51
|
RETINAL MICROVASCULATURE AND VISUAL ACUITY AFTER INTRAVITREAL AFLIBERCEPT IN EYES WITH CENTRAL RETINAL VEIN OCCLUSION: An Optical Coherence Tomography Angiography Study. Retina 2019; 38:2067-2072. [PMID: 28902097 DOI: 10.1097/iae.0000000000001828] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate vascular perfusion and foveal avascular zone area in the superficial capillary plexus (SCP) and deep capillary plexus (DCP) after intravitreal aflibercept therapy in central retinal vein occlusion eyes and their association with best-corrected visual acuity. METHODS Thirty-five subjects with central retinal vein occlusion and macular edema were evaluated. After macular edema resolution following intravitreal aflibercept, subjects underwent optical coherence tomography angiography to measure SCP and DCP perfusion and the foveal avascular zone within a 3 × 3-mm area. Correlations between best-corrected visual acuity and optical coherence tomography angiography measurements were examined. RESULTS After intravitreal aflibercept therapy, mean retinal vascular area was 3.41 ± 0.74 mm in the SCP and 3.25 ± 0.91 mm in the DCP. Foveal avascular zone area was 1.03 ± 1.04 mm in the SCP and 1.78 ± 1.73 mm in the DCP. Improved best-corrected visual acuity was significantly associated with better SCP and DCP perfusion (both P < 0.001) and with smaller SCP and DCP foveal avascular zone areas (both P < 0.001). Additionally, SCP and DCP perfusion were negatively correlated with macular edema before treatment (P < 0.05) and ischemia (determined via pretreatment fluorescein angiography, P < 0.05), and positively correlated with photoreceptor integrity (P < 0.001). CONCLUSION Patients with better retinal perfusion and less retinal ischemia are associated with better visual outcomes after aflibercept in eyes with central retinal vein occlusion.
Collapse
|
52
|
Roy S, Field GD. Dopaminergic modulation of retinal processing from starlight to sunlight. J Pharmacol Sci 2019; 140:86-93. [PMID: 31109761 DOI: 10.1016/j.jphs.2019.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Neuromodulators such as dopamine, enable context-dependent plasticity of neural circuit function throughout the central nervous system. For example, in the retina, dopamine tunes visual processing for daylight and nightlight conditions. Specifically, high levels of dopamine release in the retina tune vision for daylight (photopic) conditions, while low levels tune it for nightlight (scotopic) conditions. This review covers the cellular and circuit-level mechanisms within the retina that are altered by dopamine. These mechanisms include changes in gap junction coupling and ionic conductances, both of which are altered by the activation of diverse types of dopamine receptors across diverse types of retinal neurons. We contextualize the modulatory actions of dopamine in terms of alterations and optimizations to visual processing under photopic and scotopic conditions, with particular attention to how they differentially impact distinct cell types. Finally, we discuss how transgenic mice and disease models have shaped our understanding of dopaminergic signaling and its role in visual processing. Cumulatively, this review illustrates some of the diverse and potent mechanisms through which neuromodulation can shape brain function.
Collapse
Affiliation(s)
- Suva Roy
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
53
|
Walters DC, Arning E, Bottiglieri T, Jansen EEW, Salomons GS, Brown MN, Schmidt MA, Ainslie GR, Roullet JB, Gibson KM. Metabolomic analyses of vigabatrin (VGB)-treated mice: GABA-transaminase inhibition significantly alters amino acid profiles in murine neural and non-neural tissues. Neurochem Int 2019; 125:151-162. [PMID: 30822440 DOI: 10.1016/j.neuint.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 11/18/2022]
Abstract
The anticonvulsant vigabatrin (VGB; SabrilR) irreversibly inhibits GABA transaminase to increase neural GABA, yet its mechanism of retinal toxicity remains unclear. VGB is suggested to alter several amino acids, including homocarnosine, β-alanine, ornithine, glycine, taurine, and 2-aminoadipic acid (AADA), the latter a homologue of glutamic acid. Here, we evaluate the effect of VGB on amino acid concentrations in mice, employing a continuous VGB infusion (subcutaneously implanted osmotic minipumps), dose-escalation paradigm (35-140 mg/kg/d, 12 days), and amino acid quantitation in eye, visual and prefrontal cortex, total brain, liver and plasma. We hypothesized that continuous VGB dosing would reveal numerous hitherto undescribed amino acid disturbances. Consistent amino acid elevations across tissues included GABA, β-alanine, carnosine, ornithine and AADA, as well as neuroactive aspartic and glutamic acids, serine and glycine. Maximal increase of AADA in eye occurred at 35 mg/kg/d (41 ± 2 nmol/g (n = 21, vehicle) to 60 ± 8.5 (n = 8)), and at 70 mg/kg/d for brain (97 ± 6 (n = 21) to 145 ± 6 (n = 6)), visual cortex (128 ± 6 to 215 ± 19) and prefrontal cortex (124 ± 11 to 200 ± 13; mean ± SEM; p < 0.05), the first demonstration of tissue AADA accumulation with VGB in mammal. VGB effects on basic amino acids, including guanidino-species, suggested the capacity of VGB to alter urea cycle function and nitrogen disposal. The known toxicity of AADA in retinal glial cells highlights new avenues for assessing VGB retinal toxicity and other off-target effects.
Collapse
Affiliation(s)
- Dana C Walters
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Erland Arning
- Baylor Scott & White Research Institute, Institute of Metabolic Disease, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Baylor Scott & White Research Institute, Institute of Metabolic Disease, Dallas, TX, USA
| | - Erwin E W Jansen
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Center, the Netherlands
| | - Gajja S Salomons
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Center, the Netherlands
| | - Madalyn N Brown
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Michelle A Schmidt
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Garrett R Ainslie
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| |
Collapse
|
54
|
Field GD, Uzzell V, Chichilnisky EJ, Rieke F. Temporal resolution of single-photon responses in primate rod photoreceptors and limits imposed by cellular noise. J Neurophysiol 2018; 121:255-268. [PMID: 30485153 DOI: 10.1152/jn.00683.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sensory receptor noise corrupts sensory signals, contributing to imperfect perception and dictating central processing strategies. For example, noise in rod phototransduction limits our ability to detect light, and minimizing the impact of this noise requires precisely tuned nonlinear processing by the retina. But detection sensitivity is only one aspect of night vision: prompt and accurate behavior also requires that rods reliably encode the timing of photon arrivals. We show here that the temporal resolution of responses of primate rods is much finer than the duration of the light response and identify the key limiting sources of transduction noise. We also find that the thermal activation rate of rhodopsin is lower than previous estimates, implying that other noise sources are more important than previously appreciated. A model of rod single-photon responses reveals that the limiting noise relevant for behavior depends critically on how rod signals are pooled by downstream neurons. NEW & NOTEWORTHY Many studies have focused on the visual system's ability to detect photons, but not on its ability to encode the relative timing of detected photons. Timing is essential for computations such as determining the velocity of moving objects. Here we examine the timing precision of primate rod photoreceptor responses and show that it is more precise than previously appreciated. This motivates an evaluation of whether scotopic vision approaches limits imposed by rod temporal resolution.
Collapse
Affiliation(s)
- Greg D Field
- Department of Neurobiology, Duke University School of Medicine , Durham, North Carolina
| | - Valerie Uzzell
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies , La Jolla, California
| | - E J Chichilnisky
- Stanford University, Departments of Neurosurgery and Ophthalmology , Stanford, California
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington , Seattle, Washington
| |
Collapse
|
55
|
Strettoi E, Masri RA, Grünert U. AII amacrine cells in the primate fovea contribute to photopic vision. Sci Rep 2018; 8:16429. [PMID: 30401922 PMCID: PMC6219554 DOI: 10.1038/s41598-018-34621-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022] Open
Abstract
The AII amacrine cell is known as a key interneuron in the scotopic (night-vision) pathway in the retina. Under scotopic conditions, rod signals are transmitted via rod bipolar cells to AII amacrine cells, which split the rod signal into the OFF (via glycinergic synapses) and the ON pathway (via gap junctions). But the AII amacrine cell also has a “day job”: at high light levels when cones are active, AII connections with ON cone bipolar cells provide crossover inhibition to extend the response range of OFF cone bipolar cells. The question whether AII cells contribute to crossover inhibition in primate fovea (where rods and rod bipolar cells are rare or absent) has not been answered. Here, immunohistochemistry and three-dimensional reconstruction show that calretinin positive cells in the fovea of macaque monkeys and humans have AII morphology and connect to cone bipolar cells. The pattern of AII connections to cone bipolar cells is quantitatively similar to that of AII cells outside the fovea. Our results support the view that in mammalian retina AII cells first evolved to serve cone circuits, then later were co-opted to process scotopic signals subsequent to the evolution of rod bipolar cells.
Collapse
Affiliation(s)
| | - Rania A Masri
- Save Sight Institute, Discipline of Clinical Ophthalmology, The University of Sydney, Sydney, NSW, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Ulrike Grünert
- Save Sight Institute, Discipline of Clinical Ophthalmology, The University of Sydney, Sydney, NSW, 2000, Australia. .,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia. .,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
56
|
Yao X, Cafaro J, McLaughlin AJ, Postma FR, Paul DL, Awatramani G, Field GD. Gap Junctions Contribute to Differential Light Adaptation across Direction-Selective Retinal Ganglion Cells. Neuron 2018; 100:216-228.e6. [PMID: 30220512 PMCID: PMC6293282 DOI: 10.1016/j.neuron.2018.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/28/2018] [Accepted: 08/17/2018] [Indexed: 01/19/2023]
Abstract
Direction-selective ganglion cells (DSGCs) deliver signals from the retina to multiple brain areas to indicate the presence and direction of motion. Delivering reliable signals in response to motion is critical across light levels. Here we determine how populations of DSGCs adapt to changes in light level, from moonlight to daylight. Using large-scale measurements of neural activity, we demonstrate that the population of DSGCs switches encoding strategies across light levels. Specifically, the direction tuning of superior (upward)-preferring ON-OFF DSGCs becomes broader at low light levels, whereas other DSGCs exhibit stable tuning. Using a conditional knockout of gap junctions, we show that this differential adaptation among superior-preferring ON-OFF DSGCs is caused by connexin36-mediated electrical coupling and differences in effective GABAergic inhibition. Furthermore, this adaptation strategy is beneficial for balancing motion detection and direction estimation at the lower signal-to-noise ratio encountered at night. These results provide insights into how light adaptation impacts motion encoding in the retina.
