51
|
Kometani T, Arai T, Chibazakura T. Increased Expression of NPM1 Suppresses p27 Kip1 Function in Cancer Cells. Cancers (Basel) 2020; 12:cancers12102886. [PMID: 33050036 PMCID: PMC7600800 DOI: 10.3390/cancers12102886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
p27Kip1, a major cyclin-dependent kinase inhibitor, is frequently expressed at low levels in cancers, which correlates with their malignancy. However, in this study, we found a qualitative suppression of p27 overexpressed in some cancer cells. By proteomic screening for factors interacting with p27, we identified nucleophosmin isoform 1 (NPM1) as a novel p27-interacting factor and observed that NPM1 protein was expressed at high levels in some cancer cells. NPM1 overexpression in normal cells suppressed p27 function, and conversely, NPM1 knockdown in cancer cells restored the function in vitro. Furthermore, the tumors derived from cancer cells carrying the combination of p27 overexpression and NPM1 knockdown constructs showed significant suppression of growth as compared with those carrying other combinations in mouse xenograft models. These results strongly suggest that increased expression of NPM1 qualitatively suppresses p27 function in cancer cells.
Collapse
|
52
|
Xue L, Chen F, Yue F, Camacho L, Kothapalli S, Wei G, Huang S, Mo Q, Ma F, Li Y, Jiralerspong S. Metformin and an insulin/IGF-1 receptor inhibitor are synergistic in blocking growth of triple-negative breast cancer. Breast Cancer Res Treat 2020; 185:73-84. [PMID: 32940848 DOI: 10.1007/s10549-020-05927-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor survival outcomes. Metformin has been shown to have antitumor effects by lowering serum levels of the mitogen insulin and having pleiotropic effects on cancer cell signaling pathways. BMS-754807 is a potent and reversible inhibitor of both insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor (IR). Both drugs have been reported to have some efficacy in TNBC. However, it is unclear whether the combination of the two drugs is more effective than single drug treatment in TNBC. METHODS We treated a panel of TNBC cell lines with metformin and BMS-754807 alone and in combination and tested cell viability using MTS assays. We used the CompuSyn software to analyze for additivity, synergism, or antagonism. We also examined the molecular mechanism by performing reverse phase protein assay (RPPA) to detect the candidate pathways altered by single drugs and the drug combination and used Western blotting to verify and expand the findings. RESULTS The combination of metformin and BMS-754807 showed synergy in 11 out of 13 TNBC cell lines tested (85%). RPPA analysis detected significant alterations by the drug combination of multiple proteins known to regulate cell cycle and tumor growth. In particular, the drug combination significantly increased levels of total and phosphorylated forms of the cell cycle inhibitor p27Kip1 and decreased the level of the p27Kip1 E3 ligase SCFSkp2. CONCLUSIONS We conclude that the combination of metformin and BMS-754807 is more effective than either drug alone in inhibiting cell proliferation in the majority of TNBC cell lines, and that one important mechanism may be suppression of SCFSkp2 and subsequent stabilization of the cell cycle inhibitor p27Kip1. This combination treatment may represent an effective targeted therapy for a significant subset of TNBC cases and should be further evaluated.
Collapse
Affiliation(s)
- Lei Xue
- Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, Jiangsu, China.,Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fengju Chen
- Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fei Yue
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Laura Camacho
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Sushma Kothapalli
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Guanyun Wei
- Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, Jiangsu, China
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Qianxing Mo
- Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, Jiangsu, China
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Sao Jiralerspong
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Section of Breast Medical Oncology, Division of Hematology and Oncology, University of Arizona Cancer Center, 1515 N. Campbell Ave, Tucson, AZ, 85724, USA.
| |
Collapse
|
53
|
Emanuele MJ, Enrico TP, Mouery RD, Wasserman D, Nachum S, Tzur A. Complex Cartography: Regulation of E2F Transcription Factors by Cyclin F and Ubiquitin. Trends Cell Biol 2020; 30:640-652. [PMID: 32513610 PMCID: PMC7859860 DOI: 10.1016/j.tcb.2020.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
The E2F family of transcriptional regulators sits at the center of cell cycle gene expression and plays vital roles in normal and cancer cell cycles. Whereas control of E2Fs by the retinoblastoma family of proteins is well established, much less is known about their regulation by ubiquitin pathways. Recent studies placed the Skp1-Cul1-F-box-protein (SCF) family of E3 ubiquitin ligases with the F-box protein Cyclin F at the center of E2F regulation, demonstrating temporal proteolysis of both activator and atypical repressor E2Fs. Importantly, these E2F members, in particular activator E2F1 and repressors E2F7 and E2F8, form a feedback circuit at the crossroads of cell cycle and cell death. Moreover, Cyclin F functions in a reciprocal circuit with the cell cycle E3 ligase anaphase-promoting complex/cyclosome (APC/C), which also controls E2F7 and E2F8. This review focuses on the complex contours of feedback within this circuit, highlighting the deep crosstalk between E2F, SCF-Cyclin F, and APC/C in regulating the oscillator underlying human cell cycles.
Collapse
Affiliation(s)
- Michael J Emanuele
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Taylor P Enrico
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan D Mouery
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Genetics and Molecular Biology Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Danit Wasserman
- Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sapir Nachum
- Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Amit Tzur
- Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
54
|
Kinterova V, Kanka J, Petruskova V, Toralova T. Inhibition of Skp1-Cullin-F-box complexes during bovine oocyte maturation and preimplantation development leads to delayed development of embryos†. Biol Reprod 2020; 100:896-906. [PMID: 30535233 DOI: 10.1093/biolre/ioy254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/17/2018] [Accepted: 12/06/2018] [Indexed: 11/12/2022] Open
Abstract
The mechanism of maternal protein degradation during preimplantation development has not been clarified yet. It is thought that a lot of maternal proteins are degraded by the ubiquitin-proteasome system. In this study, we focused on the role of the SCF (Skp1-Cullin-F-box) complexes during early bovine embryogenesis. We inhibited them using MLN4924, an inhibitor of SCF complex ligases controlled by neddylation. Oocytes maturated in MLN4924 could be fertilized, but we found no cumulus cell expansion and a high number of polyspermy after in vitro fertilization. We also found a statistically significant deterioration of development after MLN4924 treatment. After treatment with MLN4924 from the four-cell to late eight-cell stage, we found a statistically significant delay in their development; some of the treated embryos were, however, able to reach the blastocyst stage later. We found reduced levels of mRNA of EGA markers PAPOLA and U2AF1A, which can be related to this developmental delay. The cultivation with MLN4924 caused a significant increase in protein levels in MLN4924-treated oocytes and embryos; no such change was found in cumulus cells. To detect the proteins affected by MLN4924 treatment, we performed a Western blot analysis of selected proteins (SMAD4, ribosomal protein S6, centromeric protein E, P27, NFKB inhibitor alpha, RNA-binding motif protein 19). No statistically significant increase in protein levels was detected in either treated embryos or oocytes. In summary, our study shows that SCF ligases are necessary for the correct maturation of oocytes, cumulus cell expansion, fertilization, and early preimplantation development of cattle.
Collapse
Affiliation(s)
- Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic.,Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
| | - Veronika Petruskova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Tereza Toralova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
| |
Collapse
|
55
|
Yumimoto K, Yamauchi Y, Nakayama KI. F-Box Proteins and Cancer. Cancers (Basel) 2020; 12:cancers12051249. [PMID: 32429232 PMCID: PMC7281081 DOI: 10.3390/cancers12051249] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Controlled protein degradation is essential for the operation of a variety of cellular processes including cell division, growth, and differentiation. Identification of the relations between ubiquitin ligases and their substrates is key to understanding the molecular basis of cancer development and to the discovery of novel targets for cancer therapeutics. F-box proteins function as the substrate recognition subunits of S-phase kinase-associated protein 1 (SKP1)−Cullin1 (CUL1)−F-box protein (SCF) ubiquitin ligase complexes. Here, we summarize the roles of specific F-box proteins that have been shown to function as tumor promoters or suppressors. We also highlight proto-oncoproteins that are targeted for ubiquitylation by multiple F-box proteins, and discuss how these F-box proteins are deployed to regulate their cognate substrates in various situations.
Collapse
|
56
|
Hur S, Kim JH, Yun J, Ju YW, Han JM, Heo W, Kim K, Jeong K, Lee HB, Han W, Noh DY, Kim JI, Moon HG. Protein Phosphatase 1H, Cyclin-Dependent Kinase Inhibitor p27, and Cyclin-Dependent Kinase 2 in Paclitaxel Resistance for Triple Negative Breast Cancers. J Breast Cancer 2020; 23:162-170. [PMID: 32395375 PMCID: PMC7192749 DOI: 10.4048/jbc.2020.23.e20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/26/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose Paclitaxel is a cytotoxic chemotherapy commonly used in patients with triple negative breast cancer (TNBC); however, the resistance to paclitaxel is a cause of poor response in the patients. The aim of this study was to examine the role of protein phosphatase 1H (PPM1H) in paclitaxel resistance in breast cancer patients. Methods To investigate the function of PPM1H in paclitaxel treatment, we conducted in vitro assays and molecular experiments using a stable cell line (MDA-MB-231) in which PPM1H is overexpressed. We also performed molecular analyses on patient tissue samples. Molecular expression related to PPM1H in breast cancer patients was analyzed using TCGA data. Results We investigated whether PPM1H was associated with paclitaxel resistance in breast cancer. PPM1H expression was upregulated in breast cancer cells treated with paclitaxel. We also observed that overexpression of PPM1H in breast cancer cells resulted in increased sensitivity to paclitaxel in vitro. Additionally, paclitaxel treatment induced dephosphorylation of cyclin-dependent kinase (CDK) inhibitor p27 (p27), which was more evident in PPM1H-overexpressing cells. To understand how upregulation of PPM1H increases paclitaxel sensitivity, we determined the levels of p27, phospho-p27, and CDK2, since CDK2 exerts antagonistic effects against PPM1H on p27 phosphorylation. The patient-derived xenograft (PDX) tumors that did not respond to paclitaxel showed increased levels of CDK2 and phospho-p27 and decreased levels of total p27 compared to the other breast tumor tissues. The use of dinaciclib, a selective CDK inhibitor, significantly inhibited tumor growth in the PDX model. Conclusion CDK2 kinase activity was significantly upregulated in basal breast cancer tumors and was negatively correlated with p27 protein levels in the TCGA breast cancer dataset, suggesting that targeting CDK2 may be an effective treatment strategy for TNBC patients.
