51
|
Andrada E, Almena M, de Guinoa JS, Merino-Cortes SV, Liebana R, Arcos R, Carrasco S, Carrasco YR, Merida I. Diacylglycerol kinase limits the polarized recruitment of diacylglycerol-enriched organelles to the immune synapse in T cells. Sci Signal 2016; 9:ra127. [DOI: 10.1126/scisignal.aaf7714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
52
|
Farese RV, Sajan MP, Standaert ML. Insulin-Sensitive Protein Kinases (Atypical Protein Kinase C and Protein Kinase B/Akt): Actions and Defects in Obesity and Type II Diabetes. Exp Biol Med (Maywood) 2016; 230:593-605. [PMID: 16179727 DOI: 10.1177/153537020523000901] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glucose transport into muscle is the initial process in glucose clearance and is uniformly defective in insulin-resistant conditions of obesity, metabolic syndrome, and Type II diabetes mellitus. Insulin regulates glucose transport by activating insulin receptor substrate-1 (IRS-1)-dependent phosphatidylinositol 3-kinase (PI3K) which, via increases in PI-3, 4, 5-triphosphate (PIP3), activates atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). Here, we review (i) the evidence that both aPKC and PKB are required for insulin-stimulated glucose transport, (ii) abnormalities in muscle aPKC/PKB activation seen in obesity and diabetes, and (iii) mechanisms for impaired aPKC activation in insulin-resistant conditions. In most cases, defective muscle aPKC/PKB activation reflects both impaired activation of IRS-1/PI3K, the upstream activator of aPKC and PKB in muscle and, in the case of aPKC, poor responsiveness to PIP3, the lipid product of PI3K. Interestingly, insulin-sensitizing agents (e.g., thiazolidinediones, metformin) improve aPKC activation by insulin in vivo and PIP3 in vitro, most likely by activating 5′-adenosine monophosphate-activated protein kinase, which favorably alters intracellular lipid metabolism. Differently from muscle, aPKC activation in the liver is dependent on IRS-2/PI3K rather than IRS-1/PI3K and, surprisingly, the activation of IRS-2/PI3K and aPKC is conserved in high-fat feeding, obesity, and diabetes. This conservation has important implications, as continued activation of hepatic aPKC in hyperinsulinemic states may increase the expression of sterol regulatory element binding protein-1c, which controls genes that increase hepatic lipid synthesis. On the other hand, the defective activation of IRS-1/PI3K and PKB, as seen in diabetic liver, undoubtedly and importantly contributes to increases in hepatic glucose output. Thus, the divergent activation of aPKC and PKB in the liver may explain why some hepatic actions of insulin (e.g., aPKC-dependent lipid synthesis) are increased while other actions (e.g., PKB-dependent glucose metabolism) are diminished. This may explain the paradox that the liver secretes excessive amounts of both very low density lipoprotein triglycerides and glucose in Type II diabetes. Previous reviews from our laboratory that have appeared in the Proceedings have provided essentials on phospholipid-signaling mechanisms used by insulin to activate several protein kinases that seem to be important in mediating the metabolic effects of insulin. During recent years, there have been many new advances in our understanding of how these lipid-dependent protein kinases function during insulin action and why they fail to function in states of insulin resistance. The present review will attempt to summarize what we believe are some of the more important advances.
Collapse
Affiliation(s)
- Robert V Farese
- James A. Haley Veterans Administration Hospital Research Service and Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
53
|
|
54
|
Xiong X, Li X, Wen YA, Gao T. Pleckstrin Homology (PH) Domain Leucine-rich Repeat Protein Phosphatase Controls Cell Polarity by Negatively Regulating the Activity of Atypical Protein Kinase C. J Biol Chem 2016; 291:25167-25178. [PMID: 27760826 DOI: 10.1074/jbc.m116.740639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/18/2016] [Indexed: 02/04/2023] Open
Abstract
The proper establishment of epithelial polarity allows cells to sense and respond to signals that arise from the microenvironment in a spatiotemporally controlled manner. Atypical PKCs (aPKCs) are implicated as key regulators of epithelial polarity. However, the molecular mechanism underlying the negative regulation of aPKCs remains largely unknown. In this study, we demonstrated that PH domain leucine-rich repeat protein phosphatase (PHLPP), a novel family of Ser/Thr protein phosphatases, plays an important role in regulating epithelial polarity by controlling the phosphorylation of both aPKC isoforms. Altered expression of PHLPP1 or PHLPP2 disrupted polarization of Caco2 cells grown in 3D cell cultures as indicated by the formation of aberrant multi-lumen structures. Overexpression of PHLPP resulted in a decrease in aPKC phosphorylation at both the activation loop and the turn motif sites; conversely, knockdown of PHLPP increased aPKC phosphorylation. Moreover, in vitro dephosphorylation experiments revealed that both aPKC isoforms were substrates of PHLPP. Interestingly, knockdown of PKCζ, but not PKCι, led to similar disruption of the polarized lumen structure, suggesting that PKCζ likely controls the polarization process of Caco2 cells. Furthermore, knockdown of PHLPP altered the apical membrane localization of aPKCs and reduced the formation of aPKC-Par3 complex. Taken together, our results identify a novel role of PHLPP in regulating aPKC and cell polarity.
Collapse
Affiliation(s)
| | - Xin Li
- From the Markey Cancer Center and
| | | | - Tianyan Gao
- From the Markey Cancer Center and .,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0509
| |
Collapse
|
55
|
Yadav SK, Magre I, Singh A, Khuperkar D, Joseph J. Regulation of aPKC activity by Nup358 dependent SUMO modification. Sci Rep 2016; 6:34100. [PMID: 27682244 PMCID: PMC5040961 DOI: 10.1038/srep34100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/07/2016] [Indexed: 11/09/2022] Open
Abstract
Atypical PKC (aPKC) family members are involved in regulation of diverse cellular processes, including cell polarization. aPKCs are known to be activated by phosphorylation of specific threonine residues in the activation loop and turn motif. They can also be stimulated by interaction with Cdc42~GTP-Par6 complex. Here we report that PKCζ, a member of the aPKC family, is activated by SUMOylation. We show that aPKC is endogenously modified by SUMO1 and the nucleoporin Nup358 acts as its SUMO E3 ligase. Results from in vitro SUMOylation and kinase assays showed that the modification enhances the kinase activity of PKCζ by ~10-fold. By monitoring the phosphorylation of Lethal giant larvae (Lgl), a downstream target of aPKC, we confirmed these findings in vivo. Consistent with the function of Nup358 as a SUMO E3 ligase for aPKC, depletion of Nup358 attenuated the extent of SUMOylation and the activity of aPKC. Moreover, overexpression of the C-terminal fragment of Nup358 that possesses the E3 ligase activity enhanced SUMOylation of endogenous aPKC and its kinase activity. Collectively, our studies reveal a role for Nup358-dependent SUMOylation in the regulation of aPKC activity and provide a framework for understanding the role of Nup358 in cell polarity.
Collapse
Affiliation(s)
- Santosh Kumar Yadav
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Indrasen Magre
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Aditi Singh
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Deepak Khuperkar
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Jomon Joseph
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| |
Collapse
|
56
|
Bacterial endotoxin modifies heat shock factor-1 activity in RAW 264.7 cells: implications for TNF-α regulation during exposure to febrile range temperatures. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519040100030401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent studies have identified heat shock factor (HSF)-1, the predominant heat/stress-stimulated transcriptional activator of heat shock protein genes as a repressor of certain cytokine genes, including TNF-α and IL-1β. We previously showed that exposing macrophages to febrile-range temperature (FRT; 39.5°C) activates HSF-1 to a DNA binding form that does not activate heat shock protein gene transcription, but apparently represses TNF-α and IL-1β transcription. Prewarming macrophages to 39.5°C for 30 min prior to stimulation with bacterial lipopolysaccharide (LPS) does not change the induction of TNF-α transcription, but markedly reduces its duration. This raised the question of how TNF-α transcription could occur at all in the presence of activated HSF-1. We used RAW 264.7 cells to test the hypothesis that macrophage activation triggers a transient reversal of HSF-1-mediated repression, thereby allowing induction of TNF-α transcription. Electrophoretic mobility shift assays revealed that LPS triggers a transient inactivation of HSF-1 that temporally correlates with TNF-α transcription and was associated with a transient increase in HSF-1 molecular weight, a decrease in its pI, and appearance of HSF-1 phosphorylating activity. The serine/threonine phosphatase inhibitor, calyculin A, blocked the inhibitory affect of FRT on LPS-induced TNF-α generation and prevented the re-activation of HSF-1. We propose that LPS stimulation of FRT-exposed macrophages stimulates a sequential phosphorylation and dephosphorylation of HSF-1, causing a cycle of inactivation and re-activation of HSF-1 repressor activity that allows a temporally-limited period of gene transcription.
Collapse
|
57
|
Ryu JM, Lee SH, Seong JK, Han HJ. Glutamine contributes to maintenance of mouse embryonic stem cell self-renewal through PKC-dependent downregulation of HDAC1 and DNMT1/3a. Cell Cycle 2016; 14:3292-305. [PMID: 26375799 DOI: 10.1080/15384101.2015.1087620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although glutamine (Gln) is not an essential amino acid, it is considered a critical substrate in many key metabolic processes that control a variety of physiological functions and are involved in regulating early embryonic development. Thus, we investigated the effect of Gln on regulation of mouse embryonic stem cell (mESC) self-renewal and related signaling pathways. Gln deprivation decreased Oct4 expression as well as expression of cell cycle regulatory proteins. However, Gln treatment retained the expression of cell cycle regulatory proteins and the Oct4 in mESCs, which were blocked by compound 968 (a glutaminase inhibitor). In addition, Gln stimulated PI3K/Akt pathway, which subsequently elicited PKCϵ translocation to membrane without an influx of intracellular Ca(2+). Inhibition of Akt and PKC blocked Gln-induced Oct4 expression and proliferation. Gln also stimulated mTOR phosphorylation in a time-dependent manner, which abolished by PKC inhibition. Furthermore, Gln increased the cellular population of both Oct4 and bromodeoxyuridine positive cells, suggesting that Gln regulates self-renewal ability of mESCs. Gln induced a decrease in HDAC1, but not in HDAC2, which were blocked by PKC inhibitors. Gln treatment resulted in an increase in global histone acetylation and methylation. In addition, Gln significantly reduced methylation of the Oct4 promoter region through decrease in DNMT1 and DNMT3a expression, which were blocked by PKC and HDAC inhibitors. In conclusion, Gln stimulates mESC proliferation and maintains mESC undifferentiation status through transcription regulation via the Akt, PKCϵ, and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jung Min Ryu
- a Department of Veterinary Physiology ; College of Veterinary Medicine, Seoul National University ; Seoul , Korea
| | - Sang Hun Lee
- b Medical Science Research Institute, Soonchunhyang University Seoul Hospital ; Seoul , Korea
| | - Je Kyung Seong
- c BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University ; Seoul , Korea.,d Department of Anatomy and Cell Biology ; Korea Mouse Phenotyping Center (KMPC), College of Veterinary Medicine, Seoul National University ; Seoul , Korea
| | - Ho Jae Han
- a Department of Veterinary Physiology ; College of Veterinary Medicine, Seoul National University ; Seoul , Korea.,c BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University ; Seoul , Korea
| |
Collapse
|
58
|
Restall IJ, Parolin DAE, Daneshmand M, Hanson JEL, Simard MA, Fitzpatrick ME, Kumar R, Lavictoire SJ, Lorimer IAJ. PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma. Cell Cycle 2016. [PMID: 26208522 PMCID: PMC4825548 DOI: 10.1080/15384101.2015.1071744] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cellular senescence is a tumor suppressor mechanism where cells enter a permanent growth arrest following cellular stress. Oncogene-induced senescence (OIS) is induced in non-malignant cells following the expression of an oncogene or inactivation of a tumor suppressor. Previously, we have shown that protein kinase C iota (PKCι) depletion induces cellular senescence in glioblastoma cells in the absence of a detectable DNA damage response. Here we demonstrate that senescent glioblastoma cells exhibit an aberrant centrosome morphology. This was observed in basal levels of senescence, in p21-induced senescence, and in PKCι depletion-induced senescence. In addition, senescent glioblastoma cells are polyploid, Ki-67 negative and arrest at the G1/S checkpoint, as determined by expression of cell cycle regulatory proteins. These markers are all consistent with cells that have undergone mitotic slippage. Failure of the spindle assembly checkpoint to function properly can lead to mitotic slippage, resulting in the premature exit of mitotic cells into the G1 phase of the cell cycle. Although in G1, these cells have the replicated DNA and centrosomal phenotype of a cell that has entered mitosis and failed to divide. Overall, we demonstrate that PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma cells. To our knowledge, this is the first evidence of markers of mitotic slippage directly in senescent cells by co-staining for senescence-associated β-galactosidase and immunofluorescence markers in the same cell population. We suggest that markers of mitotic slippage be assessed in future studies of senescence to determine the extent of mitotic slippage in the induction of cellular senescence.
