuroanatomical experiments revealed different subpopulations of trigeminal mesencephalic neurons: i) those innervating the neuromuscular spindles of the masseter muscle, ii) those innervating the mystacial pad, and iii) those innervating both structures. Extracellular recordings made during spontaneous movements of the macrovibrisae showed that whisking neurons similar to those observed in the trigeminal ganglion were located in the TMnu. These neurons had different patterns of activation, which were dependent on the type of spontaneous macrovibrissae movement. In particular, their spiking activity tonically increased during fan-like movements of the vibrissae and showed phasic bursting during rhythmic whisking. Furthermore, the same neurons may also respond to masseter muscle stretch. Conclusions results strongly support the hypothesis that the TMnu also contains first-order neurons specialized for relaying spatial information related to whisker movement and location to trigeminal-cortical pathways. In fact, the TMnu projects to second-order trigeminal neurons, thus allowing the rat brain to deduce higher-order information regarding executed movements of the vibrissae by combining touch information carried by trigeminal ganglion neurons with proprioceptive information carried by mesencephalic neurons.
Collapse
Affiliation(s)
- Ombretta Mameli
- Department of Neuroscience, Human Physiology Division, University of Sassari, viale San Pietro 43/B, 07100 Sassari, Italy.
| | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
The neural code that represents the world is transformed at each stage of a sensory pathway. These transformations enable downstream neurons to recode information they receive from earlier stages. Using the retinothalamic synapse as a model system, we developed a theoretical framework to identify stimulus features that are inherited, gained, or lost across stages. Specifically, we observed that thalamic spikes encode novel, emergent, temporal features not conveyed by single retinal spikes. Furthermore, we found that thalamic spikes are not only more informative than retinal ones, as expected, but also more independent. Next, we asked how thalamic spikes gain sensitivity to the emergent features. Explicitly, we found that the emergent features are encoded by retinal spike pairs and then recoded into independent thalamic spikes. Finally, we built a model of synaptic transmission that reproduced our observations. Thus, our results established a link between synaptic mechanisms and the recoding of sensory information.
Collapse
|
85
|
Abstract
A widely discussed hypothesis in neuroscience is that transiently active ensembles of neurons, known as "cell assemblies," underlie numerous operations of the brain, from encoding memories to reasoning. However, the mechanisms responsible for the formation and disbanding of cell assemblies and temporal evolution of cell assembly sequences are not well understood. I introduce and review three interconnected topics, which could facilitate progress in defining cell assemblies, identifying their neuronal organization, and revealing causal relationships between assembly organization and behavior. First, I hypothesize that cell assemblies are best understood in light of their output product, as detected by "reader-actuator" mechanisms. Second, I suggest that the hierarchical organization of cell assemblies may be regarded as a neural syntax. Third, constituents of the neural syntax are linked together by dynamically changing constellations of synaptic weights ("synapsembles"). The existing support for this tripartite framework is reviewed and strategies for experimental testing of its predictions are discussed.
Collapse
Affiliation(s)
- György Buzsáki
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA.
