51
|
Riethmüller J, Riehle A, Grassmé H, Gulbins E. Membrane rafts in host-pathogen interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:2139-47. [PMID: 17094939 DOI: 10.1016/j.bbamem.2006.07.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/13/2006] [Accepted: 07/18/2006] [Indexed: 02/09/2023]
Abstract
Central elements in the infection of mammalian cells with viral, bacterial and parasitic pathogens include the adhesion of the pathogen to surface receptors of the cell, recruitment of additional receptor proteins to the infection-site, a re-organization of the membrane and, in particular, the intracellular signalosome. Internalization of the pathogen results in the formation of a phagosome that is supposed to fuse with lysosomes to form phagolysosomes, which serve the degradation of the pathogen, an event actively prevented by some pathogens. In summary, these changes in the infected cell permit pathogens to trigger apoptosis (for instance of macrophages paralysing the initial immune response), to invade the cell and/or to survive in the cell, but they also serve the mammalian cell to defeat the infection, for instance by activation of transcription factors and the release of cytokines. Distinct membrane domains in the plasma membrane and intracellular vesicles that are mainly composed of sphingolipids and cholesterol or enriched with the sphingolipid ceramide, are critically involved in all of these events occurring during the infection. These membrane structures are therefore very attractive targets for novel drugs to interfere with bacterial, viral and parasitic infections.
Collapse
Affiliation(s)
- Joachim Riethmüller
- Children's Hospital, University of Tuebingen, Hoppe-Seyler Str. 1, 72076 Tuebingen, Germany
| | | | | | | |
Collapse
|
52
|
Brinkmann MM, Schulz TF. Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae. J Gen Virol 2006; 87:1047-1074. [PMID: 16603506 DOI: 10.1099/vir.0.81598-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human gamma(1)-herpesvirus Epstein-Barr virus (EBV) and the gamma(2)-herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS) and herpesvirus ateles (HVA) all contain genes located adjacent to the terminal-repeat region of their genomes, encoding membrane proteins involved in signal transduction. Designated 'terminal membrane proteins' (TMPs) because of their localization in the viral genome, they interact with a variety of cellular signalling molecules, such as non-receptor protein tyrosine kinases, tumour-necrosis factor receptor-associated factors, Ras and Janus kinase (JAK), thereby initiating further downstream signalling cascades, such as the MAPK, PI3K/Akt, NF-kappaB and JAK/STAT pathways. In the case of TMPs expressed during latent persistence of EBV and HVS (LMP1, LMP2A, Stp and Tip), their modulation of intracellular signalling pathways has been linked to the provision of survival signals to latently infected cells and, hence, a contribution to occasional cellular transformation. In contrast, activation of similar pathways by TMPs of KSHV (K1 and K15) and RRV (R1), expressed during lytic replication, may extend the lifespan of virus-producing cells, alter their migration and/or modulate antiviral immune responses. Whether R1 and K1 contribute to the oncogenic properties of KSHV and RRV has not been established satisfactorily, despite their transforming qualities in experimental settings.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
53
|
Sohn HW, Tolar P, Jin T, Pierce SK. Fluorescence resonance energy transfer in living cells reveals dynamic membrane changes in the initiation of B cell signaling. Proc Natl Acad Sci U S A 2006; 103:8143-8. [PMID: 16690746 PMCID: PMC1472443 DOI: 10.1073/pnas.0509858103] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
B cell responses are initiated by the clustering of the B cell receptor (BCR) by the binding of multivalent antigens. Clustering leads to phosphorylation of tyrosines in the cytoplasmic domains of the BCR by the inner plasma membrane leaflet-associated Src-family kinase Lyn. At present, little is known about the earliest events after BCR clustering that precede the BCR's phosphorylation by Lyn. Here we use fluorescence resonance energy transfer (FRET) in living cells to detect the interaction of the BCR with a Lyn-based membrane-targeted reporter in the first several seconds after BCR clustering. The results showed that, within seconds of antigen binding, the BCR selectively and transiently associated with the Lyn construct and that this association preceded by several seconds the triggering of Ca2+ fluxes and could be prolonged by the engagement of the B cell coreceptor complex, CD19/CD21. Thus, FRET measurements in living B cells revealed highly dynamic and regulated antigen-induced changes in the plasma membrane, allowing association of the BCR with the earliest components of its signaling cascade.
Collapse
Affiliation(s)
- Hae Won Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Pavel Tolar
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Tian Jin
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
- *To whom correspondence should be addressed at:
National Institutes of Health, National Institute of Allergy and Infectious Diseases, Twinbrook II, 12441 Parklawn Drive, Room 200B, MSC 8180, Rockville, MD 20852. E-mail:
| |
Collapse
|
54
|
Karnell FG, Monroe JG. The Role of Membrane Lipids in the Regulation of Immune Cell Activity. Transfus Med Hemother 2006. [DOI: 10.1159/000090192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
55
|
Liu S, Velez MG, Humann J, Rowland S, Conrad FJ, Halverson R, Torres RM, Pelanda R. Receptor editing can lead to allelic inclusion and development of B cells that retain antibodies reacting with high avidity autoantigens. THE JOURNAL OF IMMUNOLOGY 2005; 175:5067-76. [PMID: 16210610 DOI: 10.4049/jimmunol.175.8.5067] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Receptor editing is a major B cell tolerance mechanism that operates by secondary Ig gene rearrangements to change the specificity of autoreactive developing B cells. In the 3-83Igi mouse model, receptor editing operates in every autoreactive anti-H-2K(b) B cell, providing a novel receptor without additional cell loss. Despite the efficiency of receptor editing in generating nonautoreactive Ag receptors, we show in this study that this process does not inactivate the autoantibody-encoding gene(s) in every autoreactive B cell. In fact, receptor editing can generate allelically and isotypically included B cells that simultaneously express the original autoreactive and a novel nonautoreactive Ag receptors. Such dual Ab-expressing B cells differentiate into transitional and mature B cells retaining the expression of the autoantibody despite the high avidity interaction between the autoantibody and the self-Ag in this system. Moreover, we find that these high avidity autoreactive B cells retain the autoreactive Ag receptor within the cell as a consequence of autoantigen engagement and through a Src family kinase-dependent process. Finally, anti-H-2K(b) IgM autoantibodies are found in the sera of older 3-83Igi mice, indicating that dual Ab-expressing autoreactive B cells are potentially functional and capable of differentiating into IgM autoantibody-secreting plasma cells under certain circumstances. These results demonstrate that autoreactive B cells reacting with ubiquitous membrane bound autoantigens can bypass mechanisms of central tolerance by coexpressing nonautoreactive Abs. These dual Ab-expressing autoreactive B cells conceal their autoantibodies within the cell manifesting a superficially tolerant phenotype that can be partially overcome to secrete IgM autoantibodies.
Collapse
Affiliation(s)
- Sucai Liu
- Integrated Department of Immunology, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Gosse JA, Wagenknecht-Wiesner A, Holowka D, Baird B. Transmembrane sequences are determinants of immunoreceptor signaling. THE JOURNAL OF IMMUNOLOGY 2005; 175:2123-31. [PMID: 16081778 DOI: 10.4049/jimmunol.175.4.2123] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate structural features critical for signal initiation by Ag-stimulated immunoreceptors, we constructed a series of single-chain chimeric receptors that incorporate extracellular human Fc epsilonRIalpha for IgE binding, a variable transmembrane (TM) segment, and the ITAM-containing cytoplasmic tail of the TCR zeta-chain. We find that functional responses mediated by these receptors are strongly dependent on their TM sequences, and these responses are highly correlated to cross-link-dependent association with detergent-resistant lipid rafts. For one chimera designated alpha Fzeta, mutation of a TM cysteine abolishes robust signaling and lipid raft association. In addition, TM disulfide-mediated oligomerization of another chimeric receptor, alpha zetazeta, enhances signaling. These results demonstrate an important role for TM segments in immunoreceptor signaling and a strong correspondence between strength of signaling and cross-link-dependent partitioning into ordered membrane domains.
Collapse
Affiliation(s)
- Julie A Gosse
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
57
|
Affiliation(s)
- Akira Ono
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, National Institutes of Health, Maryland 21702, USA
| | | |
Collapse
|
58
|
Stöcker M, Klockenbring T, Huhn M, Nachreiner T, Wicklein D, Petersen A, Bauer R, Goerlich R, Fischer R, Barth S. Antigen-specific targeting and elimination of EBV-transformed B cells by allergen toxins. J Allergy Clin Immunol 2005; 116:910-5. [PMID: 16210069 DOI: 10.1016/j.jaci.2005.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 07/25/2005] [Accepted: 07/26/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND With the exception of antigen-specific immunotherapy, current treatments for atopic diseases provide only symptomatic relief. Because of the increasing incidence of such diseases, the development of novel strategies and concepts for the treatment of allergies is urgently needed. OBJECTIVE Here we present a new approach for the treatment of atopic diseases. The strategy is comparable to the application of immunotoxins in cancer therapy, in which a cytotoxic peptide is coupled to a cancer cell-specific antibody fragment or ligand. In the case of so-called allergen toxins (ATs), the target cell-specific moiety is an allergen or allergen-derived fragment, which should be bound only by allergen-reactive cells. After receptor-mediated internalization, allergen-specific cells are killed, and the allergic pathogenesis is interrupted. METHODS Proof of the AT principle was shown by using a human ex vivo system in which EBV was used to transform human B cells specific for the timothy grass pollen allergen Phl p 5b. The AT is composed of the major B-cell and T-cell epitopes of the Phl p 5b (P5) allergen fused to a truncated form of the highly toxic Pseudomonas aeruginosa exotoxin A (ETA'). RESULTS Allergen-specific and nonspecific B cells were challenged with P5-ETA', but only the Phl p 5b-reactive B cells showed selective binding and cytotoxicity. CONCLUSION This approach represents an initial step toward a novel therapeutic strategy in the treatment of atopic diseases.