Collapse
Affiliation(s)
- Ian J Restall
- a Centre for Cancer Therapeutics; Ottawa Hospital Research Institute ; Ottawa , ON Canada.,b Department of Biochemistry ; Microbiology and Immunology; University of Ottawa ; Ottawa , ON Canada
| | - Doris A E Parolin
- a Centre for Cancer Therapeutics; Ottawa Hospital Research Institute ; Ottawa , ON Canada
| | - Manijeh Daneshmand
- a Centre for Cancer Therapeutics; Ottawa Hospital Research Institute ; Ottawa , ON Canada
| | - Jennifer E L Hanson
- a Centre for Cancer Therapeutics; Ottawa Hospital Research Institute ; Ottawa , ON Canada
| | - Manon A Simard
- a Centre for Cancer Therapeutics; Ottawa Hospital Research Institute ; Ottawa , ON Canada.,b Department of Biochemistry ; Microbiology and Immunology; University of Ottawa ; Ottawa , ON Canada
| | - Megan E Fitzpatrick
- a Centre for Cancer Therapeutics; Ottawa Hospital Research Institute ; Ottawa , ON Canada.,b Department of Biochemistry ; Microbiology and Immunology; University of Ottawa ; Ottawa , ON Canada
| | - Ritesh Kumar
- a Centre for Cancer Therapeutics; Ottawa Hospital Research Institute ; Ottawa , ON Canada.,b Department of Biochemistry ; Microbiology and Immunology; University of Ottawa ; Ottawa , ON Canada
| | - Sylvie J Lavictoire
- a Centre for Cancer Therapeutics; Ottawa Hospital Research Institute ; Ottawa , ON Canada
| | - Ian A J Lorimer
- a Centre for Cancer Therapeutics; Ottawa Hospital Research Institute ; Ottawa , ON Canada.,b Department of Biochemistry ; Microbiology and Immunology; University of Ottawa ; Ottawa , ON Canada.,c Department of Medicine ; University of Ottawa ; Ottawa , ON Canada
| |
Collapse
|
59
|
Lakshmipathi J, Alvarez-Perez JC, Rosselot C, Casinelli GP, Stamateris RE, Rausell-Palamos F, O'Donnell CP, Vasavada RC, Scott DK, Alonso LC, Garcia-Ocaña A. PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2. Diabetes 2016; 65:1283-96. [PMID: 26868297 PMCID: PMC4839210 DOI: 10.2337/db15-1398] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/06/2016] [Indexed: 12/23/2022]
Abstract
Adaptive β-cell replication occurs in response to increased metabolic demand during insulin resistance. The intracellular mediators of this compensatory response are poorly defined and their identification could provide significant targets for β-cell regeneration therapies. Here we show that glucose and insulin in vitro and insulin resistance in vivo activate protein kinase C ζ (PKCζ) in pancreatic islets and β-cells. PKCζ is required for glucose- and glucokinase activator-induced proliferation of rodent and human β-cells in vitro. Furthermore, either kinase-dead PKCζ expression (KD-PKCζ) or disruption of PKCζ in mouse β-cells blocks compensatory β-cell replication when acute hyperglycemia/hyperinsulinemia is induced. Importantly, KD-PKCζ inhibits insulin resistance-mediated mammalian target of rapamycin (mTOR) activation and cyclin-D2 upregulation independent of Akt activation. In summary, PKCζ activation is key for early compensatory β-cell replication in insulin resistance by regulating the downstream signals mTOR and cyclin-D2. This suggests that alterations in PKCζ expression or activity might contribute to inadequate β-cell mass expansion and β-cell failure leading to type 2 diabetes.
Collapse
Affiliation(s)
- Jayalakshmi Lakshmipathi
- Diabetes, Obesity and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Juan Carlos Alvarez-Perez
- Diabetes, Obesity and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carolina Rosselot
- Diabetes, Obesity and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gabriella P Casinelli
- Division of Pediatric Hematology/Oncology and Blood and Marrow Transplantation, Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Rachel E Stamateris
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Francisco Rausell-Palamos
- Diabetes, Obesity and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christopher P O'Donnell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Rupangi C Vasavada
- Diabetes, Obesity and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura C Alonso
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
60
|
In Vitro Neutrophil Migration Requires Protein Kinase C-Delta (δ-PKC)-Mediated Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) Phosphorylation. Inflammation 2016; 38:1126-41. [PMID: 25515270 DOI: 10.1007/s10753-014-0078-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dysregulated release of neutrophil reactive oxygen species and proteolytic enzymes contributes to both acute and chronic inflammatory diseases. Therefore, molecular regulators of these processes are potential targets for new anti-inflammatory therapies. We have shown previously that myristoylated alanine-rich C-kinase substrate (MARCKS), a well-known actin binding protein and protein kinase C (PKC) substrate, is a key regulator of neutrophil functions. In the current study, we investigate the role of PKC-mediated MARCKS phosphorylation in neutrophil migration and adhesion in vitro. We report that treatment of human neutrophils with the δ-PKC inhibitor rottlerin significantly attenuates f-Met-Leu-Phe (fMLF)-induced MARCKS phosphorylation (IC50=5.709 μM), adhesion (IC50=8.4 μM), and migration (IC50=6.7 μM), while α-, β-, and ζ-PKC inhibitors had no significant effect. We conclude that δ-PKC-mediated MARCKS phosphorylation is essential for human neutrophil migration and adhesion in vitro. These results implicate δ-PKC-mediated MARCKS phosphorylation as a key step in the inflammatory response of neutrophils.
Collapse
|
61
|
Balakrishnan B, Chen W, Tang M, Huang X, Cakici DD, Siddiqi A, Berry G, Lai K. Galactose-1 phosphate uridylyltransferase (GalT) gene: A novel positive regulator of the PI3K/Akt signaling pathway in mouse fibroblasts. Biochem Biophys Res Commun 2016; 470:205-212. [PMID: 26773505 DOI: 10.1016/j.bbrc.2016.01.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 12/19/2022]
Abstract
The vital importance of the Leloir pathway of galactose metabolism has been repeatedly demonstrated by various uni-/multicellular model organisms, as well human patients who have inherited deficiencies of the key GAL enzymes. Yet, other than the obvious links to the glycolytic pathway and glycan biosynthetic pathways, little is known about how this metabolic pathway interacts with the rest of the metabolic and signaling networks. In this study, we compared the growth and the expression levels of the key components of the PI3K/Akt growth signaling pathway in primary fibroblasts derived from normal and galactose-1 phosphate uridylyltransferase (GalT)-deficient mice, the latter exhibited a subfertility phenotype in adult females and growth restriction in both sexes. The growth potential and the protein levels of the pAkt(Thr308), pAkt(Ser473), pan-Akt, pPdk1, and Hsp90 proteins were significantly reduced by 62.5%, 60.3%, 66%, 66%, and 50%, respectively in the GalT-deficient cells. Reduced expression of phosphorylated Akt proteins in the mutant cells led to diminished phosphorylation of Gsk-3β (-74%). Protein expression of BiP and pPten were 276% and 176% higher respectively in cells with GalT-deficiency. Of the 24 genes interrogated using QIAGEN RT(2) Profiler PCR Custom Arrays, the mRNA abundance of Akt1, Pdpk1, Hsp90aa1 and Pi3kca genes were significantly reduced at least 2.03-, 1.37-, 2.45-, and 1.78-fold respectively in mutant fibroblasts. Both serum-fasted normal and GalT-deficient cells responded to Igf-1-induced activation of Akt phosphorylation at +15 min, but the mutant cells have lower phosphorylation levels. The steady-state protein abundance of Igf-1 receptor was also significantly reduced in mutant cells. Our results thus demonstrated that GalT deficiency can effect down-regulation of the PI3K/Akt growth signaling pathway in mouse fibroblasts through distinct mechanisms targeting both gene and protein expression levels.
Collapse
Affiliation(s)
- Bijina Balakrishnan
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, USA
| | - Wyman Chen
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, USA
| | - Manshu Tang
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, USA
| | - Xiaoping Huang
- Division of Genetics and Genomics, Department of Pediatrics, Harvard Medical School, USA
| | - Didem Demirbas Cakici
- Division of Genetics and Genomics, Department of Pediatrics, Harvard Medical School, USA
| | - Anwer Siddiqi
- Department of Pathology and Laboratory Medicine, University of Florida College of Medicine, USA
| | - Gerard Berry
- Division of Genetics and Genomics, Department of Pediatrics, Harvard Medical School, USA
| | - Kent Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, USA.
| |
Collapse
|
62
|
Gómez-Villafuertes R, García-Huerta P, Díaz-Hernández JI, Miras-Portugal MT. PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions. Sci Rep 2015; 5:18417. [PMID: 26687764 PMCID: PMC4685307 DOI: 10.1038/srep18417] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/17/2015] [Indexed: 12/19/2022] Open
Abstract
The expression of purinergic P2X7 receptor (P2X7R) in neuroblastoma cells is associated to accelerated growth rate, angiogenesis, metastasis and poor prognosis. Noticeably, P2X7R allows the survival of neuroblastoma cells under restrictive conditions, including serum and glucose deprivation. Previously we identified specificity protein 1 (Sp1) as the main factor involved in the transcriptional regulation of P2rx7 gene, reporting that serum withdrawal triggers the expression of P2X7R in Neuro-2a (N2a) neuroblastoma cell line. Here we demonstrate that PI3K/Akt pathway is crucial for the upregulation of P2X7R expression in serum-deprived neuroblastoma cells, circumstance that facilitates cell proliferation in the absence of trophic support. The effect exerted by PI3K/Akt is independent of both mTOR and GSK3, but requires the activation of EGF receptor (EGFR). Nuclear levels of Sp1 are strongly reduced by inhibition of PI3K/Akt pathway, and blockade of Sp1-dependent transcription with mithramycin A prevents upregulation of P2rx7 gene expression following serum withdrawal. Furthermore, atypical PKCζ plays a key role in the regulation of P2X7R expression by preventing phosphorylation and, consequently, activation of Akt. Altogether, these data indicate that activation of EGFR enhanced the expression of P2X7R in neuroblastoma cells lacking trophic support, being PI3K/Akt/PKCζ signaling pathway and Sp1 mediating this pro-survival outcome.
Collapse
Affiliation(s)
- Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Paula García-Huerta
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Juan Ignacio Díaz-Hernández
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Mª Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
63
|
Protein kinase Cζ exhibits constitutive phosphorylation and phosphatidylinositol-3,4,5-triphosphate-independent regulation. Biochem J 2015; 473:509-23. [PMID: 26635352 DOI: 10.1042/bj20151013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/03/2015] [Indexed: 12/21/2022]
Abstract
Atypical protein kinase C (aPKC) isoenzymes are key modulators of insulin signalling, and their dysfunction correlates with insulin-resistant states in both mice and humans. Despite the engaged interest in the importance of aPKCs to type 2 diabetes, much less is known about the molecular mechanisms that govern their cellular functions than for the conventional and novel PKC isoenzymes and the functionally-related protein kinase B (Akt) family of kinases. Here we show that aPKC is constitutively phosphorylated and, using a genetically-encoded reporter for PKC activity, basally active in cells. Specifically, we show that phosphorylation at two key regulatory sites, the activation loop and turn motif, of the aPKC PKCζ in multiple cultured cell types is constitutive and independently regulated by separate kinases: ribosome-associated mammalian target of rapamycin complex 2 (mTORC2) mediates co-translational phosphorylation of the turn motif, followed by phosphorylation at the activation loop by phosphoinositide-dependent kinase-1 (PDK1). Live cell imaging reveals that global aPKC activity is constitutive and insulin unresponsive, in marked contrast to the insulin-dependent activation of Akt monitored by an Akt-specific reporter. Nor does forced recruitment to phosphoinositides by fusing the pleckstrin homology (PH) domain of Akt to the kinase domain of PKCζ alter either the phosphorylation or activity of PKCζ. Thus, insulin stimulation does not activate PKCζ through the canonical phosphatidylinositol-3,4,5-triphosphate-mediated pathway that activates Akt, contrasting with previous literature on PKCζ activation. These studies support a model wherein an alternative mechanism regulates PKCζ-mediated insulin signalling that does not utilize conventional activation via agonist-evoked phosphorylation at the activation loop. Rather, we propose that scaffolding near substrates drives the function of PKCζ.
Collapse
|
64
|
Pinel A, Rigaudière JP, Laillet B, Pouyet C, Malpuech-Brugère C, Prip-Buus C, Morio B, Capel F. N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:12-20. [PMID: 26477381 DOI: 10.1016/j.bbalip.2015.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/02/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022]
Abstract
Excessive energy intake leads to fat overload and the formation of lipotoxic compounds mainly derived from the saturated fatty acid palmitate (PAL), thus promoting insulin resistance (IR) in skeletal muscle. N-3 polyunsaturated fatty acids (n-3PUFA) may prevent lipotoxicity and IR. The purpose of this study was to examine the differential effects of n-3PUFA on fatty acid metabolism and insulin sensitivity in muscle cells. C2C12 myotubes were treated with 500 μM of PAL without or with 50 μM of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for 16 h. PAL decreased insulin-dependent AKT activation and glucose uptake and increased the synthesis of ceramides and diglycerides (DG) derivatives, leading to protein kinase Cθ activation. EPA and DHA, but not ALA, prevented PAL-decreased AKT activation but glucose uptake was restored to control values by all n-3PUFA vs. PAL. Total DG and ceramide contents were decreased by all n-3PUFA, but only EPA and DHA increased PAL β-oxidation, decreased PAL incorporation into DG and reduced protein kinase Cθ activation. EPA and DHA emerge as better candidates than ALA to improve fatty acid metabolism in skeletal muscle cells, notably via their ability to increase mitochondrial β-oxidation.
Collapse
Affiliation(s)
- Alexandre Pinel
- Institut National de la Recherche Agronomique, UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France.
| | - Jean-Paul Rigaudière
- Institut National de la Recherche Agronomique, UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France.
| | - Brigitte Laillet
- Institut National de la Recherche Agronomique, UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France.
| | - Corinne Pouyet
- Institut National de la Recherche Agronomique, UMR1019 Nutrition Humaine, Plateforme d'Exploration du Métabolisme, 63122 Saint-Genès-Champanelle, France.
| | - Corinne Malpuech-Brugère
- Institut National de la Recherche Agronomique, UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France.
| | - Carina Prip-Buus
- Institut Cochin, Département d'Endocrinologie, Métabolisme and Diabète, U1016 Inserm/UMR8104 CNRS/UMR-S8104, bâtiment Faculté, 3(ème) étage, Salle 3012A, 24 rue du faubourg Saint Jacques, 75014 Paris, France.
| | - Béatrice Morio
- Institut National de la Recherche Agronomique, UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France; INRA, UMR 1397, Laboratoire CarMeN, Université Lyon 1, INSERM U1060, INSA de Lyon, Université Lyon-Sud Rockefeller et Charles Merieux, Lyon, France.
| | - Frédéric Capel
- Institut National de la Recherche Agronomique, UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France.
| |
Collapse
|
65
|
King CC, Obonyo M. Helicobacter pylori modulates host cell survival regulation through the serine-threonine kinase, 3-phosphoinositide dependent kinase 1 (PDK-1). BMC Microbiol 2015; 15:222. [PMID: 26487493 PMCID: PMC4618363 DOI: 10.1186/s12866-015-0543-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection affects cell survival signaling pathways including cell apoptosis and proliferation, which are considered risk factors for the development of gastric cancer when unregulated. In the present study, we investigated the effect of H. pylori infection on the phosphorylation state of 3-phosphoinositide-dependent kinase-1 (PDK-1), a master kinase that regulates phosphorylation of Akt (also known as protein kinase B, PKB) and cell survival. METHODS The activity of PDK-1 was examined in human gastric epithelial cells incubated in the presence or absence of different H. pylori strains. In addition, the role of H. pylori type IV secretion system and the mechanism of H. pylori effect on PDK-1 activity was examined. RESULTS In the presence of H. pylori, phosphorylation of the activation loop (serine 241) PDK-1 was rapidly lost suggesting that dephosphorylation of PDK-1 is a target for H. pylori to modulate cell survival. The extent of dephosphorylation was strain dependent with H. pylori 60190 being the most effective. H. pylori infection of gastric epithelial cells resulted in altered phosphorylation and degradation of Akt, suggesting that PDK-1 dephosphorylation affects cell survival pathways and thereby may contribute to disease pathogenesis. CONCLUSION We propose that dephosphorylation of PDK-1 and the resulting changes to Akt phosphorylation is one of the mechanisms by which infection with H. pylori alter the balance between apoptosis and cell proliferation and identify a host molecular mechanism regulated by H. pylori that ultimately contributes to carcinogenesis. Our studies therefore provide insights into one of the mechanisms by which H. pylori infection contributes to gastric cancer by regulating the activity of a cell survival signaling pathway.
Collapse
Affiliation(s)
- Charles C King
- Pediatric Diabetes Research Center, University of California, La Jolla, San Diego, CA, 92093, USA.
| | - Marygorret Obonyo
- Department of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
66
|
Lee-Rivera I, López E, Parrales A, Alvarez-Arce A, López-Colomé AM. Thrombin promotes the expression of Ccnd1 gene in RPE cells through the activation of converging signaling pathways. Exp Eye Res 2015; 139:81-9. [DOI: 10.1016/j.exer.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/06/2015] [Accepted: 08/01/2015] [Indexed: 11/29/2022]
|
67
|
PKCiota promotes ovarian tumor progression through deregulation of cyclin E. Oncogene 2015; 35:2428-40. [PMID: 26279297 PMCID: PMC4856585 DOI: 10.1038/onc.2015.301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 01/29/2023]
Abstract
The high frequency of relapse of epithelial ovarian tumors treated with standard chemotherapy has highlighted the necessity to identify targeted therapies that can improve patient outcomes. The dynamic relationship between Cyclin E and PKCiota frequent overexpression in high-grade ovarian tumors poses a novel pathway for therapeutic investigation. We hypothesized that a PI3K dependent signaling pathway activating PKCiota perpetuates cyclin E deregulation during ovarian tumorigenesis. We observed a positive correlation between PKCiota and cyclin E in a panel of 19 ovarian cancer cell lines. Modulation of cyclin E had no effect on PKCiota knockdown/overexpression however PKCiota differentially regulated cyclin E expression. In the serous ovarian cancer cells (IGROV, OVCAR-3), shPKCiota decreased proliferation, caused a G1 arrest, and significantly prolonged overall survival in xenograft mouse models. In vitro shPKCiota decreased the ability of IGROV cells to grow under anchorage independent conditions and form aberrant acini, which was dependent upon Ad-cyclin E or Ad-LMW-E expression. RPPA analysis of PKCiota wild-type, catalytic active, dominant negative protein isoforms strengthened the association between phospho-PKCiota levels and PI3K pathway activation. Inhibitors of PI3K coordinately decreased phospho-PKCiota and Cyclin E protein levels. In conclusion, we have identified a PI3K/PKCiota/Cyclin E signaling pathway as a therapeutic target during ovarian tumorigenesis.
Collapse
|
68
|
Archibald A, Al-Masri M, Liew-Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell 2015; 26:3578-95. [PMID: 26269582 PMCID: PMC4603929 DOI: 10.1091/mbc.e15-05-0265] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/07/2015] [Indexed: 01/22/2023] Open
Abstract
Epithelial cells are major sites of malignant transformation. Atypical protein kinase C (aPKC) isoforms are overexpressed and activated in many cancer types. Using normal, highly polarized epithelial cells (MDCK and NMuMG), we report that aPKC gain of function overcomes contact inhibited growth and is sufficient for a transformed epithelial phenotype. In 2D cultures, aPKC induced cells to grow as stratified epithelia, whereas cells grew as solid spheres of nonpolarized cells in 3D culture. aPKC associated with Mst1/2, which uncoupled Mst1/2 from Lats1/2 and promoted nuclear accumulation of Yap1. Of importance, Yap1 was necessary for aPKC-mediated overgrowth but did not restore cell polarity defects, indicating that the two are separable events. In MDCK cells, Yap1 was sequestered to cell-cell junctions by Amot, and aPKC overexpression resulted in loss of Amot expression and a spindle-like cell phenotype. Reexpression of Amot was sufficient to restore an epithelial cobblestone appearance, Yap1 localization, and growth control. In contrast, the effect of aPKC on Hippo/Yap signaling and overgrowth in NMuMG cells was independent of Amot. Finally, increased expression of aPKC in human cancers strongly correlated with increased nuclear accumulation of Yap1, indicating that the effect of aPKC on transformed growth by deregulating Hippo/Yap1 signaling may be clinically relevant.
Collapse
Affiliation(s)
- Andrew Archibald
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Maia Al-Masri
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Alyson Liew-Spilger
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada Department of Oncology, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
69
|
Xia JY, Holland WL, Kusminski CM, Sun K, Sharma AX, Pearson MJ, Sifuentes AJ, McDonald JG, Gordillo R, Scherer PE. Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis. Cell Metab 2015; 22:266-278. [PMID: 26190650 PMCID: PMC4527941 DOI: 10.1016/j.cmet.2015.06.007] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/16/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022]
Abstract
Sphingolipids have garnered attention for their role in insulin resistance and lipotoxic cell death. We have developed transgenic mice inducibly expressing acid ceramidase that display a reduction in ceramides in adult mouse tissues. Hepatic overexpression of acid ceramidase prevents hepatic steatosis and prompts improvements in insulin action in liver and adipose tissue upon exposure to high-fat diet. Conversely, overexpression of acid ceramidase within adipose tissue also prevents hepatic steatosis and systemic insulin resistance. Induction of ceramidase activity in either tissue promotes a lowering of hepatic ceramides and reduced activation of the ceramide-activated protein kinase C isoform PKCζ, though the induction of ceramidase activity in the adipocyte prompts more rapid resolution of hepatic steatosis than overexpression of the enzyme directly in the liver. Collectively, our observations suggest the existence of a rapidly acting "cross-talk" between liver and adipose tissue sphingolipids, critically regulating glucose metabolism and hepatic lipid uptake.
Collapse
Affiliation(s)
- Jonathan Y. Xia
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8549
| | - William L. Holland
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8549
| | - Christine M. Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8549
| | - Kai Sun
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8549
| | - Ankit X. Sharma
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8549
| | - Mackenzie J. Pearson
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8549
| | - Angelika J. Sifuentes
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8549
| | - Jeffrey G. McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8549
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8549
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8549
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8549
- Correspondence should be addressed to: Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-8549, USA, , Tel: 214-648-8715. Fax: 214-648-8720
| |
Collapse
|
70
|
Juanes-Garcia A, Chapman JR, Aguilar-Cuenca R, Delgado-Arevalo C, Hodges J, Whitmore LA, Shabanowitz J, Hunt DF, Horwitz AR, Vicente-Manzanares M. A regulatory motif in nonmuscle myosin II-B regulates its role in migratory front-back polarity. ACTA ACUST UNITED AC 2015; 209:23-32. [PMID: 25869664 PMCID: PMC4395487 DOI: 10.1083/jcb.201407059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, we show that the role of nonmuscle myosin II (NMII)-B in front-back migratory cell polarity is controlled by a short stretch of amino acids containing five serines (1935-1941). This motif resides near the junction between the C terminus helical and nonhelical tail domains. Removal of this motif inhibited NMII-B assembly, whereas its insertion into NMII-A endowed an NMII-B-like ability to generate large actomyosin bundles that determine the rear of the cell. Phosphomimetic mutation of the five serines also inhibited NMII-B assembly, rendering it unable to support front-back polarization. Mass spectrometric analysis showed that several of these serines are phosphorylated in live cells. Single-site mutagenesis showed that serine 1935 is a major regulatory site of NMII-B function. These data reveal a novel regulatory mechanism of NMII in polarized migrating cells by identifying a key molecular determinant that confers NMII isoform functional specificity.
Collapse
Affiliation(s)
- Alba Juanes-Garcia
- Instituto de Investigacion Sanitaria-Hospital Universitario de la Princesa and Universidad Autonoma de Madrid School of Medicine, 28006 Madrid, Spain Instituto de Investigacion Sanitaria-Hospital Universitario de la Princesa and Universidad Autonoma de Madrid School of Medicine, 28006 Madrid, Spain
| | - Jessica R Chapman
- Department of Chemistry and Department of Pathology, University of Virginia, Charlottesville, VA 22901
| | - Rocio Aguilar-Cuenca
- Instituto de Investigacion Sanitaria-Hospital Universitario de la Princesa and Universidad Autonoma de Madrid School of Medicine, 28006 Madrid, Spain Instituto de Investigacion Sanitaria-Hospital Universitario de la Princesa and Universidad Autonoma de Madrid School of Medicine, 28006 Madrid, Spain
| | - Cristina Delgado-Arevalo
- Instituto de Investigacion Sanitaria-Hospital Universitario de la Princesa and Universidad Autonoma de Madrid School of Medicine, 28006 Madrid, Spain Instituto de Investigacion Sanitaria-Hospital Universitario de la Princesa and Universidad Autonoma de Madrid School of Medicine, 28006 Madrid, Spain
| | - Jennifer Hodges
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Leanna A Whitmore
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jeffrey Shabanowitz
- Department of Chemistry and Department of Pathology, University of Virginia, Charlottesville, VA 22901
| | - Donald F Hunt
- Department of Chemistry and Department of Pathology, University of Virginia, Charlottesville, VA 22901 Department of Chemistry and Department of Pathology, University of Virginia, Charlottesville, VA 22901
| | - Alan Rick Horwitz
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Miguel Vicente-Manzanares
- Instituto de Investigacion Sanitaria-Hospital Universitario de la Princesa and Universidad Autonoma de Madrid School of Medicine, 28006 Madrid, Spain Instituto de Investigacion Sanitaria-Hospital Universitario de la Princesa and Universidad Autonoma de Madrid School of Medicine, 28006 Madrid, Spain
| |
Collapse
|
71
|
Abstract
The protein kinases C (PKCs) are a family of serine/threonine kinases involved in regulating multiple essential cellular processes such as survival, proliferation, and differentiation. Of particular interest is the novel, calcium-independent PKCθ which plays a central role in immune responses. PKCθ shares structural similarities with other PKC family members, mainly consisting of an N-terminal regulatory domain and a C-terminal catalytic domain tethered by a hinge region. This isozyme, however, is unique in that it translocates to the immunological synapse between a T cell and an antigen-presenting cell (APC) upon T cell receptor-peptide MHC recognition. Thereafter, PKCθ interacts physically and functionally with downstream effectors to mediate T cell activation and differentiation, subsequently leading to inflammation. PKCθ-specific perturbations have been identified in several diseases, most notably autoimmune disorders, and hence the modulation of its activity presents an attractive therapeutic intervention. To that end, many inhibitors of PKCs and PKCθ have been developed and tested in preclinical and clinical studies. And although selectivity remains a challenge, results are promising for the future development of effective PKCθ inhibitors that would greatly advance the treatment of several T-cell mediated diseases.
Collapse
|
72
|
Threonine 34 phosphorylation by phosphoinositide-dependent protein kinase 1 facilitates dissociation of Akt from the plasma membrane. Int J Biochem Cell Biol 2015; 64:195-201. [PMID: 25912234 DOI: 10.1016/j.biocel.2015.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/26/2015] [Accepted: 04/13/2015] [Indexed: 01/13/2023]
Abstract
Akt is a key mediator of cell proliferation, survival and metabolism. After translocation to the membrane and phosphorylation at T308 and S473, the activated Akt dissociates from the plasma membrane to cytoplasm, which is an important step to phosphorylate its downstream targets. In addition to its central role in regulating the kinase activity, phosphorylation of T308 in the kinase loop has been reported to be necessary for this dissociation process. However, it is not clear whether the membrane detachment requires further mechanisms. In the present report, we demonstrate that membrane dissociation of Akt requires phosphoinositide-dependent protein kinase 1 (PDK1) which directly phosphorylates not only T308 but also T34 in the pleckstrin homology (PH) domain. Like T308, T34 was phosphorylated in a phosphatidylinositol 3,4,5-trisphosphate- and phosphatidylserine-dependent manner. Phosphorylation of T34 also occurred in cells following growth factor stimulation, concurrently with T308 phosphorylation. Moreover, when T34 was mutated to aspartic acid (T34D) to mimic its phosphorylation, Akt-membrane association assessed by surface plasmon resonance spectroscopy was significantly reduced. In cells, this mutation impaired the IGF-induced Akt membrane translocation and subsequent phosphorylation at T308 and S473. Taken together, our results demonstrate that T34 phosphorylation by PDK1 promotes the membrane dissociation of activated Akt for its downstream action through attenuating membrane binding affinity. This membrane dissociation mechanism offers a new insight for Akt activation process and provides a potential new target for controlling the Akt-dependent cellular processes.
Collapse
|
73
|
Horikoshi Y, Kitatani K, Toriumi K, Fukunishi N, Itoh Y, Nakamura N, Ohno S, Matsura T, Takekoshi S. Aberrant activation of atypical protein kinase C in carbon tetrachloride-induced oxidative stress provokes a disturbance of cell polarity and sealing of bile canalicular lumen. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:958-68. [PMID: 25688837 DOI: 10.1016/j.ajpath.2014.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/20/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
Abstract
Polarized hepatocytes contain tight junctions (TJs), which are among the most important junctions for sealing the bile canalicular lumen from the sinusoidal space. Alterations in TJs are implicated in chronic cholestatic liver diseases, such as primary biliary cirrhosis and primary sclerosing cholangitis, which have lipid peroxidation marker elevations or antioxidant vitamin decreases. However, the effect of oxidative stress on hepatocyte polarity or liver morphology is unknown. We found that carbon tetrachloride (CCl4)-induced oxidative stress resulted in disassembly of TJs. Ultrastructural analysis revealed disruption in TJs, Golgi morphology, and expansion of the bile canalicular lumen size in CCl4-treated hepatocytes. The Par complex [Par-3-atypical protein kinase C (aPKC) and Par-6 ternary complex] regulates TJs and lumen formation, and the Par-3-aPKC complex formation was inhibited by CCl4 treatment. Moreover, the antioxidant compound vitamin E prohibited a CCl4-induced disturbance in TJs and Par-3-aPKC complex formation. aPKC phosphorylates Par-3 and down-regulates its own affinity with Par-3. Importantly, aPKC kinase activity and Par-3 phosphorylation were significantly increased in CCl4-treated rat livers. These results indicate that the Par-3-aPKC complex plays a crucial role in the maintenance of hepatocyte polarity and sealing of the bile canalicular lumen. Our findings suggest that bile canalicular lumen expansion might explain the presence of cholestasis in patients with primary biliary cirrhosis and primary sclerosing cholangitis.
Collapse
Affiliation(s)
- Yosuke Horikoshi
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan; Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kanae Kitatani
- Division of Host Defense Mechanism, Department of Cell Biology, Tokai University School of Medicine, Isehara, Japan
| | - Kentaro Toriumi
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Nahoko Fukunishi
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Yoshiko Itoh
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Tatsuya Matsura
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Susumu Takekoshi
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan; Division of Host Defense Mechanism, Department of Cell Biology, Tokai University School of Medicine, Isehara, Japan.
| |
Collapse
|
74
|
Brennan-Minnella AM, Won SJ, Swanson RA. NADPH oxidase-2: linking glucose, acidosis, and excitotoxicity in stroke. Antioxid Redox Signal 2015; 22:161-74. [PMID: 24628477 PMCID: PMC4281853 DOI: 10.1089/ars.2013.5767] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Neuronal superoxide production contributes to cell death in both glutamate excitotoxicity and brain ischemia (stroke). NADPH oxidase-2 (NOX2) is the major source of neuronal superoxide production in these settings, and regulation of NOX2 activity can thereby influence outcome in stroke. RECENT ADVANCES Reduced NOX2 activity can rescue cells from oxidative stress and cell death that otherwise occur in excitotoxicity and ischemia. NOX2 activity is regulated by several factors previously shown to affect outcome in stroke, including glucose availability, intracellular pH, protein kinase ζ/δ, casein kinase 2, phosphoinositide-3-kinase, Rac1/2, and phospholipase A2. The newly identified functions of these factors as regulators of NOX2 activity suggest alternative mechanisms for their effects on ischemic brain injury. CRITICAL ISSUES Key aspects of these regulatory influences remain unresolved, including the mechanisms by which rac1 and phospholipase activities are coupled to N-methyl-D-aspartate (NMDA) receptors, and whether superoxide production by NOX2 triggers subsequent superoxide production by mitochondria. FUTURE DIRECTIONS It will be important to establish whether interventions targeting the signaling pathways linking NMDA receptors to NOX2 in brain ischemia can provide a greater neuroprotective efficacy or a longer time window to treatment than provided by NMDA receptor blockade alone. It will likewise be important to determine whether dissociating superoxide production from the other signaling events initiated by NMDA receptors can mitigate the deleterious effects of NMDA receptor blockade.
Collapse
|
75
|
Motta K, Barbosa AM, Bobinski F, Boschero AC, Rafacho A. JNK and IKKβ phosphorylation is reduced by glucocorticoids in adipose tissue from insulin-resistant rats. J Steroid Biochem Mol Biol 2015; 145:1-12. [PMID: 25268311 DOI: 10.1016/j.jsbmb.2014.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/15/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Peripheral insulin resistance (IR) is one of the main side effects caused by glucocorticoid (GC)-based therapies, and the molecular mechanisms of GC-induced IR are not yet fully elucidated. Thus, we aimed to investigate the effects of dexamethasone treatment on the main components of insulin and inflammatory signaling in the adipose tissue of rats. MATERIALS/METHODS Male Wistar rats received daily injections of dexamethasone (1mg/kg body weight (b.w.), intraperitoneally (i.p.)) for 5 days (DEX), whereas control rats received saline (CTL). The metabolic status was investigated, and the epididymal fat fragments were collected for lipolysis and western blot analyses. RESULTS The DEX rats became hyperglycemic, hyperinsulinemic, insulin resistant and glucose intolerant, compared with the CTL rats (P<0.05). The basal glycerol release in the fat fragments was 1.5-fold higher in the DEX rats (P<0.05). The phosphorylation of protein kinase B (PKB) at ser(473) decreased by 44%, whereas, the phosphorylation of insulin receptor substrate (IRS)-1 at ser(307) increased by 93% in the adipose tissue of the DEX rats after an oral bolus of glucose (P<0.05). The basal phosphorylation of c-jun-N-terminal kinase (JNK) and inhibitor of nuclear factor kappa-B (IKKβ) proteins was reduced by 46% and 58%, respectively, in the adipose tissue of the DEX rats (P<0.05). This was paralleled with a significant reduction (47%) in the glucocorticoid receptor (GR) protein content in the adipose tissue of the DEX rats (P<0.05). CONCLUSION The insulin-resistant status of rats induced by dexamethasone administration have PKB and IRS-1 activity attenuated in epididymal fat without increases in the phosphorylation of the proinflammatory signals JNK and IKKβ.
Collapse
Affiliation(s)
- Katia Motta
- Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Amanda Marreiro Barbosa
- Graduate Program in Nutrition, Center of Health Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Franciane Bobinski
- Graduate Program in Neurosciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Antonio Carlos Boschero
- Graduate Program in Functional and Molecular Biology, Institute of Biology, Campinas State University (UNICAMP), Campinas, Brazil
| | - Alex Rafacho
- Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil.
| |
Collapse
|
76
|
An BC, Sakai T, Komaba S, Kishi H, Kobayashi S, Kim JY, Ikebe R, Ikebe M. Phosphorylation of the kinase domain regulates autophosphorylation of myosin IIIA and its translocation in microvilli. Biochemistry 2014; 53:7835-45. [PMID: 25402663 PMCID: PMC4270376 DOI: 10.1021/bi501247z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Motor activity of myosin III is regulated
by autophosphorylation.
To investigate the role of the kinase activity on the transporter
function of myosin IIIA (Myo3A), we identified the phosphorylation
sites of kinase domain (KD), which is responsible for the regulation
of kinase activity and thus motor function. Using mass spectrometry,
we identified six phosphorylation sites in the KD, which are highly
conserved among class III myosins and Ste20-related misshapen (Msn)
kinases. Two predominant sites, Thr184 and Thr188, in KD are important for phosphorylation of the KD as well as the
motor domain, which regulates the affinity for actin. In the Caco2
cells, the full-length human Myo3A (hMyo3AFull) markedly enlarged
the microvilli, although it did not show discrete localization within
the microvilli. On the other hand, hMyo3AFull(T184A) and hMyo3AFull(T188A)
both showed clear localization at the microvilli tips. Our results
suggest that Myo3A induces large actin bundle formation to form microvilli,
and phosphorylation of KD at Thr184 and Thr188 is critical for the kinase activity of Myo3A, and regulation of
Myo3A translocation to the tip of microvilli. Retinal extracts potently
dephosphorylate both KD and motor domain without IQ motifs (MDIQo),
which was inhibited by okadaic acid (OA) with nanomolar range and
by tautomycetin (TMC) with micromolar range. The results suggest that
Myo3A phosphatase is protein phosphatase type 2A (PP2A). Supporting
this result, recombinant PP2Ac potently dephosphorylates both KD and
MDIQo. We propose that the phosphorylation–dephosphorylation
mechanism plays an essential role in mediating the transport and actin
bundle formation and stability functions of hMyo3A.
Collapse
Affiliation(s)
- Byung Chull An
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Queisser MA, Dada LA, Deiss-Yehiely N, Angulo M, Zhou G, Kouri FM, Knab LM, Liu J, Stegh AH, DeCamp MM, Budinger GRS, Chandel NS, Ciechanover A, Iwai K, Sznajder JI. HOIL-1L functions as the PKCζ ubiquitin ligase to promote lung tumor growth. Am J Respir Crit Care Med 2014; 190:688-98. [PMID: 25118570 DOI: 10.1164/rccm.201403-0463oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Protein kinase C zeta (PKCζ) has been reported to act as a tumor suppressor. Deletion of PKCζ in experimental cancer models has been shown to increase tumor growth. However, the mechanisms of PKCζ down-regulation in cancerous cells have not been previously described. OBJECTIVES To determine the molecular mechanisms that lead to decreased PKCζ expression and thus increased survival in cancer cells and tumor growth. METHODS The levels of expression of heme-oxidized IRP2 ubiquitin ligase 1L (HOIL-1L), HOIL-1-interacting protein (HOIP), Shank-associated RH domain-interacting protein (SHARPIN), and PKCζ were analyzed by Western blot and/or quantitative real-time polymerase chain reaction in different cell lines. Coimmunoprecipitation experiments were used to demonstrate the interaction between HOIL-1L and PKCζ. Ubiquitination was measured in an in vitro ubiquitination assay and by Western blot with specific antibodies. The role of hypoxia-inducible factor (HIF) was determined by gain/loss-of-function experiments. The effect of HOIL-1L expression on cell death was investigated using RNA interference approaches in vitro and on tumor growth in mice models. Increased HOIL-1L and decreased PKCζ expression was assessed in lung adenocarcinoma and glioblastoma multiforme and documented in several other cancer types by oncogenomic analysis. MEASUREMENTS AND MAIN RESULTS Hypoxia is a hallmark of rapidly growing solid tumors. We found that during hypoxia, PKCζ is ubiquitinated and degraded via the ubiquitin ligase HOIL-1L, a component of the linear ubiquitin chain assembly complex (LUBAC). In vitro ubiquitination assays indicate that HOIL-1L ubiquitinates PKCζ at Lys-48, targeting it for proteasomal degradation. In a xenograft tumor model and lung cancer model, we found that silencing of HOIL-1L increased the abundance of PKCζ and decreased the size of tumors, suggesting that lower levels of HOIL-1L promote survival. Indeed, mRNA transcript levels of HOIL-1L were elevated in tumor of patients with lung adenocarcinoma, and in a lung adenocarcinoma tissue microarray the levels of HOIL-1L were associated with high-grade tumors. Moreover, we found that HOIL-1L expression was regulated by HIFs. Interestingly, the actions of HOIL-1L were independent of LUBAC. CONCLUSIONS These data provide first evidence of a mechanism of cancer cell adaptation to hypoxia where HIFs regulate HOIL-1L, which targets PKCζ for degradation to promote tumor survival. We provided a proof of concept that silencing of HOIL-1L impairs lung tumor growth and that HOIL-1L expression predicts survival rate in cancer patients suggesting that HOIL-1L is an attractive target for cancer therapy.
Collapse
|
78
|
Crespo CL, Vernieri C, Keller PJ, Garrè M, Bender JR, Wittbrodt J, Pardi R. The PAR complex controls the spatiotemporal dynamics of F-actin and the MTOC in directionally migrating leukocytes. J Cell Sci 2014; 127:4381-95. [PMID: 25179599 PMCID: PMC4197085 DOI: 10.1242/jcs.146217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inflammatory cells acquire a polarized phenotype to migrate towards sites of infection or injury. A conserved polarity complex comprising PAR-3, PAR-6 and atypical protein kinase C (aPKC) relays extracellular polarizing cues to control cytoskeletal and signaling networks affecting morphological and functional polarization. However, there is no evidence that myeloid cells use PAR signaling to migrate vectorially in three-dimensional (3D) environments in vivo. Using genetically encoded bioprobes and high-resolution live imaging, we reveal the existence of F-actin oscillations in the trailing edge and constant repositioning of the microtubule organizing center (MTOC) to direct leukocyte migration in wounded medaka fish larvae (Oryzias latipes). Genetic manipulation in live myeloid cells demonstrates that the catalytic activity of aPKC and the regulated interaction with PAR-3 and PAR-6 are required for consistent F-actin oscillations, MTOC perinuclear mobility, aPKC repositioning and wound-directed migration upstream of Rho kinase (also known as ROCK or ROK) activation. We propose that the PAR complex coordinately controls cytoskeletal changes affecting both the generation of traction force and the directionality of leukocyte migration to sites of injury.
Collapse
Affiliation(s)
- Carolina Lage Crespo
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Vernieri
- IFOM Foundation, Institute FIRC of Molecular Oncology, 20139 Milan, Italy
| | - Philipp J Keller
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, 20147 VI, USA
| | - Massimiliano Garrè
- IFOM Foundation, Institute FIRC of Molecular Oncology, 20139 Milan, Italy
| | - Jeffrey R Bender
- Department of Medicine, Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University, New Haven, 06511 CT, USA
| | - Joachim Wittbrodt
- Center for Organismal Studies Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ruggero Pardi
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy
| |
Collapse
|
79
|
Pemberton JG, Orr ME, Stafford JL, Chang JP. PI3K signalling in GnRH actions on dispersed goldfish pituitary cells: relationship with PKC-mediated LH and GH release and regulation of long-term effects on secretion and total cellular hormone availability. Gen Comp Endocrinol 2014; 205:268-78. [PMID: 24681225 DOI: 10.1016/j.ygcen.2014.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/12/2014] [Indexed: 01/20/2023]
Abstract
Goldfish pituitary cells are exposed to two GnRHs, salmon (s)GnRH and chicken (c)GnRH-II. Phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC) both participate in acute sGnRH- and cGnRH-II-stimulated LH and GH release. Using goldfish pituitary cells, we examined the relationship between PI3K and PKC in acute LH and GH secretion, and PI3K involvement in chronic hormone release and total LH and GH availability. The PI3K inhibitor LY294002 did not affect PKC agonists-induced LH or GH release, and PKC agonists did not alter PI3K p85 phosphorylation, suggesting PKC activation is not upstream of PI3K in acute hormone release. In 2, 6, 12 and 24h treatments, LY294002 did not affect LH release but stimulated total LH availability at 6h. sGnRH stimulatory actions on LH release and total availability at 12 and 24h, and cGnRH-II effects on these parameters at 6h were inhibited by LY294002. LY294002 enhanced basal GH release at 2 and 6h, but reduced total GH at 12 and 24h. Increased GH release was seen following 6, 12 and 24h of sGnRH, and 2, 6 and 24h of cGnRH-II treatment but total GH availability was only elevated by 24h cGnRH-II treatment. Whereas LY294002 inhibited GH release responses to sGnRH at 12h and cGnRH-II at 6h, it attenuated cGnRH-II-elicited, but not sGnRH-induced, effects on total GH. These results indicate that PI3K differentially modulates long-term basal and GnRH-stimulated hormone release, and total hormone availability, in a time-, cell-type-, and GnRH isoform-selective manner.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael E Orr
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
80
|
Kusne Y, Carrera-Silva EA, Perry AS, Rushing EJ, Mandell EK, Dietrich JD, Errasti AE, Gibbs D, Berens ME, Loftus JC, Hulme C, Yang W, Lu Z, Aldape K, Sanai N, Rothlin CV, Ghosh S. Targeting aPKC disables oncogenic signaling by both the EGFR and the proinflammatory cytokine TNFα in glioblastoma. Sci Signal 2014; 7:ra75. [PMID: 25118327 PMCID: PMC4486020 DOI: 10.1126/scisignal.2005196] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Grade IV glioblastoma is characterized by increased kinase activity of epidermal growth factor receptor (EGFR); however, EGFR kinase inhibitors have failed to improve survival in individuals with this cancer because resistance to these drugs often develops. We showed that tumor necrosis factor-α (TNFα) produced in the glioblastoma microenvironment activated atypical protein kinase C (aPKC), thereby producing resistance to EGFR kinase inhibitors. Additionally, we identified that aPKC was required both for paracrine TNFα-dependent activation of the transcription factor nuclear factor κB (NF-κB) and for tumor cell-intrinsic receptor tyrosine kinase signaling. Targeting aPKC decreased tumor growth in mouse models of glioblastoma, including models of EGFR kinase inhibitor-resistant glioblastoma. Furthermore, aPKC abundance and activity were increased in human glioblastoma tumor cells, and high aPKC abundance correlated with poor prognosis. Thus, targeting aPKC might provide an improved molecular approach for glioblastoma therapy.
Collapse
Affiliation(s)
- Yael Kusne
- Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287, USA
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | - Anthony S. Perry
- Department of Pathology, Banner MD Anderson Cancer Center, Gilbert, AZ 85234, USA
| | | | - Edward K. Mandell
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | - Andrea E. Errasti
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniel Gibbs
- Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Michael E. Berens
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | | | | | - Weiwei Yang
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhimin Lu
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Nader Sanai
- Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287, USA
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Carla V. Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sourav Ghosh
- Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287, USA
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| |
Collapse
|
81
|
Alcántara-Hernández R, Hernández-Méndez A, García-Sáinz JA. The phosphoinositide-dependent protein kinase 1 inhibitor, UCN-01, induces fragmentation: possible role of metalloproteinases. Eur J Pharmacol 2014; 740:88-96. [PMID: 25016091 DOI: 10.1016/j.ejphar.2014.06.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/28/2014] [Accepted: 06/20/2014] [Indexed: 12/26/2022]
Abstract
Phosphoinositide-dependent protein kinase 1 (PDK1) is a key enzyme, master regulator of cellular proliferation and metabolism; it is considered a key target for pharmacological intervention. Using membranes obtained from DDT1 MF-2 cells, phospho-PDK1 was identified by Western blotting, as two major protein bands of Mr 58-68 kDa. Cell incubation with the PDK1 inhibitor, UCN-01, induced a time- and concentration-dependent decrease in the amount of phospho-PDK1 with a concomitant appearance of a ≈42 kDa phosphorylated fragment. Knocking down PDK1 diminished the amount of phospho-PDK1 detected in membranes, accompanied by similarly decreased fragment generation. UCN-01-induced fragment generation was also observed in membranes from cells stably expressing a myc-tagged PDK1 construct. Other PDK1 inhibitors were also tested: OSU-03012 induced a clear decrease in phospho-PDK1 and increased the presence of the phosphorylated fragment in membrane preparations; in contrast, GSK2334470 and staurosporine induced only marginal increases in the amount of PDK1 fragment. Galardin and batimastat, two metalloproteinase inhibitors, markedly attenuated inhibitor-induced PDK1 fragment generation. Metalloproteinases 2, 3, and 9 co-immunoprecipitated with myc-PDK1 under baseline conditions and this interaction was stimulated by UCN-01; batimastat also markedly diminished this effect of the PDK1 inhibitor. Our results indicate that a series of protein kinase inhibitors, namely UCN-01 and OSU-03012 and to a lesser extent GSK2334470 and staurosporine induce PDK1 fragmentation and suggest that metalloproteinases could participate in this effect.
Collapse
Key Words
- Batimastat (BB-94) (CID 5362422). Galardin (GM 6001) (PubChem CID 132519)
- GSK2334470, (3S,6R)-1-[6-(3-amino-1H-indazol-6-yl)-2-(methylamino)-4-pyrimidinyl]-N-cyclohexyl-6-methyl-3-piperidinecarboxamide. ) (PubChem CID 46215815)
- OSU-03012, (2-amino-N-[4-[5-(2-phenanthrenyl)-3-trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-acetamide) (PubChem CID 10027278)
- PDK1
- Protein fragmentation
- Protein kinase
- Protein kinase inhibitor
- Staurosporine (PubChem CID 44259)
- UCN-01
- UCN-01, (7-hydroxystaurosporine (3R*,8S*, 9R*, 10R*,12R*)-2,3,9,10,11,12-hexahydro-3-hydroxy-9-methoxy-8-methyl-10-(methylamino)-8,12-epoxy-1H, 8H-2,7b,12a-triazadibenzo[a,g]-cyclonona[cde]triden-1-one) (PubChem CID 3078519)
Collapse
Affiliation(s)
- Rocío Alcántara-Hernández
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México DF 04510, México
| | - Aurelio Hernández-Méndez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México DF 04510, México
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México DF 04510, México.
| |
Collapse
|
82
|
Umemori Y, Kuribayashi K, Nirasawa S, Kondoh T, Tanaka M, Kobayashi D, Watanabe N. Protein kinase C ζ regulates survivin expression and inhibits apoptosis in colon cancer. Int J Oncol 2014; 45:1043-50. [PMID: 24920238 DOI: 10.3892/ijo.2014.2489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/02/2014] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol 3-kinase pathway transduces cell survival signals in different malignancies. Protein kinase C ζ (PKCζ) is one of the molecules involved in this pathway. In this study, we investigated the role of PKCζ in apoptosis. Short interfering RNA against PKCζ (siPKCζ) sensitized HCT116 and SW480 colon cancer cells to TRAIL‑induced apoptosis. Among anti-apoptotic proteins, survivin protein and mRNA expression levels decreased after siPKCζ transfection while protein half-life did not change. The expression levels of survivin and PKCζ were correlated in 18 colon cancer specimens (r=0.72, P=3.01x10‑4). Chemosensitivity to 5-FU was enhanced by siPKCζ in HCT116 and SW480 cells. These results indicate that PKCζ regulates survivin expression levels and inhibits apoptosis in colon cancer cells. This study provides a rationale for targeting PKCζ in combination with chemotherapy for colon cancer treatment.
Collapse
Affiliation(s)
- Yoshifumi Umemori
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Kageaki Kuribayashi
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Shinya Nirasawa
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Takashi Kondoh
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Maki Tanaka
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Daisuke Kobayashi
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Naoki Watanabe
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| |
Collapse
|
83
|
Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord 2014; 15:79-97. [PMID: 24264858 DOI: 10.1007/s11154-013-9282-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a major disorder that links obesity to type 2 diabetes mellitus (T2D). It involves defects in the insulin actions owing to a reduced ability of insulin to trigger key signaling pathways in major metabolic tissues. The pathogenesis of insulin resistance involves several inhibitory molecules that interfere with the tyrosine phosphorylation of the insulin receptor and its downstream effectors. Among those, growing interest has been developed toward the protein tyrosine phosphatases (PTPs), a large family of enzymes that can inactivate crucial signaling effectors in the insulin signaling cascade by dephosphorylating their tyrosine residues. Herein we briefly review the role of several PTPs that have been shown to be implicated in the regulation of insulin action, and then focus on the Src homology 2 (SH2) domain-containing SHP1 and SHP2 enzymes, since recent reports have indicated major roles for these PTPs in the control of insulin action and glucose metabolism. Finally, the therapeutic potential of targeting PTPs for combating insulin resistance and alleviating T2D will be discussed.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Ste-Foy, Québec, Canada, G1V 4G2
| | | | | |
Collapse
|
84
|
Rinschen MM, Wu X, König T, Pisitkun T, Hagmann H, Pahmeyer C, Lamkemeyer T, Kohli P, Schnell N, Schermer B, Dryer S, Brooks BR, Beltrao P, Krueger M, Brinkkoetter PT, Benzing T. Phosphoproteomic analysis reveals regulatory mechanisms at the kidney filtration barrier. J Am Soc Nephrol 2014; 25:1509-22. [PMID: 24511133 DOI: 10.1681/asn.2013070760] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Diseases of the kidney filtration barrier are a leading cause of ESRD. Most disorders affect the podocytes, polarized cells with a limited capacity for self-renewal that require tightly controlled signaling to maintain their integrity, viability, and function. Here, we provide an atlas of in vivo phosphorylated, glomerulus-expressed proteins, including podocyte-specific gene products, identified in an unbiased tandem mass spectrometry-based approach. We discovered 2449 phosphorylated proteins corresponding to 4079 identified high-confidence phosphorylated residues and performed a systematic bioinformatics analysis of this dataset. We discovered 146 phosphorylation sites on proteins abundantly expressed in podocytes. The prohibitin homology domain of the slit diaphragm protein podocin contained one such site, threonine 234 (T234), located within a phosphorylation motif that is mutated in human genetic forms of proteinuria. The T234 site resides at the interface of podocin dimers. Free energy calculation through molecular dynamic simulations revealed a role for T234 in regulating podocin dimerization. We show that phosphorylation critically regulates formation of high molecular weight complexes and that this may represent a general principle for the assembly of proteins containing prohibitin homology domains.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department of Internal Medicine II, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Systems Biology of Ageing Cologne
| | - Xiongwu Wu
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Tim König
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Trairak Pisitkun
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Henning Hagmann
- Department of Internal Medicine II, Center for Molecular Medicine
| | | | - Tobias Lamkemeyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
| | - Priyanka Kohli
- Department of Internal Medicine II, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
| | - Nicole Schnell
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
| | - Bernhard Schermer
- Department of Internal Medicine II, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Systems Biology of Ageing Cologne
| | - Stuart Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Pedro Beltrao
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom; and
| | - Marcus Krueger
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Thomas Benzing
- Department of Internal Medicine II, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Systems Biology of Ageing Cologne,
| |
Collapse
|
85
|
Koutsogiannaki S, Franzellitti S, Fabbri E, Kaloyianni M. Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 146:186-195. [PMID: 24316436 DOI: 10.1016/j.aquatox.2013.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/24/2013] [Accepted: 11/07/2013] [Indexed: 06/02/2023]
Abstract
The aim of the present study was to determine and compare the possible effects of exposure to an estrogen, 17β-estradiol and to a metal, cadmium on oxidative parameters of Mytilus galloprovincialis hemocytes and to elucidate the signaling pathways that probably mediate the studied effects exerted by these two chemicals. In addition, it was of interest to investigate if the studied parameters could constitute biomarkers for aquatic pollution monitoring. Our results suggest that micromolar concentrations of either cadmium or 17β-estradiol affected the redox status of mussels by modulating oxidative parameters and antioxidant enzymes gene expression in mussel M. galloprovincialis hemocytes. In particular, our results showed that treatment of hemocytes with either 5 μM of cadmium chloride or with 25 nM of 17β-estradiol for 30 min caused significant increased ROS production; this led to oxidative damage exemplified by significant increased DNA damage, protein carbonylation and lipid peroxidation, as well as increased mRNA levels of the antioxidant enzymes catalase (CAT), superoxide dismoutase (SOD) and glutathione S-transferase (GST). Furthermore, our results suggest that either cadmium or 17β-estradiol signal is mediated either through one of the already known pathways initiated by photatidyl-inositol 3-kinase (PI3K) and reaching Na(+)/H(+) exchanger (NHE) probably through protein kinase C (PKC) or a kinase-mediated signaling pathway that involves in most of the cases NHE, PKC, Ca(2+)-dependent PKC isoforms, PI3-K, NADPH oxidase, nitric oxide (NO) synthase, c-Jun N-terminal kinase (JNK) and cyclic adenosine-3'-5'-monophosphate (cAMP). Our results also attribute a protective role to cAMP, since pre-elevated intracellular cAMP levels inhibited the signal induced by each exposure. Finally, since aquatic invertebrates have been the most widely used monitoring organisms for pollution impact evaluation in marine environments and taking under consideration the positive correlation obtained between the studied parameters, we can suggest the simultaneous use of these oxidative stress parameters offering an effective early warning system in biomonitoring of aquatic environments.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Silvia Franzellitti
- University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna, Italy
| | - Elena Fabbri
- University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, via Selmi 3, 40100 Bologna, Italy
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
86
|
Abstract
The acute respiratory distress syndrome (ARDS) is a major public health problem and a leading source of morbidity in intensive care units. Lung tissue in patients with ARDS is characterized by inflammation, with exuberant neutrophil infiltration, activation, and degranulation that is thought to initiate tissue injury through the release of proteases and oxygen radicals. Treatment of ARDS is supportive primarily because the underlying pathophysiology is poorly understood. This gap in knowledge must be addressed to identify urgently needed therapies. Recent research efforts in anti-inflammatory drug development have focused on identifying common control points in multiple signaling pathways. The protein kinase C (PKC) serine-threonine kinases are master regulators of proinflammatory signaling hubs, making them attractive therapeutic targets. Pharmacological inhibition of broad-spectrum PKC activity and, more importantly, of specific PKC isoforms (as well as deletion of PKCs in mice) exerts protective effects in various experimental models of lung injury. Furthermore, PKC isoforms have been implicated in inflammatory processes that may be involved in the pathophysiologic changes that result in ARDS, including activation of innate immune and endothelial cells, neutrophil trafficking to the lung, regulation of alveolar epithelial barrier functions, and control of neutrophil proinflammatory and prosurvival signaling. This review focuses on the mechanistic involvement of PKC isoforms in the pathogenesis of ARDS and highlights the potential of developing new therapeutic paradigms based on the selective inhibition (or activation) of specific PKC isoforms.
Collapse
|
87
|
Li X, Gao T. mTORC2 phosphorylates protein kinase Cζ to regulate its stability and activity. EMBO Rep 2013; 15:191-8. [PMID: 24375676 DOI: 10.1002/embr.201338119] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Protein kinase Cζ (PKCζ) is phosphorylated at the activation loop and the turn motif (TM). However, the TM kinase and functional relevance of TM phosphorylation remain largely unknown. We demonstrate that PKCζ TM is phosphorylated directly by the mTORC2 complex, and this phosphorylation is required for maintaining PKCζ kinase activity and stability. Functionally, mTORC2 regulates the activity of Rho family of GTPases, and therefore the organization of the actin cytoskeleton, through the control of PKCζ activity. Taken together, our findings identify PKCζ as a novel substrate and downstream effector of mTORC2 signaling.
Collapse
Affiliation(s)
- Xin Li
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
88
|
Chattopadhyay R, Dyukova E, Singh NK, Ohba M, Mobley JA, Rao GN. Vascular endothelial tight junctions and barrier function are disrupted by 15(S)-hydroxyeicosatetraenoic acid partly via protein kinase C ε-mediated zona occludens-1 phosphorylation at threonine 770/772. J Biol Chem 2013; 289:3148-63. [PMID: 24338688 DOI: 10.1074/jbc.m113.528190] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Disruption of tight junctions (TJs) perturbs endothelial barrier function and promotes inflammation. Previously, we have shown that 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), the major 15-lipoxygenase 1 (15-LO1) metabolite of arachidonic acid, by stimulating zona occludens (ZO)-2 tyrosine phosphorylation and its dissociation from claudins 1/5, induces endothelial TJ disruption and its barrier dysfunction. Here, we have studied the role of serine/threonine phosphorylation of TJ proteins in 15(S)-HETE-induced endothelial TJ disruption and its barrier dysfunction. We found that 15(S)-HETE enhances ZO-1 phosphorylation at Thr-770/772 residues via PKCε-mediated MEK1-ERK1/2 activation, causing ZO-1 dissociation from occludin, disrupting endothelial TJs and its barrier function, and promoting monocyte transmigration; these effects were reversed by T770A/T772A mutations. In the arteries of WT mice ex vivo, 15(S)-HETE also induced ZO-1 phosphorylation and endothelial TJ disruption in a PKCε and MEK1-ERK1/2-dependent manner. In line with these observations, in WT mice high fat diet feeding induced 12/15-lipoxygenase (12/15-LO) expression in the endothelium and caused disruption of its TJs and barrier function. However, in 12/15-LO(-/-) mice, high fat diet feeding did not cause disruption of endothelial TJs and barrier function. These observations suggest that the 12/15-LO-12/15(S)-HETE axis, in addition to tyrosine phosphorylation of ZO-2, also stimulates threonine phosphorylation of ZO-1 in the mediation of endothelial TJ disruption and its barrier dysfunction.
Collapse
Affiliation(s)
- Rima Chattopadhyay
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | | | | | | | | |
Collapse
|
89
|
Leslie KL, Song GJ, Barrick S, Wehbi VL, Vilardaga JP, Bauer PM, Bisello A. Ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) and nuclear factor-κB (NF-κB): a feed-forward loop for systemic and vascular inflammation. J Biol Chem 2013; 288:36426-36. [PMID: 24196963 DOI: 10.1074/jbc.m113.483339] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between vascular cells and macrophages is critical during vascular remodeling. Here we report that the scaffolding protein, ezrin-binding phosphoprotein 50 (EBP50), is a central regulator of macrophage and vascular smooth muscle cells (VSMC) function. EBP50 is up-regulated in intimal VSMC following endoluminal injury and promotes neointima formation. However, the mechanisms underlying these effects are not fully understood. Because of the fundamental role that inflammation plays in vascular diseases, we hypothesized that EBP50 mediates macrophage activation and the response of vessels to inflammation. Indeed, EBP50 expression increased in primary macrophages and VSMC, and in the aorta of mice, upon treatment with LPS or TNFα. This increase was nuclear factor-κB (NF-κB)-dependent. Conversely, activation of NF-κB was impaired in EBP50-null VSMC and macrophages. We found that inflammatory stimuli promote the formation of an EBP50-PKCζ complex at the cell membrane that induces NF-κB signaling. Macrophage activation and vascular inflammation after acute LPS treatment were reduced in EBP50-null cells and mice as compared with WT. Furthermore, macrophage recruitment to vascular lesions was significantly reduced in EBP50 knock-out mice. Thus, EBP50 and NF-κB participate in a feed-forward loop leading to increased macrophage activation and enhanced response of vascular cells to inflammation.
Collapse
|
90
|
Protein kinase C zeta regulates human pancreatic cancer cell transformed growth and invasion through a STAT3-dependent mechanism. PLoS One 2013; 8:e72061. [PMID: 24015205 PMCID: PMC3756013 DOI: 10.1371/journal.pone.0072061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/05/2013] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer is a very aggressive disease with few therapeutic options. In this study, we investigate the role of protein kinase C zeta (PKCζ) in pancreatic cancer cells. PKCζ has been shown to act as either a tumor suppressor or tumor promoter depending upon the cellular context. We find that PKCζ expression is either maintained or elevated in primary human pancreatic tumors, but is never lost, consistent with PKCζ playing a promotive role in the pancreatic cancer phenotype. Genetic inhibition of PKCζ reduced adherent growth, cell survival and anchorage-independent growth of human pancreatic cancer cells in vitro. Furthermore, PKCζ inhibition reduced orthotopic tumor size in vivo by inhibiting tumor cell proliferation and increasing tumor necrosis. In addition, PKCζ inhibition reduced tumor metastases in vivo, and caused a corresponding reduction in pancreatic cancer cell invasion in vitro. Signal transducer and activator of transcription 3 (STAT3) is often constitutively active in pancreatic cancer, and plays an important role in pancreatic cancer cell survival and metastasis. Interestingly, inhibition of PKCζ significantly reduced constitutive STAT3 activation in pancreatic cancer cells in vitro and in vivo. Pharmacologic inhibition of STAT3 mimicked the phenotype of PKCζ inhibition, and expression of a constitutively active STAT3 construct rescued the transformed phenotype in PKCζ-deficient cells. We conclude that PKCζ is required for pancreatic cancer cell transformed growth and invasion in vitro and tumorigenesis in vivo, and that STAT3 is an important downstream mediator of the pro-carcinogenic effects of PKCζ in pancreatic cancer cells.
Collapse
|
91
|
Bruhn MA, Pearson RB, Hannan RD, Sheppard KE. AKT-independent PI3-K signaling in cancer - emerging role for SGK3. Cancer Manag Res 2013; 5:281-92. [PMID: 24009430 PMCID: PMC3762672 DOI: 10.2147/cmar.s35178] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3-K) signaling pathway plays an important role in a wide variety of fundamental cellular processes, largely mediated via protein kinase B/v-akt murine thymoma viral oncogene homolog (PKB/AKT) signaling. Given the crucial role of PI3-K/AKT signaling in regulating processes such as cell growth, proliferation, and survival, it is not surprising that components of this pathway are frequently dysregulated in cancer, making the AKT kinase family members important therapeutic targets. The large number of clinical trials currently evaluating PI3-K pathway inhibitors as a therapeutic strategy further emphasizes this. The serum- and glucocorticoid-inducible protein kinase (SGK) family is made up of three isoforms, SGK1, 2, and 3, that are PI3-K-dependent, serine/threonine kinases, with similar substrate specificity to AKT. Consequently, the SGK family also regulates similar cell processes to the AKT kinases, including cell proliferation and survival. Importantly, there is emerging evidence demonstrating that SGK3 plays a critical role in AKT-independent oncogenic signaling. This review will focus on the role of SGK3 as a key effector of AKT-independent PI3-K oncogenic signaling.
Collapse
Affiliation(s)
- Maressa A Bruhn
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia ; School of Biological Sciences, Flinders University, Bedford Park, South Australia, Australia
| | | | | | | |
Collapse
|
92
|
Bahammam M, Black SA, Sume SS, Assaggaf MA, Faibish M, Trackman PC. Requirement for active glycogen synthase kinase-3β in TGF-β1 upregulation of connective tissue growth factor (CCN2/CTGF) levels in human gingival fibroblasts. Am J Physiol Cell Physiol 2013; 305:C581-90. [PMID: 23824844 DOI: 10.1152/ajpcell.00032.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Connective tissue growth factor (CCN2/CTGF) mediates transforming growth factor-β (TGF-β)-induced fibrosis. Drug-induced gingival overgrowth is tissue specific. Here the role of the phosphoinositol 3-kinase (PI3K) pathway in mediating TGF-β1-stimulated CCN2/CTGF expression in primary human adult gingival fibroblasts and human adult lung fibroblasts was compared. Data indicate that PI3K inhibitors attenuate upregulation of TGF-β1-induced CCN2/CTGF expression in human gingival fibroblasts independent of reducing JNK MAP kinase activation. Pharmacologic inhibitors and small interfering (si)RNA-mediated knockdown studies indicate that calcium-dependent isoforms and an atypical isoform of protein kinase C (PKC-δ) do not mediate TGF-β1-stimulated CCN2/CTGF expression in gingival fibroblasts. As glycogen synthase kinase-3β (GSK-3β) can undergo phosphorylation by the PI3K/pathway, the effects of GSK-3β inhibitor kenpaullone and siRNA knockdown were investigated. Data in gingival fibroblasts indicate that kenpaullone attenuates TGF-β1-mediated CCN2/CTGF expression. Activation of the Wnt canonical pathways with Wnt3a, which inhibits GSK-3β, similarly inhibits TGF-β1-stimulated CCN2/CTGF expression. In contrast, inhibition of GSK-3β by Wnt3a does not inhibit, but modestly stimulates, CCN2/CTGF levels in primary human adult lung fibroblasts and is β-catenin dependent, consistent with previous studies performed in other cell models. These data identify a novel pathway in gingival fibroblasts in which inhibition of GSK-3β attenuates CCN2/CTGF expression. In adult lung fibroblasts inhibition of GSK-3β modestly stimulates TGF-β1-regulated CCN2/CTGF expression. These studies have potential clinical relevance to the tissue specificity of drug-induced gingival overgrowth.
Collapse
Affiliation(s)
- Maha Bahammam
- Boston University Henry M. Goldman School of Dental Medicine, Department of Periodontology and Oral Biology, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
93
|
Antal CE, Newton AC. Spatiotemporal dynamics of phosphorylation in lipid second messenger signaling. Mol Cell Proteomics 2013; 12:3498-508. [PMID: 23788531 DOI: 10.1074/mcp.r113.029819] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The plasma membrane serves as a dynamic interface that relays information received at the cell surface into the cell. Lipid second messengers coordinate signaling on this platform by recruiting and activating kinases and phosphatases. Specifically, diacylglycerol and phosphatidylinositol 3,4,5-trisphosphate activate protein kinase C and Akt, respectively, which then phosphorylate target proteins to transduce downstream signaling. This review addresses how the spatiotemporal dynamics of protein kinase C and Akt signaling can be monitored using genetically encoded reporters and provides information on how the coordination of signaling at protein scaffolds or membrane microdomains affords fidelity and specificity in phosphorylation events.
Collapse
Affiliation(s)
- Corina E Antal
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0721
| | | |
Collapse
|
94
|
Abstract
PKC (protein kinase C) has been in the limelight since the discovery three decades ago that it acts as a major receptor for the tumour-promoting phorbol esters. Phorbol esters, with their potent ability to activate two of the three classes of PKC isoenzymes, have remained the best pharmacological tool for directly modulating PKC activity. However, with the discovery of other phorbol ester-responsive proteins, the advent of various small-molecule and peptide modulators, and the need to distinguish isoenzyme-specific activity, the pharmacology of PKC has become increasingly complex. Not surprisingly, many of the compounds originally touted as direct modulators of PKC have subsequently been shown to hit many other cellular targets and, in some cases, not even directly modulate PKC. The complexities and reversals in PKC pharmacology have led to widespread confusion about the current status of the pharmacological tools available to control PKC activity. In the present review, we aim to clarify the cacophony in the literature regarding the current state of bona fide and discredited cellular PKC modulators, including activators, small-molecule inhibitors and peptides, and also address the use of genetically encoded reporters and of PKC mutants to measure the effects of these drugs on the spatiotemporal dynamics of signalling by specific isoenzymes.
Collapse
Affiliation(s)
- Alyssa X. Wu-Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0721, (858) 534-4527, Fax: (858) 822-5888
| | - Alexandra C. Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0721, (858) 534-4527, Fax: (858) 822-5888
| |
Collapse
|
95
|
Phosphoinositide 3-kinase couples NMDA receptors to superoxide release in excitotoxic neuronal death. Cell Death Dis 2013; 4:e580. [PMID: 23559014 PMCID: PMC3641334 DOI: 10.1038/cddis.2013.111] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sustained activation of neuronal N-methly D-aspartate (NMDA)-type glutamate receptors leads to excitotoxic cell death in stroke, trauma, and neurodegenerative disorders. Excitotoxic neuronal death results in part from superoxide produced by neuronal NADPH oxidase (NOX2), but how NMDA receptors are coupled to neuronal NOX2 activation is not well understood. Here, we identify a signaling pathway coupling NMDA receptor activation to NOX2 activation in primary neuron cultures. Calcium influx through the NR2B subunit of NMDA receptors leads to the activation of phosphoinositide 3-kinase (PI3K). Formation of phosphatidylinositol (3,4,5)-triphosphate (PI(3,4,5)P3) by PI3K activates the atypical protein kinase C, PKC zeta (PKCζ), which in turn phosphorylates the p47phox organizing subunit of neuronal NOX2. Calcium influx through NR2B-containing NMDA receptors triggered mitochondrial depolarization, NOX2 activation, superoxide formation, and cell death. However, equivalent magnitude calcium elevations induced by ionomycin did not induce NOX2 activation or neuronal death, despite causing mitochondrial depolarization. The PI3K inhibitor wortmannin prevented NMDA-induced NOX2 activation and cell death, without preventing cell swelling, calcium elevation, or mitochondrial depolarization. The effects of wortmannin were circumvented by exogenous supply of the PI3K product, PI(3,4,5)P3, and by transfection with protein kinase M, a constitutively active form of PKCζ. These findings demonstrate that superoxide formation and excitotoxic neuronal death can be dissociated from mitochondrial depolarization, and identify a novel role for PI3K in this cell death pathway. Perturbations in this pathway may either increase or decrease superoxide production in response to NMDA receptor activation, and may thereby impact neurological disorders, in which excitotoxicity is a contributing factor.
Collapse
|
96
|
Atypical protein kinase C and Par3 are required for proteoglycan-induced axon growth inhibition. J Neurosci 2013; 33:2541-54. [PMID: 23392682 DOI: 10.1523/jneurosci.3154-12.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
When the CNS is injured, damaged axons do not regenerate. This failure is due in part to the growth-inhibitory environment that forms at the injury site. Myelin-associated molecules, repulsive axon guidance molecules, and extracellular matrix molecules including chondroitin sulfate proteoglycans (CSPGs) found within the glial scar inhibit axon regeneration but the intracellular signaling mechanisms triggered by these diverse molecules remain largely unknown. Here we provide biochemical and functional evidence that atypical protein kinase C (PKCζ) and polarity (Par) complex proteins mediate axon growth inhibition. Treatment of postnatal rat neurons in vitro with the NG2 CSPG, a major component of the glial scar, activates PKCζ, and this activation is both necessary and sufficient to inhibit axonal growth. NG2 treatment also activates Cdc42, increases the association of Par6 with PKCζ, and leads to a Par3-dependent activation of Rac1. Transfection of neurons with kinase-dead forms of PKCζ, dominant-negative forms of Cdc42, or mutant forms of Par6 that do not bind to Cdc42 prevent NG2-induced growth inhibition. Similarly, transfection with either a phosphomutant Par3 (S824A) or dominant-negative Rac1 prevent inhibition, whereas expression of constitutively active Rac1 inhibits axon growth on control surfaces. These results suggest a model in which NG2 binding to neurons activates PKCζ and modifies Par complex function. They also identify the Par complex as a novel therapeutic target for promoting axon regeneration after CNS injury.
Collapse
|
97
|
Feldman DE, Chen C, Punj V, Machida K. The TBC1D15 oncoprotein controls stem cell self-renewal through destabilization of the Numb-p53 complex. PLoS One 2013; 8:e57312. [PMID: 23468968 PMCID: PMC3584131 DOI: 10.1371/journal.pone.0057312] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/21/2013] [Indexed: 01/22/2023] Open
Abstract
Stem cell populations are maintained through self-renewing divisions in which one daughter cell commits to a specific fate while the other retains the multipotent characteristics of its parent. The p53 tumor suppressor, in conjunction with its interacting partner protein Numb, preserves this asymmetry and functions as a vital barrier against the unchecked expansion of tumor stem cell pools; however, little is known about the biological control of the Numb-p53 interaction. We show here that Numb and p53 are the constituents of a high molecular mass complex, which is disintegrated upon activation of aPKCζ, a Numb kinase. Using large-scale affinity purification and tandem mass spectrometry, we identify TBC1D15 as a Numb-associated protein and demonstrate that its amino-terminal domain disengages p53 from Numb, triggering p53 proteolysis and promoting self-renewal and pluripotency. Cellular levels of TBC1D15 are diminished upon acute nutrient deprivation through autophagy-mediated degradation, indicating that TBC1D15 serves as a conduit through which cellular metabolic status is linked to self-renewal. The profound deregulation of TBC1D15 expression exhibited in a diverse array of patient tumors underscores its proposed function as an oncoprotein.
Collapse
Affiliation(s)
- Douglas E. Feldman
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| | - Chialin Chen
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| | - Vasu Punj
- Bioinformatics Core, Norris Comprehensive Cancer Center at University of Southern California and Division of Hematology, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
- Southern California Research Center for ALPD and Cirrhosis, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| |
Collapse
|
98
|
Yu H, Rathore SS, Davis EM, Ouyang Y, Shen J. Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending-dependent manner. Mol Biol Cell 2013; 24:1176-84. [PMID: 23427263 PMCID: PMC3623638 DOI: 10.1091/mbc.e12-11-0810] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reconstitution of GLUT4 vesicle fusion in a defined fusion system shows that the C2-domain factor Doc2b activates the SNARE-dependent fusion reaction by a calcium- and membrane bending–dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic release. The glucose transporter GLUT4 plays a central role in maintaining body glucose homeostasis. On insulin stimulation, GLUT4-containing vesicles fuse with the plasma membrane, relocating GLUT4 from intracellular reservoirs to the cell surface to uptake excess blood glucose. The GLUT4 vesicle fusion reaction requires soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) as the core fusion engine and a group of regulatory proteins. In particular, the soluble C2-domain factor Doc2b plays a key role in GLUT4 vesicle fusion, but its molecular mechanism has been unclear. Here we reconstituted the SNARE-dependent GLUT4 vesicle fusion in a defined proteoliposome fusion system. We observed that Doc2b binds to GLUT4 exocytic SNAREs and potently accelerates the fusion kinetics in the presence of Ca2+. The stimulatory activity of Doc2b requires intact Ca2+-binding sites on both the C2A and C2B domains. Using electron microscopy, we observed that Doc2b strongly bends the membrane bilayer, and this membrane-bending activity is essential to the stimulatory function of Doc2b in fusion. These results demonstrate that Doc2b promotes GLUT4 exocytosis by accelerating the SNARE-dependent fusion reaction by a Ca2+- and membrane bending–dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic neurotransmitter release, suggesting that exocytic Ca2+ sensors may possess divergent mechanisms in regulating vesicle fusion.
Collapse
Affiliation(s)
- Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
99
|
Castilho RM, Squarize CH, Gutkind JS. Exploiting PI3K/mTOR signaling to accelerate epithelial wound healing. Oral Dis 2013; 19:551-8. [PMID: 23379329 DOI: 10.1111/odi.12070] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 11/29/2022]
Abstract
The molecular circuitries controlling the process of skin wound healing have gained new significant insights in recent years. This knowledge is built on landmark studies on skin embryogenesis, maturation, and differentiation. Furthermore, the identification, characterization, and elucidation of the biological roles of adult skin epithelial stem cells and their influence in tissue homeostasis have provided the foundation for the overall understanding of the process of skin wound healing and tissue repair. Among numerous signaling pathways associated with epithelial functions, the PI3K/Akt/mTOR signaling route has gained substantial attention with the generation of animal models capable of dissecting individual components of the pathway, thereby providing a novel insight into the molecular framework underlying skin homeostasis and tissue regeneration. In this review, we focus on recent findings regarding the mechanisms involved in wound healing associated with the upregulation of the activity of the PI3K/Akt/mTOR circuitry. This review highlights critical findings on the molecular mechanisms controlling the activation of mTOR, a downstream component of the PI3K-PTEN pathway, which is directly involved in epithelial migration and proliferation. We discuss how this emerging information can be exploited for the development of novel pharmacological intervention strategies to accelerate the healing of critical size wounds.
Collapse
Affiliation(s)
- R M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.
| | | | | |
Collapse
|
100
|
Protein kinase C regulates human pluripotent stem cell self-renewal. PLoS One 2013; 8:e54122. [PMID: 23349801 PMCID: PMC3549959 DOI: 10.1371/journal.pone.0054122] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 12/10/2012] [Indexed: 12/26/2022] Open
Abstract
Background The self-renewal of human pluripotent stem (hPS) cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2) appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells. Methodology/Principal Findings In this study, we screened a kinase inhibitor library using a high-throughput alkaline phosphatase (ALP) activity-based assay in a minimal growth factor-defined medium to understand FGF-2-related molecular mechanisms regulating self-renewal of hPS cells. We found that in the presence of FGF-2, an inhibitor of protein kinase C (PKC), GF109203X (GFX), increased ALP activity. GFX inhibited FGF-2-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β), suggesting that FGF-2 induced PKC and then PKC inhibited the activity of GSK-3β. Addition of activin A increased phosphorylation of GSK-3β and extracellular signal-regulated kinase-1/2 (ERK-1/2) synergistically with FGF-2 whereas activin A alone did not. GFX negated differentiation of hPS cells induced by the PKC activator, phorbol 12-myristate 13-acetate whereas Gö6976, a selective inhibitor of PKCα, β, and γ isoforms could not counteract the effect of PMA. Intriguingly, functional gene analysis by RNA interference revealed that the phosphorylation of GSK-3β was reduced by siRNA of PKCδ, PKCε, and ζ, the phosphorylation of ERK-1/2 was reduced by siRNA of PKCε and ζ, and the phosphorylation of AKT was reduced by PKCε in hPS cells. Conclusions/Significance Our study suggested complicated cross-talk in hPS cells that FGF-2 induced the phosphorylation of phosphatidylinositol-3 kinase (PI3K)/AKT, mitogen-activated protein kinase/ERK-1/2 kinase (MEK), PKC/ERK-1/2 kinase, and PKC/GSK-3β. Addition of GFX with a MEK inhibitor, U0126, in the presence of FGF-2 and activin A provided a long-term stable undifferentiated state of hPS cells even though hPS cells were dissociated into single cells for passage. This study untangles the cross-talk between molecular mechanisms regulating self-renewal and differentiation of hPS cells.
Collapse
|