Collapse
Affiliation(s)
- Xiaoyang Yao
- Graduate Program in Neurobiology, Duke University, Durham, NC, 27710, USA; Neurobiology Department, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jon Cafaro
- Neurobiology Department, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | | | - David L Paul
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gautam Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Greg D Field
- Neurobiology Department, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
57
|
Grimes WN, Baudin J, Azevedo AW, Rieke F. Range, routing and kinetics of rod signaling in primate retina. eLife 2018; 7:38281. [PMID: 30299254 PMCID: PMC6218188 DOI: 10.7554/elife.38281] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/22/2018] [Indexed: 11/29/2022] Open
Abstract
Stimulus- or context-dependent routing of neural signals through parallel pathways can permit flexible processing of diverse inputs. For example, work in mouse shows that rod photoreceptor signals are routed through several retinal pathways, each specialized for different light levels. This light-level-dependent routing of rod signals has been invoked to explain several human perceptual results, but it has not been tested in primate retina. Here, we show, surprisingly, that rod signals traverse the primate retina almost exclusively through a single pathway – the dedicated rod bipolar pathway. Identical experiments in mouse and primate reveal substantial differences in how rod signals traverse the retina. These results require reevaluating human perceptual results in terms of flexible computation within this single pathway. This includes a prominent speeding of rod signals with light level – which we show is inherited directly from the rod photoreceptors themselves rather than from different pathways with distinct kinetics.
Collapse
Affiliation(s)
- William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Jacob Baudin
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Anthony W Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
58
|
Grimes WN, Songco-Aguas A, Rieke F. Parallel Processing of Rod and Cone Signals: Retinal Function and Human Perception. Annu Rev Vis Sci 2018; 4:123-141. [PMID: 29883274 PMCID: PMC6153147 DOI: 10.1146/annurev-vision-091517-034055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We know a good deal about the operation of the retina when either rod or cone photoreceptors provide the dominant input (i.e., under very dim or very bright conditions). However, we know much less about how the retina operates when rods and cones are coactive (i.e., under intermediate lighting conditions, such as dusk). Such mesopic conditions span 20-30% of the light levels over which vision operates and encompass many situations in which vision is essential (e.g., driving at night). These lighting conditions are challenging because rod and cone signals differ substantially: Rod responses are nearing saturation, while cone responses are weak and noisy. A rich history of perceptual studies guides our investigation of how the retina operates under mesopic conditions and in doing so provides a powerful opportunity to link general issues about parallel processing in neural circuits with computation and perception. We review some of the successes and challenges in understanding the retinal basis of perceptual rod-cone interactions.
Collapse
Affiliation(s)
- William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA;
| | - Adree Songco-Aguas
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA;
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
59
|
Tripon RG, Oláh J, Nasir T, Csincsik L, Li CL, Szunyogh S, Gong H, Flinn JM, Ovádi J, Lengyel I. Localization of the zinc binding tubulin polymerization promoting protein in the mice and human eye. J Trace Elem Med Biol 2018; 49:222-230. [PMID: 29317136 DOI: 10.1016/j.jtemb.2017.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022]
Abstract
Tubulin Polymerization Promoting Protein (TPPP/p25) modulates the dynamics and stability of the microtubule network by its bundling and acetylation enhancing activities that can be modulated by the binding of zinc to TPPP/p25. Its expression is essential for the differentiation of oligodendrocytes, the major constituents of the myelin sheath, and has been associated with neuronal inclusions. In this paper, evidence is provided for the expression and localization of TPPP/p25 in the zinc-rich retina and in the oligodendrocytes in the optic nerve. Localization of TPPP/p25 was established by confocal microscopy using calbindin and synaptophysin as markers of specific striations in the inner plexiform layer (IPL) and presynaptic terminals, respectively. Postsynaptic nerve terminals in striations S1, S3 and S5 in the IPL and a subset of amacrine cells show immunopositivity against TPPP/p25 both in mice and human eyes. The co-localization of TPPP/p25 with acetylated tubulin was detected in amacrine cells, oligodendrocyte cell bodies and in synapses in the IPL. Quantitative Western blot revealed that the TPPP/p25 level in the retina was 0.05-0.13 ng/μg protein, comparable to that in the brain. There was a central (from optic nerve head) to peripheral retinal gradient in TPPP/p25 protein levels. Our in vivo studies revealed that the oral zinc supplementation of mice significantly increased TPPP/p25 as well as acetylated tubulin levels in the IPL. These results suggest that TPPP/p25, a microtubule stabilizer can play a role in the organization and reorganization of synaptic connections and visual integration in the eye.
Collapse
Affiliation(s)
- Robert G Tripon
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Department of Histology, University of Medicine and Pharmacy, Tîrgu Mureş, Romania.
| | - Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Tajwar Nasir
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK.
| | - Lajos Csincsik
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Center of Experimental Medicine, The Queen's University Belfast, BT9 7BL, UK.
| | - Chee Lok Li
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK.
| | - Sándor Szunyogh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, MA, USA.
| | - Jane M Flinn
- Department of Psychology, George Mason University Fairfax, VA, USA.
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Imre Lengyel
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Center of Experimental Medicine, The Queen's University Belfast, BT9 7BL, UK.
| |
Collapse
|
60
|
Abstract
The retinal rod pathway, featuring dedicated rod bipolar cells (RBCs) and AII amacrine cells, has been intensely studied in placental mammals. Here, we analyzed the rod pathway in a nocturnal marsupial, the South American opossum Monodelphis domestica to elucidate whether marsupials have a similar rod pathway. The retina was dominated by rods with densities of 338,000-413,000/mm². Immunohistochemistry for the RBC-specific marker protein kinase Cα (PKCα) and the AII cell marker calretinin revealed the presence of both cell types with their typical morphology. This is the first demonstration of RBCs in a marsupial and of the integration of RBCs and AII cells in the rod signaling pathway. Electron microscopy showed invaginating synaptic contacts of the PKCα-immunoreactive bipolar cells with rods; light microscopic co-immunolabeling for the synaptic ribbon marker CtBP2 confirmed dominant rod contacts. The RBC axon terminals were mostly located in the innermost stratum S5 of the inner plexiform layer (IPL), but had additional side branches and synaptic varicosities in strata S3 and S4, with S3-S5 belonging to the presumed functional ON sublayer of the IPL, as shown by immunolabeling for the ON bipolar cell marker Gγ13. Triple-immunolabeling for PKCα, calretinin and CtBP2 demonstrated RBC synapses onto AII cells. These features conform to the pattern seen in placental mammals, indicating a basically similar rod pathway in M. domestica. The density range of RBCs was 9,900-16,600/mm2, that of AII cells was 1,500-3,260/mm2. The numerical convergence (density ratio) of 146-156 rods to 4.7-6.0 RBCs to 1 AII cell is within the broad range found among placental mammals. For comparison, we collected data for the Australian nocturnal dunnart Sminthopsis crassicaudata, and found it to be similar to M. domestica, with rod-contacting PKCα-immunoreactive bipolar cells that had axon terminals also stratifying in IPL strata S3-S5.
Collapse
|
61
|
Haq W, Dietter J, Bolz S, Zrenner E. Feasibility study for a glutamate driven subretinal prosthesis: local subretinal application of glutamate on blind retina evoke network-mediated responses in different types of ganglion cells. J Neural Eng 2018; 15:045004. [PMID: 29916398 DOI: 10.1088/1741-2552/aac811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE A feasibility study for a transmitter based subretinal prosthesis, generating visual responses in blind mouse retina is presented. APPROACH Degenerated rd1 mouse retina were stimulated in subretinal configuration by local glutamate (Glu) or NMDA application via micropipettes (~1.5 μm) and thereby the outer retinal activity was recorded by calcium-imaging or the ganglion cell (GC) activity was recorded by the multi-electrode array system. The network mediated activation of GC via bipolar cells was approved by the administration of Glu receptor blockers. MAIN RESULTS Data of the degenerated and blind rd1 mouse retina reveals that the outer retina is Glu sensitive and that the subretinal Glu stimulation promotes network mediated GC responses. Analysis of the spatial activity-spread indicates that the Glu induced cell activation radius in the outer retina (~12.5 μm) and postsynaptically activated GC (~40 μm) is focal to the stimulation pipette tip. Moreover, the application of NMDA in subretinal space also evoked network mediated GC responses. The Glu-activated GC were identified as ON-OFF, OFF and two ON cells types. SIGNIFICANCE This study evaluates the prerequisite for the function of a transmitter based implant, that after the loss of the photoreceptors, the remnant blind retinal network is Glu sensitive and functional, positively. The differential activation of ON (hyperpolarisation) and OFF (depolarisation) bipolar cells by transmitter Glu is a unique feature and of high interest for retinal implants. Therefore, the respective bipolar cell types could only be driven by glutamatergic stimulation accurately and not by electrical stimulation. The preserved functionality of the blind retina at the onset of complete blindness is motivating to continue research on a transmitter-based prosthesis. Since the artificial Glu stimulation mimics the natural retinal input, early implantation of a Glu-prosthesis might delay the devastating retinal remodelling positively, due to the neuronal-plasticity.