Collapse
Affiliation(s)
- Michael Stöcker
- University Aachen, Institute of Molecular Biotechnology, Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Feldhahn N, Klein F, Mooster JL, Hadweh P, Sprangers M, Wartenberg M, Bekhite MM, Hofmann WK, Herzog S, Jumaa H, Rowley JD, Müschen M. Mimicry of a constitutively active pre-B cell receptor in acute lymphoblastic leukemia cells. ACTA ACUST UNITED AC 2005; 201:1837-52. [PMID: 15939795 PMCID: PMC2213268 DOI: 10.1084/jem.20042101] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pre-B cells undergo apoptosis unless they are rescued by pre-B cell receptor-dependent survival signals. We previously showed that the BCR-ABL1 kinase that is expressed in pre-B lymphoblastic leukemia bypasses selection for pre-B cell receptor-dependent survival signals. Investigating possible interference of BCR-ABL1 with pre-B cell receptor signaling, we found that neither SYK nor SLP65 can be phosphorylated in response to pre-B cell receptor engagement. Instead, Bruton's tyrosine kinase (BTK) is constitutively phosphorylated by BCR-ABL1. Activated BTK is essential for survival signals that otherwise would arise from the pre-B cell receptor, including activation of PLCgamma1, autonomous Ca2+ signaling, STAT5-phosphorylation, and up-regulation of BCLX(L). Inhibition of BTK activity specifically induces apoptosis in BCR-ABL1+ leukemia cells to a similar extent as inhibition of BCR-ABL1 kinase activity itself. However, BCR-ABL1 cannot directly bind to full-length BTK. Instead, BCR-ABL1 induces the expression of a truncated splice variant of BTK that acts as a linker between the two kinases. As opposed to full-length BTK, truncated BTK lacks kinase activity yet can bind to BCR-ABL1 through its SRC-homology domain 3. Acting as a linker, truncated BTK enables BCR-ABL1-dependent activation of full-length BTK, which initiates downstream survival signals and mimics a constitutively active pre-B cell receptor.
Collapse
Affiliation(s)
- Niklas Feldhahn
- Laboratory for Molecular Stem Cell Biology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Ingham RJ, Raaijmakers J, Lim CSH, Mbamalu G, Gish G, Chen F, Matskova L, Ernberg I, Winberg G, Pawson T. The Epstein-Barr virus protein, latent membrane protein 2A, co-opts tyrosine kinases used by the T cell receptor. J Biol Chem 2005; 280:34133-42. [PMID: 16087662 DOI: 10.1074/jbc.m507831200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is the causative agent of infectious mononucleosis and is associated with several human malignancies. The EBV protein latent membrane protein 2A (LMP2A) promotes viral latency in memory B cells by interfering with B cell receptor signaling and provides a survival signal for mature B cells that have lost expression of surface immunoglobulin. The latter function has suggested that LMP2A may enhance the survival of EBV-positive tumors. EBV is associated with several T cell malignancies and, since LMP2A has been detected in several of these disorders, we examined the ability of LMP2A to transmit signals and interfere with T cell receptor signaling in T cells. We show that LMP2A is tyrosine-phosphorylated in Jurkat TAg T cells, which requires expression of the Src family tyrosine kinases, Lck and Fyn. Lck and Fyn are recruited to the tyrosine-phosphorylated Tyr112 site in LMP2A, whereas phosphorylation of an ITAM motif in LMP2A creates a binding site for the ZAP-70/Syk tyrosine kinases. LMP2A also associates through its two PPPPY motifs with AIP4, a NEDD4 family E3 ubiquitin ligase; this interaction results in ubiquitylation of LMP2A and serves to regulate the stability of LMP2A and LMP2A-kinase complexes. Furthermore, stable expression of LMP2A in Jurkat T cells down-regulated T cell receptor levels and attenuated T cell receptor signaling. Thus, through recruiting tyrosine kinases involved in T cell receptor activation, LMP2A may provide a survival signal for EBV-positive T cell tumors, whereas LMP2A-associated NEDD4 E3 ligases probably titer the strength of this signal.
Collapse
Affiliation(s)
- Robert J Ingham
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Cohen JI. HMG CoA reductase inhibitors (statins) to treat Epstein-Barr virus-driven lymphoma. Br J Cancer 2005; 92:1593-8. [PMID: 15856040 PMCID: PMC2362042 DOI: 10.1038/sj.bjc.6602561] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 03/07/2005] [Accepted: 03/09/2005] [Indexed: 11/16/2022] Open
Abstract
While statins have been highly effective for lowering serum cholesterol and reducing the incidence of coronary events, they have multiple other effects. Certain statins block the interaction of adhesion molecules that are important for cell-cell interactions including those between EBV-transformed B cells. These same statins inhibit NF-kappaB activation in the cells and induce apoptosis of transformed B cells. Studies in severe combined immunodeficiency mice show that simvastatin delays the development of EBV-lymphomas in these animals. These statins might be considered for the treatment of EBV-lymphomas in selected patients.
Collapse
Affiliation(s)
- J I Cohen
- Laboratory of Clinical Infectious Diseases, Medical Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10; Rm. 11N228, 10 Center Drive, MSC 1888, Bethesda, MD 20892, USA.
| |
Collapse
|
62
|
Pagano JS, Blaser M, Buendia MA, Damania B, Khalili K, Raab-Traub N, Roizman B. Infectious agents and cancer: criteria for a causal relation. Semin Cancer Biol 2005; 14:453-71. [PMID: 15489139 DOI: 10.1016/j.semcancer.2004.06.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infectious agents, mainly viruses, are among the few known causes of cancer and contribute to a variety of malignancies worldwide. The agents and cancers considered here are human papillomaviruses (cervical carcinoma); human polyomaviruses (mesotheliomas, brain tumors); Epstein-Barr virus (B-cell lymphoproliferative diseases and nasopharyngeal carcinoma); Kaposi's Sarcoma Herpesvirus (Kaposi's Sarcoma and primary effusion lymphomas); hepatitis B and hepatitis C viruses (hepatocellular carcinoma); Human T-cell Leukemia Virus-1 (T-cell leukemias); and helicobacter pylori (gastric carcinoma), which account for up to 20% of malignancies around the globe. The criteria most often used in determining causality are consistency of the association, either epidemiologic or on the molecular level, and oncogenicity of the agent in animal models or cell cultures. However use of these generally applied criteria in deciding on causality is selective, and the criteria may be weighted differently. Whereas for most of the tumor viruses the viral genome persists in an integrated or episomal form with a subset of viral genes expressed in the tumor cells, some agents (HBV, HCV, helicobacter) are not inherently oncogenic, but infection leads to transformation of cells by indirect means. For some malignancies the viral agent appears to serve as a cofactor (Burkitt's lymphoma-EBV; mesothelioma - SV(40)). For others the association is inconsistent (Hodgkin's Disease, gastric carcinomas, breast cancer-EBV) and may either define subsets of these malignancies, or the virus may act to modify phenotype of an established tumor, contributing to tumor progression rather than causing the tumor. In these cases and for the human polyomaviruses the association with malignancy is less consistent or still emerging. In contrast despite the potent oncogenic properties of some strains of human adenovirus in tissue culture and animals the virus has not been linked with any human cancers. Finally it is likely that more agents, most likely viruses, both known and unidentified, have yet to be implicated in human cancer. In the meantime study of tumorigenic infectious agents will continue to illuminate molecular oncogenic processes.
Collapse
Affiliation(s)
- Joseph S Pagano
- Lineberger Comprehensive Cancer Center and Departments of Medicine and Microbiology, University of North Carolina at Chapel Hill, Campus Box 7295, Mason Farm Road, Chapel Hill, NC 27599-7295, USA.
| | | | | | | | | | | | | |
Collapse
|
63
|
Schaadt E, Baier B, Mautner J, Bornkamm GW, Adler B. Epstein-Barr virus latent membrane protein 2A mimics B-cell receptor-dependent virus reactivation. J Gen Virol 2005; 86:551-559. [PMID: 15722514 DOI: 10.1099/vir.0.80440-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) shares protein motifs with the B-cell receptor that play a role in B-cell receptor signalling and has been shown to mimic an activated B-cell receptor by providing a survival signal for mature B cells in transgenic mice. Conversely, LMP2A has been reported not to support but to inhibit B-cell receptor signalling with respect to virus reactivation and to block lytic virus induction after anti-Ig treatment of EBV-infected B cells. To solve this apparent paradox, the role of LMP2A in lytic-cycle induction was re-examined in B cells conditionally immortalized by EBV. It was shown that, in the absence of other stimuli, LMP2A expression alone could lead to induction of the virus lytic cycle. Similarly to B-cell receptor stimulation by anti-Ig treatment, this LMP2A-mediated reactivation was dependent on the mitogen-activated protein kinase pathway and could be inhibited by the viral LMP1. Our data reinforce the notion that LMP2A is a functional homologue of the B-cell receptor, not only with respect to B-cell survival but also with respect to regulation of the lytic cycle.