Collapse
Affiliation(s)
- Saem Hur
- Interdisciplinary Program on Tumor Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Ju Hee Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jihui Yun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Young Wook Ju
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Jong Min Han
- Interdisciplinary Program on Tumor Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Woohang Heo
- Interdisciplinary Program on Tumor Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Seoul National University Hospital, Seoul, Korea
| | - Kyeonghun Jeong
- Division of Clinical Bioinformatics, Seoul National University Hospital, Seoul, Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Wonshik Han
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyeong-Gon Moon
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
57
|
Asmamaw MD, Liu Y, Zheng YC, Shi XJ, Liu HM. Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev 2020; 40:1920-1949. [PMID: 32391596 DOI: 10.1002/med.21675] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a complex process that regulates protein stability and activity by the sequential actions of E1, E2 and E3 enzymes to influence diverse aspects of eukaryotic cells. However, due to the diversity of proteins in cells, substrate selection is a highly critical part of the process. As a key player in UPS, E3 ubiquitin ligases recruit substrates for ubiquitination specifically. Among them, RING E3 ubiquitin ligases which are the most abundant E3 ubiquitin ligases contribute to diverse cellular processes. The multisubunit cullin-RING ligases (CRLs) are the largest family of RING E3 ubiquitin ligases with tremendous plasticity in substrate specificity and regulate a vast array of cellular functions. The F-box protein Skp2 is a component of CRL1 (the prototype of CRLs) which is expressed in many tissues and participates in multiple cellular functions such as cell proliferation, metabolism, and tumorigenesis by contributing to the ubiquitination and subsequent degradation of several specific tumor suppressors. Most importantly, Skp2 plays a pivotal role in a plethora of cancer-associated signaling pathways. It enhances cell growth, accelerates cell cycle progression, promotes migration and invasion, and inhibits cell apoptosis among others. Hence, targeting Skp2 may represent a novel and attractive strategy for the treatment of different human cancers overexpressing this oncogene. In this review article, we summarized the known roles of Skp2 both in health and disease states in relation to the UPS.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Ying Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Xiao-Jing Shi
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| |
Collapse
|
58
|
Momtaz S, Memariani Z, El-Senduny FF, Sanadgol N, Golab F, Katebi M, Abdolghaffari AH, Farzaei MH, Abdollahi M. Targeting Ubiquitin-Proteasome Pathway by Natural Products: Novel Therapeutic Strategy for Treatment of Neurodegenerative Diseases. Front Physiol 2020; 11:361. [PMID: 32411012 PMCID: PMC7199656 DOI: 10.3389/fphys.2020.00361] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Misfolded proteins are the main common feature of neurodegenerative diseases, thereby, normal proteostasis is an important mechanism to regulate the neural survival and the central nervous system functionality. The ubiquitin-proteasome system (UPS) is a non-lysosomal proteolytic pathway involved in numerous normal functions of the nervous system, modulation of neurotransmitter release, synaptic plasticity, and recycling of membrane receptors or degradation of damaged and regulatory intracellular proteins. Aberrant accumulation of intracellular ubiquitin-positive inclusions has been implicated to a variety of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington disease (HD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Myeloma (MM). Genetic mutation in deubiquitinating enzyme could disrupt UPS and results in destructive effects on neuron survival. To date, various agents were characterized with proteasome-inhibitory potential. Proteins of the ubiquitin-proteasome system, and in particular, E3 ubiquitin ligases, may be promising molecular targets for neurodegenerative drug discovery. Phytochemicals, specifically polyphenols (PPs), were reported to act as proteasome-inhibitors or may modulate the proteasome activity. PPs modify the UPS by means of accumulation of ubiquitinated proteins, suppression of neuronal apoptosis, reduction of neurotoxicity, and improvement of synaptic plasticity and transmission. This is the first comprehensive review on the effect of PPs on UPS. Here, we review the recent findings describing various aspects of UPS dysregulation in neurodegenerative disorders. This review attempts to summarize the latest reports on the neuroprotective properties involved in the proper functioning of natural polyphenolic compounds with implication for targeting ubiquitin-proteasome pathway in the neurodegenerative diseases. We highlight the evidence suggesting that polyphenolic compounds have a dose and disorder dependent effects in improving neurological dysfunctions, and so their mechanism of action could stimulate the UPS, induce the protein degradation or inhibit UPS and reduce protein degradation. Future studies should focus on molecular mechanisms by which PPs can interfere this complex regulatory system at specific stages of the disease development and progression.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | | | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.,Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Majid Katebi
- Department of Anatomy, Faculty of Medicine, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Amir Hossein Abdolghaffari
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran.,Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
59
|
Razavipour SF, Harikumar KB, Slingerland JM. p27 as a Transcriptional Regulator: New Roles in Development and Cancer. Cancer Res 2020; 80:3451-3458. [PMID: 32341036 DOI: 10.1158/0008-5472.can-19-3663] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/25/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
p27 binds and inhibits cyclin-CDK to arrest the cell cycle. p27 also regulates other processes including cell migration and development independent of its cyclin-dependent kinase (CDK) inhibitory action. p27 is an atypical tumor suppressor-deletion or mutational inactivation of the gene encoding p27, CDKN1B, is rare in human cancers. p27 is rarely fully lost in cancers because it can play both tumor suppressive and oncogenic roles. Until recently, the paradigm was that oncogenic deregulation results from either loss of growth restraint due to excess p27 proteolysis or from an oncogenic gain of function through PI3K-mediated C-terminal p27 phosphorylation, which disrupts the cytoskeleton to increase cell motility and metastasis. In cancers, C-terminal phosphorylation alters p27 protein-protein interactions and shifts p27 from CDK inhibitor to oncogene. Recent data indicate p27 regulates transcription and acts as a transcriptional coregulator of cJun. C-terminal p27 phosphorylation increases p27-cJun recruitment to and action on target genes to drive oncogenic pathways and repress differentiation programs. This review focuses on noncanonical, CDK-independent functions of p27 in migration, invasion, development, and gene expression, with emphasis on how transcriptional regulation by p27 illuminates its actions in cancer. A better understanding of how p27-associated transcriptional complexes are regulated might identify new therapeutic targets at the interface between differentiation and growth control.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Razavipour
- Breast Cancer Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Joyce M Slingerland
- Breast Cancer Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC.
| |
Collapse
|
60
|
Yamauchi Y, Nita A, Nishiyama M, Muto Y, Shimizu H, Nakatsumi H, Nakayama KI. Skp2 contributes to cell cycle progression in trophoblast stem cells and to placental development. Genes Cells 2020; 25:427-438. [PMID: 32267063 DOI: 10.1111/gtc.12769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/29/2022]
Abstract
All trophoblast subtypes of the placenta are derived from trophoblast stem cells (TSCs). TSCs have the capacity to self-renew, but how the proliferation of these cells is regulated in the undifferentiated state has been largely unclear. We now show that the F-box protein Skp2 regulates the proliferation of TSCs and thereby plays a pivotal role in placental development in mice on the C57BL/6 background. The placenta of Skp2-/- mouse embryos on the C57BL/6 background was smaller than that of their Skp2+/+ littermates, with the mutant embryos also manifesting intrauterine growth retardation. Although the Skp2-/- mice were born alive, most of them died before postnatal day 21, presumably as a result of placental defects. Depletion of Skp2 in TSCs cultured in the undifferentiated state resulted in a reduced rate of proliferation and arrest of the cell cycle in G1 phase, indicative of a defect in self-renewal capacity. The cell cycle arrest apparent in Skp2-deficient TSCs was reversed by additional ablation of the cyclin-dependent kinase inhibitor (CKI) p57 but not by that of the CKI p27. Our results thus suggest that Skp2-mediated degradation of p57 is an important determinant of the self-renewal capacity of TSCs during placental development, at least in mice of certain genetic backgrounds.
Collapse
Affiliation(s)
- Yuhei Yamauchi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Akihiro Nita
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Masaaki Nishiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Yoshiharu Muto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Hideyuki Shimizu
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Hirokazu Nakatsumi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| |
Collapse
|
61
|
S-Phase Kinase-associated Protein-2 Rejuvenates Senescent Endothelial Progenitor Cells and Induces Angiogenesis in Vivo. Sci Rep 2020; 10:6646. [PMID: 32313103 PMCID: PMC7171137 DOI: 10.1038/s41598-020-63716-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 04/06/2020] [Indexed: 01/16/2023] Open
Abstract
Cell cycle slowdown or arrest is a prominent feature of cellular senescence. S-phase kinase-associated protein-2 (Skp2), an F-box subunit of SCFSkp2 ubiquitin ligase, is a key regulator of G1/S transition. We investigated whether Skp2 plays a role in the regulation of endothelial progenitor cell (EPC) senescence, which is closely associated with aging-related vasculopathy. Replication-induced senescent EPCs demonstrated more pronounced senescence markers and lower Skp2 levels in comparison with those of their younger counterparts. Depletion of Skp2 induced increases in senescence-associated β-galactosidase (SA-βGal) activity and a reduction of telomere length and generated a senescent bioenergetics profile, whereas adenoviral-mediated Skp2 expression reversed the relevant senescence. EPCs isolated from older rats displayed a reduced proliferation rate and increased SA-βGal activity, both of which were significantly reversed by Skp2 ectopic expression. In addition to reversing senescence, Skp2 also rescued the angiogenic activity of senescent EPCs in the ischemic hind limbs of nude mice. The results revealed that ectopic expression of Skp2 has the potential to rejuvenate senescent EPCs and rescue their angiogenic activity and thus may be pivotal in the development of novel strategies to manage aging-related vascular disease.
Collapse
|
62
|
Shi X, Zhu K, Ye Z, Yue J. VCP/p97 targets the nuclear export and degradation of p27 Kip1 during G1 to S phase transition. FASEB J 2020; 34:5193-5207. [PMID: 32067276 DOI: 10.1096/fj.201901506r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/13/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022]
Abstract
One of the critical regulatory mechanisms for cell cycle progression is the timely degradation of CDK inhibitors, including p21Cip1 and p27Kip1 . VCP/p97, an AAA-ATPase, is reported to be overexpressed in many types of cancers. Here, we found that treatment of MCF-7 human breast cancer cells with DBeQ, a VCP inhibitor, or VCP knockdown in MCF-7 cells arrested cells at G1 phase, accompanied with the blockage of both p21 and p27 degradation. Whereas, double knockdown of p21 and p27 in MCF-7 cells rendered cells refractory to DBeQ-induced G1 arrest. Moreover, inhibition or knockdown of VCP or UFD1, one of VCP's co-factors, in MCF-7, NIH3T3, or HEK293T cells blocked the nuclear export of p27 during earlier G1 phase after mitogen stimulation. We also identified the nuclear localization sequence (NLS) of VCP, and found that adding back wild-type VCP, not the NLS-deleted VCP mutant, restored the nuclear export and degradation of p27 in VCP knockout MCF-7 cells. Importantly, we found that VCP inhibition sensitized breast cancer cells to the treatment of several anticancer therapeutics both in vitro and in vivo. Taken together, our study not only uncovers the mechanisms underlying VCP-mediated cell proliferation control but also provides potential therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Xianli Shi
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kaiyuan Zhu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zuodong Ye
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
63
|
Yumimoto K, Nakayama KI. Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol 2020; 67:1-15. [PMID: 32113998 DOI: 10.1016/j.semcancer.2020.02.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
FBXW7 (also known as Fbw7, Sel10, hCDC4, or hAgo) is a tumor suppressor and the most frequently mutated member of the F-box protein family in human cancers. FBXW7 functions as the substrate recognition component of an SCF-type E3 ubiquitin ligase. It specifically controls the proteasome-mediated degradation of many oncoproteins such as c-MYC, NOTCH, KLF5, cyclin E, c-JUN, and MCL1. In this review, we summarize the molecular and biological features of FBXW7 and its substrates as well as the impact of mutations of FBXW7 on cancer development. We also address the clinical potential of anticancer therapy targeting FBXW7.