| |
Collapse
|
86
|
Ko HK, Poletti M, Rucci M. Microsaccades precisely relocate gaze in a high visual acuity task. Nat Neurosci 2010; 13:1549-53. [PMID: 21037583 PMCID: PMC3058801 DOI: 10.1038/nn.2663] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 09/14/2010] [Indexed: 11/21/2022]
Affiliation(s)
- Hee-Kyoung Ko
- Department of Psychology, Boston University, Boston, Massachusetts, USA
| | | | | |
Collapse
|
87
|
Abstract
A mechanistic description of the generation of whisker movements is essential for understanding the control of whisking and vibrissal active touch. We explore how facial-motoneuron spikes are translated, via an intrinsic muscle, to whisker movements. This is achieved by constructing, simulating, and analyzing a computational, biomechanical model of the motor plant, and by measuring spiking to movement transformations at small and large angles using high-precision whisker tracking in vivo. Our measurements revealed a supralinear summation of whisker protraction angles in response to consecutive motoneuron spikes with moderate interspike intervals (5 ms < Deltat < 30 ms). This behavior is explained by a nonlinear transformation from intracellular changes in Ca(2+) concentration to muscle force. Our model predicts the following spatial constraints: (1) Contraction of a single intrinsic muscle results in movement of its two attached whiskers with different amplitudes; the relative amplitudes depend on the resting angles and on the attachment location of the intrinsic muscle on the anterior whisker. Counterintuitively, for a certain range of resting angles, activation of a single intrinsic muscle can lead to a retraction of one of its two attached whiskers. (2) When a whisker is pulled by its two adjacent muscles with similar forces, the protraction amplitude depends only weakly on the resting angle. (3) Contractions of two adjacent muscles sums up linearly for small amplitudes and supralinearly for larger amplitudes. The model provides a direct translation from motoneuron spikes to whisker movements and can serve as a building block in closed-loop motor-sensory models of active touch.
Collapse
|
88
|
Koepsell K, Wang X, Hirsch JA, Sommer FT. Exploring the function of neural oscillations in early sensory systems. Front Neurosci 2010; 4:53. [PMID: 20582272 PMCID: PMC2891629 DOI: 10.3389/neuro.01.010.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/10/2009] [Indexed: 12/04/2022] Open
Abstract
Neuronal oscillations appear throughout the nervous system, in structures as diverse as the cerebral cortex, hippocampus, subcortical nuclei and sense organs. Whether neural rhythms contribute to normal function, are merely epiphenomena, or even interfere with physiological processing are topics of vigorous debate. Sensory pathways are ideal for investigation of oscillatory activity because their inputs can be defined. Thus, we will focus on sensory systems as we ask how neural oscillations arise and how they might encode information about the stimulus. We will highlight recent work in the early visual pathway that shows how oscillations can multiplex different types of signals to increase the amount of information that spike trains encode and transmit. Last, we will describe oscillation-based models of visual processing and explore how they might guide further research.
Collapse
Affiliation(s)
- Kilian Koepsell
- Redwood Center for Theoretical Neuroscience, University of California Berkeley, CA, USA
| | | | | | | |
Collapse
|
89
|
Pennartz CM. Identification and integration of sensory modalities: Neural basis and relation to consciousness. Conscious Cogn 2009; 18:718-39. [DOI: 10.1016/j.concog.2009.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 03/11/2009] [Accepted: 03/16/2009] [Indexed: 12/01/2022]
|
90
|
Abstract
Rhythms occur both in neuronal activity and in behavior. Behavioral rhythms abound at frequencies at or below 10 Hz. Neuronal rhythms cover a very wide frequency range, and the phase of neuronal low-frequency rhythms often rhythmically modulates the strength of higher-frequency rhythms, particularly of gamma-band synchronization (GBS). Here, we study stimulus-induced GBS in awake monkey areas V1 and V4 in relation to a specific form of spontaneous behavior, namely microsaccades (MSs), small fixational eye movements. We found that MSs occur rhythmically at a frequency of approximately 3.3 Hz. The rhythmic MSs were predicted by the phase of the 3.3 Hz rhythm in V1 and V4 local field potentials. In turn, the MSs modulated both visually induced GBS and the speed of visually triggered behavioral responses. Fast/slow responses were preceded by a specific temporal pattern of MSs. These MS patterns induced perturbations in GBS that in turn explained variability in behavioral response speed. We hypothesize that the 3.3 Hz rhythm structures the sampling and exploration of the environment through building and breaking neuronal ensembles synchronized in the gamma-frequency band to process sensory stimuli.