Collapse
Affiliation(s)
- Eveline Schaadt
- GSF-Research Center for Environment and Health, Institute for Clinical Molecular Biology and Tumor Genetics, Marchioninistrasse 25, D-81377 Munich, Germany
| | - Barbara Baier
- GSF-Research Center for Environment and Health, Institute for Clinical Molecular Biology and Tumor Genetics, Marchioninistrasse 25, D-81377 Munich, Germany
| | - Josef Mautner
- GSF-Research Center for Environment and Health, Institute for Clinical Molecular Biology and Tumor Genetics, Marchioninistrasse 25, D-81377 Munich, Germany
| | - Georg W Bornkamm
- GSF-Research Center for Environment and Health, Institute for Clinical Molecular Biology and Tumor Genetics, Marchioninistrasse 25, D-81377 Munich, Germany
| | - Barbara Adler
- GSF-Research Center for Environment and Health, Institute for Clinical Molecular Biology and Tumor Genetics, Marchioninistrasse 25, D-81377 Munich, Germany
| |
Collapse
|
64
|
Stoddart A, Jackson AP, Brodsky FM. Plasticity of B cell receptor internalization upon conditional depletion of clathrin. Mol Biol Cell 2005; 16:2339-48. [PMID: 15716350 PMCID: PMC1087239 DOI: 10.1091/mbc.e05-01-0025] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
B cell antigen receptor (BCR) association with lipid rafts, the actin cytoskeleton, and clathrin-coated pits influences B cell signaling and antigen presentation. Although all three cellular structures have been separately implicated in BCR internalization, the relationship between them has not been clearly defined. In this study, internalization pathways were characterized by specifically blocking each potential mechanism of internalization. BCR uptake was reduced by approximately 70% in B cells conditionally deficient in clathrin heavy chain expression. Actin or raft antagonists were both able to block the residual, clathrin-independent BCR internalization. These agents also affected clathrin-dependent internalization, indicating that clathrin-coated pits, in concert with mechanisms dependent on rafts and actin, mediate the majority of BCR internalization. Clustering G(M1) gangliosides enhanced clathrin-independent BCR internalization, and this required actin. Thus, although rafts or actin independently did not mediate BCR internalization, they apparently cooperate to promote some internalization even in the absence of clathrin. Simultaneous inhibition of all BCR uptake pathways resulted in sustained tyrosine phosphorylation and activation of the extracellular signal-regulated kinase (ERK), strongly suggesting that downstream BCR signaling can occur without receptor translocation to endosomes and that internalization leads to signal attenuation.
Collapse
Affiliation(s)
- Angela Stoddart
- G. W. Hooper Foundation, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
65
|
Allen MD, Young LS, Dawson CW. The Epstein-Barr virus-encoded LMP2A and LMP2B proteins promote epithelial cell spreading and motility. J Virol 2005; 79:1789-802. [PMID: 15650203 PMCID: PMC544088 DOI: 10.1128/jvi.79.3.1789-1802.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 09/13/2004] [Indexed: 12/26/2022] Open
Abstract
The frequent expression of latent membrane proteins LMP2A and LMP2B in Epstein Barr virus (EBV)-associated tumors suggests that these proteins play a role in EBV-induced epithelial cell growth transformation. Expression of LMP2A and LMP2B had no effect on the morphology of squamous epithelial cells in monolayer culture, but their expression was associated with an increased capacity to spread and migrate on extracellular matrix. Although the mechanisms by which LMP2A and LMP2B promote cell spreading and motility are unclear, the use of selective pharmacological inhibitors has established a role for tyrosine kinases in this phenotype but ruled out contributions of phosphatidylinositol 3-kinase, extracellular signal-regulated kinase/mitogen-activated protein kinase, and protein kinase C. The ability of LMP2B to induce a phenotype that is virtually indistinguishable from that of LMP2A suggests that regions of the LMP2 protein in addition to the cytosolic amino terminus are capable of inducing phenotypic effects in epithelial cells. Thus, rather than serving to modulate the activity of LMP2A, LMP2B may directly engage signaling pathways to influence epithelial cell behavior such as cell adhesion and motility.
Collapse
Affiliation(s)
- Michael D Allen
- Cancer Research UK Institute for Cancer Studies, University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
66
|
Katz E, Lareef MH, Rassa JC, Grande SM, King LB, Russo J, Ross SR, Monroe JG. MMTV Env encodes an ITAM responsible for transformation of mammary epithelial cells in three-dimensional culture. ACTA ACUST UNITED AC 2005; 201:431-9. [PMID: 15684322 PMCID: PMC2213037 DOI: 10.1084/jem.20041471] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Expression of immunoreceptor tyrosine-based activation motif (ITAM)-containing signaling proteins is normally restricted to hematopoietic tissues. The basal activity of ITAM-containing proteins is mediated through negative regulation by coreceptors restricted to hematopoietic tissues. We have identified an ITAM signaling domain encoded within the env gene of murine mammary tumor virus (MMTV). Three-dimensional structures derived in vitro from murine cells stably transfected with MMTV env display a depolarized morphology in comparison with control mammary epithelial cells. This effect is abolished by Y>F substitution within the Env ITAM, as well as inhibitors of Syk and Src protein tyrosine kinases. Env-expressing cells bear hallmarks of cell transformation such as sensitivity to apoptosis induced by tumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL) or TNFα, as well as down-regulation of E-cadherin and Keratin-18. Human normal mammary epithelial cells expressing MMTV Env also develop transformed phenotype, as typified by growth in soft agar and Matrigel invasion. These disruptions are abrogated by Y>F substitutions. We conclude that ITAM-dependent signals are generated through MMTV Env and trigger early hallmarks of transformation of mouse and human mammary epithelial cells. Therefore, these data suggest a heretofore unappreciated potential mechanism for the initiation of breast cancer and identify MMTV Env and ITAM-containing proteins in human breast tumors as probable oncoproteins.
Collapse
Affiliation(s)
- Elad Katz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Niiro H, Allam A, Stoddart A, Brodsky FM, Marshall AJ, Clark EA. The B lymphocyte adaptor molecule of 32 kilodaltons (Bam32) regulates B cell antigen receptor internalization. THE JOURNAL OF IMMUNOLOGY 2004; 173:5601-9. [PMID: 15494510 DOI: 10.4049/jimmunol.173.9.5601] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The B lymphocyte adaptor molecule of 32 kDa (Bam32) is an adaptor that plays an indispensable role in BCR signaling. In this study, we found that upon BCR ligation, Bam32 is recruited to the plasma membrane where it associates with BCR complexes and redistributes and internalizes with BCRs. BCR ligation induced colocalization of Bam32 with lipid rafts, clathrin, and actin filaments. An inhibitor of Src family protein tyrosine kinases (PTKs) blocked both BCR-induced tyrosine phosphorylation of Bam32 and BCR internalization. Moreover, BCR internalization is impaired in Bam32-/- and Lyn-/- cells, and expression of Bam32 with a mutation of its tyrosine phosphorylation site (Y139F) inhibited BCR internalization. These data suggest that Bam32 functions downstream of Src family PTKs to regulate BCR internalization. Bam32 deficiency does not affect tyrosine phosphorylation of clathrin or the association of clathrin with lipid rafts upon BCR cross-linking. However, BCR-induced actin polymerization is impaired in Bam32-/- cells. Collectively, these findings indicate a novel role of Bam32 in connecting Src family PTKs to BCR internalization by an actin-dependent mechanism.
Collapse
Affiliation(s)
- Hiroaki Niiro
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
68
|
Gianni T, Campadelli-Fiume G, Menotti L. Entry of herpes simplex virus mediated by chimeric forms of nectin1 retargeted to endosomes or to lipid rafts occurs through acidic endosomes. J Virol 2004; 78:12268-76. [PMID: 15507614 PMCID: PMC525084 DOI: 10.1128/jvi.78.22.12268-12276.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) enters cells by fusion with target membranes, commonly the plasma membrane. In some cells, including CHO cells expressing the nectin1 or herpesvirus entry mediator receptors, entry occurs through an endocytic route. We report the following results. (i) When expressed in J cells, nectin1 and HVEM mediated a pathway of entry insensitive to endosome acidification inhibitors. (ii) A chimeric nectin1 receptor competent for endosomal uptake by fusion of the nectin1 ectodomain with the transmembrane sequence and cytoplasmic tail of the epidermal growth factor receptor (EGFR1) (nectin1-EGFR1) and chimeric nectin1 sorted to lipid rafts by a glycosylphosphatidylinositol anchor mediated endocytic entry blocked by the early endosome inhibitor wortmannin and by the endosome acidification inhibitors bafilomycin and NH(4)Cl. (iii) Entry mediated by nectin1-EGFR1 was selectively inhibited by AG1478, a tyrosine phosphorylation inhibitor that targets the EGFR1 cytoplasmic tail and blocks the signaling pathway that culminates in clathrin-dependent uptake of the receptor into endosomes. We draw the following conclusions. (i) The same receptor may initiate different routes of infection, depending on the cell in which it is expressed. Hence, the cell is a determinant that controls whether a given receptor initiates a plasma membrane or an endocytic route of entry. (ii) Receptors whose physiology involves uptake into endosomes or sorting to lipid rafts are suitable to serve as HSV receptors. (iii) Structural features of the receptors are additional determinants that control whether HSV entry occurs at the plasma membrane or at endosomes. These findings are relevant to studies of HSV retargeting to specific receptors.
Collapse
Affiliation(s)
- Tatiana Gianni
- Section on Microbiology and Virology, Department of Experimental Pathology, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | | | | |
Collapse
|
69
|
Katzman RB, Longnecker R. LMP2A does not require palmitoylation to localize to buoyant complexes or for function. J Virol 2004; 78:10878-87. [PMID: 15452208 PMCID: PMC521828 DOI: 10.1128/jvi.78.20.10878-10887.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is expressed constitutively in lipid rafts in latently infected B lymphocytes. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids selective for specific protein association. Lipid rafts have been shown to be necessary for B-cell receptor (BCR) signal transduction. LMP2A prevents BCR recruitment to lipid rafts, thereby abrogating BCR function. As LMP2A is palmitoylated, whether this fatty acid modification is necessary for LMP2A to localize to lipid rafts and for protein function was investigated. LMP2A palmitoylation was confirmed in latently infected B cells. LMP2A was found to be palmitoylated on multiple cysteines only by S acylation. An LMP2A mutant that was not palmitoylated was identified and functioned similar to wild-type LMP2A; unmodified LMP2A localized to lipid rafts, was tyrosine phosphorylated, was associated with LMP2A-associated proteins, was ubiquitinated, and was able to block calcium mobilization following BCR cross-linking. Therefore, palmitoylation of LMP2A is not required for LMP2A targeting to buoyant complexes or for function.
Collapse
Affiliation(s)
- Rebecca B Katzman
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
70
|
Abstract
Epstein-Barr virus (EBV) was discovered 40 years ago from examining electron micrographs of cells cultured from Burkitt's lymphoma, a childhood tumour that is common in sub-Saharan Africa, where its unusual geographical distribution - which matches that of holoendemic malaria -indicated a viral aetiology. However, far from showing a restricted distribution, EBV - a gamma-herpesvirus - was found to be widespread in all human populations and to persist in the vast majority of individuals as a lifelong, asymptomatic infection of the B-lymphocyte pool. Despite such ubiquity, the link between EBV and 'endemic' Burkitt's lymphoma proved consistent and became the first of an unexpectedly wide range of associations discovered between this virus and tumours.
Collapse
MESH Headings
- Antigens, Viral/genetics
- Antigens, Viral/physiology
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- Burkitt Lymphoma/epidemiology
- Burkitt Lymphoma/virology
- Carcinoma/therapy
- Carcinoma/virology
- Cell Transformation, Neoplastic
- Cell Transformation, Viral
- Epstein-Barr Virus Infections/pathology
- Epstein-Barr Virus Infections/virology
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 4, Human/physiology
- Humans
- Immunocompromised Host
- Killer Cells, Natural/pathology
- Lymphoma/therapy
- Lymphoma/virology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/virology
- Lymphoma, T-Cell/virology
- Nasopharyngeal Neoplasms/epidemiology
- Nasopharyngeal Neoplasms/virology
- Stomach Neoplasms/virology
- Viral Proteins/genetics
- Viral Proteins/physiology
- Virus Latency
Collapse
Affiliation(s)
- Lawrence S Young
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham, B15 2TT, UK.
| | | |
Collapse
|
71
|
Damania B. Oncogenic gamma-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat Rev Microbiol 2004; 2:656-68. [PMID: 15263900 DOI: 10.1038/nrmicro958] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center, Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
72
|
Ikeda A, Merchant M, Lev L, Longnecker R, Ikeda M. Latent membrane protein 2A, a viral B cell receptor homologue, induces CD5+ B-1 cell development. THE JOURNAL OF IMMUNOLOGY 2004; 172:5329-37. [PMID: 15100272 DOI: 10.4049/jimmunol.172.9.5329] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The latent membrane protein 2A (LMP2A) of EBV plays a key role in regulating viral latency and EBV pathogenesis by functionally mimicking a constitutively active B cell Ag receptor. When expressed as a B cell-specific transgene in mice, LMP2A drives B cell development, resulting in the bypass of normal developmental checkpoints. In this study, we have demonstrated that expression of LMP2A in transgenic mice results in B cell development that exclusively favors B-1 cells. This switch to B-1 cell development occurs at the pre-B-cell stage of normal B cell development in the bone marrow, a B cell stage much earlier than appreciated for B-1 commitment. This finding indicates that all pre-B cells have the capacity to assume a B-1 cell phenotype if they encounter the appropriate signal during normal development. Furthermore, these studies offer insight into EBV latency and pathogenesis in the human host.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/enzymology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Biomarkers/analysis
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- CD5 Antigens/biosynthesis
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/immunology
- Cell Line
- Enzyme Precursors/physiology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Herpesvirus 4, Human/immunology
- Immunoglobulin M/biosynthesis
- Immunoglobulin M/blood
- Intracellular Signaling Peptides and Proteins
- Leukosialin
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/deficiency
- Receptors, IgE/deficiency
- Sialoglycoproteins/biosynthesis
- Structural Homology, Protein
- Syk Kinase
- Tetradecanoylphorbol Acetate/pharmacology
- Viral Matrix Proteins/biosynthesis
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/physiology
- Virus Latency/immunology
Collapse
Affiliation(s)
- Akiko Ikeda
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
73
|
Abstract
Ubiquitin (Ub)-protein conjugation represents a novel means of posttranscriptional modification in a proteolysis-dependent or -independent manner. E3 Ub ligases play a key role in governing the cascade of Ub transfer reactions by recognizing and catalyzing Ub conjugation to specific protein substrates. The E3s, which can be generally classified into HECT-type and RING-type families, are involved in the regulation of many aspects of the immune system, including the development, activation, and differentiation of lymphocytes, T cell-tolerance induction, antigen presentation, immune evasion, and virus budding. E3-promoted ubiquitination affects a wide array of biological processes, such as receptor downmodulation, signal transduction, protein processing or translocation, protein-protein interaction, and gene transcription, in addition to proteasome-mediated degradation. Deficiency or mutation of some of the E3s like Cbl, Cbl-b, or Itch, causes abnormal immune responses such as autoimmunity, malignancy, and inflammation. This review discusses our current understanding of E3 Ub ligases in both innate and adaptive immunity. Such knowledge may facilitate the development of novel therapeutic approaches for immunological diseases.
Collapse
Affiliation(s)
- Yun-Cai Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.
| |
Collapse
|
74
|
Sanni TB, Masilamani M, Kabat J, Coligan JE, Borrego F. Exclusion of lipid rafts and decreased mobility of CD94/NKG2A receptors at the inhibitory NK cell synapse. Mol Biol Cell 2004; 15:3210-23. [PMID: 15133125 PMCID: PMC452577 DOI: 10.1091/mbc.e03-11-0779] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 04/16/2004] [Accepted: 04/27/2004] [Indexed: 12/27/2022] Open
Abstract
CD94/NKG2A is an inhibitory receptor expressed by most human natural killer (NK) cells and a subset of T cells that recognizes human leukocyte antigen E (HLA-E) on potential target cells. To elucidate the cell surface dynamics of CD94/NKG2A receptors, we have expressed CD94/NKG2A-EGFP receptors in the rat basophilic leukemia (RBL) cell line. Photobleaching experiments revealed that CD94/NKG2A-EGFP receptors move freely within the plasma membrane and accumulate at the site of contact with ligand. The enriched CD94/NKG2A-EGFP is markedly less mobile than the nonligated receptor. We observed that not only are lipid rafts not required for receptor polarization, they are excluded from the site of receptor contact with the ligand. Furthermore, the lipid raft patches normally observed at the sites where FcepsilonR1 activation receptors are cross-linked were not observed when CD94/NKG2A was coengaged along with the activation receptor. These results suggest that immobilization of the CD94/NKG2A receptors at ligation sites not only promote sustenance of the inhibitory signal, but by lipid rafts exclusion prevent formation of activation signaling complexes.
Collapse
MESH Headings
- Animals
- Antigens, CD/analysis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cell Line, Tumor
- Gene Expression
- Green Fluorescent Proteins/analysis
- Green Fluorescent Proteins/genetics
- Humans
- Killer Cells, Natural/physiology
- Lectins, C-Type/analysis
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Membrane Microdomains/immunology
- Membrane Microdomains/physiology
- NK Cell Lectin-Like Receptor Subfamily C
- NK Cell Lectin-Like Receptor Subfamily D
- Photobleaching
- Rats
- Receptors, Immunologic/analysis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Tolib B Sanni
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | |
Collapse
|
75
|
Reiners KS, Hansen HP, Krüssmann A, Schön G, Csernok E, Gross WL, Engert A, Von Strandmann EP. Selective killing of B-cell hybridomas targeting proteinase 3, Wegener's autoantigen. Immunology 2004; 112:228-36. [PMID: 15147566 PMCID: PMC1782481 DOI: 10.1111/j.1365-2567.2004.01875.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Wegener's granulomatosis (WG) is a rare disease characterized by granulomatous lesions, small vessel vasculitis and the presence of anti-neutrophil cytoplasmic autoantibodies (C-ANCAs) in the sera of affected patients. Their main target antigen is proteinase 3 (PR3), a neutrophil and monocyte-derived neutral serine protease. Since the standard treatment of this severe autoimmune disease, with cyclophosphamide and corticosteroids, is associated with potential side-effects, the development of a more specific immunotherapeutic agent is warranted. The key role of ANCA in the pathogenesis of vasculitis and the effectiveness of anti-CD20 antibodies in patients with refractory WG points towards the importance of B cells in WG. We thus evaluated a new approach to selectively eliminate PR3-specific autoreactive B cells by targeting the B-cell receptor. For this purpose we used a bifunctional recombinant fusion protein consisting of the antigen PR3 and a toxin. The cytotoxic component of this novel fusion protein was the ribonuclease angiogenin, a human toxin with low immunogenicity. The toxin was stabilized by exchanging the catalytically relevant histidine in position 44 with glutamine to eliminate the autoproteolytic activity. PR3H44Q was fused either to the N terminus or to the C terminus of angiogenin. The recombinant proteins were expressed in 293T cells. Binding assays demonstrated the appropriate size and recognition by anti-PR3 antibodies. Using TUNEL technology, we demonstrated that these autoantigen toxins kill proteinase 3-specific B-cell hybridomas selectively by inducing apoptosis. The data indicate that autoantigen-toxins are promising tools in the treatment or co-treatment of autoimmune diseases in which the antigen is known.
Collapse
Affiliation(s)
- Katrin S Reiners
- Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Portis T, Longnecker R. Epstein-Barr virus (EBV) LMP2A alters normal transcriptional regulation following B-cell receptor activation. Virology 2004; 318:524-33. [PMID: 14972521 DOI: 10.1016/j.virol.2003.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 09/12/2003] [Accepted: 09/17/2003] [Indexed: 11/29/2022]
Abstract
The latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) is an important mediator of viral latency in infected B-lymphocytes. LMP2A inhibits B-cell receptor (BCR) signaling in vitro and allows for the survival of BCR-negative B cells in vivo. In this study, we compared gene transcription in BCR-activated B cells from non-transgenic and LMP2A Tg6 transgenic mice. We found that the transcriptional induction and down-regulation of many genes that normally occurs in B cells following BCR activation did not occur in B cells from LMP2A Tg6 transgenic mice. Furthermore, LMP2A induced the expression of various transcription factors and genes associated with DNA/RNA metabolism, which may allow for the altered transcriptional regulation observed in BCR-activated B cells from LMP2A Tg6 mice. These results suggest that LMP2A may inhibit the downstream effects of BCR signaling by directly or indirectly altering gene transcription to ensure EBV persistence in infected B cells.
Collapse
Affiliation(s)
- Toni Portis
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
77
|
Casola S, Otipoby KL, Alimzhanov M, Humme S, Uyttersprot N, Kutok JL, Carroll MC, Rajewsky K. B cell receptor signal strength determines B cell fate. Nat Immunol 2004; 5:317-27. [PMID: 14758357 DOI: 10.1038/ni1036] [Citation(s) in RCA: 432] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Accepted: 12/02/2003] [Indexed: 11/09/2022]
Abstract
B cell receptor (BCR)-mediated antigen recognition is thought to regulate B cell differentiation. BCR signal strength may also influence B cell fate decisions. Here, we used the Epstein-Barr virus protein LMP2A as a constitutively active BCR surrogate to study the contribution of BCR signal strength in B cell differentiation. Mice carrying a targeted replacement of Igh by LMP2A leading to high or low expression of the LMP2A protein developed B-1 or follicular and marginal zone B cells, respectively. These data indicate that BCR signal strength, rather than antigen specificity, determines mature B cell fate. Furthermore, spontaneous germinal centers developed in gut-associated lymphoid tissue of LMP2A mice, indicating that microbial antigens can promote germinal centers independently of BCR-mediated antigen recognition.
Collapse
Affiliation(s)
- Stefano Casola
- CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
T cells have an amazing ability to discern and differentially respond to MHC-embedded peptides that can differ by only a single amino acid. This potential involves a combination of the precise ligand-binding specificities of the T-cell receptor (TCR) and the distinct intracellular signaling processes it transmits. Signaling processes are controlled by the ten immunoreceptor tyrosine-based activation motifs (ITAMs) present in the invariant chains of the TCR complex (TCR zeta and CD3-gamma, -delta and -epsilon ). Here, we discuss recent studies of the functions of TCR invariant chains and the contribution of the ten ITAMs to T-cell signal transmission. We incorporate these results into two non-exclusive models of TCR signal transduction: the ITAM multiplicity model, which describes a functional redundancy within the TCR zeta and CD3 ITAMs; and the differential signaling model, which proposes distinct functions for the CD3-gamma, -delta and -epsilon and TCR zeta modules.
Collapse
Affiliation(s)
- Lisa A Pitcher
- Center for Immunology, University of Texas Southwestern Medical Center, Room NA7.201, 6000 Harry Hines Boulevard, Dallas, TX 75390-9093, USA
| | | |
Collapse
|
79
|
Hamilton VT, Stone DM, Cantor GH. Translocation of the B cell receptor to lipid rafts is inhibited in B cells from BLV-infected, persistent lymphocytosis cattle. Virology 2003; 315:135-47. [PMID: 14592766 DOI: 10.1016/s0042-6822(03)00522-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bovine leukemia virus (BLV) infection causes a significant polyclonal expansion of CD5(+), IgM+ B lymphocytes known as persistent lymphocytosis (PL) in approximately 30% of infected cattle. There is evidence that this expanded B cell population has altered signaling, and resistance to apoptosis has been proposed as one mechanism of B cell expansion. In human and murine B cells, antigen binding initiates movement of the B cell receptor (BCR) into membrane microdomains enriched in sphingolipids and cholesterol, termed lipid rafts. Lipid rafts include members of the Src-family kinases and exclude certain phosphatases. Inclusion of the BCR into lipid rafts plays an important role in regulation of early signaling events and subsequent antigen internalization. Viral proteins may also influence signaling events in lipid rafts. Here we demonstrate that the largely CD5(+) B cell population in PL cattle has different mobilization and internalization of the BCR when compared to the largely CD5-negative B cells in BLV-negative cattle. Unlike B cells from BLV-negative cattle, the BCR in B cells of BLV-infected, PL cattle resists movement into lipid rafts upon stimulation and is only weakly internalized. Expression of viral proteins as determined by detection of the BLV transmembrane (TM) envelope glycoprotein gp30 did not alter these events in cells from PL cattle. This exclusion of the BCR from lipid rafts may, in part, explain signaling differences seen between B cells of BLV-infected, PL, and BLV-negative cattle and the resistance to apoptosis speculated to contribute to persistent lymphocytosis.
Collapse
Affiliation(s)
- Valerie T Hamilton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | |
Collapse
|
80
|
Portis T, Dyck P, Longnecker R. Epstein-Barr Virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma. Blood 2003; 102:4166-78. [PMID: 12907455 DOI: 10.1182/blood-2003-04-1018] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with the development of a variety of malignancies, including Hodgkin lymphoma. One of the few viral transcripts expressed in EBV-positive Hodgkin/Reed-Sternberg (HRS) cells of Hodgkin lymphoma is latent membrane protein 2A (LMP2A). This viral protein blocks B-cell receptor (BCR)-signaling in vitro. Furthermore, expression of LMP2A in developing B cells in vivo induces a global down-regulation of genes necessary for proper B-cell development. In this study we have analyzed gene transcription in primary B cells from LMP2A transgenic mice, LMP2A-expressing human B-cell lines, and LMP2A-positive and -negative EBV-infected lymphoblastoid cell lines (LCLs). We demonstrate that LMP2A increases the expression of genes associated with cell cycle induction and inhibition of apoptosis, alters the expression of genes involved in DNA and RNA metabolism, and decreases the expression of B-cell-specific factors and genes associated with immunity. Furthermore, many alterations in gene expression induced by LMP2A are similar to those recently described in HRS cells of Hodgkin lymphoma and activated, proliferating germinal center centroblasts/centrocytes. These correlations suggest that LMP2A expression in EBV-infected B cells may lead to the induction and maintenance of an activated, proliferative state that could ultimately result in the development of Hodgkin lymphoma.
Collapse
Affiliation(s)
- Toni Portis
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Ward 6-231, 303 East Chicago Ave, Chicago, IL 60611, USA
| | | | | |
Collapse
|
81
|
Bouillon M, Mourad WM. [Major histocompatibility complex (MHC) class II: are lipid rafts the missing link?]. Med Sci (Paris) 2003; 19:988-93. [PMID: 14613012 DOI: 10.1051/medsci/20031910988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aside from their crucial roles in the presentation of nominal antigen to CD4+ T cells and susceptibility to autoimmune diseases, substantial evidences suggest that MHC class II molecules act as signal transducer receptors as well. The signals transmitted affect diverse biological functions. Paradoxically, the cytoplasmic and transmembrane domains of these molecules are devoid of classic signaling motifs. The recent discovery of the presence of membrane microdomains, also called lipid rafts, that are enriched in kinases and adaptor molecules, may contribute to the elucidation of the mechanisms by which MHC class II molecules transmit their signals.
Collapse
Affiliation(s)
- Marlène Bouillon
- Centre de recherche en rhumatologie et immunologie, CHUQ, Pavillon CHUL, Université Laval, 2705, boulevard Laurier, Sainte-Foy, Québec G1V 4G2, Canada.
| | | |
Collapse
|
82
|
Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK. Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 2003; 21:457-81. [PMID: 12615889 DOI: 10.1146/annurev.immunol.21.120601.141021] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cells of both the adaptive and innate immune systems express a dizzying array of receptors that transduce and integrate an enormous amount of information about the environment that allows the cells to mount effective immune responses. Over the past several years, significant advances have been made in elucidating the molecular details of signal cascades initiated by the engagement of immune cell receptors by their ligands. Recent evidence indicates that immune receptors and components of their signaling cascades are spatially organized and that this spatial organization plays a central role in the initiation and regulation of signaling. A key organizing element for signaling receptors appears to be cholesterol- and sphingolipid-rich plasma membrane microdomains termed lipid rafts. Research into the molecular basis of the spatial segregation and organization of signaling receptors provided by rafts is adding fundamentally to our understanding of the initiation and prolongation of signals in the immune system.
Collapse
Affiliation(s)
- Michelle Dykstra
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA.
| | | | | | | | | |
Collapse
|
83
|
Rossbacher J, Shlomchik MJ. The B cell receptor itself can activate complement to provide the complement receptor 1/2 ligand required to enhance B cell immune responses in vivo. J Exp Med 2003; 198:591-602. [PMID: 12925675 PMCID: PMC2194168 DOI: 10.1084/jem.20022042] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
B cells express complement receptors (CRs) that bind activated fragments of C3 and C4. Immunized CR knockout (KO) mice have lower antibody titers and smaller germinal centers (GCs), demonstrating the importance of CR signals for the humoral immune response. CR ligands were thought to be generated via complement fixation mediated by preexisting "natural" IgM or early Ab from inefficiently activated B cells. This concept was recently challenged by a transgenic (Tg) mouse model that lacks circulating antibody but still retains membrane IgM (mIgM) and mounts normal immune responses. To test whether CR ligands could be generated by the B cell receptor (BCR) itself, we generated similar mice carrying a mutated mIgM that was defective in C1q binding. We found that B cells from such mutant mice do not deposit C3 on B cells upon BCR ligation, in contrast to B cells from mIgM mice. This has implications for the immune response: the mutant mice have smaller GCs than mIgM mice, and they are particularly deficient in the maintenance of the GC response. These results demonstrate a new BCR-dependent pathway that is sufficient and perhaps necessary to provide a CR1/2 ligand that promotes efficient B cell activation.
Collapse
Affiliation(s)
- Joerg Rossbacher
- Serction of Immunobiology and Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520-8035, USA
| | | |
Collapse
|
84
|
Park J, Cho NH, Choi JK, Feng P, Choe J, Jung JU. Distinct roles of cellular Lck and p80 proteins in herpesvirus saimiri Tip function on lipid rafts. J Virol 2003; 77:9041-51. [PMID: 12885920 PMCID: PMC167239 DOI: 10.1128/jvi.77.16.9041-9051.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid rafts are proposed to function as platforms for both receptor signaling and trafficking. Following interaction with antigenic peptides, the T-cell receptor (TCR) rapidly translocates to lipid rafts, where it transmits signals and subsequently undergoes endocytosis. The Tip protein of herpesvirus saimiri (HVS), which is a T-lymphotropic tumor virus, interacts with cellular Lck tyrosine kinase and p80, a WD domain-containing endosomal protein. Interaction of Tip with p80 induces enlarged vesicles and recruits Lck and TCR complex into these vesicles for trafficking. We report here that Tip is constitutively present in lipid rafts and that Tip interaction with p80 but not with Lck is necessary for its efficient localization in lipid rafts. The Tip-Lck interaction was required for recruitment of the TCR complex to lipid rafts, and the Tip-p80 interaction was critical for the aggregation and internalization of lipid rafts. These results suggest the potential mechanism for Tip-mediated TCR downregulation: Tip interacts with Lck to recruit TCR complex to lipid rafts, and it subsequently interacts with p80 to initiate the aggregation and internalization of the lipid raft domain and thereby downregulate the TCR complex. Thus, the signaling and targeting functions of HVS Tip rely on two functionally and genetically separable mechanisms that independently target cellular Lck tyrosine kinase and p80 endosomal protein.
Collapse
Affiliation(s)
- Junsoo Park
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102, USA
| | | | | | | | | | | |
Collapse
|
85
|
Filatov AV, Shmigol IB, Kuzin II, Sharonov GV, Feofanov AV. Resistance of cellular membrane antigens to solubilization with Triton X-100 as a marker of their association with lipid rafts--analysis by flow cytometry. J Immunol Methods 2003; 278:211-9. [PMID: 12957409 DOI: 10.1016/s0022-1759(03)00188-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lipid rafts are specialized micro-domains of the plasma membrane enriched in glycosphingolipid and cholesterol that play important role in signal transduction, membrane trafficking, and cell adhesion. A distinct feature of lipid rafts is their resistance to solubilization with non-ionic detergent Triton X-100 (TX-100). In this study, we used flow cytometry to evaluate TX-100 resistance of 74 cell membrane molecules expressed on normal human peripheral blood lymphocytes (PBL), thymocytes, and 12 lymphoid cell lines. Resistance of membrane molecules to solubilization with TX-100 was determined by comparing the intensities of fluorescence of cells treated with TX-100 or left untreated. The majority of antigens analyzed were easily solubilized with TX-100 that resulted in decreased fluorescence intensity. However, a group of antigens showed TX-100 resistance in the range of 20-100%. These included all glycosylphosphatidylinositol (GPI)-anchored antigens under study, as well as some glycolipid and trans-membrane antigens. With the few exceptions, antigen resistance to solubilization with TX-100 was stable parameter, which did not depend on cell type in which it was analyzed. There was a good correspondence between the antigens showing resistance to solubilization with TX-100 as evaluated by our flow cytometry method, and the antigens that were previously demonstrated in detergent-resistant membranes using a more standard method of physical fractionation. Taken collectively, our data suggest that flow cytometry is a useful method for rapid evaluation of the possible association of a membrane antigen with lipid rafts.
Collapse
|
86
|
Abstract
Infection by the Epstein-Barr virus (EBV) in immunocompetent individuals seems mainly confined to antigen-experienced memory B cells. However, a recent report shows that EBV(+) post-transplant lymphoproliferative disease might arise not only from memory B cells but also from nai;ve and germinal center (GC) B cells. Intriguingly, some of the EBV-positive B-cell clones seem to carry non-functional Ig-V-region genes as a result of deleterious somatic mutations acquired during the GC reaction. Given that such GC B cells are destined to die by apoptosis in the absence of EBV, these findings suggest that transformation by EBV might bypass negative selection of B cells within GCs.
Collapse
Affiliation(s)
- Volker H Schuster
- Department of Pediatrics, University Medical School of Leipzig, Oststrasse 21- 25, D-04317 Leipzig, Germany.
| | | |
Collapse
|
87
|
Ikeda A, Caldwell RG, Longnecker R, Ikeda M. Itchy, a Nedd4 ubiquitin ligase, downregulates latent membrane protein 2A activity in B-cell signaling. J Virol 2003; 77:5529-34. [PMID: 12692257 PMCID: PMC153961 DOI: 10.1128/jvi.77.9.5529-5534.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nedd4 family ubiquitin protein ligases (E3s) specifically associate with latent membrane protein 2A (LMP2A) of Epstein-Barr virus. Our previous studies analyzing LMP2A function in vitro have suggested that Nedd4 family E3s regulate LMP2A function. To determine the role of Nedd4 family E3s in LMP2A B-cell signaling, LMP2A transgenic (LMP2A(+)) mice were crossed with mice with the Itch-deficient (Itch(-/-)) background. Itchy, a mouse homologue of human AIP4, is a Nedd4 family E3 and is also the most abundant Nedd4 family E3 found in LMP2A affinity precipitates from B cells. There were significantly fewer B-cell receptor-positive B cells in spleen and bone marrow B cells in LMP2A(+) Itch(-/-) mice than in LMP2A(+) mice. In addition, LMP2A(+) Itch(-/-) bone marrow B cells formed larger colonies in cultures treated with interleukin-7 (IL-7) than control bone marrow B cells did. Finally, there was a dramatic increase in tyrosine phosphorylation of LMP2A and Syk in IL-7-cultured LMP2A(+) Itch(-/-) B cells. These results indicate that Nedd4 family E3s, in particular Itchy, downmodulate LMP2A activity in B-cell signaling.
Collapse
Affiliation(s)
- Akiko Ikeda
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
88
|
Abstract
Co-infection of a host cell by two unrelated enveloped viruses can lead to the production of pseudotypes: virions containing the genome of one virus but the envelope proteins of both viruses. The selection of components during virus assembly must therefore be flexible enough to allow the incorporation of unrelated viral membrane proteins, yet specific enough to exclude the bulk of host proteins. This apparent contradiction has been termed the pseudotypic paradox. There is mounting evidence that lipid rafts play a role in the assembly pathway of non-icosahedral, enveloped viruses. Viral components are concentrated initially in localized regions of the plasma membrane via their interaction with lipid raft domains. Lateral interactions of viral structural proteins amplify the changes in local lipid composition which in turn enhance the concentration of viral proteins in the rafts. An affinity for lipid rafts may be the common feature of enveloped virus proteins that leads to the formation of pseudotypes.
Collapse
Affiliation(s)
- John A G Briggs
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | - Thomas Wilk
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | - Stephen D Fuller
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| |
Collapse
|
89
|
Abstract
Infectious agents and their hosts interact in a complex manner, involving not only superficially apparent mechanisms, but also the signaling machinery that governs host cells responses. Thus, signaling events, surface molecule expression, and transcriptional control may be affected in various cell types, with profound consequences for the function of individual cells and organ systems. Studies of the biochemistry of cell signaling and cell invasion by infectious agents have begun to detail the interplay between elements of infectious organisms and the host at the molecular level. Consequently, the resulting interferences with lymphocyte signaling may disturb the function of the immune system. In B cells, alterations of immune receptor signaling has implications for human diseases. By affecting the mechanisms of the host's immune defense, this may not only lead to inadequate elimination of an infectious agent, but also to autoimmunity or neoplasia.
Collapse
Affiliation(s)
- P Hasler
- Rheumatologische Universitätsklinik, Felix Platter-Spital, Basel, Switzerland
| | | |
Collapse
|
90
|
Bouillon M, El Fakhry Y, Girouard J, Khalil H, Thibodeau J, Mourad W. Lipid raft-dependent and -independent signaling through HLA-DR molecules. J Biol Chem 2003; 278:7099-107. [PMID: 12499388 DOI: 10.1074/jbc.m211566200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid rafts are plasma membrane microdomains that are highly enriched in signaling molecules and that act as signal transduction platforms for many immune receptors. The involvement of these microdomains in HLA-DR-induced signaling is less well defined. We examined the constitutive presence of HLA-DR molecules in lipid rafts, their possible recruitment into these microdomains, and the role of these microdomains in HLA-DR-induced responses. We detected significant amounts of HLA-DR molecules in the lipid rafts of EBV(+) and EBV(-) B cell lines, monocytic cell lines, transfected HeLa cells, tonsillar B cells, and human monocytes. Localization of HLA-DR in these microdomains was unaffected by the deletion of the cytoplasmic domain of both the alpha and beta chains. Ligation of HLA-DR with a bivalent, but not a monovalent, ligand resulted in rapid tyrosine phosphorylation of many substrates, especially Lyn, and activation of ERK1/2 MAP kinase. However, the treatment failed to induce further recruitment of HLA-DR molecules into lipid rafts. The HLA-DR-induced signaling events were accompanied by the induction of cell-cell adhesion that could be inhibited by PTK and Lyn but not ERK1/2 inhibitors. Disruption of lipid rafts by methyl-beta-cyclodextrin (MbetaCD) resulted in the loss of membrane raft association with HLA-DR molecules, inhibition of HLA-DR-mediated protein tyrosine phosphorylation and cell-cell adhesion. MbetaCD did not affect the activation of ERK1/2, which was absent from lipid rafts. These results indicate that although all the HLA-DR-induced events studied are dependent on HLA-DR dimerization, some require the presence of HLA-DR molecules in lipid rafts, whereas others do not.
Collapse
Affiliation(s)
- Marlene Bouillon
- Centre de Recherche en Rhumatologie et Immunologie, (CHUL), Département de Médecine, Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
91
|
Abstract
Detergent-resistant membrane microdomains enriched in sphingolipids, cholesterol and glycosylphosphatidylinositol-anchored proteins play essential roles in T cell receptor (TCR) signaling. These 'membrane rafts' accumulate several cytoplasmic lipid-modified molecules, including Src-family kinases, coreceptors CD4 and CD8 and transmembrane adapters LAT and PAG/Cbp, essential for either initiation or amplification of the signaling process, while most other abundant transmembrane proteins are excluded from these structures. TCRs in various T cell subpopulations may differ in their use of membrane rafts. Membrane rafts also seem to be involved in many other aspects of T cell biology, such as functioning of cytokine and chemokine receptors, adhesion molecules, antigen presentation, establishing cell polarity or interaction with important pathogens. Although the concept of membrane rafts explains several diverse biological phenomena, many basic issues, such as composition, size and heterogeneity, under native conditions, as well as the dynamics of their interactions with TCRs and other immunoreceptors, remain unclear, partially because of technical problems.
Collapse
Affiliation(s)
- Václav Horejsí
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha, Czech Republic.
| |
Collapse
|
92
|
Portis T, Longnecker R. Epstein-Barr virus LMP2A interferes with global transcription factor regulation when expressed during B-lymphocyte development. J Virol 2003; 77:105-14. [PMID: 12477815 PMCID: PMC140618 DOI: 10.1128/jvi.77.1.105-114.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Epstein-Barr virus (EBV) is associated with the development of malignant lymphomas and lymphoproliferative disorders in immunocompromised individuals. The LMP2A protein of EBV is thought to play a central role in this process by allowing the virus to persist in latently infected B lymphocytes. We have demonstrated that LMP2A, when expressed in B cells of transgenic mice, allows normal B-cell developmental checkpoints to be bypassed. To identify cellular genes targeted by LMP2A that are involved in this process, we have utilized DNA microarrays to compare gene transcription in B cells from wild-type versus LMP2A transgenic mice. In B cells from LMP2A transgenic mice, we observed decreased expression of many genes associated with normal B-cell development as well as reduced levels of the transcription factors that regulate their expression. In particular, expression of the transcription factor E2A was down-regulated in bone marrow and splenic B cells. Furthermore, E2A activity was inhibited in these cells as determined by decreased DNA binding and reduced expression of its target genes, including the transcription factors early B-cell factor and Pax-5. Expression of two E2A inhibitors, Id2 and SCL, was up-regulated in splenic B cells expressing LMP2A, suggesting a possible mechanism for E2A inhibition. These results indicate that LMP2A deregulates transcription factor expression and activity in developing B cells, and this likely allows for a bypass of normal signaling events required for proper B-cell development. The ability of LMP2A to interfere with B-cell transcription factor regulation has important implications regarding its role in EBV latency.
Collapse
Affiliation(s)
- Toni Portis
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
93
|
Abstract
Hodgkin's lymphoma (HL) is unusual among human malignancies in that the epidemiology suggests an infectious aetiology. The Epstein-Barr virus (EBV) is associated with a proportion of cases and this association is believed to be causal. In these cases the Hodgkin and Reed-Sternberg (HRS) cells express the EBV-encoded proteins LMP1 and LMP2, which can mimic CD40 and the B cell receptor, respectively, and therefore may play a critical role in facilitating the survival of HRS cells. EBV-associated and non-EBV-associated HL cases have different epidemiological features and recent data suggest that delayed exposure to EBV is a risk factor for the development of EBV-associated HL in young adults. We suggest that HL can be divided into four entities on the basis of EBV status and age at presentation, with three groups of EBV-associated cases and a single group of EBV-negative cases. The aetiology of the latter cases is obscure although involvement of an infectious agent(s) is suspected.
Collapse
Affiliation(s)
- R F Jarrett
- LRF Virus Centre, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, UK.
| |
Collapse
|
94
|
Hamilton VT, Stone DM, Pritchard SM, Cantor GH. Bovine leukemia virus gp30 transmembrane (TM) protein is not tyrosine phosphorylated: examining potential interactions with host tyrosine-mediated signaling. Virus Res 2002; 90:155-69. [PMID: 12457971 DOI: 10.1016/s0168-1702(02)00149-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bovine leukemia virus (BLV) causes persistent lymphocytosis, a preneoplastic, polyclonal expansion of B lymphocytes. The expansion increases viral transmission to new hosts, but the mechanisms of this expansion have not been determined. We hypothesized that BLV infection contributes to B-cell expansion by signaling initiated via viral transmembrane protein motifs undergoing tyrosine phosphorylation. Viral mimicry of host cell proteins is a well-demonstrated mechanism by which viruses may increase propagation or decrease recognition by the host immune system. The cytoplasmic tail of BLV transmembrane protein gp30 (TM) has multiple areas of homology to motifs of host cell signaling proteins, including two immunoreceptor tyrosine-based activation motifs (ITAMs) and two immunoreceptor tyrosine-based inhibition motifs (ITIMs), which are homologous to B-cell receptor and inhibitory co-receptor motifs. Signaling by these motifs in B cells typically relies on tyrosine phosphorylation, followed by interactions with Src-homology-2 (SH2) domains of nonreceptor protein tyrosine kinases or phosphatases. Phosphorylation of tyrosine residues in the cytoplasmic tail of TM was tested in four systems including ex vivo cultured peripheral blood mononuclear cells from BLV infected cows, BLV-expressing fetal lamb kidney cell and bat lung cell lines, and DT40 B cells transfected with a fusion of mouse extracellular CD8alpha and cytoplasmic TM. No phosphorylation of TM was detected in our experiments in any of the cell types utilized, or with various stimulation methods. Detection was attempted by immunoblotting for phosphotyrosines, or by metabolic labeling of cells. Thus BLV TM is not likely to modify host signal pathways through interactions between phosphorylated tyrosines of the ITAM or ITIM motifs and host-cell tyrosine kinases or phosphatases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- B-Lymphocytes/immunology
- Cattle
- Cell Line
- Enzootic Bovine Leukosis/virology
- Leukemia Virus, Bovine/pathogenicity
- Lymphocyte Activation
- Mice
- Molecular Sequence Data
- Phosphorylation
- Receptors, Amino Acid/chemistry
- Receptors, Amino Acid/metabolism
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/metabolism
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/metabolism
- Signal Transduction
- Tyrosine/metabolism
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Valerie T Hamilton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040 USA
| | | | | | | |
Collapse
|
95
|
Rivailler P, Cho YG, Wang F. Complete genomic sequence of an Epstein-Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J Virol 2002; 76:12055-68. [PMID: 12414947 PMCID: PMC136909 DOI: 10.1128/jvi.76.23.12055-12068.2002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Callitrichine herpesvirus 3 (CalHV-3) was isolated from a B-cell lymphoma arising spontaneously in the New World primate Callithrix jacchus, the common marmoset. Partial genomic sequence analysis definitively identified CalHV-3 as a member of the Epstein-Barr virus (EBV)-related lymphocryptovirus (LCV) genus and extended the known host range of LCVs beyond humans and Old World nonhuman primates. We have now completed the first genomic sequence of an LCV infecting a New World primate by describing the unique short region, the major internal repeat, and a portion of the unique long region. This portion of the genome contains the putative latent origin of replication and 13 additional open reading frames (ORFs), 5 of which show no homology to any viral or cell genes. One of the novel genes, C5, is a positional homologue for the transformation-essential EBV gene EBNA-2. The marmoset LCV genome is also notable for the absence of viral interleukin-10 and small nonpolyadenylated RNA homologues. Marmoset LCV transcripts encoding putative latent infection nuclear proteins have a common leader sequence that is spliced from the major internal repeat in a manner similar to that of the EBV EBNA-LP, suggesting strong conservation of a common promoter and splicing of these latent infection mRNAs. An EBV LMP2A-like spliced transcript crossing the terminal repeats encodes a unique ORF, C7, with multiple transmembrane domains and tyrosine kinase phosphorylation sites functionally reminiscent of EBV LMP2A. However, the carboxy-terminal location of the candidate phosphotyrosine residues is more reminiscent of the Kaposi's sarcoma-associated herpesvirus K15 gene and provides potential evidence of an evolutionary transition from rhadinoviruses to lymphocryptoviruses. The unusual gene repertoire of the marmoset LCV differentiates ancestral viral genes likely present in an LCV progenitor from viral genes acquired later as primates and LCV coevolved, providing a defining point in the evolution of oncogenic LCVs.
Collapse
Affiliation(s)
- Pierre Rivailler
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
96
|
Grogan MJ, Pratt MR, Marcaurelle LA, Bertozzi CR. Homogeneous glycopeptides and glycoproteins for biological investigation. Annu Rev Biochem 2002; 71:593-634. [PMID: 12045107 DOI: 10.1146/annurev.biochem.71.110601.135334] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein glycosylation is widely recognized as a modulator of protein structure, localization, and cell-cell recognition in multicellular systems. Glycoproteins are typically expressed as mixtures of glycoforms, their oligosaccharides being generated by a template-independent biosynthetic process. Investigation of their function has been greatly assisted by sources of homogeneous material. This review summarizes current efforts to obtain homogeneous glycopeptide and glycoprotein materials by a variety of methods that draw from the techniques of recombinant expression, chemical synthesis, enzymatic transformation, and chemoselective ligation. Some of these techniques remove obstacles to glycoprotein synthesis by installing nonnative linkages and other modifications for facilitated assembly. The end purpose of the described approaches is the production of glycosylated materials for experiments relevant to the biological investigation of glycoproteins, although the strategies presented apply to other posttranslational modifications as well.
Collapse
Affiliation(s)
- Michael J Grogan
- Department of Chemistry, University of California; Berkeley California 94720, USA.
| | | | | | | |
Collapse
|
97
|
Stoddart A, Dykstra ML, Brown BK, Song W, Pierce SK, Brodsky FM. Lipid rafts unite signaling cascades with clathrin to regulate BCR internalization. Immunity 2002; 17:451-62. [PMID: 12387739 DOI: 10.1016/s1074-7613(02)00416-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A major function of the B cell is the internalization of antigen through the BCR for processing and presentation to T cells. While there is evidence suggesting that lipid raft signaling may regulate internalization, the molecular machinery coordinating these two processes remains to be defined. Here we present a link between the B cell signaling and internalization machinery and show that Src-family kinase activity is required for inducible clathrin heavy chain phosphorylation, BCR colocalization with clathrin, and regulated internalization. An analysis of different B cell lines shows that BCR uptake occurs only when clathrin is associated with rafts and is tyrosine phosphorylated following BCR crosslinking. We therefore propose that lipid rafts spatially organize signaling cascades with clathrin to regulate BCR internalization.
Collapse
Affiliation(s)
- Angela Stoddart
- The G.W. Hooper Foundation, Department of Microbiology and Immunology, University of California, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
98
|
Chaturvedi A, Siddiqui Z, Bayiroglu F, Rao KVS. A GPI-linked isoform of the IgD receptor regulates resting B cell activation. Nat Immunol 2002; 3:951-7. [PMID: 12244313 DOI: 10.1038/ni839] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2002] [Accepted: 08/20/2002] [Indexed: 11/09/2022]
Abstract
The induction of a humoral response depends upon efficient cross-linking by antigen of surface immunoglobulin on primary B lymphocytes. We demonstrate here the presence of a glycosylphosphatidylinositol-linked isoform of membrane IgD (mIgD) receptors on murine resting B cells. This subset was constitutively localized to cell membrane raft microdomains. Its stimulation resulted in the activation of cAMP-dependent signaling pathways, which integrated with signals derived from the transmembrane mIgD receptors. This, in turn, provided a mechanism by which the activation status of the target cells could be variably regulated. Thus, by partitioning receptor activity, preimmune B cells can moderate the extent to which they are activated, depending upon the strength of the antigenic stimulus.
Collapse
Affiliation(s)
- Akanksha Chaturvedi
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|
99
|
Petrie RJ, Deans JP. Colocalization of the B cell receptor and CD20 followed by activation-dependent dissociation in distinct lipid rafts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2886-91. [PMID: 12218101 DOI: 10.4049/jimmunol.169.6.2886] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The B cell Ag receptor (BCR) and CD20, a putative calcium channel, inducibly associate with cholesterol-dependent membrane microdomains known as lipid rafts. A functional association between the BCR and CD20 is suggested by the effects of CD20-specific mAbs, which can modulate cell cycle transitions elicited by BCR signaling. Using immunofluorescence microscopy we show here that the BCR and CD20 colocalize after receptor ligation and then rapidly dissociate at the cell surface before endocytosis of the BCR. After separation, surface BCR and CD20 were detected in distinct lipid rafts isolated as low density, detergent-resistant membrane fragments. Pretreatment with methyl-beta-cyclodextrin, which we have previously shown to enhance receptor-mediated calcium mobilization, did not prevent colocalization of the BCR and CD20, but slowed their dissociation. The data demonstrate rapid dynamics of the BCR in relation to CD20 at the cell surface. Activation-dependent dissociation of the BCR from CD20 occurs before receptor endocytosis and appears to require in part the integrity of lipid rafts.
Collapse
MESH Headings
- Antigens, CD20/immunology
- Antigens, CD20/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cyclodextrins/pharmacology
- Detergents/pharmacology
- Endocytosis/drug effects
- Endocytosis/immunology
- Humans
- Kinetics
- Lymphocyte Activation
- Membrane Microdomains/drug effects
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Microscopy, Fluorescence
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Tumor Cells, Cultured
- beta-Cyclodextrins
Collapse
Affiliation(s)
- Ryan J Petrie
- Department of Biochemistry and Molecular Biology, Immunology Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
100
|
Abstract
Latent membrane protein 2A (LMP2A) of latent Epstein-Barr virus (EBV) specifically associates with HECT domain-containing Nedd4-family ubiquitin-protein ligases (E3s). Here we demonstrate that LMP2A is specifically ubiquitinated by the HECT domains of AIP4 and WWP2. Deletion and site-specific mutation of LMP2A indicates that LMP2A is ubiquitinated at its amino-terminus and is not ubiquitinated on lysine residues. LMP2A and LMP1, also encoded by EBV, are two of only four proteins that have been identified that are ubiquitinated at the amino-terminus, indicating that EBV may specifically target and utilize this host cell protein modification.
Collapse
Affiliation(s)
- Masato Ikeda
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|