Collapse
Affiliation(s)
- Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
64
|
Cai Z, Moten A, Peng D, Hsu CC, Pan BS, Manne R, Li HY, Lin HK. The Skp2 Pathway: A Critical Target for Cancer Therapy. Semin Cancer Biol 2020; 67:16-33. [PMID: 32014608 DOI: 10.1016/j.semcancer.2020.01.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
Strictly regulated protein degradation by ubiquitin-proteasome system (UPS) is essential for various cellular processes whose dysregulation is linked to serious diseases including cancer. Skp2, a well characterized component of Skp2-SCF E3 ligase complex, is able to conjugate both K48-linked ubiquitin chains and K63-linked ubiquitin chains on its diverse substrates, inducing proteasome mediated proteolysis or modulating the function of tagged substrates respectively. Overexpression of Skp2 is observed in various human cancers associated with poor survival and adverse therapeutic outcomes, which in turn suggests that Skp2 engages in tumorigenic activity. To that end, the oncogenic properties of Skp2 are demonstrated by various genetic mouse models, highlighting the potential of Skp2 as a target for tackling cancer. In this article, we will describe the downstream substrates of Skp2 as well as upstream regulators for Skp2-SCF complex activity. We will further summarize the comprehensive oncogenic functions of Skp2 while describing diverse strategies and therapeutic platforms currently available for developing Skp2 inhibitors.
Collapse
Affiliation(s)
- Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| | - Asad Moten
- National Capital Consortium, Department of Defense, Washington DC, 20307, USA; Institute for Complex Systems, HealthNovations International, Houston, TX, 77089, USA; Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20814, USA; Center on Genomics, Vulnerable Populations, and Health Disparities, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Rajeshkumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Hong-Yu Li
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock AR 72202, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA; Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
65
|
Liu J, Peng Y, Zhang J, Long J, Liu J, Wei W. Targeting SCF E3 Ligases for Cancer Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:123-146. [PMID: 31898226 DOI: 10.1007/978-981-15-1025-0_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SKP1-cullin-1-F-box-protein (SCF) E3 ubiquitin ligase complex is responsible for the degradation of proteins in a strictly regulated manner, through which it exerts pivotal roles in regulating various key cellular processes including cell cycle and division, apoptosis, and differentiation. The substrate specificity of the SCF complex largely depends on the distinct F-box proteins, which function in either tumor promotion or suppression or in a context-dependent manner. Among the 69 F-box proteins identified in human genome, FBW7, SKP2, and β-TRCP have been extensively investigated among various types of cancer in respective of their roles in cancer development, progression, and metastasis. Moreover, several specific inhibitors have been developed to target those E3 ligases, and their efficiency in tumors has been determined. In this review, we provide a summary of the roles of SCF E3 ligases in cancer development, as well as the potential application of miRNA or specific inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Jing Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
66
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
67
|
Cdh1-mediated Skp2 degradation by dioscin reprogrammes aerobic glycolysis and inhibits colorectal cancer cells growth. EBioMedicine 2019; 51:102570. [PMID: 31806563 PMCID: PMC7000337 DOI: 10.1016/j.ebiom.2019.11.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The F-box protein S-phase kinase-associated protein 2 (Skp2) is overexpressed and correlated with poor prognosis in human malignancies, including colorectal cancer (CRC). METHODS A natural product library was used for natural compound screening through glycolysis analysis. The expression of Skp2 in CRCs and the inhibitory effect of dioscin on glycolysis were examined through methods of immunoblot, immunofluorescence, immunohistochemical staining, anchorage-dependent and -independent growth assays, EdU incorporation assay, ubiquitination analysis, co-immunoprecipitation assay, CRISPR-Cas9-based gene knockout, and xenograft experiment. FINDINGS We demonstrated that Skp2 was highly expressed in CRC tissues and cell lines. Knockout of Skp2 inhibited HK2 and glycolysis and decreased CRC cell growth in vitro and in vivo. We screened 88 commercially available natural products and found that dioscin, a natural steroid saponin derived from several plants, significantly inhibited glycolysis in CRC cells. Dioscin decreased the protein level of Skp2 by shortening the half-life of Skp2. Further study showed that dioscin attenuated Skp2 phosphorylation on S72 and promoted the interaction between Skp2 and Cdh1, which eventually enhanced Skp2 lysine 48 (K48)-linked polyubiquitination and degradation. Depletion of Cdh1 impaired dioscin-induced Skp2 reduction, rescued HK2 expression, and glycolysis in CRC cells. Finally, dioscin delayed the in vivo tumor growth, promoted Skp2 ubiquitination, and inhibited Skp2 expression in a mouse xenograft model. INTERPRETATION This study suggests that in addition to pharmacological inactivation of Skp2, enhancement of ubiquitination-dependent Skp2 turnover is a promising approach for cancer treatment.
Collapse
|
68
|
Baloghova N, Lidak T, Cermak L. Ubiquitin Ligases Involved in the Regulation of Wnt, TGF-β, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis. Genes (Basel) 2019; 10:genes10100815. [PMID: 31623112 PMCID: PMC6826584 DOI: 10.3390/genes10100815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
The Wnt, TGF-β, and Notch signaling pathways are essential for the regulation of cellular polarity, differentiation, proliferation, and migration. Differential activation and mutual crosstalk of these pathways during animal development are crucial instructive forces in the initiation of the body axis and the development of organs and tissues. Due to the ability to initiate cell proliferation, these pathways are vulnerable to somatic mutations selectively producing cells, which ultimately slip through cellular and organismal checkpoints and develop into cancer. The architecture of the Wnt, TGF-β, and Notch signaling pathways is simple. The transmembrane receptor, activated by the extracellular stimulus, induces nuclear translocation of the transcription factor, which subsequently changes the expression of target genes. Nevertheless, these pathways are regulated by a myriad of factors involved in various feedback mechanisms or crosstalk. The most prominent group of regulators is the ubiquitin-proteasome system (UPS). To open the door to UPS-based therapeutic manipulations, a thorough understanding of these regulations at a molecular level and rigorous confirmation in vivo are required. In this quest, mouse models are exceptional and, thanks to the progress in genetic engineering, also an accessible tool. Here, we reviewed the current understanding of how the UPS regulates the Wnt, TGF-β, and Notch pathways and we summarized the knowledge gained from related mouse models.
Collapse
Affiliation(s)
- Nikol Baloghova
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Tomas Lidak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Lukas Cermak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| |
Collapse
|
69
|
Notch and the pre-TCR coordinate thymocyte proliferation by induction of the SCF subunits Fbxl1 and Fbxl12. Nat Immunol 2019; 20:1381-1392. [PMID: 31451788 PMCID: PMC6754294 DOI: 10.1038/s41590-019-0469-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/16/2019] [Indexed: 01/05/2023]
Abstract
Proliferation is tightly regulated during T cell development and is limited to immature CD4−CD8− thymocytes. The major proliferative event is initiated at the ‘β-selection’ stage following successful rearrangement of Tcrβ and is triggered by and dependent on concurrent signaling by Notch and the pre-TCR; however, it is unclear how these signals cooperate to promote cell proliferation. Here we found that β-selection-associated proliferation required the combined activity of two SCF ubiquitin ligase complexes that included as substrate recognition subunits the F-box proteins Fbxl1 or Fbxl12. Both SCF complexes targeted the cyclin-dependent kinase inhibitor Cdkn1b for ubiquitinylaton and degradation. We found that Notch signals induced the transcription of Fbxl1 whereas pre-TCR signals induced the transcription of Fbxl12. Thus, concurrent Notch and pre-TCR signaling induced the expression of two genes, Fbxl1 and Fbxl12, whose products functioned identically but additively to promote degradation of Cdkn1b, cell cycle progression, and proliferation of β-selected thymocytes.
Collapse
|
70
|
Yu X, Wang R, Zhang Y, Zhou L, Wang W, Liu H, Li W. Skp2-mediated ubiquitination and mitochondrial localization of Akt drive tumor growth and chemoresistance to cisplatin. Oncogene 2019; 38:7457-7472. [PMID: 31435020 DOI: 10.1038/s41388-019-0955-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 11/09/2022]
Abstract
The E3 ligase S-phase kinase-associated protein 2(Skp2) is overexpressed in human cancers and correlated with poor prognosis, but its contributions to tumorigenesis and chemoresistance in nasopharyngeal carcinoma (NPC) are not evident. Herein we show that Skp2 is highly expressed in NPC tumor tissues and cell lines. Knockdown of Skp2 suppresses tumor cell growth, colony formation, glycolysis, and in vivo tumor growth. Skp2 promotes Akt K63-mediated ubiquitination and activation, which is required for EGF-induced Akt mitochondrial localization. Importantly, K63-linked ubiquitination enhances the interaction between Akt and HK2 and eventually increases HK2 phosphorylation on Thr473 and mitochondrial localization. Overexpression of Skp2 impaired the intrinsic apoptotic pathway and confers cisplatin resistance. Moreover, ectopic expression of Myr-Akt1 or phosphomimetic HK2-T473D rescued cisplatin-induced tumor suppression in Skp2 knockdown stable cells. Also, depletion of Akt ubiquitination enhances the antitumor efficacy of cisplatin in vitro and in vivo. Finally, we demonstrated that Skp2 is positively correlated with p-Akt and HK2 in NPC tumor tissues. This study highlights the clinical value of Skp2 targeting in NPC treatment.
Collapse
Affiliation(s)
- Xinfang Yu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ruike Wang
- Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, PR China
| | - Yangnan Zhang
- Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, PR China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, PR China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410000, Hunan, PR China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China. .,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China.
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410000, Hunan, PR China.
| |
Collapse
|
71
|
Kawauchi T, Nabeshima YI. Growth Arrest Triggers Extra-Cell Cycle Regulatory Function in Neurons: Possible Involvement of p27 kip1 in Membrane Trafficking as Well as Cytoskeletal Regulation. Front Cell Dev Biol 2019; 7:64. [PMID: 31080801 PMCID: PMC6497764 DOI: 10.3389/fcell.2019.00064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 11/30/2022] Open
Abstract
Cell cycle regulation is essential for the development of multicellular organisms, but many cells in adulthood, including neurons, exit from cell cycle. Although cell cycle-related proteins are suppressed after cell cycle exit in general, recent studies have revealed that growth arrest triggers extra-cell cycle regulatory function (EXCERF) in some cell cycle proteins, such as p27(kip1), p57(kip2), anaphase-promoting complex/cyclosome (APC/C), and cyclin E. While p27 is known to control G1 length and cell cycle exit via inhibition of cyclin-dependent kinase (CDK) activities, p27 acquires additional cytoplasmic functions in growth-arrested neurons. Here, we introduce the EXCERFs of p27 in post-mitotic neurons, mainly focusing on its actin and microtubule regulatory functions. We also show that a small amount of p27 is associated with the Golgi apparatus positive for Rab6, p115, and GM130, but not endosomes positive for Rab5, Rab7, Rab8, Rab11, SNX6, or LAMTOR1. p27 is also colocalized with Dcx, a microtubule-associated protein. Based on these results, we discuss here the possible role of p27 in membrane trafficking and microtubule-dependent transport in post-mitotic cortical neurons. Collectively, we propose that growth arrest leads to two different fates in cell cycle proteins; either suppressing their expression or activating their EXCERFs. The latter group of proteins, including p27, play various roles in neuronal migration, morphological changes and axonal transport, whereas the re-activation of the former group of proteins in post-mitotic neurons primes for cell death.