Collapse
Affiliation(s)
- Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
62
|
Elgueta C, Leroy F, Vielma AH, Schmachtenberg O, Palacios AG. Electrical coupling between A17 cells enhances reciprocal inhibitory feedback to rod bipolar cells. Sci Rep 2018; 8:3123. [PMID: 29449585 PMCID: PMC5814567 DOI: 10.1038/s41598-018-21119-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 01/29/2018] [Indexed: 11/09/2022] Open
Abstract
A17 amacrine cells are an important part of the scotopic pathway. Their synaptic varicosities receive glutamatergic inputs from rod bipolar cells (RBC) and release GABA onto the same RBC terminal, forming a reciprocal feedback that shapes RBC depolarization. Here, using patch-clamp recordings, we characterized electrical coupling between A17 cells of the rat retina and report the presence of strongly interconnected and non-coupled A17 cells. In coupled A17 cells, evoked currents preferentially flow out of the cell through GJs and cross-synchronization of presynaptic signals in a pair of A17 cells is correlated to their coupling degree. Moreover, we demonstrate that stimulation of one A17 cell can induce electrical and calcium transients in neighboring A17 cells, thus confirming a functional flow of information through electrical synapses in the A17 coupled network. Finally, blocking GJs caused a strong decrease in the amplitude of the inhibitory feedback onto RBCs. We therefore propose that electrical coupling between A17 cells enhances feedback onto RBCs by synchronizing and facilitating GABA release from inhibitory varicosities surrounding each RBC axon terminal. GJs between A17 cells are therefore critical in shaping the visual flow through the scotopic pathway.
Collapse
Affiliation(s)
- Claudio Elgueta
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany.
| | - Felix Leroy
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Neuroscience department, Columbia University Medical Center, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| |
Collapse
|
63
|
Rivlin-Etzion M, Grimes WN, Rieke F. Flexible Neural Hardware Supports Dynamic Computations in Retina. Trends Neurosci 2018; 41:224-237. [PMID: 29454561 DOI: 10.1016/j.tins.2018.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 11/16/2022]
Abstract
The ability of the retina to adapt to changes in mean light intensity and contrast is well known. Classically, however, adaptation is thought to affect gain but not to change the visual modality encoded by a given type of retinal neuron. Recent findings reveal unexpected dynamic properties in mouse retinal neurons that challenge this view. Specifically, certain cell types change the visual modality they encode with variations in ambient illumination or following repetitive visual stimulation. These discoveries demonstrate that computations performed by retinal circuits with defined architecture can change with visual input. Moreover, they pose a major challenge for central circuits that must decode properties of the dynamic visual signal from retinal outputs.
Collapse
Affiliation(s)
- Michal Rivlin-Etzion
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
64
|
Lee JW, Lim MY, Park YS, Park SJ, Kim IB. Reexamination of Dopaminergic Amacrine Cells in the Rabbit Retina: Confocal Analysis with Double- and Triple-labeling Immunohistochemistry. Exp Neurobiol 2018; 26:329-338. [PMID: 29302200 PMCID: PMC5746498 DOI: 10.5607/en.2017.26.6.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/17/2017] [Indexed: 11/24/2022] Open
Abstract
Dopaminergic amacrine cells (DACs) are among the most well-characterized neurons in the mammalian retina, and their connections to AII amacrine cells have been described in detail. However, the stratification of DAC dendrites differs based on their location in the inner plexiform layer (IPL), raising the question of whether all AII lobules are modulated by dopamine release from DACs. The present study aimed to clarify the relationship between DACs and AII amacrine cells, and to further elucidate the role of dopamine at synapses with AII amacrine cell. In the rabbit retina, DAC dendrites were observed in strata 1, 3, and 5 of the IPL. In stratum 1, most DAC dendritic varicosities—the presumed sites of neurotransmitter release—made contact with the somata and lobular appendages of AII amacrine cells. However, most lobular appendages of AII amacrine cells localized within stratum 2 of the IPL exhibited little contact with DAC varicosities. In addition, double- or triple-labeling experiments revealed that DACs did not express the GABAergic neuronal markers anti-GABA, vesicular GABA transporter, or glutamic acid decarboxylase. These findings suggest that the lobular appendages of AII amacrine cells are involved in at least two different circuits. We speculate that the circuit associated with stratum 1 of the IPL is modulated by DACs, while that associated with stratum 2 is modulated by unknown amacrine cells expressing a different neuroactive substance. Our findings further indicate that DACs in the rabbit retina do not use GABA as a neurotransmitter, in contrast to those in other mammals.
Collapse
Affiliation(s)
- Jong Woo Lee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Min Young Lim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Gimpo Hangil Eye Center, Gimpo 10110, Korea
| | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Su Jin Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
65
|
Field GD, Sampath AP. Behavioural and physiological limits to vision in mammals. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0072. [PMID: 28193817 DOI: 10.1098/rstb.2016.0072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 01/22/2023] Open
Abstract
Human vision is exquisitely sensitive-a dark-adapted observer is capable of reliably detecting the absorption of a few quanta of light. Such sensitivity requires that the sensory receptors of the retina, rod photoreceptors, generate a reliable signal when single photons are absorbed. In addition, the retina must be able to extract this information and relay it to higher visual centres under conditions where very few rods signal single-photon responses while the majority generate only noise. Critical to signal transmission are mechanistic optimizations within rods and their dedicated retinal circuits that enhance the discriminability of single-photon responses by mitigating photoreceptor and synaptic noise. We describe behavioural experiments over the past century that have led to the appreciation of high sensitivity near absolute visual threshold. We further consider mechanisms within rod photoreceptors and dedicated rod circuits that act to extract single-photon responses from cellular noise. We highlight how these studies have shaped our understanding of brain function and point out several unresolved questions in the processing of light near the visual threshold.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alapakkam P Sampath
- Stein Eye Institute, Department of Ophthalmology, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
66
|
Takeshita D, Smeds L, Ala-Laurila P. Processing of single-photon responses in the mammalian On and Off retinal pathways at the sensitivity limit of vision. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0073. [PMID: 28193818 PMCID: PMC5312023 DOI: 10.1098/rstb.2016.0073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 12/21/2022] Open
Abstract
Visually guided behaviour at its sensitivity limit relies on single-photon responses originating in a small number of rod photoreceptors. For decades, researchers have debated the neural mechanisms and noise sources that underlie this striking sensitivity. To address this question, we need to understand the constraints arising from the retinal output signals provided by distinct retinal ganglion cell types. It has recently been shown in the primate retina that On and Off parasol ganglion cells, the cell types likely to underlie light detection at the absolute visual threshold, differ fundamentally not only in response polarity, but also in the way they handle single-photon responses originating in rods. The On pathway provides the brain with a thresholded, low-noise readout and the Off pathway with a noisy, linear readout. We outline the mechanistic basis of these different coding strategies and analyse their implications for detecting the weakest light signals. We show that high-fidelity, nonlinear signal processing in the On pathway comes with costs: more single-photon responses are lost and their propagation is delayed compared with the Off pathway. On the other hand, the responses of On ganglion cells allow better intensity discrimination compared with the Off ganglion cell responses near visual threshold. This article is part of the themed issue ‘Vision in dim light’.
Collapse
Affiliation(s)
- Daisuke Takeshita
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland
| | - Lina Smeds
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland
| | - Petri Ala-Laurila
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland .,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, PO Box 12200, 00076 Aalto, Finland
| |
Collapse
|
67
|
Abstract
Synaptic communication requires alignment of transmitter release sites with transmitter receptors. In this issue of Neuron, Wang et al. (2017) show that α2δ4 subunits link calcium channels to a trans-synaptic complex with glutamate receptors at the visual system's first synapse.
Collapse
|
68
|
Beaudoin DL, Kupershtok M, Demb JB. Selective synaptic connections in the retinal pathway for night vision. J Comp Neurol 2017; 527:117-132. [PMID: 28856684 DOI: 10.1002/cne.24313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022]
Abstract
The mammalian retina encodes visual information in dim light using rod photoreceptors and a specialized circuit: rods→rod bipolar cells→AII amacrine cell. The AII amacrine cell uses sign-conserving electrical synapses to modulate ON cone bipolar cell terminals and sign-inverting chemical (glycinergic) synapses to modulate OFF cone cell bipolar terminals; these ON and OFF cone bipolar terminals then drive the output neurons, retinal ganglion cells (RGCs), following light increments and decrements, respectively. The AII amacrine cell also makes direct glycinergic synapses with certain RGCs, but it is not well established how many types receive this direct AII input. Here, we investigated functional AII amacrine→RGC synaptic connections in the retina of the guinea pig (Cavia porcellus) by recording inhibitory currents from RGCs in the presence of ionotropic glutamate receptor (iGluR) antagonists. This condition isolates a specific pathway through the AII amacrine cell that does not require iGluRs: cone→ON cone bipolar cell→AII amacrine cell→RGC. These recordings show that AII amacrine cells make direct synapses with OFF Alpha, OFF Delta and a smaller OFF transient RGC type that co-stratifies with OFF Alpha cells. However, AII amacrine cells avoid making synapses with numerous RGC types that co-stratify with the connected RGCs. Selective AII connections ensure that a privileged minority of RGC types receives direct input from the night-vision pathway, independent from OFF bipolar cell activity. Furthermore, these results illustrate the specificity of retinal connections, which cannot be predicted solely by co-stratification of dendrites and axons within the inner plexiform layer.
Collapse
Affiliation(s)
- Deborah L Beaudoin
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Mania Kupershtok
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Jonathan B Demb
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
- Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Department of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut
| |
Collapse
|
69
|
The TRPM1 Channel Is Required for Development of the Rod ON Bipolar Cell-AII Amacrine Cell Pathway in the Retinal Circuit. J Neurosci 2017; 37:9889-9900. [PMID: 28899920 DOI: 10.1523/jneurosci.0824-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/28/2022] Open
Abstract
Neurotransmission plays an essential role in neural circuit formation in the central nervous system (CNS). Although neurotransmission has been recently clarified as a key modulator of retinal circuit development, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we investigated the role of neurotransmission from photoreceptor cells to ON bipolar cells in development using mutant mouse lines of both sexes in which this transmission is abrogated. We found that deletion of the ON bipolar cation channel TRPM1 results in the abnormal contraction of rod bipolar terminals and a decreased number of their synaptic connections with amacrine cells. In contrast, these histological alterations were not caused by a disruption of total glutamate transmission due to loss of the ON bipolar glutamate receptor mGluR6 or the photoreceptor glutamate transporter VGluT1. In addition, TRPM1 deficiency led to the reduction of total dendritic length, branch numbers, and cell body size in AII amacrine cells. Activated Goα, known to close the TRPM1 channel, interacted with TRPM1 and induced the contraction of rod bipolar terminals. Furthermore, overexpression of Channelrhodopsin-2 partially rescued rod bipolar cell development in the TRPM1-/- retina, whereas the rescue effect by a constitutively closed form of TRPM1 was lower than that by the native form. Our results suggest that TRPM1 channel opening is essential for rod bipolar pathway establishment in development.SIGNIFICANCE STATEMENT Neurotransmission has been recognized recently as a key modulator of retinal circuit development in the CNS. However, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we focused on neurotransmission between rod photoreceptor cells and rod bipolar cells in the retina. We used genetically modified mouse models which abrogate each step of neurotransmission: presynaptic glutamate release, postsynaptic glutamate reception, or transduction channel function. We found that the TRPM1 transduction channel is required for the development of rod bipolar cells and their synaptic formation with subsequent neurons, independently of glutamate transmission. This study advances our understanding of neurotransmission-mediated retinal circuit refinement.
Collapse
|
70
|
Roosing S, Cremers FPM, Riemslag FCC, Zonneveld-Vrieling MN, Talsma HE, Klessens-Godfroy FJM, den Hollander AI, van den Born LI. A Rare Form of Retinal Dystrophy Caused by Hypomorphic Nonsense Mutations in CEP290. Genes (Basel) 2017; 8:genes8080208. [PMID: 28829391 PMCID: PMC5575671 DOI: 10.3390/genes8080208] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To identify the gene defect and to study the clinical characteristics and natural course of disease in a family originally diagnosed with oligocone trichromacy (OT), a rare congenital cone dysfunction syndrome. METHODS Extensive clinical and ophthalmologic assessment was performed on two siblings with OT and long-term follow up data were analyzed. Subsequently, whole exome sequencing (WES) and Sanger sequence analysis of CEP290 was performed in the two siblings. Additionally, the identified CEP290 mutations were analyzed in persons with achromatopsia (ACHM) (n = 23) and autosomal recessive or isolated cone dystrophy (CD; n = 145). RESULTS In the first decade of life, the siblings were diagnosed with OT based on low visual acuity, photophobia, nystagmus, and absent cone response on electroretinography , but with normal color discrimination. Over time, the phenotype of OT evolved to a progressive degenerative disease without any CEP290-associated non-ocular features. In both siblings, two nonsense mutations (c.451C>T; p.(Arg151*) and c.4723A>T; p.(Lys1575*)) in CEP290 were found. Previously, p.(Arg151*) was demonstrated to induce nonsense-mediated alternative splicing events leading to intact open reading frames of the resulting mRNA products (p.(Leu148_Glu165del) and p.(Leu148_Lys172del)). mRNA analysis for p.(Lys1575*) confirmed a suspected hypomorphic character, as exon 36 skipping was observed in a small fraction of CEP290 mRNA, resulting in a 36 aa in-frame deletion (p.(Glu1569_Trp1604del)). No additional cases carrying these variants were identified in the ACHM and CD cohorts. CONCLUSIONS Compound heterozygous hypomorphic mutations in CEP290 may lead to a rare form of cone-dominated retinal dystrophy, a novel phenotype belonging to the CEP290-associated spectrum of ciliopathies. These findings provide insight into the effect of CEP290 mutations on the clinical phenotype.
Collapse
Affiliation(s)
- Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, 6525 EN Nijmegen, The Netherlands.
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, 6525 EN Nijmegen, The Netherlands.
| | - Frans C C Riemslag
- Bartiméus Institute for the Visually Impaired, 3703 AJ Zeist, The Netherlands.
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands.
| | | | - Herman E Talsma
- Bartiméus Institute for the Visually Impaired, 3703 AJ Zeist, The Netherlands.
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands.
| | | | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, 6525 EN Nijmegen, The Netherlands.
- Department of Ophthalmology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands.
| | | |
Collapse
|
71
|
Kántor O, Varga A, Nitschke R, Naumann A, Énzsöly A, Lukáts Á, Szabó A, Németh J, Völgyi B. Bipolar cell gap junctions serve major signaling pathways in the human retina. Brain Struct Funct 2017; 222:2603-2624. [PMID: 28070649 DOI: 10.1007/s00429-016-1360-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/22/2016] [Indexed: 11/26/2022]
Abstract
Connexin36 (Cx36) constituent gap junctions (GJ) throughout the brain connect neurons into functional syncytia. In the retina they underlie the transmission, averaging and correlation of signals prior conveying visual information to the brain. This is the first study that describes retinal bipolar cell (BC) GJs in the human inner retina, whose function is enigmatic even in the examined animal models. Furthermore, a number of unique features (e.g. fovea, trichromacy, midget system) necessitate a reexamination of the animal model results in the human retina. Well-preserved postmortem human samples of this study are allowed to identify Cx36 expressing BCs neurochemically. Results reveal that both rod and cone pathway interneurons display strong Cx36 expression. Rod BC inputs to AII amacrine cells (AC) appear in juxtaposition to AII GJs, thus suggesting a strategic AII cell targeting by rod BCs. Cone BCs serving midget, parasol or koniocellular signaling pathways display a wealth of Cx36 expression to form homologously coupled arrays. In addition, they also establish heterologous GJ contacts to serve an exchange of information between parallel signaling streams. Interestingly, a prominent Cx36 expression was exhibited by midget system BCs that appear to maintain intimate contacts with bistratified BCs serving other pathways. These findings suggest that BC GJs in parallel signaling streams serve both an intra- and inter-pathway exchange of signals in the human retina.
Collapse
Affiliation(s)
- Orsolya Kántor
- Department of Neuroanatomy, Faculty of Medicine, Institute for Anatomy and Cell Biology, University of Freiburg, 79104, Freiburg, Germany
- MTA-PTE NAP B Retinal Electrical Synapses Research Group, Pécs, 7624, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Alexandra Varga
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Roland Nitschke
- Life Imaging Center, Center for Biological Systems Analysis, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Angela Naumann
- Life Imaging Center, Center for Biological Systems Analysis, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Anna Énzsöly
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, 1085, Hungary
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - János Németh
- Department of Ophthalmology, Semmelweis University, Budapest, 1085, Hungary
| | - Béla Völgyi
- MTA-PTE NAP B Retinal Electrical Synapses Research Group, Pécs, 7624, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, 7624, Hungary.
- János Szentágothai Research Center, University of Pécs, Ifjúság street 20, Pécs, 7624, Hungary.
- Department of Ophthalmology, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
72
|
Roy S, Kim D, Lim R. Cell-cell communication in diabetic retinopathy. Vision Res 2017; 139:115-122. [PMID: 28583293 DOI: 10.1016/j.visres.2017.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
In diabetic retinopathy, high glucose (HG)-mediated breakdown in cell-cell communication promotes disruption of retinal homeostasis. Several studies indicate that HG condition alters expression of connexin genes and subsequent gap junction intercellular communication (GJIC) in retinal vascular cells and non-vascular cells. A serious consequence of disrupted cell-cell communication is apoptosis and breakdown of the blood-retinal barrier (BRB). More recently, studies suggest adverse effects from HG on retinal Müller cells. This article focuses on HG-mediated changes in connexin expression and GJIC and their subsequent effects on the breakdown of retinal homeostasis, cell death, compromised vascular permeability, and interactions between endothelial cells, pericytes and retinal Müller cells in the pathogenesis of diabetic retinopathy. Additionally, options for rectifying disrupted homeostasis under HG condition associated with diabetic retinopathy are reviewed.
Collapse
Affiliation(s)
- Sayon Roy
- Department of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States.
| | - Dongjoon Kim
- Department of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Remington Lim
- Department of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
73
|
Neuillé M, Cao Y, Caplette R, Guerrero-Given D, Thomas C, Kamasawa N, Sahel JA, Hamel CP, Audo I, Picaud S, Martemyanov KA, Zeitz C. LRIT3 Differentially Affects Connectivity and Synaptic Transmission of Cones to ON- and OFF-Bipolar Cells. Invest Ophthalmol Vis Sci 2017; 58:1768-1778. [PMID: 28334377 PMCID: PMC5374884 DOI: 10.1167/iovs.16-20745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). Using a cCSNB mouse model lacking Lrit3 (nob6), we recently have shown that LRIT3 has a role in the correct localization of TRPM1 (transient receptor potential melastatin 1) to the dendritic tips of ON-bipolar cells (BCs), contacting both rod and cone photoreceptors. Furthermore, postsynaptic clustering of other mGluR6 cascade components is selectively eliminated at the dendritic tips of cone ON-BCs. The purpose of this study was to further define the role of LRIT3 in structural and functional organization of cone synapses. Methods Exhaustive electroretinogram analysis was performed in a patient with LRIT3 mutations. Multielectrode array recordings were performed at the level of retinal ganglion cells in nob6 mice. Targeting of GluR1 and GluR5 at the dendritic tips of OFF-BCs in nob6 retinas was assessed by immunostaining and confocal microscopy. The ultrastructure of photoreceptor synapses was evaluated by electron microscopy in nob6 mice. Results The patient with LRIT3 mutations had a selective ON-BC dysfunction with relatively preserved OFF-BC responses. In nob6 mice, complete lack of ON-pathway function with robust, yet altered signaling processing in OFF-pathways was detected. Consistent with these observations, molecules essential for the OFF-BC signaling were normally targeted to the synapse. Finally, synaptic contacts made by ON-BC but not OFF-BC neurons with the cone pedicles were disorganized without ultrastructural alterations in cone terminals, horizontal cell processes, or synaptic ribbons. Conclusions These results suggest that LRIT3 is likely involved in coordination of the transsynaptic communication between cones and ON-BCs during synapse formation and function.
Collapse
Affiliation(s)
- Marion Neuillé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida United States
| | - Romain Caplette
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | | | - Connon Thomas
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida United States
| | - Naomi Kamasawa
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida United States
| | - José-Alain Sahel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France 4CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France 5Institute of Ophthalmology, University College of London, London, United Kingdom 6Fondation Ophtalmologique Adolphe de Rothschild, Paris, France 8Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Christian P Hamel
- INSERM U583, Physiopathologie et thérapie des déficits sensoriels et moteurs, Institut des Neurosciences de Montpellier, Hôpital Saint-Eloi, Montpellier, France
| | - Isabelle Audo
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France 4CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France 5Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Serge Picaud
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida United States
| | - Christina Zeitz
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| |
Collapse
|
74
|
Tien NW, Soto F, Kerschensteiner D. Homeostatic Plasticity Shapes Cell-Type-Specific Wiring in the Retina. Neuron 2017; 94:656-665.e4. [PMID: 28457596 DOI: 10.1016/j.neuron.2017.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/17/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
Convergent input from different presynaptic partners shapes the responses of postsynaptic neurons. Whether developing postsynaptic neurons establish connections with each presynaptic partner independently or balance inputs to attain specific responses is unclear. Retinal ganglion cells (RGCs) receive convergent input from bipolar cell types with different contrast responses and temporal tuning. Here, using optogenetic activation and pharmacogenetic silencing, we found that type 6 bipolar (B6) cells dominate excitatory input to ONα-RGCs. We generated mice in which B6 cells were selectively removed from developing circuits (B6-DTA). In B6-DTA mice, ONα-RGCs adjusted connectivity with other bipolar cells in a cell-type-specific manner. They recruited new partners, increased synapses with some existing partners, and maintained constant input from others. Patch-clamp recordings revealed that anatomical rewiring precisely preserved contrast and temporal frequency response functions of ONα-RGCs, indicating that homeostatic plasticity shapes cell-type-specific wiring in the developing retina to stabilize visual information sent to the brain.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
75
|
Kuhrt H, Bringmann A, Härtig W, Wibbelt G, Peichl L, Reichenbach A. The Retina of Asian and African Elephants: Comparison of Newborn and Adult. BRAIN, BEHAVIOR AND EVOLUTION 2017; 89:84-103. [PMID: 28437785 DOI: 10.1159/000464097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/14/2017] [Indexed: 11/19/2022]
Abstract
Elephants are precocial mammals that are relatively mature as newborns and mobile shortly after birth. To determine whether the retina of newborn elephants is capable of supporting the mobility of elephant calves, we compared the retinal structures of 2 newborn elephants (1 African and 1 Asian) and 2 adult animals of both species by immunohistochemical and morphometric methods. For the first time, we present here a comprehensive qualitative and quantitative characterization of the cellular composition of the newborn and the adult retinas of 2 elephant species. We found that the retina of elephants is relatively mature at birth. All retinal layers were well discernible, and various retinal cell types were detected in the newborns, including Müller glial cells (expressing glutamine synthetase and cellular retinal binding protein; CRALBP), cone photoreceptors (expressing S-opsin or M/L-opsin), protein kinase Cα-expressing bipolar cells, tyrosine hydroxylase-, choline acetyltransferase (ChAT)-, calbindin-, and calretinin-expressing amacrine cells, and calbindin-expressing horizontal cells. The retina of newborn elephants contains discrete horizontal cells which coexpress ChAT, calbindin, and calretinin. While the overall structure of the retina is very similar between newborn and adult elephants, various parameters change after birth. The postnatal thickening of the retinal ganglion cell axons and the increase in ganglion cell soma size are explained by the increase in body size after birth, and the decreases in the densities of neuronal and glial cells are explained by the postnatal expansion of the retinal surface area. The expression of glutamine synthetase and CRALBP in the Müller cells of newborn elephants suggests that the cells are already capable of supporting the activities of photoreceptors and neurons. As a peculiarity, the elephant retina contains both normally located and displaced giant ganglion cells, with single cells reaching a diameter of more than 50 µm in adults and therefore being almost in the range of giant retinal ganglion cells found in aquatic mammals. Some of these ganglion cells are displaced into the inner nuclear layer, a unique feature of terrestrial mammals. For the first time, we describe here the occurrence of many bistratified rod bipolar cells in the elephant retina. These bistratified bipolar cells may improve nocturnal contrast perception in elephants given their arrhythmic lifestyle.
Collapse
Affiliation(s)
- Heidrun Kuhrt
- Paul Flechsig Institute of Brain Research, University of Leipzig Medical Faculty, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
76
|
Krishnamoorthy V, Weick M, Gollisch T. Sensitivity to image recurrence across eye-movement-like image transitions through local serial inhibition in the retina. eLife 2017; 6. [PMID: 28230526 PMCID: PMC5338922 DOI: 10.7554/elife.22431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/20/2017] [Indexed: 01/28/2023] Open
Abstract
Standard models of stimulus encoding in the retina postulate that image presentations activate neurons according to the increase of preferred contrast inside the receptive field. During natural vision, however, images do not arrive in isolation, but follow each other rapidly, separated by sudden gaze shifts. We here report that, contrary to standard models, specific ganglion cells in mouse retina are suppressed after a rapid image transition by changes in visual patterns across the transition, but respond with a distinct spike burst when the same pattern reappears. This sensitivity to image recurrence depends on opposing effects of glycinergic and GABAergic inhibition and can be explained by a circuit of local serial inhibition. Rapid image transitions thus trigger a mode of operation that differs from the processing of simpler stimuli and allows the retina to tag particular image parts or to detect transition types that lead to recurring stimulus patterns. DOI:http://dx.doi.org/10.7554/eLife.22431.001
Collapse
Affiliation(s)
- Vidhyasankar Krishnamoorthy
- Department of Ophthalmology, University Medical Center Göttingen, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,Visual Coding Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Michael Weick
- Department of Ophthalmology, University Medical Center Göttingen, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,Visual Coding Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
77
|
Maguire J, Parry NRA, Kremers J, Murray IJ, McKeefry D. The morphology of human rod ERGs obtained by silent substitution stimulation. Doc Ophthalmol 2017; 134:11-24. [PMID: 28091887 PMCID: PMC5274650 DOI: 10.1007/s10633-017-9571-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/05/2017] [Indexed: 11/10/2022]
Abstract
Purpose To record transient ERGs from the light-adapted human retina using silent substitution stimuli which selectively reflect the activity of rod photoreceptors. We aim to describe the morphology of these waveforms and examine how they are affected by the use of less selective stimuli and by retinal pathology. Methods Rod-isolating stimuli with square-wave temporal profiles (250/250 ms onset/offset) were presented using a 4 primary LED ganzfeld stimulator. Experiment 1: ERGs were recorded using a rod-isolating stimulus (63 ph Td, rod contrast, Crod = 0.25) from a group (n = 20) of normal trichromatic observers. Experiment 2: Rod ERGs were recorded from a group (n = 5) using a rod-isolating stimulus (Crod = 0.25) which varied in retinal illuminance from 40 to 10,000 ph Td. Experiment 3: ERGs were elicited using 2 kinds of non-isolating stimuli; (1) broadband and (2) rod-isolating stimuli which contained varying degrees of L- and M-cone excitation. Experiment 4: Rod ERGs were recorded from two patient groups with rod monochromacy (n = 3) and CSNB (type 1; n = 2). Results The rod-isolated ERGs elicited from normal subjects had a waveform with a positive onset component followed by a negative offset. Response amplitude was maximal at retinal illuminances <100 ph Td and was virtually abolished at 400 ph Td. The use of non-selective stimuli altered the ERG waveform eliciting more photopic-like ERG responses. Rod ERGs recorded from rod monochromats had similar features to those recorded from normal trichromats, in contrast to those recorded from participants with CSNB which had an electronegative appearance. Conclusions Our results demonstrate that ERGs elicited by silent substitution stimuli can selectively reflect the operation of rod photoreceptors in the normal, light-adapted human retina.
Collapse
Affiliation(s)
- J Maguire
- Bradford School of Optometry and Vision Sciences, University of Bradford, Bradford, W. Yorkshire, BD7 1DP, UK
| | - N R A Parry
- Bradford School of Optometry and Vision Sciences, University of Bradford, Bradford, W. Yorkshire, BD7 1DP, UK.,Vision Science Centre, Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J Kremers
- Bradford School of Optometry and Vision Sciences, University of Bradford, Bradford, W. Yorkshire, BD7 1DP, UK.,Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - I J Murray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - D McKeefry
- Bradford School of Optometry and Vision Sciences, University of Bradford, Bradford, W. Yorkshire, BD7 1DP, UK.
| |
Collapse
|
78
|
Behrens C, Schubert T, Haverkamp S, Euler T, Berens P. Connectivity map of bipolar cells and photoreceptors in the mouse retina. eLife 2016; 5:e20041. [PMID: 27885985 PMCID: PMC5148610 DOI: 10.7554/elife.20041] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/21/2016] [Indexed: 01/09/2023] Open
Abstract
In the mouse retina, three different types of photoreceptors provide input to 14 bipolar cell (BC) types. Classically, most BC types are thought to contact all cones within their dendritic field; ON-BCs would contact cones exclusively via so-called invaginating synapses, while OFF-BCs would form basal synapses. By mining publically available electron microscopy data, we discovered interesting violations of these rules of outer retinal connectivity: ON-BC type X contacted only ~20% of the cones in its dendritic field and made mostly atypical non-invaginating contacts. Types 5T, 5O and 8 also contacted fewer cones than expected. In addition, we found that rod BCs received input from cones, providing anatomical evidence that rod and cone pathways are interconnected in both directions. This suggests that the organization of the outer plexiform layer is more complex than classically thought.
Collapse
Affiliation(s)
- Christian Behrens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Center for Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Silke Haverkamp
- Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Frankfurt, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
79
|
Ho T, Aplin FP, Jobling AI, Phipps JA, de Iongh RU, Greferath U, Vessey KA, Fletcher EL. Localization and Possible Function of P2X Receptors in Normal and Diseased Retinae. J Ocul Pharmacol Ther 2016; 32:509-517. [DOI: 10.1089/jop.2015.0158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Tracy Ho
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Felix P. Aplin
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Andrew I. Jobling
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Joanna A. Phipps
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Robb U. de Iongh
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Ursula Greferath
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Kirstan A. Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Erica L. Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| |
Collapse
|
80
|
Xu H, Tian N. Pathway-Specific Maturation, Visual Deprivation, and Development of Retinal Pathway. Neuroscientist 2016; 10:337-46. [PMID: 15271261 DOI: 10.1177/1073858404265254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the fundamental features of the visual system is the segregation of neural circuits that process increments and decrements of luminance into ON and OFF pathways. In mature retina, the dendrites of retinal ganglion cells (RGCs) in the inner plexiform layer (IPL) of retina are separated into ON or OFF sublaminaspecific stratification. At an early developmental stage, however, the dendrites of most RGCs are ramified throughout the IPL. The maturation of RGC ON/OFF dendritic stratification requires neural activities mediated by afferent inputs from bipolar and amacrine cells. The synchronized spontaneous burst activities in early postnatal developing retina regulate RGC dendritic filopodial movements and the maintenance or elimination of dendritic processes. After eye opening, visual experience further remodels and consolidates the retinal neural circuit into mature forms. Several neurotransmitter systems, including glutamatergic, acetylcholinergic, GAB Aergic, and glycinergic systems, might act together to modulate the RGC dendritic refinement. In addition, both the bipolar cells and cholinergic amacrine cells may provide laminar cues for the maturation of RGC dendritic stratification.
Collapse
Affiliation(s)
- Hongping Xu
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
81
|
Tu HY, Chiao CC. Cx36 expression in the AII-mediated rod pathway is activity dependent in the developing rabbit retina. Dev Neurobiol 2016; 76:473-86. [PMID: 26084632 DOI: 10.1002/dneu.22320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022]
Abstract
Gap junctions are composed of connexin 36 (Cx36) and play a critical role in the rod photoreceptor signaling pathways of the vertebrate retina. Despite the fact that their connection and modulation in various rod pathways have been extensively studied in adult animals, little is known about the contribution and regulation of gap junctions to the development of the AII amacrine cell (AC)-mediated rod pathway. Using immunohistochemistry and microinjection, this study demonstrates a steady increase in relative Cx36 protein expression in both plexiform layers of the rabbit retina at around the time of eye opening. However, immediately after eye opening, most Cx36 immunoreactive AII ACs show no gap junction coupling pattern to neighboring cells and it is not until the third postnatal week that AII cells begin to exhibit an adult-like tracer-coupling pattern. Moreover, studies using dark-rearing and AMPA receptor blockade during postnatal development both revealed that relative levels of Cx36 immunoreactivity in AII ACs were increased when neural activity was inhibited. Our findings suggest that Cx36 expression in the AII-mediated rod pathway is activity dependent in the developing rabbit retina.
Collapse
Affiliation(s)
- Hung-Ya Tu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chuan-Chin Chiao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
82
|
Kuo SP, Schwartz GW, Rieke F. Nonlinear Spatiotemporal Integration by Electrical and Chemical Synapses in the Retina. Neuron 2016; 90:320-32. [PMID: 27068789 DOI: 10.1016/j.neuron.2016.03.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 02/02/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
Abstract
Electrical and chemical synapses coexist in circuits throughout the CNS. Yet, it is not well understood how electrical and chemical synaptic transmission interact to determine the functional output of networks endowed with both types of synapse. We found that release of glutamate from bipolar cells onto retinal ganglion cells (RGCs) was strongly shaped by gap-junction-mediated electrical coupling within the bipolar cell network of the mouse retina. Specifically, electrical synapses spread signals laterally between bipolar cells, and this lateral spread contributed to a nonlinear enhancement of bipolar cell output to visual stimuli presented closely in space and time. Our findings thus (1) highlight how electrical and chemical transmission can work in concert to influence network output and (2) reveal a previously unappreciated circuit mechanism that increases RGC sensitivity to spatiotemporally correlated input, such as that produced by motion.
Collapse
Affiliation(s)
- Sidney P Kuo
- Department of Physiology and Biophysics and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Gregory W Schwartz
- Department of Physiology and Biophysics and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Fred Rieke
- Department of Physiology and Biophysics and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
83
|
Connexin43 in retinal injury and disease. Prog Retin Eye Res 2016; 51:41-68. [DOI: 10.1016/j.preteyeres.2015.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 12/26/2022]
|
84
|
de Souza CF, Nivison-Smith L, Christie DL, Polkinghorne P, McGhee C, Kalloniatis M, Acosta ML. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res 2016; 150:135-48. [PMID: 26769220 DOI: 10.1016/j.exer.2016.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 01/04/2023]
Abstract
Macromolecular cell markers are essential for the classification and characterization of the highly complex and cellularly diverse vertebrate retina. Although a plethora of markers are described in the current literature, the immunoreactivity of these markers in normal human tissue has not been fully determined. This is problematic as they are quintessential to the characterization of morphological changes associated with human retinal disease. This review provides an overview of the macromolecular markers currently available to assess human retinal cell types. We draw on immunohistochemical studies conducted in our laboratories to describe marker immunoreactivity in human retina alongside comparative descriptions in non-human tissues. Considering the growing number of eye banks services offering healthy and diseased human retinal tissue, this review provides a point of reference for future human retina studies and highlights key species specific disease applications of some macromolecular markers.
Collapse
Affiliation(s)
- Clairton F de Souza
- School of Optometry and Vision Science, University of Auckland, Auckland, 1023, New Zealand; Department of Ophthalmology, University of Auckland, Auckland, 1023, New Zealand
| | - Lisa Nivison-Smith
- Centre for Eye Health, University of New South Wales, Sydney, 2052, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia
| | - David L Christie
- School of Biological Sciences, University of Auckland, Auckland, 1023, New Zealand
| | - Phillip Polkinghorne
- Department of Ophthalmology, University of Auckland, Auckland, 1023, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, 1023, New Zealand
| | - Charles McGhee
- Department of Ophthalmology, University of Auckland, Auckland, 1023, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, 1023, New Zealand
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of Auckland, Auckland, 1023, New Zealand; Centre for Eye Health, University of New South Wales, Sydney, 2052, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia
| | - Monica L Acosta
- School of Optometry and Vision Science, University of Auckland, Auckland, 1023, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, 1023, New Zealand.
| |
Collapse
|
85
|
Zhou Y, Tencerová B, Hartveit E, Veruki ML. Functional NMDA receptors are expressed by both AII and A17 amacrine cells in the rod pathway of the mammalian retina. J Neurophysiol 2016; 115:389-403. [PMID: 26561610 PMCID: PMC4760463 DOI: 10.1152/jn.00947.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/08/2015] [Indexed: 11/22/2022] Open
Abstract
At many glutamatergic synapses, non-N-methyl-d-aspartate (NMDA) and NMDA receptors are coexpressed postsynaptically. In the mammalian retina, glutamatergic rod bipolar cells are presynaptic to two rod amacrine cells (AII and A17) that constitute dyad postsynaptic partners opposite each presynaptic active zone. Whereas there is strong evidence for expression of non-NMDA receptors by both AII and A17 amacrines, the expression of NMDA receptors by the pre- and postsynaptic neurons in this microcircuit has not been resolved. In this study, using patch-clamp recording from visually identified cells in rat retinal slices, we investigated the expression and functional properties of NMDA receptors in these cells with a combination of pharmacological and biophysical methods. Pressure application of NMDA did not evoke a response in rod bipolar cells, but for both AII and A17 amacrines, NMDA evoked responses that were blocked by a competitive antagonist (CPP) applied extracellularly and an open channel blocker (MK-801) applied intracellularly. NMDA-evoked responses also displayed strong Mg(2+)-dependent voltage block and were independent of gap junction coupling. With low-frequency application (60-s intervals), NMDA-evoked responses remained stable for up to 50 min, but with higher-frequency stimulation (10- to 20-s intervals), NMDA responses were strongly and reversibly suppressed. We observed strong potentiation when NMDA was applied in nominally Ca(2+)-free extracellular solution, potentially reflecting Ca(2+)-dependent NMDA receptor inactivation. These results indicate that expression of functional (i.e., conductance-increasing) NMDA receptors is common to both AII and A17 amacrine cells and suggest that these receptors could play an important role for synaptic signaling, integration, or plasticity in the rod pathway.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
86
|
Euler T, Schubert T. Multiple Independent Oscillatory Networks in the Degenerating Retina. Front Cell Neurosci 2015; 9:444. [PMID: 26617491 PMCID: PMC4637421 DOI: 10.3389/fncel.2015.00444] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/26/2015] [Indexed: 01/09/2023] Open
Abstract
During neuronal degenerative diseases, microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. This can be particularly well observed in the retina, where photoreceptor degeneration triggers rewiring of connections in the retina’s first synaptic layer (e.g., Strettoi et al., 2003; Haq et al., 2014), while the synaptic organization of inner retinal circuits appears to be little affected (O’Brien et al., 2014; Figures 1A,B). Remodeling of (outer) retinal circuits and diminishing light-driven activity due to the loss of functional photoreceptors lead to spontaneous activity that can be observed at different retinal levels (Figure 1C), including the retinal ganglion cells, which display rhythmic spiking activity in the degenerative retina (Margolis et al., 2008; Stasheff, 2008; Menzler and Zeck, 2011; Stasheff et al., 2011). Two networks have been suggested to drive the oscillatory activity in the degenerating retina: a network of remnant cone photoreceptors, rod bipolar cells (RBCs) and horizontal cells in the outer retina (Haq et al., 2014), and the AII amacrine cell-cone bipolar cell network in the inner retina (Borowska et al., 2011). Notably, spontaneous rhythmic activity in the inner retinal network can be triggered in the absence of synaptic remodeling in the outer retina, for example, in the healthy retina after photo-bleaching (Menzler et al., 2014). In addition, the two networks show remarkable differences in their dominant oscillation frequency range as well as in the types and numbers of involved cells (Menzler and Zeck, 2011; Haq et al., 2014). Taken together this suggests that the two networks are self-sustained and can be active independently from each other. However, it is not known if and how they modulate each other. In this mini review, we will discuss: (i) commonalities and differences between these two oscillatory networks as well as possible interaction pathways; (ii) how multiple self-sustained networks may hamper visual restoration strategies employing, for example, microelectronic implants, optogenetics or stem cells, and briefly; and (iii) how the finding of diverse (independent) networks in the degenerative retina may relate to other parts of the neurodegenerative central nervous system.
Collapse
Affiliation(s)
- Thomas Euler
- Werner Reichardt Centre for Integrative Neuroscience (CIN)/Institute for Ophathalmic Research, University of Tübingen Tübingen, Germany ; Bernstein Centre for Computational Neuroscience, University of Tübingen Tübingen, Germany
| | - Timm Schubert
- Werner Reichardt Centre for Integrative Neuroscience (CIN)/Institute for Ophathalmic Research, University of Tübingen Tübingen, Germany
| |
Collapse
|
87
|
Synaptotagmin-7 Is Essential for Ca2+-Triggered Delayed Asynchronous Release But Not for Ca2+-Dependent Vesicle Priming in Retinal Ribbon Synapses. J Neurosci 2015; 35:11024-33. [PMID: 26245964 DOI: 10.1523/jneurosci.0759-15.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Most synapses release neurotransmitters in two phases: (1) a fast synchronous phase lasting a few milliseconds; and (2) a delayed "asynchronous" phase lasting hundreds of milliseconds. Ca(2+) triggers fast synchronous neurotransmitter release by binding to synaptotagmin-1, synaptotagmin-2, or synaptotagmin-9, but how Ca(2+) triggers delayed asynchronous release has long remained enigmatic. Recent results suggested that consistent with the Ca(2+)-sensor function of synaptotagmin-7 in neuroendocrine exocytosis, synaptotagmin-7 also functions as a Ca(2+) sensor for synaptic vesicle exocytosis but operates during delayed asynchronous release. Puzzlingly, a subsequent study postulated that synaptotagmin-7 is not a Ca(2+) sensor for release but mediates Ca(2+)-dependent vesicle repriming after intense stimulation. To address these issues, we here analyzed synaptic transmission at rod bipolar neuron-AII amacrine cell synapses in acute mouse retina slices as a model system. Using paired recordings, we show that knock-out of synaptotagmin-7 selectively impairs delayed asynchronous release but not fast synchronous release. Delayed asynchronous release was blocked in wild-type synapses by intracellular addition of high concentrations of the slow Ca(2+)-chelator EGTA, but EGTA had no effect in synaptotagmin-7 knock-out neurons because delayed asynchronous release was already impaired. Moreover, direct measurements of vesicle repriming failed to uncover an effect of the synaptotagmin-7 knock-out on vesicle repriming. Our data demonstrate that synaptotagmin-7 is selectively essential for Ca(2+)-dependent delayed asynchronous release in retinal rod bipolar cell synapses, that its function can be blocked by simply introducing a slow Ca(2+) buffer into the cells, and that synaptotagmin-7 is not required for normal vesicle repriming. SIGNIFICANCE STATEMENT How Ca(2+) triggers delayed asynchronous release has long remained enigmatic. Synaptotagmin-7 has been implicated recently as Ca(2+) sensor in mediating delayed asynchronous release, or vesicle repriming, in cultured neurons. To test the precise function of synaptotagmin-7 in a physiologically important synapse in situ, we have used pair recordings to study the synaptic transmission between retinal rod bipolar cells and AII amacrine cells. Our data demonstrate that the knock-out of synaptotagmin-7 selectively impaired delayed asynchronous release but not synchronous release. In contrast, the readily releasable vesicles after depletion recover normally in knock-out mice. Therefore, our findings extend our knowledge of synaptotagmins as Ca(2+) sensors in vesicle fusion and support the idea that synapses are governed universally by different synaptotagmin Ca(2+) sensors mediating distinct release.
Collapse
|
88
|
Van Hook MJ, Thoreson WB. Unconventional Transmission at Conventional Synapses of an Inhibitory Interneuron. Neuron 2015; 87:463-5. [PMID: 26247854 DOI: 10.1016/j.neuron.2015.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The AII amacrine cell (AII) is a key information hub in the retina, allowing rod-driven signals to piggyback onto cone-dominated circuitry. In this issue, Balakrishnan et al. (2015) use capacitance recordings to unravel mechanisms of inhibitory synaptic transmission by AIIs.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute and Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
89
|
A Naturally Occurring Canine Model of Autosomal Recessive Congenital Stationary Night Blindness. PLoS One 2015; 10:e0137072. [PMID: 26368928 PMCID: PMC4569341 DOI: 10.1371/journal.pone.0137072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022] Open
Abstract
Congenital stationary night blindness (CSNB) is a non-progressive, clinically and genetically heterogeneous disease of impaired night vision. We report a naturally-occurring, stationary, autosomal recessive phenotype in beagle dogs with normal daylight vision but absent night vision. Affected dogs had normal retinas on clinical examination, but showed no detectable rod responses. They had “negative-type” mixed rod and cone responses in full-field ERGs. Their photopic long-flash ERGs had normal OFF-responses associated with severely reduced ON-responses. The phenotype is similar to the Schubert-Bornschein form of complete CSNB in humans. Homozygosity mapping ruled out most known CSNB candidates as well as CACNA2D4 and GNB3. Three remaining genes were excluded based on sequencing the open reading frame and intron-exon boundaries (RHO, NYX), causal to a different form of CSNB (RHO) or X-chromosome (NYX, CACNA1F) location. Among the genes expressed in the photoreceptors and their synaptic terminals, and mGluR6 cascade and modulators, reduced expression of GNAT1, CACNA2D4 and NYX was observed by qRT-PCR in both carrier (n = 2) and affected (n = 2) retinas whereas CACNA1F was down-regulated only in the affecteds. Retinal morphology revealed normal cellular layers and structure, and electron microscopy showed normal rod spherules and synaptic ribbons. No difference from normal was observed by immunohistochemistry (IHC) for antibodies labeling rods, cones and their presynaptic terminals. None of the retinas showed any sign of stress. Selected proteins of mGluR6 cascade and its modulators were examined by IHC and showed that PKCα weakly labeled the rod bipolar somata in the affected, but intensely labeled axonal terminals that appeared thickened and irregular. Dendritic terminals of ON-bipolar cells showed increased Goα labeling. Both PKCα and Goα labeled the more prominent bipolar dendrites that extended into the OPL in affected but not normal retinas. Interestingly, RGS11 showed no labeling in the affected retina. Our results indicate involvement of a yet unknown gene in this canine model of complete CSNB.
Collapse
|
90
|
Newkirk GS, Hoon M, Wong RO, Detwiler PB. Response Properties of a Newly Identified Tristratified Narrow Field Amacrine Cell in the Mouse Retina. PLoS One 2015; 10:e0137702. [PMID: 26352594 PMCID: PMC4564219 DOI: 10.1371/journal.pone.0137702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/19/2015] [Indexed: 11/27/2022] Open
Abstract
Amacrine cells were targeted for whole cell recording using two-photon fluorescence microscopy in a transgenic mouse line in which the promoter for dopamine receptor 2 drove expression of green fluorescent protein in a narrow field tristratified amacrine cell (TNAC) that had not been studied previously. Light evoked a multiphasic response that was the sum of hyperpolarizing and depolarization synaptic inputs consistent with distinct dendritic ramifications in the off and on sublamina of the inner plexiform layer. The amplitude and waveform of the response, which consisted of an initial brief hyperpolarization at light onset followed by recovery to a plateau potential close to dark resting potential and a hyperpolarizing response at the light offset varied little over an intensity range from 0.4 to ~10^6 Rh*/rod/s. This suggests that the cell functions as a differentiator that generates an output signal (a transient reduction in inhibitory input to downstream retina neurons) that is proportional to the derivative of light input independent of its intensity. The underlying circuitry appears to consist of rod and cone driven on and off bipolar cells that provide direct excitatory input to the cell as well as to GABAergic amacrine cells that are synaptically coupled to TNAC. Canonical reagents that blocked excitatory (glutamatergic) and inhibitory (GABA and glycine) synaptic transmission had effects on responses to scotopic stimuli consistent with the rod driven component of the proposed circuit. However, responses evoked by photopic stimuli were paradoxical and could not be interpreted on the basis of conventional thinking about the neuropharmacology of synaptic interactions in the retina.
Collapse
Affiliation(s)
- G. S. Newkirk
- Department of Physiology & Biophysics and Program in Neurobiology & Behavior, University of Washington, Seattle, Washington, United States of America
- * E-mail: (GSN); (PBD)
| | - M. Hoon
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - R. O. Wong
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - P. B. Detwiler
- Department of Physiology & Biophysics and Program in Neurobiology & Behavior, University of Washington, Seattle, Washington, United States of America
- * E-mail: (GSN); (PBD)
| |
Collapse
|
91
|
Tsai TI, Atorf J, Neitz M, Neitz J, Kremers J. Rod- and cone-driven responses in mice expressing human L-cone pigment. J Neurophysiol 2015; 114:2230-41. [PMID: 26245314 DOI: 10.1152/jn.00188.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022] Open
Abstract
The mouse is commonly used for studying retinal processing, primarily because it is amenable to genetic manipulation. To accurately study photoreceptor driven signals in the healthy and diseased retina, it is of great importance to isolate the responses of single photoreceptor types. This is not easily achieved in mice because of the strong overlap of rod and M-cone absorption spectra (i.e., maxima at 498 and 508 nm, respectively). With a newly developed mouse model (Opn1lw(LIAIS)) expressing a variant of the human L-cone pigment (561 nm) instead of the mouse M-opsin, the absorption spectra are substantially separated, allowing retinal physiology to be studied using silent substitution stimuli. Unlike conventional chromatic isolation methods, this spectral compensation approach can isolate single photoreceptor subtypes without changing the retinal adaptation. We measured flicker electroretinograms in these mutants under ketamine-xylazine sedation with double silent substitution (silent S-cone and either rod or M/L-cones) and obtained robust responses for both rods and (L-)cones. Small signals were yielded in wild-type mice, whereas heterozygotes exhibited responses that were generally intermediate to both. Fundamental response amplitudes and phase behaviors (as a function of temporal frequency) in all genotypes were largely similar. Surprisingly, isolated (L-)cone and rod response properties in the mutant strain were alike. Thus the LIAIS mouse warrants a more comprehensive in vivo assessment of photoreceptor subtype-specific physiology, because it overcomes the hindrance of overlapping spectral sensitivities present in the normal mouse.
Collapse
Affiliation(s)
- Tina I Tsai
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany; Department of Biology, Division of Animal Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jenny Atorf
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany; Department of Biology, Division of Animal Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Maureen Neitz
- Vision Sciences, University of Washington, Seattle, Washington
| | - Jay Neitz
- Vision Sciences, University of Washington, Seattle, Washington
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany; Department of Anatomy II, University of Erlangen-Nürnberg, Germany; and School of Optometry and Vision Science, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
92
|
Pearson JT, Kerschensteiner D. Ambient illumination switches contrast preference of specific retinal processing streams. J Neurophysiol 2015; 114:540-50. [PMID: 25995351 DOI: 10.1152/jn.00360.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 11/22/2022] Open
Abstract
Contrast, a fundamental feature of visual scenes, is encoded in a distributed manner by ∼ 20 retinal ganglion cell (RGC) types, which stream visual information to the brain. RGC types respond preferentially to positive (ON(pref)) or negative (OFF(pref)) contrast and differ in their sensitivity to preferred contrast and responsiveness to nonpreferred stimuli. Vision operates over an enormous range of mean light levels. The influence of ambient illumination on contrast encoding across RGC types is not well understood. Here, we used large-scale multielectrode array recordings to characterize responses of mouse RGCs under lighting conditions spanning five orders in brightness magnitude. We identify three functional RGC types that switch contrast preference in a luminance-dependent manner (Sw1-, Sw2-, and Sw3-RGCs). As ambient illumination increases, Sw1- and Sw2-RGCs shift from ON(pref) to OFF(pref) and Sw3-RGCs from OFF(pref) to ON(pref). In all cases, transitions in contrast preference are reversible and track light levels. By mapping spatiotemporal receptive fields at different mean light levels, we find that changes in input from ON and OFF pathways in receptive field centers underlie shifts in contrast preference. Sw2-RGCs exhibit direction-selective responses to motion stimuli. Despite changing contrast preference, direction selectivity of Sw2-RGCs and other RGCs as well as orientation-selective responses of RGCs remain stable across light levels.
Collapse
Affiliation(s)
- James T Pearson
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; Graduate Program in Developmental, Regenerative and Stem Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Hope Center for Neurological Disorders at Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
93
|
Jin NG, Chuang AZ, Masson PJ, Ribelayga CP. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina. J Physiol 2015; 593:1597-631. [PMID: 25616058 PMCID: PMC4386962 DOI: 10.1113/jphysiol.2014.284919] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/19/2015] [Indexed: 11/08/2022] Open
Abstract
Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from single rod inner segments in isolated intact neural mouse retinae, maintained by superfusion. Experiments were conducted at different times of the day or under constant environmental conditions, at different times across the circadian cycle. We show that rod electrical coupling is regulated by a circadian clock and dopamine, so that coupling is weak during the day and strong at night. Altogether, patch-clamp recordings of single-photon responses in mouse rods, tracer coupling, receptive field measurements and pharmacological manipulations of gap junction and dopamine receptor activity provide compelling evidence that rod coupling is modulated in a circadian manner. These data are consistent with computer modelling. At night, single-photon responses are smaller due to coupling, but the signal-to-noise ratio for a dim (multiphoton) light response is increased at night because of signal averaging between coupled rods.
Collapse
Affiliation(s)
- Nan Ge Jin
- Ruiz Department of Ophthalmology and Visual Science, Medical School, The University of Texas Health Science Centre at Houston6431 Fannin Street, Suite MSB 7.024, Houston, TX, 77030, USA
| | - Alice Z Chuang
- Ruiz Department of Ophthalmology and Visual Science, Medical School, The University of Texas Health Science Centre at Houston6431 Fannin Street, Suite MSB 7.024, Houston, TX, 77030, USA
| | - Philippe J Masson
- Department of Mechanical Engineering, Cullen College of Engineering, University of HoustonN207 Engineering Building 1, Suite W204, Houston, TX, 77204, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, Medical School, The University of Texas Health Science Centre at Houston6431 Fannin Street, Suite MSB 7.024, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Centre at Houston, 6767 Bertner Avenue, Mitchell BuildingBSRB Suite 3.8344, Houston, TX, 77030, USA
- Neuroscience Graduate Program, The University of Texas Health Science Centre at Houston, Medical School6431 Fannin Street, Suite MSB 7.262, Houston, TX, 77030, USA
- Neuroscience Research Centre, The University of Texas Health Science Centre at HoustonHouston, 6431 Fannin Street, Suite MSB 7.046, TX, 77030, USA
| |
Collapse
|
94
|
Elgueta C, Vielma AH, Palacios AG, Schmachtenberg O. Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells. Front Cell Neurosci 2015; 9:6. [PMID: 25709566 PMCID: PMC4321611 DOI: 10.3389/fncel.2015.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 01/07/2015] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) is a major retinal neurotransmitter that modulates visual processing through a large repertoire of cholinergic receptors expressed on different retinal cell types. ACh is released from starburst amacrine cells (SACs) under scotopic conditions, but its effects on cells of the rod pathway have not been investigated. Using whole-cell patch clamp recordings in slices of rat retina, we found that ACh application triggers GABA release onto rod bipolar (RB) cells. GABA was released from A17 amacrine cells and activated postsynaptic GABAA and GABAC receptors in RB cells. The sensitivity of ACh-induced currents to nicotinic ACh receptor (nAChR) antagonists (TMPH ~ mecamylamine > erysodine > DhβE > MLA) together with the differential potency of specific agonists to mimic ACh responses (cytisine >> RJR2403 ~ choline), suggest that A17 cells express heteromeric nAChRs containing the β4 subunit. Activation of nAChRs induced GABA release after Ca(2+) accumulation in A17 cell dendrites and varicosities mediated by L-type voltage-gated calcium channels (VGCCs) and intracellular Ca(2+) stores. Inhibition of acetylcholinesterase depolarized A17 cells and increased spontaneous inhibitory postsynaptic currents in RB cells, indicating that endogenous ACh enhances GABAergic inhibition of RB cells. Moreover, injection of neostigmine or cytisine reduced the b-wave of the scotopic flash electroretinogram (ERG), suggesting that cholinergic modulation of GABA release controls RB cell activity in vivo. These results describe a novel regulatory mechanism of RB cell inhibition and complement our understanding of the neuromodulatory control of retinal signal processing.
Collapse
Affiliation(s)
- Claudio Elgueta
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile ; Systemic and Cellular Neurophysiology, Institute of Physiology I, Albert-Ludwigs-Universität Freiburg, Germany
| | - Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
95
|
Park JC, Cao D, Collison FT, Fishman GA, McAnany JJ. Rod and cone contributions to the dark-adapted 15-Hz flicker electroretinogram. Doc Ophthalmol 2015; 130:111-9. [PMID: 25579805 DOI: 10.1007/s10633-015-9480-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
PURPOSE To evaluate rod and cone contributions to the dark-adapted 15-Hz flicker electroretinogram (ERG) across a broad range of stimulus luminances by comparing rod-isolating (ERGR), cone-isolating (ERGC), and non-receptor-specific (ERGR+C) responses. METHODS Dark-adapted, full-field 15-Hz ERGs were obtained from four normally sighted subjects (ages 29-36 years) using a four-primary LED-based stimulating system. The primaries were either modulated sinusoidally in phase (ERGR+C) or were modulated in counter-phase to achieve rod isolation (ERGR) or cone isolation (ERGC) by means of triple silent substitution. Measurements were made for a broad range of luminances (-2.5 to 1.8 log scot. cd/m(2) in 0.2 log unit steps). Fourier analysis was used to obtain the amplitude and phase of the fundamental response component at each stimulus luminance. RESULTS Stimulus luminance had different effects on response amplitudes and phases under the three paradigms. Specifically, ERGC amplitude and phase increased monotonically as luminance increased. The effects on ERGR+C and ERGR were complex: ERGR+C and ERGR amplitude was small and the phase decreased for low luminances, whereas amplitude and phase increased sharply at moderate luminances. For high luminances, ERGR+C amplitude and phase increased, whereas ERGR amplitude decreased and phase was approximately constant. CONCLUSIONS At low luminances, the ERGR+C and ERGR functions can be attributed to interactions between two rod pathways. At high luminances, the functions can be accounted for by interactions between rod and cone pathways (ERGR+C) or rod insensitivity (ERGR). The ERGR paradigm minimizes cone intrusion, permitting assessment of rod function over a large range of luminance levels.
Collapse
Affiliation(s)
- