51
|
Vascular colonization by Neisseria meningitidis. Curr Opin Microbiol 2011; 15:50-6. [PMID: 22185907 DOI: 10.1016/j.mib.2011.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 11/21/2022]
Abstract
Bacterial infection of human vasculature can lead to unregulated systemic activation of coagulation and innate immunity and rapidly becomes life threatening. Neisseria meningitidis is a vascular pathogen that causes fatal sepsis and meningitis. Post-mortem histological analysis of tissues from individuals infected with N. meningitidis show large bacterial aggregates in close association with the vascular wall of small vessels. The ability of this bacterium to colonize blood vessel endothelium is likely to impact its capacity to both multiply in the blood stream and reach the brain. This process will be referred to as vascular colonization. Recent work has described a number of early steps in N. meningitidis vascular colonization, from attachment to proliferation and dissemination, focusing on the bacterial-host interaction.
Collapse
|
52
|
Kobsar A, Siauw C, Gambaryan S, Hebling S, Speer C, Schubert-Unkmeir A, Eigenthaler M. Neisseria meningitidis induces platelet inhibition and increases vascular endothelial permeability via nitric oxide regulated pathways. Thromb Haemost 2011; 106:1127-38. [PMID: 22072136 DOI: 10.1160/th11-07-0491] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/17/2011] [Indexed: 12/23/2022]
Abstract
Despite antibiotic therapy, infections with Neisseria meningitidis still demonstrate a high rate of morbidity and mortality even in developed countries. The fulminant septicaemic course, named Waterhouse-Friderichsen syndrome, with massive haemorrhage into the adrenal glands and widespread petechial bleeding suggest pathophysiological inhibition of platelet function. Our data show that N. meningitidis produces the important physiological platelet inhibitor and cardiovascular signalling molecule nitric oxide (NO), also known as endothelium-derived relaxing factor (EDRF). N. meningitidis -derived NO inhibited ADP-induced platelet aggregation through the activation of soluble guanylyl cyclase (sGC) followed by an increase in platelet cyclic nucleotide levels and subsequent activation of platelet cGMP- and cAMP- dependent protein kinases (PKG and PKA). Furthermore, direct measurement of horseradish peroxidase (HRP) passage through a vascular endothelial cell monolayer revealed that N. meningitidis significantly increased endothelial monolayer permeability. Immunfluorescence analysis demonstrated NO dependent disturbances in the structure of endothelial adherens junctions after co-incubation with N. meningitidis . In contrast to platelet inhibition, the NO effects on HBMEC were not mediated by cyclic nucleotides. Our study provides evidence that NO plays an essential role in the pathophysiology of septicaemic meningococcal infection.
Collapse
Affiliation(s)
- Anna Kobsar
- Institute of Clinical Biochemistry and Pathobiochemistry /Central Laboratory, University of Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
53
|
Bencurova E, Mlynarcik P, Bhide M. An insight into the ligand-receptor interactions involved in the translocation of pathogens across blood-brain barrier. ACTA ACUST UNITED AC 2011; 63:297-318. [PMID: 22092557 DOI: 10.1111/j.1574-695x.2011.00867.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 08/09/2011] [Accepted: 09/02/2011] [Indexed: 01/01/2023]
Abstract
Traversal of pathogen across the blood-brain barrier (BBB) is an essential step for central nervous system (CNS) invasion. Pathogen traversal can occur paracellularly, transcellularly, and/or in infected phagocytes (Trojan horse mechanism). To trigger the translocation processes, mainly through paracellular and transcellular ways, interactions between protein molecules of pathogen and BBB are inevitable. Simply, it takes two to tango: both host receptors and pathogen ligands. Underlying molecular basis of BBB translocation of various pathogens has been revealed in the last decade, and a plethora of experimental data on protein-protein interactions has been created. This review compiles these data and should give insights into the ligand-receptor interactions that occur during BBB translocation. Further, it sheds light on cell signaling events triggered in response to ligand-receptor interaction. Understanding of the molecular principles of pathogen-host interactions that are involved in traversal of the BBB should contribute to develop new vaccine and drug strategies to prevent CNS infections.
Collapse
Affiliation(s)
- Elena Bencurova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | | | | |
Collapse
|
54
|
Tosi G, Fano RA, Bondioli L, Badiali L, Benassi R, Rivasi F, Ruozi B, Forni F, Vandelli MA. Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood-brain barrier. Nanomedicine (Lond) 2011; 6:423-36. [PMID: 21542682 DOI: 10.2217/nnm.11.11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM Nanoneuroscience, based on the use polymeric nanoparticles (NPs), represents an emerging field of research for achieving an effective therapy for neurodegenerative diseases. In particular, poly-lactide-co-glycolide (PLGA) glyco-heptapetide-conjugated NPs (g7-NPs) were shown to be able to cross the blood-brain barrier (BBB). However, the in vivo mechanisms of the BBB crossing of this kind of NP has not been investigated until now. This article aimed to develop a deep understanding of the mechanism of BBB crossing of the modified NPs. MATERIALS & METHODS Loperamide and rhodamine-123 (model drugs unable to cross the BBB) were loaded into NPs, composed of a mixture of PLGA, differently modified with g7 or with a random sequence of the same aminoamids (random-g7). To study brain targeting of these model drugs, loaded NPs were administered via the tail vein in rats in order to perform both pharmacological studies and biodistribution analysis along with fluorescent, confocal and electron microscopy analysis, in order to achieve the NP BBB crossing mechanism. Computational analysis on the conformation of the g7- and random-g7-NPs of the NP surface was also developed. RESULTS Only loperamide delivered to the brain with g7-NPs created a high central analgesia, corresponding to the 14% of the injected dose, and data were confirmed by biodistribution studies. Electron photomicrographs showed the ability of g7-NPs in crossing the BBB as evidenced by several endocytotic vesicles and macropinocytotic processes. The computational analysis on g7 and random-g7 showed a different conformation (linear vs globular), thus suggesting a different interaction with the BBB. CONCLUSION Taken together, this evidence suggested that g7-NP BBB crossing is enabled by multiple pathways, mainly membrane-membrane interaction and macropinocytosis-like mechanisms. The results of the computational analysis showed the Biousian structure of the g7 peptide, in contrast to random-g7 peptide (globular conformation), suggesting that this difference is pivotal in explaining the BBB crossing and allowing us to hypothesize regarding the mechanism of BBB crossing by g7-NPs.
Collapse
Affiliation(s)
- Giovanni Tosi
- Department of Pharmaceutical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
|
56
|
Meningococcus Hijacks a β2-adrenoceptor/β-Arrestin pathway to cross brain microvasculature endothelium. Cell 2011; 143:1149-60. [PMID: 21183077 DOI: 10.1016/j.cell.2010.11.035] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 09/28/2010] [Accepted: 11/12/2010] [Indexed: 11/21/2022]
Abstract
Following pilus-mediated adhesion to human brain endothelial cells, meningococcus (N. meningitidis), the bacterium causing cerebrospinal meningitis, initiates signaling cascades, which eventually result in the opening of intercellular junctions, allowing meningeal colonization. The signaling receptor activated by the pathogen remained unknown. We report that N. meningitidis specifically stimulates a biased β2-adrenoceptor/β-arrestin signaling pathway in endothelial cells, which ultimately traps β-arrestin-interacting partners, such as the Src tyrosine kinase and junctional proteins, under bacterial colonies. Cytoskeletal reorganization mediated by β-arrestin-activated Src stabilizes bacterial adhesion to endothelial cells, whereas β-arrestin-dependent delocalization of junctional proteins results in anatomical gaps used by bacteria to penetrate into tissues. Activation of β-adrenoceptor endocytosis with specific agonists prevents signaling events downstream of N. meningitidis adhesion and inhibits bacterial crossing of the endothelial barrier. The identification of the mechanism used for hijacking host cell signaling machineries opens perspectives for treatment and prevention of meningococcal infection.
Collapse
|
57
|
Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev 2010; 23:740-80. [PMID: 20930072 DOI: 10.1128/cmr.00048-09] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The complement system comprises several fluid-phase and membrane-associated proteins. Under physiological conditions, activation of the fluid-phase components of complement is maintained under tight control and complement activation occurs primarily on surfaces recognized as "nonself" in an attempt to minimize damage to bystander host cells. Membrane complement components act to limit complement activation on host cells or to facilitate uptake of antigens or microbes "tagged" with complement fragments. While this review focuses on the role of complement in infectious diseases, work over the past couple of decades has defined several important functions of complement distinct from that of combating infections. Activation of complement in the fluid phase can occur through the classical, lectin, or alternative pathway. Deficiencies of components of the classical pathway lead to the development of autoimmune disorders and predispose individuals to recurrent respiratory infections and infections caused by encapsulated organisms, including Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae. While no individual with complete mannan-binding lectin (MBL) deficiency has been identified, low MBL levels have been linked to predisposition to, or severity of, several diseases. It appears that MBL may play an important role in children, who have a relatively immature adaptive immune response. C3 is the point at which all complement pathways converge, and complete deficiency of C3 invariably leads to severe infections, including those caused by meningococci and pneumococci. Deficiencies of the alternative and terminal complement pathways result in an almost exclusive predisposition to invasive meningococcal disease. The spleen plays an important role in antigen processing and the production of antibodies. Splenic macrophages are critical in clearing opsonized encapsulated bacteria (such as pneumococci, meningococci, and Escherichia coli) and intraerythrocytic parasites such as those causing malaria and babesiosis, which explains the fulminant nature of these infections in persons with anatomic or functional asplenia. Paramount to the management of patients with complement deficiencies and asplenia is educating patients about their predisposition to infection and the importance of preventive immunizations and seeking prompt medical attention.
Collapse
|
58
|
Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges. PLoS One 2010; 5:e14034. [PMID: 21124975 PMCID: PMC2987801 DOI: 10.1371/journal.pone.0014034] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/29/2010] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.
Collapse
|
59
|
Gandhi G, Londoño D, Whetstine CR, Sethi N, Kim KS, Zückert WR, Cadavid D. Interaction of variable bacterial outer membrane lipoproteins with brain endothelium. PLoS One 2010; 5:e13257. [PMID: 21063459 PMCID: PMC2962627 DOI: 10.1371/journal.pone.0013257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 09/07/2010] [Indexed: 11/29/2022] Open
Abstract
Background Previously we reported that the variable outer membrane lipoprotein Vsp1 from the relapsing fever spirochete Borrelia turicatae disseminates from blood to brain better than the closely related Vsp2 [1]. Here we studied the interaction between Vsp1 and Vsp2 with brain endothelium in more detail. Methodology/Principal Findings We compared Vsp1 to Vsp2 using human brain microvascular endothelial cell (HBMEC) association assays with aminoacid radiolabeled Vsp-expressing clones of recombinant Borrelia burgdorferi and lanthanide-labeled purified lipidated Vsp1 (LVsp1) and Vsp2 (LVsp2) and inoculations of the lanthanide-labeled proteins into mice. The results showed that heterologous expression of LVsp1 or LVsp2 in B. burgdorferi increased its association with HBMEC to a similar degree. Purified lanthanide-labeled lipidated Vsp1 (LVsp1) and LVsp2 by themselves were capable of associating with HBMEC. The association of LVsp1 with brain endothelium was time-dependent, saturable, and required the lipidation. The association of Vsp1 with HBMEC was inhibited by incubation at lower temperature or with excess unlabeled LVsp1 or LVsp2 but not with excess rVsp1 or mouse albumin or an anti Vsp1 monoclonal antibody. The association of LVsp2 with HBMEC and its movement from blood to brain parenchyma significantly increased in the presence of LVsp1. Conclusions/Significance Variable bacterial outer membrane lipoproteins interact with brain endothelium differently; the lipidation and variable features at the protein dome region are key modulators of this interaction.
Collapse
Affiliation(s)
- Gaurav Gandhi
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Diana Londoño
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Christine R. Whetstine
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Nilay Sethi
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Kwang S. Kim
- Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Diego Cadavid
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
60
|
Entry of Neisseria meningitidis into mammalian cells requires the Src family protein tyrosine kinases. Infect Immun 2010; 78:1905-14. [PMID: 20176789 DOI: 10.1128/iai.01267-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis, the causative agent of meningitis and septicemia, is able to attach to and invade a variety of cell types. In a previous study we showed that entry of N. meningitidis into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin bound to the outer membrane protein Opc, which forms a molecular bridge to alpha 5 beta 1-integrins. This interaction results in cytoskeletal remodeling and uptake of the bacteria. In this study we identified and characterized the intracellular signals involved in integrin-initiated uptake of N. meningitidis. We determined that the Src protein tyrosine kinases (PTKs) are activated in response to contact with N. meningitidis. Inhibition of Src PTK activity by the general tyrosine kinase inhibitor genistein and the specific Src inhibitor PP2 reduced Opc-mediated invasion of HBMEC and human embryonic kidney (HEK) 293T cells up to 90%. Moreover, overexpression of the cellular Src antagonist C-terminal Src kinase (CSK) also significantly reduced N. meningitidis invasion. Src PTK-deficient fibroblasts were impaired in the ability to internalize N. meningitidis and showed reduced phosphorylation of the cytoskeleton and decreased development of stress fibers. These data indicate that the Src family PTKs, particularly the Src protein, along with other proteins, are important signal proteins that are responsible for the transfer of signals from activated integrins to the cytoskeleton and thus mediate the endocytosis of N. meningitidis into brain endothelial cells.
Collapse
|
61
|
Fernandez-Borja M, van Buul JD, Hordijk PL. The regulation of leucocyte transendothelial migration by endothelial signalling events. Cardiovasc Res 2010; 86:202-10. [PMID: 20068003 DOI: 10.1093/cvr/cvq003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leucocytes use sophisticated mechanisms to cross the endothelium lining the vasculature. This is initiated by chemokine- and adhesion molecule-induced intracellular signalling that controls adhesion, spreading, and motility. At the same time, adherent leucocytes trigger the endothelium, manipulating the barrier to promote their transmigration into the underlying tissues. Over the past years, our insights in the associated signalling events within the endothelium have increased considerably, albeit the order of events, their crosstalk, and the consequences for endothelial cells and leucocytes are only partially resolved. Here, we briefly review endothelial signalling that is initiated at the apical endothelial membrane, where the first contact with the leucocytes takes place and signal transduction is induced. In addition, we discuss subsequent events at endothelial cell-cell junctions insofar as they have been linked to transendothelial migration. Finally, we briefly touch upon the modulation of endothelial signalling by infectious pathogens, since these have developed additional, elegant ways to manipulate the endothelium and transendothelial migration that may provide new, relevant insights into this process.
Collapse
Affiliation(s)
- Mar Fernandez-Borja
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
62
|
Abstract
The endothelium lining blood and lymphatic vessels is a key barrier separating body fluids from host tissues and is a major target of pathogenic bacteria. Endothelial cells are actively involved in host responses to infectious agents, producing inflammatory cytokines, controlling coagulation cascades and regulating leukocyte trafficking. In this Review, a range of bacteria and bacterial toxins are used to illustrate how pathogens establish intimate interactions with endothelial cells, triggering inflammatory responses and coagulation processes and modifying endothelial cell plasma membranes and junctions to adhere to their surfaces and then invade, cross and even disrupt the endothelial barrier.
Collapse
|
63
|
The role of the blood-CNS barrier in CNS disorders and their treatment. Neurobiol Dis 2009; 37:3-12. [PMID: 19664711 DOI: 10.1016/j.nbd.2009.07.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 01/16/2023] Open
Abstract
The physical barrier between blood and the CNS (the blood-brain barrier, the blood-spinal cord barrier and the blood-CSF barrier) protects the CNS from both toxic and pathogenic agents in the blood. It is now clear that disruption of the blood-CNS barrier plays a key role in a number of CNS disorders, particularly those associated with neurodegeneration. Such disruption is inevitably accompanied by inflammatory change, as immune cells and immune mediators gain access to the brain or spinal cord. The blood-CNS barrier also presents a major obstacle for potential CNS medicines. Robust methods to assess CNS permeation are therefore essential for CNS drug discovery, particularly when brain pharmacokinetics are taken into account and especially when such measures are linked to neurochemical, physiological, behavioural or neuroimaging readouts of drug action. Drug candidates can be successfully designed to cross the blood-CNS barrier, but for those that can't there is the possibility of entry with a delivery system that facilitates the movement of drug candidate across the blood-CNS barrier.
Collapse
|
64
|
Carbonnelle E, Hill DJ, Morand P, Griffiths NJ, Bourdoulous S, Murillo I, Nassif X, Virji M. Meningococcal interactions with the host. Vaccine 2009; 27 Suppl 2:B78-89. [PMID: 19481311 DOI: 10.1016/j.vaccine.2009.04.069] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neisseria meningitidis interacts with host tissues through hierarchical, concerted and co-ordinated actions of a number of adhesins; many of which undergo antigenic and phase variation, a strategy that helps immune evasion. Three major structures, pili, Opa and Opc predominantly influence bacterial adhesion to host cells. Pili and Opa proteins also determine host and tissue specificity while Opa and Opc facilitate efficient cellular invasion. Recent studies have also implied a role of certain adhesin-receptor pairs in determining increased host susceptibility to infection. This chapter examines our current knowledge of meningococcal adhesion and invasion mechanisms particularly related to human epithelial and endothelial cells which are of primary importance in the disease process.
Collapse
Affiliation(s)
- Etienne Carbonnelle
- INSERM, unité 570, Université Paris Descartes, 156 rue de Vaugirard, Paris 75015, France
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Weiss N, Miller F, Cazaubon S, Couraud PO. [Implication of the blood-brain barrier in neurological diseases: part II]. Rev Neurol (Paris) 2009; 165:1010-22. [PMID: 19487004 DOI: 10.1016/j.neurol.2009.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/01/2009] [Accepted: 04/29/2009] [Indexed: 01/07/2023]
Abstract
The main characteristic of the blood-brain-barrier (BBB) is its extremely low permeability, due to tight intercellular endothelial junctions and a variety of transporters, which provides the brain with a unique protection against the potential toxicity of several xenobiotics, but also constitutes a major limitation to drug delivery to the central nervous system. Several dysfunctions of the BBB have been recently implicated in the pathophysiology of neurological diseases: inflammatory, vascular, tumoral, infectious and neurodegenerative diseases. Based on a better knowledge of the BBB biology, new therapeutic strategies are emerging, which by-pass the BBB or take advantage of the selective expression of membrane proteins by brain endothelial cells or circulating leucocytes to target new drugs, such as the anti-VLA4 antibody recently approved for multiple sclerosis treatment. This review will focus on the recently described BBB dysfunctions presumably involved in various neurological diseases.
Collapse
Affiliation(s)
- N Weiss
- CNRS (UMR 8104), Institut Cochin, université Paris-Descartes, 22, rue Méchain, 75014 Paris, France
| | | | | | | |
Collapse
|
66
|
Mikaty G, Soyer M, Mairey E, Henry N, Dyer D, Forest KT, Morand P, Guadagnini S, Prévost MC, Nassif X, Duménil G. Extracellular bacterial pathogen induces host cell surface reorganization to resist shear stress. PLoS Pathog 2009; 5:e1000314. [PMID: 19247442 PMCID: PMC2642725 DOI: 10.1371/journal.ppat.1000314] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/26/2009] [Indexed: 12/30/2022] Open
Abstract
Bacterial infections targeting the bloodstream lead to a wide array of devastating diseases such as septic shock and meningitis. To study this crucial type of infection, its specific environment needs to be taken into account, in particular the mechanical forces generated by the blood flow. In a previous study using Neisseria meningitidis as a model, we observed that bacterial microcolonies forming on the endothelial cell surface in the vessel lumen are remarkably resistant to mechanical stress. The present study aims to identify the molecular basis of this resistance. N. meningitidis forms aggregates independently of host cells, yet we demonstrate here that cohesive forces involved in these bacterial aggregates are not sufficient to explain the stability of colonies on cell surfaces. Results imply that host cell attributes enhance microcolony cohesion. Microcolonies on the cell surface induce a cellular response consisting of numerous cellular protrusions similar to filopodia that come in close contact with all the bacteria in the microcolony. Consistent with a role of this cellular response, host cell lipid microdomain disruption simultaneously inhibited this response and rendered microcolonies sensitive to blood flow–generated drag forces. We then identified, by a genetic approach, the type IV pili component PilV as a triggering factor of plasma membrane reorganization, and consistently found that microcolonies formed by a pilV mutant are highly sensitive to shear stress. Our study shows that bacteria manipulate host cell functions to reorganize the host cell surface to form filopodia-like structures that enhance the cohesion of the microcolonies and therefore blood vessel colonization under the harsh conditions of the bloodstream. Certain infectious agents reach the bloodstream and succeed in surviving and multiplying at this site. This stage of the infection is associated with a life-threatening condition. The Gram-negative bacterium meningococcus, responsible for septicemia and meningitis, stands out as a paradigm of such a pathogen. Despite the characteristic flow-generated hydrodynamic forces of the bloodstream, meningococci have the striking ability to bind to the endothelium and to multiply in bacterial aggregates called microcolonies. Meningococci form aggregates in absence of eukaryotic cells, but we show that such aggregates are sensitive to mechanical stress, indicating that the presence of host cells enhances microcolony cohesion. Consistently, analysis of meningococcal microcolonies growing on the host cellular surface reveals that these structures are dense with cellular material in the form of cellular protrusions. Blocking this bacteria-induced cellular response renders microcolonies sensitive to blood flow. We then identify a bacterial component located on the outside of the bacteria and in direct contact with host cells as a key factor in the induction of this cellular response. This bacteria-induced cellular response is therefore a striking example of how pathogens exploit cellular functions as a survival strategy, in this case in the particular context of the bloodstream.
Collapse
Affiliation(s)
- Guillain Mikaty
- INSERM, U570, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, UMR S570, Paris, France
| | - Magali Soyer
- INSERM, U570, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, UMR S570, Paris, France
| | - Emilie Mairey
- INSERM, U570, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, UMR S570, Paris, France
| | | | - Dave Dyer
- University of Wisconsin-Madison, Department of Bacteriology, Madison, Wisconsin, United States of America
| | - Katrina T. Forest
- University of Wisconsin-Madison, Department of Bacteriology, Madison, Wisconsin, United States of America
| | - Philippe Morand
- INSERM, U570, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, UMR S570, Paris, France
| | | | | | - Xavier Nassif
- INSERM, U570, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, UMR S570, Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Guillaume Duménil
- INSERM, U570, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, UMR S570, Paris, France
- * E-mail:
| |
Collapse
|
67
|
|
68
|
Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun 2009; 77:120-7. [PMID: 18936186 PMCID: PMC2612285 DOI: 10.1128/iai.01065-08] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 09/11/2008] [Accepted: 10/08/2008] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of cryptococcosis, including the events leading to the production of meningoencephalitis, is still largely unknown. Evidence of a transcellular passage of Cryptococcus neoformans across the blood-brain barrier (BBB) and subsequent BBB disruption exists, but the paracellular passage of free yeasts and the role of monocytes in yeast dissemination and brain invasion (Trojan horse method) remain uncertain. We used our model of disseminated cryptococcosis, in which crossing of the BBB starts 6 h after intravenous inoculation, to study paracellular passage of the BBB. We prepared bone marrow-derived monocytes (BMDM) infected in vitro with C. neoformans (BMDM yeasts) and free yeasts and measured fungal loads in tissues. (i) Spleen and lung CFU were >2-fold higher in mice treated with BMDM yeasts than in those treated with free yeasts for 1 and 24 h (P < 0.05), while brain CFU were increased (3.9 times) only at 24 h (P < 0.05). (ii) By comparing the kinetics of brain invasion in naïve mice and in mice with preestablished cryptococcosis, we found that CFU were lower in the latter case, except at 6 h, when CFU from mice inoculated with BMDM yeasts were comparable to those measured in naïve mice and 2.5-fold higher than those in mice with preestablished cryptococcosis who were inoculated with free yeasts. (iii) Late phagocyte depletion obtained by clodronate injection reduced disease severity and lowered the fungal burden by 40% in all organs studied. These results provide evidence for Trojan horse crossing of the BBB by C. neoformans, together with mechanisms involving free yeasts, and overall for a role of phagocytes in fungal dissemination.
Collapse
Affiliation(s)
- Caroline Charlier
- Unité de Mycologie Moléculaire, CNRS URA3012, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
69
|
Grab DJ, Kennedy PGE. Traversal of human and animal trypanosomes across the blood-brain barrier. J Neurovirol 2008; 14:344-51. [PMID: 19016378 DOI: 10.1080/13550280802282934] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The neurological complications of human African trypanosomiasis (HAT) in man caused by the unicellular protozoan parasites Trypanosoma brucei gambiense and T. b. rhodesiense are a consequence of the penetration of the blood-brain barrier (BBB) by trypanosomes that enter the central nervous system (CNS). Yet the mechanisms by which African trypanosomes cross the true BBB comprised of brain microvascular endothelial cells (BMECs) remain unclear. Human BBB models used to determine how African trypanosomes initially interact in vitro with the human BBB proper suggest that parasites cross the human BBB in part by generating Ca(2+) activation signals in human BMECs through the activity of parasite cysteine proteases. In vivo murine models of HAT have suggested additional mechanisms of BBB traversal by trypanosomes, with recent compelling evidence for the important role of interferon-gamma in facilitating this process. A clear understanding of how trypanosomes enter the CNS is critical for both understanding the neuropathogenesis of HAT and in developing more effective drug therapies for late-stage disease.
Collapse
Affiliation(s)
- Dennis J Grab
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
70
|
de Souza AL, Seguro AC. Two centuries of meningococcal infection: from Vieusseux to the cellular and molecular basis of disease. J Med Microbiol 2008; 57:1313-1321. [PMID: 18927406 DOI: 10.1099/jmm.0.47599-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Scientific knowledge of meningococcal infection has increased greatly since the epidemic nature of the illness was first described by Vieusseux at the dawn of the nineteenth century. In fact, revolutionary advances have been made in public-health measures, antimicrobial therapy, diagnostic procedures, anti-inflammatory drugs and supportive care facilities. Based on the knowledge accumulated to date, it is generally accepted that the pathogenesis of meningococcal infection involves multiple links that interconnect in a complex web of phenomena from Neisseria meningitidis attachment to meningococcal sepsis or meningitis. In fact, a myriad of strongly interacting inflammatory molecules and cells have been implicated in neisserial infection, illustrating the complexity of meningococcal pathogenesis. In addition, many of these signallers are critically involved in outcomes in the human host. Deciphering the pathogenesis of meningococcal infection could expand our knowledge and provide important clues to the host-pathogen interaction, as well as leading to the development of new therapeutic tools. Herein, we review the history of the discovery and characterization of meningococcal disease, epidemiological features of the disease with an emphasis on recent developments in Brazil, the cellular and molecular basis of disease, and discuss diagnosis and therapy.
Collapse
Affiliation(s)
| | - Antonio Carlos Seguro
- Laboratory of Basic Research, Department of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil.,Intensive Care Unit, Emílio Ribas Institute of Infectology, São Paulo, Brazil
| |
Collapse
|
71
|
Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and neurological diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:842-57. [PMID: 19061857 DOI: 10.1016/j.bbamem.2008.10.022] [Citation(s) in RCA: 514] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 10/02/2008] [Accepted: 10/29/2008] [Indexed: 12/13/2022]
Abstract
Brain endothelial cells are unique among endothelial cells in that they express apical junctional complexes, including tight junctions, which quite resemble epithelial tight junctions both structurally and functionally. They form the blood-brain-barrier (BBB) which strictly controls the exchanges between the blood and the brain compartments by limiting passive diffusion of blood-borne solutes while actively transporting nutrients to the brain. Accumulating experimental and clinical evidence indicate that BBB dysfunctions are associated with a number of serious CNS diseases with important social impacts, such as multiple sclerosis, stroke, brain tumors, epilepsy or Alzheimer's disease. This review will focus on the implication of brain endothelial tight junctions in BBB architecture and physiology, will discuss the consequences of BBB dysfunction in these CNS diseases and will present some therapeutic strategies for drug delivery to the brain across the BBB.
Collapse
Affiliation(s)
- Nicolas Weiss
- Institut Cochin, Université Paris Descartes, Paris, France
| | | | | | | |
Collapse
|
72
|
Modification of lipooligosaccharide with phosphoethanolamine by LptA in Neisseria meningitidis enhances meningococcal adhesion to human endothelial and epithelial cells. Infect Immun 2008; 76:5777-89. [PMID: 18824535 DOI: 10.1128/iai.00676-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipooligosaccharide (LOS) of Neisseria meningitidis can be decorated with phosphoethanolamine (PEA) at the 4' position of lipid A and at the O-3 and O-6 positions of the inner core of the heptose II residue. The biological role of PEA modification in N. meningitidis remains unclear. During the course of our studies to elucidate the pathogenicity of the ST-2032 (invasive) meningococcal clonal group, disruption of lptA, the gene that encodes the PEA transferase for 4' lipid A, led to a approximately 10-fold decrease in N. meningitidis adhesion to four kinds of human endothelial and epithelial cell lines at an multiplicity of infection of 5,000. Complementation of the lptA gene in a Delta lptA mutant restored wild-type adherence. By matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis, PEA was lost from the lipid A of the Delta lptA mutant compared to that of the wild-type strain. The effect of LptA on meningococcal adhesion was independent of other adhesins such as pili, Opc, Opa, and PilC but was inhibited by the presence of capsule. These results indicate that modification of LOS with PEA by LptA enhances meningococcal adhesion to human endothelial and epithelial cells in unencapsulated N. meningitidis.
Collapse
|
73
|
Talà A, Progida C, De Stefano M, Cogli L, Spinosa MR, Bucci C, Alifano P. The HrpB-HrpA two-partner secretion system is essential for intracellular survival of Neisseria meningitidis. Cell Microbiol 2008; 10:2461-82. [PMID: 18680551 DOI: 10.1111/j.1462-5822.2008.01222.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study we used HeLa cells to investigate the role of the HrpB-HrpA two-partner secretion (TPS) system in the meningococcal infection cycle. Although there is evidence that several pathogenic microorganisms may use TPS systems to colonize epithelial surfaces, the meningococcal HrpB-HrpA TPS system was not primarily involved in adhesion to or invasion of HeLa cells. Instead, this system was essential for intracellular survival and escape from infected cells. Gentamicin protection assays, immunofluorescence and transmission electron microscopy analyses demonstrated that, in contrast to the wild-type strain, HrpB-HrpA-deficient mutants were primarily confined to late endocytic vacuoles and trapped in HeLa cells. Haemolytic tests using human erythrocytes suggested that the secreted HrpA proteins could act as manganese-dependent lysins directly involved in mediating vacuole escape. In addition, we demonstrated that escape of wild-type meningococci from infected cells required the use of an intact tubulin cytoskeleton and that the hrpB-hrpA genes, which are absent in other Neisseria spp., were upregulated during infection.
Collapse
Affiliation(s)
- Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
74
|
Zelmer A, Bowen M, Jokilammi A, Finne J, Luzio JP, Taylor PW. Differential expression of the polysialyl capsule during blood-to-brain transit of neuropathogenic Escherichia coli K1. MICROBIOLOGY (READING, ENGLAND) 2008; 154:2522-2532. [PMID: 18667585 PMCID: PMC2572004 DOI: 10.1099/mic.0.2008/017988-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Escherichia coli K1 isolates synthesize a polysialic acid (polySia) capsule, are components of the adult gastrointestinal microbiota and may cause lethal bacteraemia and meningitis if acquired maternally by newborn infants. We used a neonatal rat pup K1 infection model to establish that prompt administration of a selective capsule depolymerase reverses the bacteraemic state and prevents death of almost all pups. In untreated animals, bacteria colonize the gastrointestinal tract and gain entry to the blood compartment, where they express the non-O-acetylated form of polySia. The bacteria invade the major organs of the host; histological and histochemical analysis of brain sections revealed that at least some bacteria enter the central nervous system through the blood-cerebrospinal fluid barrier at the choroid plexus prior to colonization of the meninges. Once in this location, they cease expression of polySia. The unexpected abrogation of polySia, a factor associated with the pathogenesis of meningitis and essential for transit through the blood, suggests that the neuropathogen dispenses with its protective capsule once it has colonized protected niches. Thus, systemic infections due to encapsulated pathogens may be resolved by capsule depolymerization only if the enzyme modifies the bacteria whilst they are in the blood compartment.
Collapse
Affiliation(s)
- Andrea Zelmer
- School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Mark Bowen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Anne Jokilammi
- Department of Medical Biochemistry and Molecular Biology, University of Turku, FI-20520 Turku, Finland
| | - Jukka Finne
- Department of Medical Biochemistry and Molecular Biology, University of Turku, FI-20520 Turku, Finland
| | - J. Paul Luzio
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Peter W. Taylor
- School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
75
|
Talà A, De Stefano M, Bucci C, Alifano P. Reverse transcriptase-PCR differential display analysis of meningococcal transcripts during infection of human cells: up-regulation of priA and its role in intracellular replication. BMC Microbiol 2008; 8:131. [PMID: 18664272 PMCID: PMC2527323 DOI: 10.1186/1471-2180-8-131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 07/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vitro studies with cell line infection models are beginning to disclose the strategies that Neisseria meningitidis uses to survive and multiply inside the environment of the infected host cell. The goal of this study was to identify novel virulence determinants that are involved in this process using an in vitro infection system. RESULTS By using reverse transcriptase-PCR differential display we have identified a set of meningococcal genes significantly up-regulated during residence of the bacteria in infected HeLa cells including genes involved in L-glutamate transport (gltT operon), citrate metabolism (gltA), disulfide bond formation (dsbC), two-partner secretion (hrpA-hrpB), capsulation (lipA), and DNA replication/repair (priA). The role of PriA, a protein that in Escherichia coli plays a central role in replication restart of collapsed or arrested DNA replication forks, has been investigated. priA inactivation resulted in a number of growth phenotypes that were fully complemented by supplying a functional copy of priA. The priA-defective mutant exhibited reduced viability during late logarithmic growth phase. This defect was more severe when it was incubated under oxygen-limiting conditions using nitrite as terminal electron acceptors in anaerobic respiration. When compared to wild type it was more sensitive to hydrogen peroxide and the nitric oxide generator sodium nitroprusside. The priA-defective strain was not affected in its ability to invade HeLa cells, but, noticeably, exhibited severely impaired intracellular replication and, at variance with wild type and complemented strains, it co-localized with lysosomal associated membrane protein 1. CONCLUSION In conclusion, our study i.) demonstrates the efficacy of the experimental strategy that we describe for discovering novel virulence determinants of N. meningitidis and ii.) provides evidence for a role of priA in preventing both oxidative and nitrosative injury, and in intracellular meningococcal replication.
Collapse
Affiliation(s)
- Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università degli Studi del Salento, Via Monteroni, 73100 Lecce, Italy.
| | | | | | | |
Collapse
|
76
|
Therapeutic approaches to reduce systemic inflammation in septic-associated neurologic complications. Eur J Anaesthesiol 2008; 42:1-7. [DOI: 10.1017/s0265021507003444] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
77
|
Mokri-Moayyed B, Goldsworthy GJ, Khan NA. Development of a novel ex vivo insect model for studying virulence determinants of Escherichia coli K1. J Med Microbiol 2008; 57:106-110. [DOI: 10.1099/jmm.0.47568-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Behzad Mokri-Moayyed
- Department of Biology, School of Biological and Chemical Sciences, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Graham John Goldsworthy
- Department of Biology, School of Biological and Chemical Sciences, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Naveed Ahmed Khan
- Department of Biology, School of Biological and Chemical Sciences, Birkbeck College, University of London, London WC1E 7HX, UK
| |
Collapse
|
78
|
Khan NA, Goldsworthy GJ. Novel model to study virulence determinants of Escherichia coli K1. Infect Immun 2007; 75:5735-9. [PMID: 17875634 PMCID: PMC2168352 DOI: 10.1128/iai.00740-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is shown here for the first time that locusts can be used as a model to study Escherichia coli K1 pathogenesis. E. coli K-12 strain HB101 has very low pathogenicity to locusts and does not invade the locust brain, whereas the injection of 2 x 10(6) E. coli K1 strain RS218 (O18:K1:H7) kills almost 100% of locusts within 72 h and invades the brain within 24 h of injection. Both mortality and invasion of the brain in locusts after injection of E. coli K1 require at least two of the known virulence determinants shown for mammals. Thus, deletion mutants that lack outer membrane protein A or cytotoxic necrotizing factor 1 have reduced abilities to kill locusts and to invade the locust brain compared to the parent E. coli K1. Interestingly, deletion mutants lacking FimH or the NeuDB gene cluster are still able to cause high mortality. It is argued that the likely existence of additional virulence determinants can be investigated in vivo by using this insect system.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- Department of Biology, School of Biological and Chemical Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom.
| | | |
Collapse
|
79
|
Chamot-Rooke J, Rousseau B, Lanternier F, Mikaty G, Mairey E, Malosse C, Bouchoux G, Pelicic V, Camoin L, Nassif X, Duménil G. Alternative Neisseria spp. type IV pilin glycosylation with a glyceramido acetamido trideoxyhexose residue. Proc Natl Acad Sci U S A 2007; 104:14783-8. [PMID: 17804791 PMCID: PMC1976187 DOI: 10.1073/pnas.0705335104] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The importance of protein glycosylation in the interaction of pathogenic bacteria with their host is becoming increasingly clear. Neisseria meningitidis, the etiological agent of cerebrospinal meningitis, crosses cellular barriers after adhering to host cells through type IV pili. Pilin glycosylation genes (pgl) are responsible for the glycosylation of PilE, the major subunit of type IV pili, with the 2,4-diacetamido-2,4,6-trideoxyhexose residue. Nearly half of the clinical isolates, however, display an insertion in the pglBCD operon, which is anticipated to lead to a different, unidentified glycosylation. Here the structure of pilin glycosylation was determined in such a strain by "top-down" MS approaches. MALDI-TOF, nanoelectrospray ionization Fourier transform ion cyclotron resonance, and nanoelectrospray ionization quadrupole TOF MS analysis of purified pili preparations originating from N. meningitidis strains, either wild type or deficient for pilin glycosylation, revealed a glycan mass inconsistent with 2,4-diacetamido-2,4,6-trideoxyhexose or any sugar in the databases. This unusual modification was determined by in-source dissociation of the sugar from the protein followed by tandem MS analysis with collision-induced fragmentation to be a hexose modified with a glyceramido and an acetamido group. We further show genetically that the nature of the sugar present on the pilin is determined by the carboxyl-terminal region of the pglB gene modified by the insertion in the pglBCD locus. We thus report a previously undiscovered monosaccharide involved in posttranslational modification of type IV pilin subunits by a MS-based approach and determine the molecular basis of its biosynthesis.
Collapse
Affiliation(s)
- Julia Chamot-Rooke
- *Ecole Polytechnique, Laboratoire des Mécanismes Réactionnels, Département de Chimie, F-91128 Palaiseau, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7651, F-91128 Paris, France
| | - Benoit Rousseau
- Institut National de la Santé et de la Recherche Médicale, Unité 570, F-75015 Paris, France
- Université René Descartes, Faculté de Médecine René Descartes, F-75006 Paris, France
| | - Fanny Lanternier
- Institut National de la Santé et de la Recherche Médicale, Unité 570, F-75015 Paris, France
- Université René Descartes, Faculté de Médecine René Descartes, F-75006 Paris, France
| | - Guillain Mikaty
- Institut National de la Santé et de la Recherche Médicale, Unité 570, F-75015 Paris, France
- Université René Descartes, Faculté de Médecine René Descartes, F-75006 Paris, France
| | - Emilie Mairey
- Institut National de la Santé et de la Recherche Médicale, Unité 570, F-75015 Paris, France
- Université René Descartes, Faculté de Médecine René Descartes, F-75006 Paris, France
| | - Christian Malosse
- *Ecole Polytechnique, Laboratoire des Mécanismes Réactionnels, Département de Chimie, F-91128 Palaiseau, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7651, F-91128 Paris, France
| | - Guy Bouchoux
- *Ecole Polytechnique, Laboratoire des Mécanismes Réactionnels, Département de Chimie, F-91128 Palaiseau, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7651, F-91128 Paris, France
| | - Vladimir Pelicic
- Institut National de la Santé et de la Recherche Médicale, Unité 570, F-75015 Paris, France
- Université René Descartes, Faculté de Médecine René Descartes, F-75006 Paris, France
| | - Luc Camoin
- Université René Descartes, Faculté de Médecine René Descartes, F-75006 Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France
- **Institut Cochin, Département de Biologie Cellulaire, F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 567, F-75014 Paris, France; and
| | - Xavier Nassif
- Institut National de la Santé et de la Recherche Médicale, Unité 570, F-75015 Paris, France
- Université René Descartes, Faculté de Médecine René Descartes, F-75006 Paris, France
- Assistance Publique–Hôpitaux de Paris, Hôpital Necker–Enfants Malades, F-75015 Paris, France
| | - Guillaume Duménil
- Institut National de la Santé et de la Recherche Médicale, Unité 570, F-75015 Paris, France
- Université René Descartes, Faculté de Médecine René Descartes, F-75006 Paris, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
80
|
Cardines R, Giufrè M, Mastrantonio P, Ciofi degli Atti ML, Cerquetti M. Nontypeable Haemophilus influenzae meningitis in children: phenotypic and genotypic characterization of isolates. Pediatr Infect Dis J 2007; 26:577-82. [PMID: 17596797 DOI: 10.1097/inf.0b013e3180616715] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND With the decline in the incidence of invasive Haemophilus influenzae type b disease as result of routine immunization of infants, the potential emergence of nontypeable H. influenzae (NTHi) strains as important pathogens has been suggested. METHODS From June 1997 to July 2006, 9 cases of NTHi meningitis in children aged < or =60 months were detected. The 9 NTHi isolates were characterized. Antimicrobial susceptibility patterns were determined by E-test. The transpeptidase domain of penicillin binding protein 3 of a beta-lactamase negative ampicillin-resistant strain was sequenced. Genetic relatedness among isolates was assessed by pulsed field gel electrophoresis and by multilocus sequence typing. The presence of HMW and Hia adhesins and hemagglutinating fimbriae was investigated by PCR and Western Blotting. RESULTS The 9 cases of NTHi meningitis did not occur in specific risk groups, except for one patient. Of the 9 NTHi isolates, 2 were beta-lactamase producers and 1 showed the beta-lactamase negative ampicillin-resistant phenotype. Sequencing of the penicillin binding protein 3 revealed novel amino acid substitutions. A high degree of genetic diversity among isolates was demonstrated by pulsed field gel electrophoresis. Multilocus sequence genotyping confirmed that the 9 NTHi isolates did not belong to related phylogenetic clusters. HMW adhesins were found in 2 isolates, and 5 strains possessed Hia. No hemagglutinating fimbriae were detected, even though 2 isolates contained hifA gene sequences. CONCLUSION NTHi isolates from cases of meningitis in children are genetically diverse. Distribution of adhesins among the isolates we examined is unusual: most strains express Hia that generally occurs in a minority of strains in NTHi, suggesting that this adhesin may play a role in virulence mechanisms of NTHi causing meningitis.
Collapse
Affiliation(s)
- Rita Cardines
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
81
|
Davidsen T, Koomey M, Tønjum T. Microbial genome dynamics in CNS pathogenesis. Neuroscience 2007; 145:1375-87. [PMID: 17367950 DOI: 10.1016/j.neuroscience.2007.01.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
The balancing act between microbes and their host in commensal and disease states needs to be deciphered in order to fully treat and combat infectious diseases. The elucidation of microbial genome dynamics in each instance is therefore required. In this context, the major bacterial meningitis pathogens are Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae. In prokaryotic CNS pathogenesis both the intact organism as well as its released components can elicit disease, often resulting in neurological sequelae, neurodegeneration or fatal outcome. The study of microbial virulence in CNS disease is expected to generate findings that yield new information on the general mechanisms of brain edema and excitatory neuronal disturbances due to meningitis, with significant potential for discoveries that can directly influence and inspire new strategies for prevention and treatment of this serious disease.
Collapse
Affiliation(s)
- T Davidsen
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Sognsvannsveien 20, NO-0027 Oslo, Norway
| | | | | |
Collapse
|
82
|
Knaust A, Weber MVR, Hammerschmidt S, Bergmann S, Frosch M, Kurzai O. Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis. J Bacteriol 2007; 189:3246-55. [PMID: 17307854 PMCID: PMC1855851 DOI: 10.1128/jb.01966-06] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plasminogen recruitment is a common strategy of pathogenic bacteria and results in a broad-spectrum surface-associated protease activity. Neisseria meningitidis has previously been shown to bind plasminogen. In this study, we show by several complementary approaches that endolase, DnaK, and peroxiredoxin, which are usually intracellular proteins, can also be located in the outer membrane and act as plasminogen receptors. Internal binding motifs, rather than C-terminal lysine residues, are responsible for plasminogen binding of the N. meningitidis receptors. Recombinant receptor proteins inhibit plasminogen association with N. meningitidis in a concentration-dependent manner. Besides binding purified plasminogen, N. meningitidis can also acquire plasminogen from human serum. Activation of N. meningitidis-associated plasminogen by urokinase results in functional activity and allows the bacteria to degrade fibrinogen. Furthermore, plasmin bound to N. meningitidis is protected against inactivation by alpha(2)-antiplasmin.
Collapse
Affiliation(s)
- Andreas Knaust
- Institute of Hygiene and Environmental Medicine, University of Giessen, Friedrichsstrasse 16, 35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
83
|
Schubert-Unkmeir A, Sokolova O, Panzner U, Eigenthaler M, Frosch M. Gene expression pattern in human brain endothelial cells in response to Neisseria meningitidis. Infect Immun 2006; 75:899-914. [PMID: 17130252 PMCID: PMC1828482 DOI: 10.1128/iai.01508-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To extend our knowledge of target proteins in endothelial cells infected with the meningitis-causing pathogen Neisseria meningitidis, we characterized the interaction between the bacterial and human brain microvascular endothelial cell (HBMEC) monolayers. By use of human cDNA microarrays, transcriptional analysis revealed distinct responses to 4 and 8 h of infection. We also addressed the question of whether the major virulence factor of meningococci, i.e., the capsule, influences the host cell response. Of the 1,493 (at 4 h postinfection) and 1,246 (at 8 h postinfection) genes with altered expression upon bacterial contact, about 49.4% and 45%, respectively, depended on capsule expression. In particular, we identified an increase of expression for genes encoding proteins involved in bacterial adhesion and invasion. High levels of apoptosis-related gene (bad, bak, asp, and immediate-early response gene 1) expression could also be detected in infected cells. Further analyses confirmed that HBMECs displayed several hallmarks of apoptosis in response to N. meningitidis infection, namely, phosphatidylserine translocation and activation of caspase 3 and AMP-activated protein kinase alpha. Moreover, several differentially regulated genes not previously known to respond to meningococcal infection were identified. Of these, genes encoding cell adhesion proteins (CD44, CD98, and CD99), genes involved in downstream signaling of integrins (integrin-linked kinase, mitogen-activated protein kinase kinase 1, and mitogen-activated protein kinase kinase kinase 10) as well as negative regulators of these pathways (dual-specificity phosphatases 1, 5, and 14 and G protein pathway suppressor 2), and genes involved in cytoskeleton reorganization (those encoding Arp2/3, p34-arc, actinin alpha 1, vasodilatator-stimulated protein, and Wiskott-Aldrich syndrome protein) were the most prominent. This global transcriptional analysis creates a new platform for further molecular and cellular analysis of the interaction between N. meningitidis and target cells.
Collapse
|
84
|
Bergman P, Johansson L, Wan H, Jones A, Gallo RL, Gudmundsson GH, Hökfelt T, Jonsson AB, Agerberth B. Induction of the antimicrobial peptide CRAMP in the blood-brain barrier and meninges after meningococcal infection. Infect Immun 2006; 74:6982-91. [PMID: 17030578 PMCID: PMC1698100 DOI: 10.1128/iai.01043-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial peptides are present in most living species and constitute important effector molecules of innate immunity. Recently, we and others have detected antimicrobial peptides in the brain. This is an organ that is rarely infected, which has mainly been ascribed to the protective functions of the blood-brain barrier (BBB) and meninges. Since the bactericidal properties of the BBB and meninges are not known, we hypothesized that antimicrobial peptides could play a role in these barriers. We addressed this hypothesis by infecting mice with the neuropathogenic bacterium Neisseria meningitidis. Brains were analyzed for expression of the antimicrobial peptide CRAMP by immunohistochemistry in combination with confocal microscopy. After infection, we observed induction of CRAMP in endothelial cells of the BBB and in cells of the meninges. To explore the functional role of CRAMP in meningococcal disease, we infected mice deficient of the CRAMP gene. Even though CRAMP did not appear to protect the brain from invasion of meningococci, CRAMP knockout mice were more susceptible to meningococcal infection than wild-type mice and exhibited increased meningococcal growth in blood, liver, and spleen. Moreover, we could demonstrate that carbonate, a compound that accumulates in the circulation during metabolic acidosis, makes meningococci more susceptible to CRAMP.
Collapse
Affiliation(s)
- Peter Bergman
- Department of Medical Biochemistry and Biophysics, Scheeles vag 2, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Canova C, Neal JW, Gasque P. Expression of innate immune complement regulators on brain epithelial cells during human bacterial meningitis. J Neuroinflammation 2006; 3:22. [PMID: 16948860 PMCID: PMC1574292 DOI: 10.1186/1742-2094-3-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 09/02/2006] [Indexed: 11/18/2022] Open
Abstract
Background In meningitis, the cerebrospinal fluid contains high levels of innate immune molecules (e.g. complement) which are essential to ward off the infectious challenge and to promote the infiltration of phagocytes (neutrophils, monocytes). However, epithelial cells of either the ependymal layer, one of the established niche for adult neural stem cells, or of the choroid plexus may be extremely vulnerable to bystander attack by cytotoxic and cytolytic complement components. Methods In this study, we assessed the capacity of brain epithelial cells to express membrane-bound complement regulators (ie, CD35, CD46, CD55 and CD59) in vitro and in situ by immunostaining of control and meningitis human brain tissue sections. Results Double immunofluorescence experiments for ependymal cell markers (GFAP, S100, ZO-1, E-cadherin) and complement regulators indicated that the human ependymal cell line model was strongly positive for CD55, CD59 compared to weak stainings for CD46 and CD35. In tissues, we found that CD55 was weakly expressed in control choroid plexus and ependyma but was abundantly expressed in meningitis. Anti-CD59 stained both epithelia in apical location while increased CD59 staining was solely demonstrated in inflamed choroid plexus. CD46 and CD35 were not detected in control tissue sections. Conversely, in meningitis, the ependyma, subependyma and choroid plexus epithelia were strongly stained for CD46 and CD35. Conclusion This study delineates for the first time the capacity of brain ependymal and epithelial cells to respond to and possibly sustain the innate complement-mediated inflammatory insult.
Collapse
Affiliation(s)
- Cecile Canova
- Brain Inflammation and Immunity Group, Department of Medical Biochemistry, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Jim W Neal
- Department of Pathology, Neuropathology Laboratory; Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Philippe Gasque
- Brain Inflammation and Immunity Group, Department of Medical Biochemistry, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
- LBGM, Faculty of Sciences and Technologies, University of la Reunion, 15 Avenue René Cassin, BP7151, 97715, Saint Denis, Reunion
| |
Collapse
|
86
|
Doulet N, Donnadieu E, Laran-Chich MP, Niedergang F, Nassif X, Couraud PO, Bourdoulous S. Neisseria meningitidis infection of human endothelial cells interferes with leukocyte transmigration by preventing the formation of endothelial docking structures. ACTA ACUST UNITED AC 2006; 173:627-37. [PMID: 16717131 PMCID: PMC2063870 DOI: 10.1083/jcb.200507128] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neisseria meningitidis elicits the formation of membrane protrusions on vascular endothelial cells, enabling its internalization and transcytosis. We provide evidence that this process interferes with the transendothelial migration of leukocytes. Bacteria adhering to endothelial cells actively recruit ezrin, moesin, and ezrin binding adhesion molecules. These molecules no longer accumulate at sites of leukocyte–endothelial contact, preventing the formation of the endothelial docking structures required for proper leukocyte diapedesis. Overexpression of exogenous ezrin or moesin is sufficient to rescue the formation of docking structures on and leukocyte migration through infected endothelial monolayers. Inversely, expression of the dominant-negative NH2-terminal domain of ezrin markedly inhibits the formation of docking structures and leukocyte diapedesis through noninfected monolayers. Ezrin and moesin thus appear as pivotal endothelial proteins required for leukocyte diapedesis that are titrated away by N. meningitidis. These results highlight a novel strategy developed by a bacterial pathogen to hamper the host inflammatory response by interfering with leukocyte–endothelial cell interaction.
Collapse
Affiliation(s)
- Nicolas Doulet
- Département de Biologie Cellulaire, Institut Cochin, F-75014 Paris, France
| | | | | | | | | | | | | |
Collapse
|
87
|
Duménil G, Nassif X. Extracellular bacterial pathogens and small GTPases of the Rho family: an unexpected combination. Curr Top Microbiol Immunol 2005; 291:11-28. [PMID: 15981457 DOI: 10.1007/3-540-27511-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Even in the case of extracellular bacterial pathogens, it is becoming increasingly clear that successful colonization does not limit itself to passive attachment on the surface of human cells; a dialogue takes place between bacteria and infected cells. These pathogens modulate cellular functions to their advantage, leading to survival and proliferation at the cell surface. Furthermore, there is increasing evidence that a variety of extracellular pathogens activate small GTPases of the Rho family during adhesion, placing these regulators at the center of the interaction between these bacteria and their infected host.
Collapse
Affiliation(s)
- G Duménil
- INSERM Unité 570, Faculté de Médecine Necker-Enfants Malades, 156 rue de Vaugirard, 75015 Paris, France.
| | | |
Collapse
|
88
|
Arnulf I, Zeitzer JM, File J, Farber N, Mignot E. Kleine-Levin syndrome: a systematic review of 186 cases in the literature. ACTA ACUST UNITED AC 2005; 128:2763-76. [PMID: 16230322 DOI: 10.1093/brain/awh620] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Kleine-Levin syndrome (KLS) is a rare disorder with symptoms that include periodic hypersomnia, cognitive and behavioural disturbances. Large series of patients are lacking. In order to report on various KLS symptoms, identify risk factors and analyse treatment response, we performed a systematic review of 195 articles, written in English and non-English languages, which are available on Medline dating from 1962 to 2004. Doubtful or duplicate cases, case series without individual details and reviews (n = 56 articles) were excluded. In addition, the details of 186 patients from 139 articles were compiled. Primary KLS cases (n = 168) were found mostly in men (68%) and occurred sporadically worldwide. The median age of onset was 15 years (range 4-82 years, 81% during the second decade) and the syndrome lasted 8 years, with seven episodes of 10 days, recurring every 3.5 months (median values) with the disease lasting longer in women and in patients with less frequent episodes during the first year. It was precipitated most frequently by infections (38.2%), head trauma (9%), or alcohol consumption (5.4%). Common symptoms were hypersomnia (100%), cognitive changes (96%, including a specific feeling of derealization), eating disturbances (80%), hypersexuality (43%), compulsions (29%), and depressed mood (48%). In 75 treated patients (213 trials), somnolence decreased using stimulants (mainly amphetamines) in 40% of cases, while neuroleptics and antidepressants were of poor benefit. Only lithium (but not carbamazepine or other antiepileptics) had a higher reported response rate (41%) for stopping relapses when compared to medical abstention (19%). Secondary KLS (n = 18) patients were older and had more frequent and longer episodes, but had clinical symptoms and treatment responses similar to primary cases. In conclusion, KLS is a unique disease which may be more severe in female and secondary cases.
Collapse
Affiliation(s)
- I Arnulf
- Stanford University Center for Narcolepsy, Palo Alto, CA, USA.
| | | | | | | | | |
Collapse
|
89
|
Hosoi T, Suzuki S, Okuma Y, Kawakami A, Ogawa N, Ozawa K, Nomura Y. LPS induces stefin A3 expression in mouse primary cultured glial cells. ACTA ACUST UNITED AC 2005; 140:138-41. [PMID: 16143425 DOI: 10.1016/j.molbrainres.2005.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 06/22/2005] [Accepted: 07/11/2005] [Indexed: 11/15/2022]
Abstract
We searched for a gene that is up-regulated in response to LPS at a later time point in primary cultured glial cells. Using a Gene Chip Probe Array, we identified stefin A3, which is known as a cysteine protease inhibitor. As assessed by RT-PCR, we observed a time-dependent (2 to 48 h) up-regulation of stefin A3. The results indicate that stefin A3 is involved in infection and inflammation at a later time point.
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | | | |
Collapse
|
90
|
Autret N, Charbit A. Lessons from signature-tagged mutagenesis on the infectious mechanisms of pathogenic bacteria. FEMS Microbiol Rev 2005; 29:703-17. [PMID: 16102599 DOI: 10.1016/j.femsre.2004.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 09/18/2004] [Accepted: 10/21/2004] [Indexed: 12/31/2022] Open
Abstract
Studies on the genetic basis of bacterial pathogenicity have been undertaken for almost 30 years, but the development of new genetic tools in the past 10 years has considerably increased the number of identified virulence factors. Signature-tagged mutagenesis (STM) is one of the most powerful general genetic approaches, initially developed by David Holden and colleagues in 1995, which has now led to the identification of hundreds of new genes requested for virulence in a broad range of bacterial pathogens. We have chosen to present in this review, the most recent and/or most significant contributions to the understanding of the molecular mechanisms of bacterial pathogenicity among over 40 STM screens published to date. We will first briefly review the principle of the method and its major technical limitations. Then, selected studies will be discussed where genes implicated in various aspects of the infectious process have been identified (including tropism for specific host and/or particular tissues, interactions with host cells, mechanisms of survival and persistence within the host, and the crossing of the blood brain barrier). The examples chosen will cover intracellular as well as extracellular Gram-negative and Gram-positive pathogens.
Collapse
|
91
|
Hauwel M, Furon E, Canova C, Griffiths M, Neal J, Gasque P. Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, "protective" glial stem cells and stromal ependymal cells. ACTA ACUST UNITED AC 2005; 48:220-33. [PMID: 15850661 DOI: 10.1016/j.brainresrev.2004.12.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 12/21/2022]
Abstract
In invertebrates and primitive vertebrates, the brain contains large numbers of "professional" macrophages associated with neurones, ependymal tanycytes and radial glia to promote robust regenerative capacity. In higher vertebrates, hematogenous cells are largely excluded from the brain, and innate immune molecules and receptors produced by the resident "amateur" macrophages (microglia, astrocytes and ependymal cells) control pathogen infiltration and clearance of toxic cell debris. However, there is minimal capacity for regeneration. The transfer of function from hematogenous cells to macroglia and microglia is associated with the sophistication of a yet poorly-characterized neurone-glia network. This evolutionary pattern may have been necessary to reduce the risk of autoimmune attack while preserving the neuronal web but the ability to repair central nervous system damage may have been sacrificed in the process. We herein argue that it may be possible to re-educate and stimulate the resident phagocytes to promote clearance of pathogens (e.g., Prion), toxic cell debris (e.g., amyloid fibrils and myelin) and apoptotic cells. Moreover, as part of this greater division of labour between cell types in vertebrate brains, it may be possible to harness the newly described properties of glial stem cells in neuronal protection (revitalization) rather than replacement, and to control brain inflammation. We will also highlight the emerging roles of stromal ependymal cells in controlling stem cell production and migration into areas of brain damage. Understanding the mechanisms involved in the nurturing of damaged neurons by protective glial stem cells with the safe clearance of cell debris could lead to remedial strategies for chronic brain diseases.
Collapse
Affiliation(s)
- Mathieu Hauwel
- Department of Medical Biochemistry and Immunology, Brain Inflammation and Immunity Group (BIIG), University of Wales College of Medicine, Tenovus Building, Heath Park, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
92
|
Bakaletz LO, Baker BD, Jurcisek JA, Harrison A, Novotny LA, Bookwalter JE, Mungur R, Munson RS. Demonstration of Type IV pilus expression and a twitching phenotype by Haemophilus influenzae. Infect Immun 2005; 73:1635-43. [PMID: 15731063 PMCID: PMC1064948 DOI: 10.1128/iai.73.3.1635-1643.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is considered a nonmotile organism that expresses neither flagella nor type IV pili, although H. influenzae strain Rd possesses a cryptic pilus locus. We demonstrate here that the homologous gene cluster pilABCD in an otitis media isolate of nontypeable H. influenzae strain 86-028NP encodes a surface appendage that is highly similar, structurally and functionally, to the well-characterized subgroup of bacterial pili known as type IV pili. This gene cluster includes a gene (pilA) that likely encodes the major subunit of the heretofore uncharacterized H. influenzae-expressed type IV pilus, a gene with homology to a type IV prepilin peptidase (pilD) as well as two additional uncharacterized genes (pilB and pilC). A second gene cluster (comABCDEF) was also identified by homology to other pil or type II secretion system genes. When grown in chemically defined medium at an alkaline pH, strain 86-028NP produces approximately 7-nm-diameter structures that are near polar in location. Importantly, these organisms exhibit twitching motility. A mutation in the pilA gene abolishes both expression of the pilus structure and the twitching phenotype, whereas a mutant lacking ComE, a Pseudomonas PilQ homologue, produced large appendages that appeared to be membrane bound and terminated in a slightly bulbous tip. These latter structures often showed a regular pattern of areas of constriction and expansion. The recognition that H. influenzae possesses a mechanism for twitching motility will likely profoundly influence our understanding of H. influenzae-induced diseases of the respiratory tract and their sequelae.
Collapse
Affiliation(s)
- Lauren O Bakaletz
- Department of Pediatrics, Columbus Children's Research Institute, Center for Microbial Pathogenesis, The Ohio State University College of Medicine and Public Health, 700 Children's Dr., Columbus, OH 43205-2696, USA.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Grab DJ, Perides G, Dumler JS, Kim KJ, Park J, Kim YV, Nikolskaia O, Choi KS, Stins MF, Kim KS. Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier. Infect Immun 2005; 73:1014-22. [PMID: 15664945 PMCID: PMC546937 DOI: 10.1128/iai.73.2.1014-1022.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurological manifestations of Lyme disease in humans are attributed in part to penetration of the blood-brain barrier (BBB) and invasion of the central nervous system (CNS) by Borrelia burgdorferi. However, how the spirochetes cross the BBB remains an unresolved issue. We examined the traversal of B. burgdorferi across the human BBB and systemic endothelial cell barriers using in vitro model systems constructed of human brain microvascular endothelial cells (BMEC) and EA.hy 926, a human umbilical vein endothelial cell (HUVEC) line grown on Costar Transwell inserts. These studies showed that B. burgdorferi differentially crosses human BMEC and HUVEC and that the human BMEC form a barrier to traversal. During the transmigration by the spirochetes, it was found that the integrity of the endothelial cell monolayers was maintained, as assessed by transendothelial electrical resistance measurements at the end of the experimental period, and that B. burgdorferi appeared to bind human BMEC by their tips near or at cell borders, suggesting a paracellular route of transmigration. Importantly, traversal of B. burgdorferi across human BMEC induces the expression of plasminogen activators, plasminogen activator receptors, and matrix metalloproteinases. Thus, the fibrinolytic system linked by an activation cascade may lead to focal and transient degradation of tight junction proteins that allows B. burgdorferi to invade the CNS.
Collapse
Affiliation(s)
- Dennis J Grab
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Park Building, Room 256, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Martin P, Makepeace K, Hill SA, Hood DW, Moxon ER. Microsatellite instability regulates transcription factor binding and gene expression. Proc Natl Acad Sci U S A 2005; 102:3800-4. [PMID: 15728391 PMCID: PMC553301 DOI: 10.1073/pnas.0406805102] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microsatellites are tandemly repeated simple sequence DNA motifs widely prevalent in eukaryotic and prokaryotic genomes. In pathogenic bacteria, instability of these hypermutable loci through slipped-strand mispairing mediates the high-frequency reversible switching of phenotype expression, i.e., phase variation. Phase-variable expression of NadA, an outer membrane protein and adhesin of the pathogen Neisseria meningitidis, is mediated by changes in the number of TAAA repeats located upstream of the core promoter of nadA. Here we report that loss or gain of TAAA repeats affects the binding of the transcriptional regulatory protein IHF to the nadA promoter. Thus, phase-variable transcription of nadA potentially incorporates interplay between stochastic (mutational) and prescriptive (classical) mechanisms of gene regulation.
Collapse
Affiliation(s)
- Patricia Martin
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom.
| | | | | | | | | |
Collapse
|
95
|
|
96
|
Abstract
Vaccination is an effective possibility to prevent many bacterial or viral infections, but for several important pathogens still no vaccines are available. The sequences of complete genomes are now decoded for an increasing number of bacterial pathogens and offer the possibility for comprehensive screenings to identify targets for vaccine development. In this article current genomic approaches to identify antigenic proteins of Neisseria meningitidis, Streptococcus pneumoniae, Staphylococcus aureus, and Chlamydia pneumoniae are summarized.
Collapse
Affiliation(s)
- Andreas Knaust
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| | | |
Collapse
|
97
|
Hosoi T, Okuma Y, Kawagishi T, Qi X, Matsuda T, Nomura Y. Bacterial endotoxin induces STAT3 activation in the mouse brain. Brain Res 2004; 1023:48-53. [PMID: 15364018 DOI: 10.1016/j.brainres.2004.06.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2004] [Indexed: 12/23/2022]
Abstract
In the present study, we investigated regulatory mechanisms of bacterial endotoxin-induced STAT3 activation in the brain. Intraperitoneal injection of lipopolysaccharide (LPS) dose-dependently (0.5-5000 microg/kg) induced STAT3 phosphorylation in the hypothalamus. LPS-induced STAT3 phosphorylation was peaked at 2-4 h and declined there after. Moreover, intracerebroventricular injection of LPS induced STAT3 phosphorylation in the cortex and the hippocampus, indicating that central as well as peripheral LPS can act in the brain to induce STAT3 activation. Glucocorticoids are known to play a physiological role in the feedback inhibition of immune/inflammatory responses in the endocrine system. Interestingly, we observed no effect of dexamethasone on LPS-induced STAT3 phosphorylation in the hypothalamus. These findings point to the important role of STAT3 in the neuroimmune interaction of inflammation in the brain.
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
98
|
Drevets DA, Leenen PJM, Greenfield RA. Invasion of the central nervous system by intracellular bacteria. Clin Microbiol Rev 2004; 17:323-47. [PMID: 15084504 PMCID: PMC387409 DOI: 10.1128/cmr.17.2.323-347.2004] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infection of the central nervous system (CNS) is a severe and frequently fatal event during the course of many diseases caused by microbes with predominantly intracellular life cycles. Examples of these include the facultative intracellular bacteria Listeria monocytogenes, Mycobacterium tuberculosis, and Brucella and Salmonella spp. and obligate intracellular microbes of the Rickettsiaceae family and Tropheryma whipplei. Unfortunately, the mechanisms used by intracellular bacterial pathogens to enter the CNS are less well known than those used by bacterial pathogens with an extracellular life cycle. The goal of this review is to elaborate on the means by which intracellular bacterial pathogens establish infection within the CNS. This review encompasses the clinical and pathological findings that pertain to the CNS infection in humans and includes experimental data from animal models that illuminate how these microbes enter the CNS. Recent experimental data showing that L. monocytogenes can invade the CNS by more than one mechanism make it a useful model for discussing the various routes for neuroinvasion used by intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Douglas A Drevets
- Department of Medicine, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | |
Collapse
|
99
|
Martı́n R, Langa S, Reviriego C, Jiménez E, Marı́n ML, Olivares M, Boza J, Jiménez J, Fernández L, Xaus J, Rodrı́guez JM. The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci Technol 2004. [DOI: 10.1016/j.tifs.2003.09.010] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
100
|
Sharp CD, Fowler M, Jackson TH, Houghton J, Warren A, Nanda A, Chandler I, Cappell B, Long A, Minagar A, Alexander JS. Human neuroepithelial cells express NMDA receptors. BMC Neurosci 2003; 4:28. [PMID: 14614784 PMCID: PMC293342 DOI: 10.1186/1471-2202-4-28] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Accepted: 11/13/2003] [Indexed: 11/16/2022] Open
Abstract
L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1) cerebral endothelial barrier and 2) cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells) have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR) expression via immunohistochemistry and murine neuroepithelial cell line (V1) were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease.
Collapse
Affiliation(s)
- Christopher D Sharp
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - M Fowler
- Department of Pathology, LSU Health Sciences Center, Shreveport, LA, USA
| | - TH Jackson
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - J Houghton
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - A Warren
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - A Nanda
- Department of Neurosurgery, LSU Health Sciences Center, Shreveport, LA, USA
| | - I Chandler
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - B Cappell
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - A Long
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - A Minagar
- Department of Neurology, LSU Health Sciences Center, Shreveport, LA, USA
| | - JS Alexander
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|