Collapse
Affiliation(s)
- Takeshi Kawauchi
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yo-Ichi Nabeshima
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| |
Collapse
|
72
|
Song Y, Lin M, Liu Y, Wang ZW, Zhu X. Emerging role of F-box proteins in the regulation of epithelial-mesenchymal transition and stem cells in human cancers. Stem Cell Res Ther 2019; 10:124. [PMID: 30999935 PMCID: PMC6472071 DOI: 10.1186/s13287-019-1222-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence shows that epithelial-mesenchymal transition (EMT) plays a crucial role in tumor invasion, metastasis, cancer stem cells, and drug resistance. Data obtained thus far have revealed that F-box proteins are critically involved in the regulation of the EMT process and stem cell differentiation in human cancers. In this review, we will briefly describe the role of EMT and stem cells in cell metastasis and drug resistance. We will also highlight how numerous F-box proteins govern the EMT process and stem cell survival by controlling their downstream targets. Additionally, we will discuss whether F-box proteins involved in drug resistance are associated with EMT and cancer stem cells. Targeting these F-box proteins might be a potential therapeutic strategy to reverse EMT and inhibit cancer stem cells and thus overcome drug resistance in human cancers.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
73
|
Sora RP, Ikeda M, Longnecker R. Two Pathways of p27 Kip1 Degradation Are Required for Murine Lymphoma Driven by Myc and EBV Latent Membrane Protein 2A. mBio 2019; 10:e00548-19. [PMID: 30992353 PMCID: PMC6469971 DOI: 10.1128/mbio.00548-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A), expressed in EBV latency, contributes to Burkitt lymphoma (BL) development in a murine model by acting as a constitutively active B cell receptor (BCR) mimic. Mice expressing both LMP2A and MYC transgenes (LMP2A/λ-MYC) develop tumors significantly faster than mice only expressing MYC (λ-MYC). Previously, we demonstrated the cell cycle inhibitor p27Kip1 is present at significantly lower levels in LMP2A/λ-MYC mice due to increased posttranslational degradation. P27Kip1 degradation can occur in the cytoplasm following phosphorylation on serine 10 (S10) or in the nucleus via the SCFSkp2 complex, which depends on Cks1. We previously demonstrated an S10A knock-in of p27Kip1 (p27S10A/S10A) that prevented S10 phosphorylation failed to significantly delay tumor onset in LMP2A/λ-MYC mice. We also previously demonstrated that a Cks1 knockout partially delayed tumor onset in LMP2A/λ-MYC mice, but onset was still significantly faster than that in λ-MYC mice. Here, we have combined both genetic manipulations in what we call p27Super mice. LMP2A/λ-MYC/p27Super mice and λ-MYC/p27Super mice both displayed dramatic delays in tumor onset. Strikingly, tumor development in LMP2A/λ-MYC/p27Super mice was later than that in λ-MYC mice and not significantly different from that in λ-MYC/p27Super mice. The p27Super genotype also normalized G1-S-phase cell cycle progression, spleen size, and splenic architecture in LMP2A/λ-MYC mice. Our results reveal both major pathways of p27Kip1 degradation are required for the accelerated BL development driven by LMP2A in our BL model and that blocking both degradation pathways is sufficient to delay Myc-driven tumor development with or without LMP2A.IMPORTANCE BL is a cancer that primarily affects children. The side effects of chemotherapy highlight the need for better BL treatments. Many BL tumors contain EBV, and our goal is to determine what makes EBV-positive BL different from EBV-negative BL. This may lead to more specific treatments for both types. All cases of BL require overexpression of MYC Mice engineered to express EBV LMP2A along with MYC (LMP2A/λ-MYC mice) develop tumors much more quickly than mice only expressing MYC (λ-MYC mice). Blocking degradation of the cell cycle inhibitor protein p27Kip1 in LMP2A/λ-MYC mice causes tumors to develop later than in λ-MYC mice, showing that p27Kip1 degradation may play a larger role in EBV-positive BL than EBV-negative BL. Furthermore, our studies suggest the cell cycle is an attractive target as a treatment option for LMP2A-positive cancers in humans.
Collapse
Affiliation(s)
- Richard P Sora
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Masato Ikeda
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
74
|
S-Like-Phase Cyclin-Dependent Kinases Stabilize the Epstein-Barr Virus BDLF4 Protein To Temporally Control Late Gene Transcription. J Virol 2019; 93:JVI.01707-18. [PMID: 30700607 DOI: 10.1128/jvi.01707-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Temporally controlled gene expression is necessary for the propagation of herpesviruses. To achieve this, herpesviruses encode several transcriptional regulators. In Epstein-Barr virus, BcRF1 associates with five viral proteins (BDLF4, BGLF3, BFRF2, BVLF1, and BDLF3.5) to form the viral late (L) gene regulatory complex, which is called the viral preinitiation complex (vPIC), on TATT-containing promoters. However, regulation of the vPIC has been largely unexplored. In this study, we performed two screens using a kinase inhibitor library and identified a series of cyclin-dependent kinase (CDK) inhibitors that downregulated the expression of L genes without any impact on viral DNA replication through destabilization of the BDLF4 protein. Knockdown of CDK2 by short hairpin RNA (shRNA) and proteasome inhibitor treatment showed that phosphorylation of the BDLF4 protein prevented ubiquitin-mediated degradation. Moreover, we demonstrated that cyclin A- and E-associated CDK2 complexes phosphorylated BDLF4 in vitro, and we identified several serine/threonine phosphorylation sites in BDLF4. Phosphoinactive and phosphomimic mutants revealed that phosphorylation at threonine 91 plays a role in stabilizing BDLF4. Therefore, our findings indicate that S-like-phase CDKs mediate the regulation of L gene expression through stabilization of the BDLF4 protein, which makes the temporal L gene expression system more robust.IMPORTANCE Late (L) genes represent more than one-third of the herpesvirus genome, suggesting that many of these genes are indispensable for the life cycle of the virus. With the exception of BCRF1, BDLF2, and BDLF3, Epstein-Barr virus L genes are transcribed by viral regulators, which are known as the viral preinitiation complex (vPIC) and the host RNA polymerase II complex. Because the vPIC is conserved in beta- and gammaherpesviruses, studying the control of viral L gene expression by the vPIC contributes to the development of drugs that specifically inhibit these processes in beta- and gammaherpesvirus infections/diseases. In this study, we demonstrated that CDK inhibitors induced destabilization of the vPIC component BDLF4, leading to a reduction in L gene expression and subsequent progeny production. Our findings suggest that CDK inhibitors may be a therapeutic option against beta- and gammaherpesviruses in combination with existing inhibitors of herpesvirus lytic replication, such as ganciclovir.
Collapse
|
75
|
Gao J, Wang G, Wu J, Zuo Y, Zhang J, Chen J. Arsenic trioxide inhibits Skp2 expression to increase chemosensitivity to gemcitabine in pancreatic cancer cells. Am J Transl Res 2019; 11:991-997. [PMID: 30899398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/18/2018] [Indexed: 09/28/2022]
Abstract
The S-phase kinase associated protein 2 (Skp2), a member of the F-box protein family, regulates cell cycle progression and is highly expressed in pancreatic cancer (PC). Recently, we reported that arsenic trioxide (ATO) inhibited cell growth and invasion via downregulation of Skp2 in PC cells. Emerging evidence has revealed that Skp2 plays a crucial role in drug resistance in several kinds of cancers. Here, we determined whether ATO enhanced the sensitivity of PC cell lines to gemcitabine (GEM). We found that the combined treatment of ATO and GEM demonstrated strong antitumor effects in Patu8988 and Panc-1 PC cells. In addition, ATO potentiated the effects of GEM via downregulation of the Skp2 pathway in PC cells. Together, these findings suggested that Skp2 may be a promising therapeutic target to overcome resistance to GEM in PC.
Collapse
Affiliation(s)
- Jiankun Gao
- Department of Basic Medical Science, Sichuan College of Traditional Chinese Medicine Mianyang 621000, Sichuan, China
| | - Gu Wang
- Department of Basic Medical Science, Sichuan College of Traditional Chinese Medicine Mianyang 621000, Sichuan, China
| | - Jingrong Wu
- Department of Basic Medical Science, Sichuan College of Traditional Chinese Medicine Mianyang 621000, Sichuan, China
| | - Yu Zuo
- Department of Basic Medical Science, Sichuan College of Traditional Chinese Medicine Mianyang 621000, Sichuan, China
| | - Jing Zhang
- Department of Basic Medical Science, Sichuan College of Traditional Chinese Medicine Mianyang 621000, Sichuan, China
| | - Jiaqi Chen
- Department of Hepatobiliary Pancreatic Surgery, Jilin Province Cancer Hospital Changchun 130012, Jilin, China
| |
Collapse
|
76
|
García-Gutiérrez L, Delgado MD, León J. MYC Oncogene Contributions to Release of Cell Cycle Brakes. Genes (Basel) 2019; 10:E244. [PMID: 30909496 PMCID: PMC6470592 DOI: 10.3390/genes10030244] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Promotion of the cell cycle is a major oncogenic mechanism of the oncogene c-MYC (MYC). MYC promotes the cell cycle by not only activating or inducing cyclins and CDKs but also through the downregulation or the impairment of the activity of a set of proteins that act as cell-cycle brakes. This review is focused on the role of MYC as a cell-cycle brake releaser i.e., how MYC stimulates the cell cycle mainly through the functional inactivation of cell cycle inhibitors. MYC antagonizes the activities and/or the expression levels of p15, ARF, p21, and p27. The mechanism involved differs for each protein. p15 (encoded by CDKN2B) and p21 (CDKN1A) are repressed by MYC at the transcriptional level. In contrast, MYC activates ARF, which contributes to the apoptosis induced by high MYC levels. At least in some cells types, MYC inhibits the transcription of the p27 gene (CDKN1B) but also enhances p27's degradation through the upregulation of components of ubiquitin ligases complexes. The effect of MYC on cell-cycle brakes also opens the possibility of antitumoral therapies based on synthetic lethal interactions involving MYC and CDKs, for which a series of inhibitors are being developed and tested in clinical trials.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
- Current address: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | - María Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| |
Collapse
|
77
|
Lin H, Ruan GY, Sun XQ, Chen XY, Zheng X, Sun PM. Effects of RNAi-induced Skp2 inhibition on cell cycle, apoptosis and proliferation of endometrial carcinoma cells. Exp Ther Med 2019; 17:3441-3450. [PMID: 30988723 PMCID: PMC6447788 DOI: 10.3892/etm.2019.7392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of the current study was to investigate the underlying mechanism of S-phase kinase associated protein 2 (Skp2) gene inhibition by lentivirus-mediated RNA interference (RNAi) on the cell cycle, apoptosis and proliferation of endometrial carcinoma HEC-1-A cells. A lentivirus shRNA vector targeting Skp2 was constructed and transfected into HEC-1-A cells. HEC-1-A cells transfected with a scramble sequence were used as negative controls. The mRNA and protein expression of Skp2, p27, cyclin D1 and caspase-3 were detected via reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The effects of Skp2 inhibition on the cell cycle, apoptosis and proliferation of HEC-1-A cells were detected using flow cytometry and a cell counting kit-8. Skp2 co-expression data was analyzed using Oncomine and TCGA databases. The positive recombinant viral clones were identified via PCR and confirmed via sequencing. The mRNA and protein expression of Skp2 were significantly decreased in HEC-1-A cells transfected with the lentiviral vectors compared with the negative control. In addition, there were no significant changes in the mRNA expression of p27 and cyclin D1; however, the protein levels of p27 and cyclin D1 were upregulated and downregulated, respectively, in HEC-1-A cells transfected with lentiviral vectors compared with negative controls. RNAi-induced Skp2 inhibition exerted an anti-proliferative effect by inducing cell cycle arrest, however cell apoptosis was not significantly affected. In the TCGA database, Skp2 expression positively associated with IGF2R, IGF2BP3, IGFBP1 and CCNF, while Skp2 expression negatively associated with IGF2, IGFBP6, IGFBP7 and IGFBP3. RNAi-induced Skp2 inhibition upregulated the protein expression of p27 and downregulated the protein expression of cyclin D1. The expression of Skp2 in endometrial cancer may therefore be regulated by the insulin-like growth factor 1 receptor signaling pathway.