Collapse
|
91
|
Rolfs M. Microsaccades: small steps on a long way. Vision Res 2009; 49:2415-41. [PMID: 19683016 DOI: 10.1016/j.visres.2009.08.010] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 08/03/2009] [Accepted: 08/07/2009] [Indexed: 12/01/2022]
Abstract
Contrary to common wisdom, fixations are a dynamically rich behavior, composed of continual, miniature eye movements, of which microsaccades are the most salient component. Over the last few years, interest in these small movements has risen dramatically, driven by both neurophysiological and psychophysical results and by advances in techniques, analysis, and modeling of eye movements. The field has a long history but a significant portion of the earlier work has gone missing in the current literature, in part, as a result of the collapse of the field in the 1980s that followed a series of discouraging results. The present review compiles 60 years of work demonstrating the unique contribution of microsaccades to visual and oculomotor function. Specifically, the review covers the contribution of microsaccades to (1) the control of fixation position, (2) the reduction of perceptual fading and the continuity of perception, (3) the generation of synchronized visual transients, (4) visual acuity, (5) scanning of small spatial regions, (6) shifts of spatial attention, (7) resolving perceptual ambiguities in the face of multistable perception, as well as several other functions. The accumulated evidence demonstrates that microsaccades serve both perceptual and oculomotor goals and although in some cases their contribution is neither necessary nor unique, microsaccades are a malleable tool conveniently employed by the visual system.
Collapse
Affiliation(s)
- Martin Rolfs
- Université Paris Descartes, Laboratoire Psychologie de la Perception, 75006 Paris, France.
| |
Collapse
|
92
|
Zarate J, Churruca I, Echevarría E, Casis L, López de Jesús M, Saenz del Burgo L, Sallés J. Immunohistochemical localization of CB1 cannabinoid receptors in frontal cortex and related limbic areas in obese Zucker rats: effects of chronic fluoxetine treatment. Brain Res 2008; 1236:57-72. [PMID: 18722357 DOI: 10.1016/j.brainres.2008.07.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/17/2008] [Accepted: 07/18/2008] [Indexed: 11/17/2022]
Abstract
In the present study, we report on the application of two specific polyclonal antibodies to different intracellular domains of the CB1 cannabinoid receptor to define the expression of the neural CB1 cannabinoid receptor at the histochemical level in frontal cortex and related limbic areas of the obese Zucker rats. Higher levels of CB1 receptor expression in frontal, cingulated and piriform cortex, without differences in temporal, parietal and occipital cortex, were observed in obese Zucker rats, with respect to their lean littermates. CB1 phosphorylated receptor (CB1-P) levels were also higher in frontal, temporal, parietal and occipital cortex in obese rats with respect to lean controls. Potential involvement of brain cortical CB1 cannabinoid receptors in the long-term effects of fluoxetine was studied. Experimental animals were administered with fluoxetine (10 mg/kg, i.p.) daily for 3 weeks, whereas the control group was given 0.9% NaCl solution. In obese Zucker rats, a significant decrease in CB1 receptor levels, measured by western blot, was observed in brain cortex after fluoxetine treatment. Immunostaining for CB1 receptor expression was also carried out, showing a significant decrease in the density of neural cells positive for CB1 receptor in frontal, cingulate and piriform cortex, without changes in parietal, temporal and occipital regions. Regional prosencephalic immunostaining for CB1-P receptor level showed a significant decrease in the density of stained neural cells in frontal, temporal and parietal cortex, without changes in cingulated, piriform and occipital cortex. These results suggest the involvement of endocannabinoid system in the chronic effects of fluoxetine, especially in the frontal cortex.
Collapse
Affiliation(s)
- J Zarate
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | | | | | | | | | | | | |
Collapse
|
93
|
|
94
|
Towal RB, Hartmann MJZ. Variability in Velocity Profiles During Free-Air Whisking Behavior of Unrestrained Rats. J Neurophysiol 2008; 100:740-52. [DOI: 10.1152/jn.01295.2007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During exploratory behaviors, the velocity of an organism's sensory surfaces can have a pronounced effect on the incoming flow of sensory information. In this study, we quantified variability in the velocity profiles of rat whisking during natural exploratory behavior that included head rotations. A wide continuum of profiles was observed, including monotonic, delayed, and reversing velocities during protractions and retractions. Three alternative hypotheses for the function of the variable velocity profiles were tested: 1) that they produce bilateral asymmetry specifically correlated with rotational head velocity, 2) that they serve to generate bilaterally asymmetric and/or asynchronous whisker movements independent of head velocity, and 3) that the different profiles—despite increasing variability in instantaneous velocity—reduce variability in the average whisking velocity. Our results favor the third hypothesis and do not support the first two. Specifically, the velocity variability within a whisk can be observed as a shift in the phase of the maximum velocity. We discuss the implications of these results for the control of whisker motion, horizontal object localization, and processing in the thalamus and cortex of the rat vibrissal system.
Collapse
|
95
|
Ulanovsky N, Moss CF. What the bat's voice tells the bat's brain. Proc Natl Acad Sci U S A 2008; 105:8491-8. [PMID: 18562301 PMCID: PMC2438418 DOI: 10.1073/pnas.0703550105] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Indexed: 11/18/2022] Open
Abstract
For over half a century, the echolocating bat has served as a valuable model in neuroscience to elucidate mechanisms of auditory processing and adaptive behavior in biological sonar. Our article emphasizes the importance of the bat's vocal-motor system to spatial orientation by sonar, and we present this view in the context of three problems that the echolocating bat must solve: (i) auditory scene analysis, (ii) sensorimotor transformations, and (iii) spatial memory and navigation. We summarize our research findings from behavioral studies of echolocating bats engaged in natural tasks and from neurophysiological studies of the bat superior colliculus and hippocampus, brain structures implicated in sensorimotor integration, orientation, and spatial memory. Our perspective is that studies of neural activity in freely vocalizing bats engaged in natural behaviors will prove essential to advancing a deeper understanding of the mechanisms underlying perception and memory in mammals.
Collapse
Affiliation(s)
- Nachum Ulanovsky
- *Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Cynthia F. Moss
- Department of Psychology and Institute for Systems Research, Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742
| |
Collapse
|
96
|
McKinstry JL, Seth AK, Edelman GM, Krichmar JL. Embodied models of delayed neural responses: spatiotemporal categorization and predictive motor control in brain based devices. Neural Netw 2008; 21:553-61. [PMID: 18495424 DOI: 10.1016/j.neunet.2008.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/25/2008] [Accepted: 01/25/2008] [Indexed: 11/28/2022]
Abstract
In order to respond appropriately to environmental stimuli, organisms must integrate over time spatiotemporal signals that reflect object motion and self-movement. One possible mechanism to achieve this spatiotemporal transformation is to delay or lag neural responses. This paper reviews our recent modeling work testing the sufficiency of delayed responses in the nervous system in two different behavioral tasks: (1) Categorizing spatiotemporal tactile cues with thalamic "lag" cells and downstream coincidence detectors, and (2) Predictive motor control was achieved by the cerebellum through a delayed eligibility trace rule at cerebellar synapses. Since the timing of these neural signals must closely match real-world dynamics, we tested these ideas using the brain based device (BBD) approach in which a simulated nervous system is embodied in a robotic device. In both tasks, biologically inspired neural simulations with delayed neural responses were critical for successful behavior by the device.
Collapse
Affiliation(s)
- Jeffrey L McKinstry
- The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
97
|
Foffani G, Chapin JK, Moxon KA. Computational role of large receptive fields in the primary somatosensory cortex. J Neurophysiol 2008; 100:268-80. [PMID: 18400959 DOI: 10.1152/jn.01015.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Computational studies are challenging the intuitive view that neurons with broad tuning curves are necessarily less discriminative than neurons with sharp tuning curves. In the context of somatosensory processing, broad tuning curves are equivalent to large receptive fields. To clarify the computational role of large receptive fields for cortical processing of somatosensory information, we recorded ensembles of single neurons from the infragranular forelimb/forepaw region of the rat primary somatosensory cortex while tactile stimuli were separately delivered to different locations on the forelimbs/forepaws under light anesthesia. We specifically adopted the perspective of individual columns/segregates receiving inputs from multiple body location. Using single-trial analyses of many single-neuron responses, we obtained two main results. 1) The responses of even small populations of neurons recorded from within the same estimated column/segregate can be used to discriminate between stimuli delivered to different surround locations in the excitatory receptive fields. 2) The temporal precision of surround responses is sufficiently high for spike timing to add information over spike count in the discrimination between surround locations. This surround spike-timing code (i) is particularly informative when spike count is ambiguous, e.g., in the discrimination between close locations or when receptive fields are large, (ii) becomes progressively more informative as the number of neurons increases, (iii) is a first-spike code, and (iv) is not limited by the assumption that the time of stimulus onset is known. These results suggest that even though large receptive fields result in a loss of spatial selectivity of single neurons, they can provide as a counterpart a sophisticated temporal code based on latency differences in large populations of neurons without necessarily sacrificing basic information about stimulus location.
Collapse
Affiliation(s)
- Guglielmo Foffani
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
98
|
Simony E, Saraf-Sinik I, Golomb D, Ahissar E. Sensation-targeted motor control: every spike counts? Focus on: "whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat". J Neurophysiol 2008; 99:2757-9. [PMID: 18400953 DOI: 10.1152/jn.90432.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
99
|
Rucci M. Fixational eye movements, natural image statistics, and fine spatial vision. NETWORK (BRISTOL, ENGLAND) 2008; 19:253-285. [PMID: 18991144 DOI: 10.1080/09548980802520992] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Perception and motor control are often regarded as two separate branches of neuroscience. Like most species, however, humans are not passively exposed to the incoming flow of sensory data, but actively seek useful information. By shaping input signals in ways that simplify perceptual tasks, behavior might play an important role in establishing efficient sensory representations in the brain. Under natural viewing conditions, the main source of motion of the stimulus on the retina is not the scene but our own behavior. The retinal image is never still, even during visual fixation, when small eye movements combine with movements of the head and body to continually perturb the location of gaze. This article examines the impact of the fixational motion of the retinal image on the statistics of visual input and the neural encoding of visual information. Building upon recent theoretical and experimental results, it is argued that an unstable fixation constitutes an efficient strategy for acquiring information from natural scenes. According to this theory, the fluctuations of luminance caused by the incessant motion of the eye equalize the power present at different spatial frequencies in the spatiotemporal stimulus on the retina. This phenomenon yields compact neural representations, emphasizes fine spatial detail, and might enable a temporal multiplexing of visual information from the retina to the cortex. This theory posits motor contributions to early visual representations and suggests that perception and behavior are more intimately tied than commonly thought.
Collapse
Affiliation(s)
- Michele Rucci
- Department of Psychology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
100
|
Gopal V, Hartmann MJZ. Using hardware models to quantify sensory data acquisition across the rat vibrissal array. BIOINSPIRATION & BIOMIMETICS 2007; 2:S135-S145. [PMID: 18037723 DOI: 10.1088/1748-3182/2/4/s03] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Our laboratory investigates how animals acquire sensory data to understand the neural computations that permit complex sensorimotor behaviors. We use the rat whisker system as a model to study active tactile sensing; our aim is to quantitatively describe the spatiotemporal structure of incoming sensory information to place constraints on subsequent neural encoding and processing. In the first part of this paper we describe the steps in the development of a hardware model (a 'sensobot') of the rat whisker array that can perform object feature extraction. We show how this model provides insights into the neurophysiology and behavior of the real animal. In the second part of this paper, we suggest that sensory data acquisition across the whisker array can be quantified using the complete derivative. We use the example of wall-following behavior to illustrate that computing the appropriate spatial gradients across a sensor array would enable an animal or mobile robot to predict the sensory data that will be acquired at the next time step.
Collapse
Affiliation(s)
- Venkatesh Gopal
- Department of Biomedical Engineering, 2145 Sheridan Road, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|