Collapse
Affiliation(s)
- Hao Lin
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Guan-Yu Ruan
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiao-Qi Sun
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiao-Ying Chen
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiu Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Peng-Ming Sun
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China.,Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
78
|
Wang S, Zhao L, Shi XJ, Ding L, Yang L, Wang ZZ, Shen D, Tang K, Li XJ, Mamun MAA, Li H, Yu B, Zheng YC, Wang S, Liu HM. Development of Highly Potent, Selective, and Cellular Active Triazolo[1,5-a]pyrimidine-Based Inhibitors Targeting the DCN1–UBC12 Protein–Protein Interaction. J Med Chem 2019; 62:2772-2797. [DOI: 10.1021/acs.jmedchem.9b00113] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory
of Advanced Technology of Drug Preparation Technologies, Zhengzhou
University, Ministry of Education of China, Zhengzhou 450001, China
| | - Lijie Zhao
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory
of Advanced Technology of Drug Preparation Technologies, Zhengzhou
University, Ministry of Education of China, Zhengzhou 450001, China
| | - Xiao-Jing Shi
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory
of Advanced Technology of Drug Preparation Technologies, Zhengzhou
University, Ministry of Education of China, Zhengzhou 450001, China
| | - Lina Ding
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory
of Advanced Technology of Drug Preparation Technologies, Zhengzhou
University, Ministry of Education of China, Zhengzhou 450001, China
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi-Zheng Wang
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory
of Advanced Technology of Drug Preparation Technologies, Zhengzhou
University, Ministry of Education of China, Zhengzhou 450001, China
| | - Dandan Shen
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory
of Advanced Technology of Drug Preparation Technologies, Zhengzhou
University, Ministry of Education of China, Zhengzhou 450001, China
| | - Kai Tang
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory
of Advanced Technology of Drug Preparation Technologies, Zhengzhou
University, Ministry of Education of China, Zhengzhou 450001, China
| | - Xiao-Jing Li
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory
of Advanced Technology of Drug Preparation Technologies, Zhengzhou
University, Ministry of Education of China, Zhengzhou 450001, China
| | - MAA Mamun
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory
of Advanced Technology of Drug Preparation Technologies, Zhengzhou
University, Ministry of Education of China, Zhengzhou 450001, China
| | - Huiju Li
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory
of Advanced Technology of Drug Preparation Technologies, Zhengzhou
University, Ministry of Education of China, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory
of Advanced Technology of Drug Preparation Technologies, Zhengzhou
University, Ministry of Education of China, Zhengzhou 450001, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, People’s Republic of China
| | - Yi-Chao Zheng
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory
of Advanced Technology of Drug Preparation Technologies, Zhengzhou
University, Ministry of Education of China, Zhengzhou 450001, China
| | - Shaomeng Wang
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
- Departments of Internal Medicine, Pharmacology, Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Hong-Min Liu
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory
of Advanced Technology of Drug Preparation Technologies, Zhengzhou
University, Ministry of Education of China, Zhengzhou 450001, China
| |
Collapse
|
79
|
Li C, Du L, Ren Y, Liu X, Jiao Q, Cui D, Wen M, Wang C, Wei G, Wang Y, Ji A, Wang Q. SKP2 promotes breast cancer tumorigenesis and radiation tolerance through PDCD4 ubiquitination. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:76. [PMID: 30760284 PMCID: PMC6375223 DOI: 10.1186/s13046-019-1069-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
Abstract
Background S-phase kinase-associated protein 2 (SKP2) is an oncogene and cell cycle regulator that specifically recognizes phosphorylated cell cycle regulator proteins and mediates their ubiquitination. Programmed cell death protein 4 (PDCD4) is a tumor suppressor gene that plays a role in cell apoptosis and DNA-damage response via interacting with eukaryotic initiation factor-4A (eIF4A) and P53. Previous research showed SKP2 may interact with PDCD4, however the relationship between SKP2 and PDCD4 is unclear. Methods To validate the interaction between SKP2 and PDCD4, mass spectrometric analysis and reciprocal co-immunoprecipitation (Co-IP) experiments were performed. SKP2 stably overexpressed or knockdown breast cancer cell lines were established and western blot was used to detect proteins changes before and after radiation. In vitro and in vivo experiments were performed to verify whether SKP2 inhibits cell apoptosis and promotes DNA-damage response via PDCD4 suppression. SMIP004 was used to test the effect of radiotherapy combined with SKP2 inhibitor. Results We found that SKP2 remarkably promoted PDCD4 phosphorylation, ubiquitination and degradation. SKP2 promoted cell proliferation, inhibited cell apoptosis and enhanced the response to DNA-damage via PDCD4 suppression in breast cancer. SKP2 and PDCD4 showed negative correlation in human breast cancer tissues. Radiotherapy combine with SKP2 inhibitor SMIP004 showed significant inhibitory effects on breast cancer cells in vitro and in vivo. Conclusions We identify PDCD4 as an important ubiquitination substrate of SKP2. SKP2 promotes breast cancer tumorigenesis and radiation tolerance via PDCD4 degradation. Radiotherapy combine with SKP2-targeted adjuvant therapy may improve breast cancer patient survival in clinical medicine. Electronic supplementary material The online version of this article (10.1186/s13046-019-1069-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ce Li
- School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Tianqiao District, Jinan, 250033, Shandong, China
| | - Yidan Ren
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, 264209, Shandong, China
| | - Xiaoyan Liu
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Qinlian Jiao
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, 264209, Shandong, China
| | - Donghai Cui
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Mingxin Wen
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Tianqiao District, Jinan, 250033, Shandong, China
| | - Guangwei Wei
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Tianqiao District, Jinan, 250033, Shandong, China
| | - Aiguo Ji
- School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China.
| |
Collapse
|
80
|
La T, Liu GZ, Farrelly M, Cole N, Feng YC, Zhang YY, Sherwin SK, Yari H, Tabatabaee H, Yan XG, Guo ST, Liu T, Thorne RF, Jin L, Zhang XD. A p53-Responsive miRNA Network Promotes Cancer Cell Quiescence. Cancer Res 2018; 78:6666-6679. [PMID: 30301840 DOI: 10.1158/0008-5472.can-18-1886] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 11/16/2022]
Abstract
: Cancer cells in quiescence (G0 phase) are resistant to death, and re-entry of quiescent cancer cells into the cell-cycle plays an important role in cancer recurrence. Here we show that two p53-responsive miRNAs utilize distinct but complementary mechanisms to promote cancer cell quiescence by facilitating stabilization of p27. Purified quiescent B16 mouse melanoma cells expressed higher levels of miRNA-27b-3p and miRNA-455-3p relative to their proliferating counterparts. Induction of quiescence resulted in increased levels of these miRNAs in diverse types of human cancer cell lines. Inhibition of miRNA-27b-3p or miRNA-455-3p reduced, whereas its overexpression increased, the proportion of quiescent cells in the population, indicating that these miRNAs promote cancer cell quiescence. Accordingly, cancer xenografts bearing miRNA-27b-3p or miRNA-455-3p mimics were retarded in growth. miRNA-27b-3p targeted cyclin-dependent kinase regulatory subunit 1 (CKS1B), leading to reduction in p27 polyubiquitination mediated by S-phase kinase-associated protein 2 (Skp2). miRNA-455-3p targeted CDK2-associated cullin domain 1 (CAC1), which enhanced CDK2-mediated phosphorylation of p27 necessary for its polyubiquitination. Of note, the gene encoding miRNA-27b-3p was embedded in the intron of the chromosome 9 open reading frame 3 gene that was transcriptionally activated by p53. Similarly, the host gene of miRNA-455-3p, collagen alpha-1 (XXVII) chain, was also a p53 transcriptional target. Collectively, our results identify miRNA-27b-3p and miRNA-455-3p as important regulators of cancer cell quiescence in response to p53 and suggest that manipulating miRNA-27b-3p and miRNA-455-3p may constitute novel therapeutic avenues for improving outcomes of cancer treatment. SIGNIFICANCE: Two novel p53-responsive microRNAs whose distinct mechanisms of action both stabilize p27 to promote cell quiescence and may serve as therapeutic avenues for improving outcomes of cancer treatment.
Collapse
Affiliation(s)
- Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Guang Zhi Liu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Margaret Farrelly
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Nicole Cole
- Research Infrastructure, Research and Innovation Division, The University of Newcastle, New South Wales, Australia
| | - Yu Chen Feng
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Simonne K Sherwin
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Hamed Yari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Hessam Tabatabaee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Su Tang Guo
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Shanxi, China
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, New South Wales, Australia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Henan, China.,School of Environmental and Life Sciences, University of Newcastle, New South Wales, Australia
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia.
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia. .,Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Henan, China
| |
Collapse
|
81
|
Leng F, Saxena L, Hoang N, Zhang C, Lee L, Li W, Gong X, Lu F, Sun H, Zhang H. Proliferating cell nuclear antigen interacts with the CRL4 ubiquitin ligase subunit CDT2 in DNA synthesis-induced degradation of CDT1. J Biol Chem 2018; 293:18879-18889. [PMID: 30301766 DOI: 10.1074/jbc.ra118.003049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/01/2018] [Indexed: 12/29/2022] Open
Abstract
During DNA replication or repair, the DNA polymerase cofactor, proliferating cell nuclear antigen (PCNA), homotrimerizes and encircles the replicating DNA, thereby acting as a DNA clamp that promotes DNA polymerase processivity. The formation of the PCNA trimer is also essential for targeting the replication-licensing protein, chromatin-licensing, and DNA replication factor 1 (CDT1), for ubiquitin-dependent proteolysis to prevent chromosomal DNA re-replication. CDT1 uses its PCNA-interacting peptide box (PIP box) to interact with PCNA, and the CRL4 E3 ubiquitin ligase subunit CDT2 is recruited through the formation of PCNA-CDT1 complexes. However, it remains unclear how CDT1 and many other PIP box-containing proteins are marked for degradation by the CRL4CDT2 ubiquitin ligase during DNA replication or damage. Here, using recombinant protein expression coupled with site-directed mutagenesis, we report that CDT2 and PCNA directly interact and this interaction depends on the presence of a highly conserved, C-terminal PIP box-like region in CDT2. Deletion or mutation of this region abolished the CDT2-PCNA interaction between CDT2 and PCNA both in vitro and in vivo Moreover, PCNA-dependent CDT1 degradation in response to DNA damage and replication during the cell cycle requires an intact PIP box in CDT2. The requirement of the PIP boxes in both CDT2 and its substrate CDT1 suggests that the formation of the PCNA trimeric clamp around DNA during DNA replication and repair may bring together CDT1 and CRL4CDT2 ubiquitin E3 ligase to target CDT1 for proteolysis in a DNA synthesis-dependent manner.
Collapse
Affiliation(s)
- Feng Leng
- From the School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China and.,the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Lovely Saxena
- the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Nam Hoang
- the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Chunxiao Zhang
- From the School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China and.,the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Logan Lee
- the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Wenjing Li
- From the School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China and.,the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Xiaoshan Gong
- the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Fei Lu
- From the School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China and
| | - Hong Sun
- the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Hui Zhang
- the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| |
Collapse
|
82
|
Yang Y, Wang C, Zhao K, Zhang G, Wang D, Mei Y. TRMP, a p53-inducible long noncoding RNA, regulates G1/S cell cycle progression by modulating IRES-dependent p27 translation. Cell Death Dis 2018; 9:886. [PMID: 30166522 PMCID: PMC6117267 DOI: 10.1038/s41419-018-0884-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
The tumor suppressor p53 plays a pivotal role in the protection against cancer. Increasing evidence suggests that long noncoding RNA (lncRNA) plays an important role in the regulation of the p53 pathway, however, the detailed mechanisms remain to be further elucidated. In this study, we report a new p53-inducible lncRNA that we termed TRMP (TP53-regulated modulator of p27). As a direct transcriptional target of p53, TRMP plays an unexpected pro-survival function. Knockdown of TRMP inhibits cell proliferation by inducing a G1 cell cycle arrest. Mechanistically, TRMP suppresses internal ribosomal entry site (IRES)-dependent translation of p27 by competing p27 mRNA for polypyrimidine tract-binding protein 1 (PTBP1) binding. Furthermore, TRMP is able to regulate cell proliferation, G1/S cell cycle progression, and tumor xenograft growth via the inhibition of p27. Taken together, these findings suggest lncRNA as a new layer to fine-tune the p53 response and reveal TRMP as an important downstream effector of p53 activity.
Collapse
Affiliation(s)
- Yang Yang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Chenfeng Wang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Kailiang Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Guang Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Decai Wang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yide Mei
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
83
|
Meyer SE, Muench DE, Rogers AM, Newkold TJ, Orr E, O'Brien E, Perentesis JP, Doench JG, Lal A, Morris PJ, Thomas CJ, Lieberman J, McGlinn E, Aronow BJ, Salomonis N, Grimes HL. miR-196b target screen reveals mechanisms maintaining leukemia stemness with therapeutic potential. J Exp Med 2018; 215:2115-2136. [PMID: 29997117 PMCID: PMC6080909 DOI: 10.1084/jem.20171312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/30/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023] Open
Abstract
We have shown that antagomiR inhibition of miRNA miR-21 and miR-196b activity is sufficient to ablate MLL-AF9 leukemia stem cells (LSC) in vivo. Here, we used an shRNA screening approach to mimic miRNA activity on experimentally verified miR-196b targets to identify functionally important and therapeutically relevant pathways downstream of oncogenic miRNA in MLL-r AML. We found Cdkn1b (p27Kip1) is a direct miR-196b target whose repression enhanced an embryonic stem cell-like signature associated with decreased leukemia latency and increased numbers of leukemia stem cells in vivo. Conversely, elevation of p27Kip1 significantly reduced MLL-r leukemia self-renewal, promoted monocytic differentiation of leukemic blasts, and induced cell death. Antagonism of miR-196b activity or pharmacologic inhibition of the Cks1-Skp2-containing SCF E3-ubiquitin ligase complex increased p27Kip1 and inhibited human AML growth. This work illustrates that understanding oncogenic miRNA target pathways can identify actionable targets in leukemia.
Collapse
MESH Headings
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Survival/genetics
- Chromosomes, Human, Pair 11/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Cyclin-Dependent Kinases/metabolism
- Cyclins/metabolism
- Embryonic Stem Cells/metabolism
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oncogenes
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
- Sara E Meyer
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - David E Muench
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Andrew M Rogers
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Tess J Newkold
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Emily Orr
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Eric O'Brien
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - John P Perentesis
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Edwina McGlinn
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
84
|
Yao F, Zhou Z, Kim J, Hang Q, Xiao Z, Ton BN, Chang L, Liu N, Zeng L, Wang W, Wang Y, Zhang P, Hu X, Su X, Liang H, Sun Y, Ma L. SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Nat Commun 2018; 9:2269. [PMID: 29891922 PMCID: PMC5995870 DOI: 10.1038/s41467-018-04620-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of YAP localization and activity is associated with pathological conditions such as cancer. Although activation of the Hippo phosphorylation cascade is known to cause cytoplasmic retention and inactivation of YAP, emerging evidence suggests that YAP can be regulated in a Hippo-independent manner. Here, we report that YAP is subject to non-proteolytic, K63-linked polyubiquitination by the SCFSKP2 E3 ligase complex (SKP2), which is reversed by the deubiquitinase OTUD1. The non-proteolytic ubiquitination of YAP enhances its interaction with its nuclear binding partner TEAD, thereby inducing YAP's nuclear localization, transcriptional activity, and growth-promoting function. Independently of Hippo signaling, mutation of YAP's K63-linkage specific ubiquitination sites K321 and K497, depletion of SKP2, or overexpression of OTUD1 retains YAP in the cytoplasm and inhibits its activity. Conversely, overexpression of SKP2 or loss of OTUD1 leads to nuclear localization and activation of YAP. Altogether, our study sheds light on the ubiquitination-mediated, Hippo-independent regulation of YAP.
Collapse
Affiliation(s)
- Fan Yao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhicheng Zhou
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jongchan Kim
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhenna Xiao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Baochau N Ton
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Liang Chang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Na Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Liyong Zeng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peijing Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaoyu Hu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaohua Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
85
|
Chou CF, Hsieh YH, Grubbs CJ, Atigadda VR, Mobley JA, Dummer R, Muccio DD, Eto I, Elmets CA, Garvey WT, Chang PL. The retinoid X receptor agonist, 9-cis UAB30, inhibits cutaneous T-cell lymphoma proliferation through the SKP2-p27kip1 axis. J Dermatol Sci 2018; 90:343-356. [PMID: 29599065 PMCID: PMC6329374 DOI: 10.1016/j.jdermsci.2018.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Bexarotene (Targretin®) is currently the only FDA approved retinoid X receptor (RXR) -selective agonist for the treatment of cutaneous T-cell lymphomas (CTCLs). The main side effects of bexarotene are hypothyroidism and elevation of serum triglycerides (TGs). The novel RXR ligand, 9-cis UAB30 (UAB30) does not elevate serum TGs or induce hypothyroidism in normal subjects. OBJECTIVES To assess preclinical efficacy and mechanism of action of UAB30 in the treatment of CTCLs and compare its action with bexarotene. METHODS With patient-derived CTCL cell lines, we evaluated UAB30 function in regulating growth, apoptosis, cell cycle check points, and cell cycle-related markers. RESULTS Compared to bexarotene, UAB30 had lower half maximal inhibitory concentration (IC50) values and was more effective in inhibiting the G1 cell cycle checkpoint. Both rexinoids increased the stability of the cell cycle inhibitor, p27kip1 protein, in part, through targeting components involved in the ubiquitination-proteasome system: 1) decreasing SKP2, a F-box protein that binds and targets p27kip1 for degradation by 26S proteasome and 2) suppressing 20S proteasome activity (cell line-dependent) through downregulation of PSMA7, a component of the 20S proteolytic complex in 26S proteasome. CONCLUSIONS UAB30 and bexarotene induce both early cell apoptosis and suppress cell proliferation. Inhibition of the G1 to S cell cycle transition by rexinoids is mediated, in part, through downregulation of SKP2 and/or 20S proteasome activity, leading to increased p27kip1 protein stability. Because UAB30 has minimal effect in elevating serum TGs and inducing hypothyroidism, it is potentially a better alternative to bexarotene for the treatment of CTCLs.
Collapse
Affiliation(s)
- Chu-Fang Chou
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Yu-Hua Hsieh
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Clinton J Grubbs
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Venkatram R Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, Switzerland
| | - Donald D Muccio
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Isao Eto
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Pi-Ling Chang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.
| |
Collapse
|
86
|
Methylated DNMT1 and E2F1 are targeted for proteolysis by L3MBTL3 and CRL4 DCAF5 ubiquitin ligase. Nat Commun 2018; 9:1641. [PMID: 29691401 PMCID: PMC5915600 DOI: 10.1038/s41467-018-04019-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/27/2018] [Indexed: 01/29/2023] Open
Abstract
Many non-histone proteins are lysine methylated and a novel function of this modification is to trigger the proteolysis of methylated proteins. Here, we report that the methylated lysine 142 of DNMT1, a major DNA methyltransferase that preserves epigenetic inheritance of DNA methylation patterns during DNA replication, is demethylated by LSD1. A novel methyl-binding protein, L3MBTL3, binds the K142-methylated DNMT1 and recruits a novel CRL4DCAF5 ubiquitin ligase to degrade DNMT1. Both LSD1 and PHF20L1 act primarily in S phase to prevent DNMT1 degradation by L3MBTL3-CRL4DCAF5. Mouse L3MBTL3/MBT-1 deletion causes accumulation of DNMT1 protein, increased genomic DNA methylation, and late embryonic lethality. DNMT1 contains a consensus methylation motif shared by many non-histone proteins including E2F1, a key transcription factor for S phase. We show that the methylation-dependent E2F1 degradation is also controlled by L3MBTL3-CRL4DCAF5. Our studies elucidate for the first time a novel mechanism by which the stability of many methylated non-histone proteins are regulated.
Collapse
|
87
|
Zhang C, Hoang N, Leng F, Saxena L, Lee L, Alejo S, Qi D, Khal A, Sun H, Lu F, Zhang H. LSD1 demethylase and the methyl-binding protein PHF20L1 prevent SET7 methyltransferase-dependent proteolysis of the stem-cell protein SOX2. J Biol Chem 2018; 293:3663-3674. [PMID: 29358331 DOI: 10.1074/jbc.ra117.000342] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/12/2018] [Indexed: 11/06/2022] Open
Abstract
The pluripotency-controlling stem-cell protein SRY-box 2 (SOX2) plays a pivotal role in maintaining the self-renewal and pluripotency of embryonic stem cells and also of teratocarcinoma or embryonic carcinoma cells. SOX2 is monomethylated at lysine 119 (Lys-119) in mouse embryonic stem cells by the SET7 methyltransferase, and this methylation triggers ubiquitin-dependent SOX2 proteolysis. However, the molecular regulators and mechanisms controlling SET7-induced SOX2 proteolysis are unknown. Here, we report that in human ovarian teratocarcinoma PA-1 cells, methylation-dependent SOX2 proteolysis is dynamically regulated by the LSD1 lysine demethylase and a methyl-binding protein, PHD finger protein 20-like 1 (PHF20L1). We found that LSD1 not only removes the methyl group from monomethylated Lys-117 (equivalent to Lys-119 in mouse SOX2), but it also demethylates monomethylated Lys-42 in SOX2, a reaction that SET7 also regulated and that also triggered SOX2 proteolysis. Our studies further revealed that PHF20L1 binds both monomethylated Lys-42 and Lys-117 in SOX2 and thereby prevents SOX2 proteolysis. Down-regulation of either LSD1 or PHF20L1 promoted SOX2 proteolysis, which was prevented by SET7 inactivation in both PA-1 and mouse embryonic stem cells. Our studies also disclosed that LSD1 and PHF20L1 normally regulate the growth of pluripotent mouse embryonic stem cells and PA-1 cells by preventing methylation-dependent SOX2 proteolysis. In conclusion, our findings reveal an important mechanism by which the stability of the pluripotency-controlling stem-cell protein SOX2 is dynamically regulated by the activities of SET7, LSD1, and PHF20L1 in pluripotent stem cells.
Collapse
Affiliation(s)
- Chunxiao Zhang
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and.,the Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nam Hoang
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | - Feng Leng
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and.,the Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lovely Saxena
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | - Logan Lee
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | - Salvador Alejo
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | - Dandan Qi
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and.,the Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Anthony Khal
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | - Hong Sun
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | - Fei Lu
- the Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hui Zhang
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| |
Collapse
|
88
|
Ouyang J, Xu H, Li M, Dai X, Fu F, Zhang X, Lan Q. Paeoniflorin exerts antitumor effects by inactivating S phase kinase-associated protein 2 in glioma cells. Oncol Rep 2017; 39:1052-1062. [PMID: 29286139 PMCID: PMC5802027 DOI: 10.3892/or.2017.6175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
Paeoniflorin (PF), a natural compound isolated from Paeoniae radix, has been shown to exert antitumor effects in various types of human cancers including glioma. However, the mechanism of action is not well understood. S-phase kinase-associated protein (Skp)2 functions as an oncogene in many cancers. In the present study, we investigated whether Skp2 mediates the anti-glioma activity of PF. We found that PF inhibited glioma cell proliferation, migration and invasion, and induced G2/M arrest and apoptosis. Skp2 expression was downregulated in glioma cells treated with PF. PF-induced antitumor effects in glioma cells were abolished by Skp2 overexpression but were enhanced by RNA interference of Skp2. Moreover, PF treatment inhibited U87 cell-derived tumor growth in a xenograft mouse model. These results demonstrate that PF exerts its antitumor effects in part by inhibiting Skp2 expression in glioma cells and could be a promising therapeutic agent for glioma therapy.
Collapse
Affiliation(s)
- Jia Ouyang
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hui Xu
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ming Li
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xingliang Dai
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Fengqing Fu
- Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xueguang Zhang
- Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qing Lan
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
89
|
Plant flavonoid taxifolin inhibits the growth, migration and invasion of human osteosarcoma cells. Mol Med Rep 2017; 17:3239-3245. [PMID: 29257319 DOI: 10.3892/mmr.2017.8271] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 05/17/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the anti-cancer effects of the natural plant flavonoid, taxifolin, on human osteosarcoma cancer cells. Taxifolin was demonstrated to exhibit anti‑cancer effects on U2OS and Saos‑2 osteosarcoma cell lines. Treatment of cells with taxifolin inhibited proliferation and diminished colony formation in soft agar in a dose‑dependent manner. In vivo, intraperitoneal administration of taxifolin in nude mice bearing U2OS xenograft tumors, significantly inhibited tumor growth. In addition, taxifolin treatment was demonstrated to promote G1 cell cycle arrest and cell apoptosis in U2OS and Saos‑2 cell lines, as demonstrated by flow cytometry analysis. Western blot analysis demonstrated that taxifolin treatment was associated with a reduction in the expression levels of AKT serine/threonine kinase 1 (AKT), phosphorylated (p‑Ser473) AKT, v‑myc avian myelocytomatosis viral oncogene homolog (c‑myc) and S‑phase kinase associated protein 2 (SKP‑2) in U2OS and Saos‑2 cell lines. Overexpression of AKT considerably reversed the taxifolin‑induced decrease in AKT, c‑myc and SKP‑2 protein expression and the decrease in AKT phosphorylation, suggesting that inactivation of AKT was a mediator of taxifolin‑induced inhibition of c‑myc and SKP‑2. Furthermore, overexpression of SKP‑2 in U2OS cells partially reversed the growth inhibition mediated by taxifolin. Finally, taxifolin treatment repressed cell migration and invasion in U2OS cells and this effect was markedly reversed by SKP‑2 overexpression. The results of the present study indicate that taxifolin may present a potential novel therapeutic agent for osteosarcoma treatment.
Collapse
|
90
|
Li C, He J, Chen J, Zhao J, Gu D, Hixson JE, Rao DC, Jaquish CE, Rice TK, Sung YJ, Kelly TN. Genome-Wide Gene-Potassium Interaction Analyses on Blood Pressure: The GenSalt Study (Genetic Epidemiology Network of Salt Sensitivity). CIRCULATION. CARDIOVASCULAR GENETICS 2017; 10:e001811. [PMID: 29212900 PMCID: PMC5728702 DOI: 10.1161/circgenetics.117.001811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/07/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Gene-environmental interaction analysis can identify novel genetic factors for blood pressure (BP). We performed genome-wide analyses to identify genomic loci that interact with potassium to influence BP using single-marker (1 and 2 df joint tests) and gene-based tests among Chinese participants of the GenSalt study (Genetic Epidemiology Network of Salt Sensitivity). METHODS AND RESULTS Among 1876 GenSalt participants, the average of 3 urine samples was used to estimate potassium excretion. Nine BP measurements were taken using a random-zero sphygmomanometer. A total of 2.2 million single nucleotide polymorphisms were imputed using Affymetrix 6.0 genotype data and the Chinese Han of Beijing and Japanese of Tokyo HapMap reference panel. Promising findings (P<1.00×10-4) from GenSalt were evaluated for replication among 775 Chinese participants of the MESA (Multi-ethnic Study of Atherosclerosis). Single nucleotide polymorphism and gene-based results were meta-analyzed across the GenSalt and MESA studies to determine genome-wide significance. The 1 df tests identified interactions for ARL15 rs16882447 on systolic BP (P=2.83×10-9) and RANBP3L rs958929 on pulse pressure (P=1.58×10-8). The 2 df tests confirmed the ARL15 rs16882447 signal for systolic BP (P=1.15×10-9). Genome-wide gene-based analysis identified CC2D2A (P=2.59×10-7) at 4p15.32 and BNC2 (P=4.49×10-10) at 9p22.2 for systolic BP, GGNBP1 (P=1.18×10-8), and LINC00336 (P=1.36×10-8) at 6p21 for diastolic BP, DAB1 (P=1.05×10-13) at 1p32.2, and MIR4466 (P=5.34×10-8) at 6q25.3 for pulse pressure. The BNC2 (P=3.57×10-8) gene was also significant for mean arterial pressure. CONCLUSIONS We identified 2 novel BP loci and 6 genes through the examination of single nucleotide polymorphism- and gene-based interactions with potassium.
Collapse
Affiliation(s)
- Changwei Li
- From the Department of Epidemiology, Shool of Public Health and Tropical Medicine (C.L., J.H., J.C., T.N.K.), and Department of Medicine, School of Medicine (J.H., J.C.), Tulane University, New Orleans, LA; Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA (C.L.); State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G.); Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX (J.E.H.); Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (D.C.R., T.K.R., Y.J.S.); and Division of Prevention and Population Sciences, National Heart, Lung, Blood Institute, Bethesda, MD (C.E.J.).
| | - Jiang He
- From the Department of Epidemiology, Shool of Public Health and Tropical Medicine (C.L., J.H., J.C., T.N.K.), and Department of Medicine, School of Medicine (J.H., J.C.), Tulane University, New Orleans, LA; Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA (C.L.); State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G.); Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX (J.E.H.); Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (D.C.R., T.K.R., Y.J.S.); and Division of Prevention and Population Sciences, National Heart, Lung, Blood Institute, Bethesda, MD (C.E.J.)
| | - Jing Chen
- From the Department of Epidemiology, Shool of Public Health and Tropical Medicine (C.L., J.H., J.C., T.N.K.), and Department of Medicine, School of Medicine (J.H., J.C.), Tulane University, New Orleans, LA; Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA (C.L.); State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G.); Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX (J.E.H.); Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (D.C.R., T.K.R., Y.J.S.); and Division of Prevention and Population Sciences, National Heart, Lung, Blood Institute, Bethesda, MD (C.E.J.)
| | - Jinying Zhao
- From the Department of Epidemiology, Shool of Public Health and Tropical Medicine (C.L., J.H., J.C., T.N.K.), and Department of Medicine, School of Medicine (J.H., J.C.), Tulane University, New Orleans, LA; Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA (C.L.); State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G.); Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX (J.E.H.); Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (D.C.R., T.K.R., Y.J.S.); and Division of Prevention and Population Sciences, National Heart, Lung, Blood Institute, Bethesda, MD (C.E.J.)
| | - Dongfeng Gu
- From the Department of Epidemiology, Shool of Public Health and Tropical Medicine (C.L., J.H., J.C., T.N.K.), and Department of Medicine, School of Medicine (J.H., J.C.), Tulane University, New Orleans, LA; Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA (C.L.); State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G.); Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX (J.E.H.); Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (D.C.R., T.K.R., Y.J.S.); and Division of Prevention and Population Sciences, National Heart, Lung, Blood Institute, Bethesda, MD (C.E.J.)
| | - James E Hixson
- From the Department of Epidemiology, Shool of Public Health and Tropical Medicine (C.L., J.H., J.C., T.N.K.), and Department of Medicine, School of Medicine (J.H., J.C.), Tulane University, New Orleans, LA; Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA (C.L.); State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G.); Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX (J.E.H.); Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (D.C.R., T.K.R., Y.J.S.); and Division of Prevention and Population Sciences, National Heart, Lung, Blood Institute, Bethesda, MD (C.E.J.)
| | - Dabeeru C Rao
- From the Department of Epidemiology, Shool of Public Health and Tropical Medicine (C.L., J.H., J.C., T.N.K.), and Department of Medicine, School of Medicine (J.H., J.C.), Tulane University, New Orleans, LA; Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA (C.L.); State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G.); Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX (J.E.H.); Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (D.C.R., T.K.R., Y.J.S.); and Division of Prevention and Population Sciences, National Heart, Lung, Blood Institute, Bethesda, MD (C.E.J.)
| | - Cashell E Jaquish
- From the Department of Epidemiology, Shool of Public Health and Tropical Medicine (C.L., J.H., J.C., T.N.K.), and Department of Medicine, School of Medicine (J.H., J.C.), Tulane University, New Orleans, LA; Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA (C.L.); State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G.); Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX (J.E.H.); Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (D.C.R., T.K.R., Y.J.S.); and Division of Prevention and Population Sciences, National Heart, Lung, Blood Institute, Bethesda, MD (C.E.J.)
| | - Treva K Rice
- From the Department of Epidemiology, Shool of Public Health and Tropical Medicine (C.L., J.H., J.C., T.N.K.), and Department of Medicine, School of Medicine (J.H., J.C.), Tulane University, New Orleans, LA; Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA (C.L.); State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G.); Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX (J.E.H.); Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (D.C.R., T.K.R., Y.J.S.); and Division of Prevention and Population Sciences, National Heart, Lung, Blood Institute, Bethesda, MD (C.E.J.)
| | - Yun Ju Sung
- From the Department of Epidemiology, Shool of Public Health and Tropical Medicine (C.L., J.H., J.C., T.N.K.), and Department of Medicine, School of Medicine (J.H., J.C.), Tulane University, New Orleans, LA; Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA (C.L.); State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G.); Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX (J.E.H.); Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (D.C.R., T.K.R., Y.J.S.); and Division of Prevention and Population Sciences, National Heart, Lung, Blood Institute, Bethesda, MD (C.E.J.)
| | - Tanika N Kelly
- From the Department of Epidemiology, Shool of Public Health and Tropical Medicine (C.L., J.H., J.C., T.N.K.), and Department of Medicine, School of Medicine (J.H., J.C.), Tulane University, New Orleans, LA; Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA (C.L.); State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G.); Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX (J.E.H.); Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (D.C.R., T.K.R., Y.J.S.); and Division of Prevention and Population Sciences, National Heart, Lung, Blood Institute, Bethesda, MD (C.E.J.)
| |
Collapse
|
91
|
Cheng CW, Leong KW, Ng YM, Kwong YL, Tse E. The peptidyl-prolyl isomerase PIN1 relieves cyclin-dependent kinase 2 (CDK2) inhibition by the CDK inhibitor p27. J Biol Chem 2017; 292:21431-21441. [PMID: 29118189 DOI: 10.1074/jbc.m117.801373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/27/2017] [Indexed: 01/22/2023] Open
Abstract
PIN1 is a peptidyl-prolyl isomerase that catalyzes the cis/trans isomerization of peptide bonds between proline and phosphorylated serine/threonine residues. By changing the conformation of its protein substrates, PIN1 increases the activities of key proteins that promote cell cycle progression and oncogenesis. Moreover, it has been shown that PIN1 stabilizes and increases the level of the cyclin-dependent kinase (CDK) inhibitor p27, which inhibits cell cycle progression by binding cyclin A- and cyclin E-CDK2. Notwithstanding the associated increase in the p27 level, PIN1 expression promotes rather than retards cell proliferation. To explain the paradoxical effects of PIN1 on p27 levels and cell cycle progression, we hypothesized that PIN1 relieves CDK2 inhibition by suppressing the CDK inhibitory activity of p27. Here, we confirmed that PIN1-expressing cells exhibit higher p27 levels but have increased CDK2 activities and higher proliferation rates in the S-phase compared with Pin1-null fibroblasts or PIN1-depleted hepatoma cells. Using co-immunoprecipitation and CDK kinase activity assays, we found that PIN1 binds the phosphorylated Thr187-Pro motif in p27 and reduces p27's interaction with cyclin A- or cyclin E-CDK2, leading to increased CDK2 kinase activity. In conclusion, our results indicate that although PIN1 increases p27 levels, it also attenuates p27's inhibitory activity on CDK2 and thereby contributes to increased G1-S phase transitions and cell proliferation.
Collapse
Affiliation(s)
- Chi-Wai Cheng
- From the Department of Medicine, The University of Hong Kong, Hong Kong
| | - Ka-Wai Leong
- From the Department of Medicine, The University of Hong Kong, Hong Kong
| | - Yiu-Ming Ng
- From the Department of Medicine, The University of Hong Kong, Hong Kong
| | - Yok-Lam Kwong
- From the Department of Medicine, The University of Hong Kong, Hong Kong
| | - Eric Tse
- From the Department of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
92
|
John R, Atri Y, Chand V, Jaiswal N, Raj K, Nag A. Cell cycle-dependent regulation of cytoglobin by Skp2. FEBS Lett 2017; 591:3507-3522. [PMID: 28948618 DOI: 10.1002/1873-3468.12864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022]
Abstract
Cytoglobin (Cygb) is a cellular haemoprotein belonging to the globin family with ambiguous biological functions. Downregulation of Cygb in many cancers is indicative of its tumour-suppressive role. This is the first report showing the cell cycle regulation of Cygb, which was found to peak at G1 and rapidly decline in S phase. Importantly, Skp2-mediated degradation of Cygb was identified as the key mechanism for controlling its oscillating levels during the cell cycle. Moreover, overexpression of Cygb stimulates hypophosphorylation of Rb causing delayed cell cycle progression. Overall, the study reveals a novel mechanism for the regulated expression of Cygb and also assigns a new role to Cygb in cell cycle control.
Collapse
Affiliation(s)
- Rince John
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Yama Atri
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Vaibhav Chand
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Neha Jaiswal
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Kritika Raj
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
93
|
Chen M, Liu C, Wang M, Wang H, Zhang K, Zheng Y, Yu Z, Li X, Guo W, Li N, Meng Q. Clenbuterol Induces Cell Cycle Arrest in C2C12 Myoblasts by Delaying p27 Degradation through β-arrestin 2 Signaling. Int J Biol Sci 2017; 13:1341-1350. [PMID: 29104500 PMCID: PMC5666532 DOI: 10.7150/ijbs.17948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/16/2017] [Indexed: 02/04/2023] Open
Abstract
β2-Adrenoceptor (β2-AR) agonists promote muscle growth. The aim of this study was to elucidate some effects of the selective β2-adrenoceptor agonist clenbuterol (CLB) on myoblast proliferation. We found that CLB induces cell cycle arrest in C2C12 myoblasts. This effect is partly due to the enhanced stability of p27, rather than the increased gene transcription via cAMP response element-binding protein (CREB). Specifically, CLB treatment enhanced the accumulation of p27 in the nucleus while depleting it from the cytosol via a mechanism that requires β2-AR. Surprisingly, p27 accumulation was not reversed by the protein kinase A (PKA) inhibitor H-89, but interestingly, was alleviated by the knockdown of β-arrestin 2. Thus, our work provides a basis for β2-AR agonists inhibit myoblasts proliferation through signaling via β2-AR, β-arrestin 2, and p27.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China.,Guangxi Province Center for Disease Control and Prevention, Nanning 530028, China
| | - Chuncheng Liu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Meng Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Kuo Zhang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Yu Zheng
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Zhengquan Yu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Xiangdong Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Wei Guo
- Animal Science/Molecular Biology Bldg, University of Wyoming, Laramie WY82071, USA
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Qingyong Meng
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University
| |
Collapse
|
94
|
Wang D, Ma L, Wang B, Liu J, Wei W. E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev 2017; 36:683-702. [DOI: 10.1007/s10555-017-9703-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
95
|
Mo Y, Lin R, Liu P, Tan M, Xiong Y, Guan KL, Yuan HX. SIRT7 deacetylates DDB1 and suppresses the activity of the CRL4 E3 ligase complexes. FEBS J 2017; 284:3619-3636. [PMID: 28886238 DOI: 10.1111/febs.14259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/28/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022]
Abstract
Cullin 4 (CUL4) and small ring finger protein ROC1 assemble to form E3 ubiquitin ligase (CRL4) complexes. CUL4 interacts with WD-40 proteins through the adaptor protein DNA damage-binding protein 1 (DDB1) to target substrates for ubiquitylation. Very little is known on how the CUL4 and DDB1 interaction is regulated. Here, we show that DDB1 is acetylated and acetylation promotes DDB1 binding to CUL4. We also identify nucleolar sirtuin 7 (SIRT7) as a major deacetylase that negatively regulates DDB1-CUL4 interaction. Following inhibition of nucleolar function by actinomycin D or 5-fluorouracil treatment or knocking down the gene for the RNA polymerase I component UBF, SIRT7 is mobilized from the nucleolus to the nucleoplasm and promotes DDB1 deacetylation, leading to decreased DDB1-CUL4 association and CRL4 activity. This results in the accumulation or activation of CRL4 substrates including LATS1 and p73, which contribute to cell apoptosis induced by actinomycin D and 5-fluorouracil. Our study uncovers a novel regulation of CRL4 E3 ligase complexes.
Collapse
Affiliation(s)
- Yan Mo
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ran Lin
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng Liu
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yue Xiong
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
| | - Kun-Liang Guan
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Hai-Xin Yuan
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
96
|
Wang L, Zhang R, You X, Zhang H, Wei S, Cheng T, Cao Q, Wang Z, Chen Y. The steady-state level of CDK4 protein is regulated by antagonistic actions between PAQR4 and SKP2 and involved in tumorigenesis. J Mol Cell Biol 2017; 9:409-421. [DOI: 10.1093/jmcb/mjx028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/04/2017] [Indexed: 01/26/2023] Open
Affiliation(s)
- Lin Wang
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Zhang
- Cancer Molecular Diagnostic Core Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xue You
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Huanhuan Zhang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Siying Wei
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tingting Cheng
- Department of Clinical Medicine, Tongji University, Shanghai, China
| | - Qianqian Cao
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhen Wang
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
97
|
Gookin S, Min M, Phadke H, Chung M, Moser J, Miller I, Carter D, Spencer SL. A map of protein dynamics during cell-cycle progression and cell-cycle exit. PLoS Biol 2017; 15:e2003268. [PMID: 28892491 PMCID: PMC5608403 DOI: 10.1371/journal.pbio.2003268] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/21/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022] Open
Abstract
The cell-cycle field has identified the core regulators that drive the cell cycle, but we do not have a clear map of the dynamics of these regulators during cell-cycle progression versus cell-cycle exit. Here we use single-cell time-lapse microscopy of Cyclin-Dependent Kinase 2 (CDK2) activity followed by endpoint immunofluorescence and computational cell synchronization to determine the temporal dynamics of key cell-cycle proteins in asynchronously cycling human cells. We identify several unexpected patterns for core cell-cycle proteins in actively proliferating (CDK2-increasing) versus spontaneously quiescent (CDK2-low) cells, including Cyclin D1, the levels of which we find to be higher in spontaneously quiescent versus proliferating cells. We also identify proteins with concentrations that steadily increase or decrease the longer cells are in quiescence, suggesting the existence of a continuum of quiescence depths. Our single-cell measurements thus provide a rich resource for the field by characterizing protein dynamics during proliferation versus quiescence.
Collapse
Affiliation(s)
- Sara Gookin
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Mingwei Min
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Harsha Phadke
- Department of Electrical, Computer & Energy Engineering, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Justin Moser
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Iain Miller
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Dylan Carter
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Sabrina L. Spencer
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
98
|
Bencivenga D, Caldarelli I, Stampone E, Mancini FP, Balestrieri ML, Della Ragione F, Borriello A. p27 Kip1 and human cancers: A reappraisal of a still enigmatic protein. Cancer Lett 2017; 403:354-365. [DOI: 10.1016/j.canlet.2017.06.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
|
99
|
Matrine derivative YF-18 inhibits lung cancer cell proliferation and migration through down-regulating Skp2. Oncotarget 2017; 8:11729-11738. [PMID: 28036296 PMCID: PMC5355299 DOI: 10.18632/oncotarget.14329] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/16/2016] [Indexed: 12/02/2022] Open
Abstract
Lung cancer is the leading cause of cancer related death which needs novel drugs to improve patient outcomes. In this study, we examined the ability of YF-18, a novel matrine derivative to inhibit the growth and migration of lung cancer cells. By cell cycle analysis, wound healing and transwell assays, we found that YF-18 induced G2/M cell cycle arrest and inhibited migration of lung cancer cells in a dose-dependent manner. Further results indicated that YF-18 inhibited cell proliferation and migration through down-regulating Skp2 and up-regulating its substrates, p27 and E-cadherin. Moreover, YF-18 inhibited A549-luciferase cell xenograft tumor growth in a dose-dependent manner. The findings indicate that YF-18 bears therapeutic potentials for lung cancer.
Collapse
|
100
|
Fischer M, Müller GA. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol 2017; 52:638-662. [PMID: 28799433 DOI: 10.1080/10409238.2017.1360836] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise timing of cell cycle gene expression is critical for the control of cell proliferation; de-regulation of this timing promotes the formation of cancer and leads to defects during differentiation and development. Entry into and progression through S phase requires expression of genes coding for proteins that function in DNA replication. Expression of a distinct set of genes is essential to pass through mitosis and cytokinesis. Expression of these groups of cell cycle-dependent genes is regulated by the RB pocket protein family, the E2F transcription factor family, and MuvB complexes together with B-MYB and FOXM1. Distinct combinations of these transcription factors promote the transcription of the two major groups of cell cycle genes that are maximally expressed either in S phase (G1/S) or in mitosis (G2/M). In this review, we discuss recent work that has started to uncover the molecular mechanisms controlling the precisely timed expression of these genes at specific cell cycle phases, as well as the repression of the genes when a cell exits the cell cycle.
Collapse
Affiliation(s)
- Martin Fischer
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany.,b Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA.,c Department of Medicine, Brigham and Women's Hospital , Harvard Medical School , Boston , MA , USA
| | - Gerd A Müller
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany
| |
Collapse
|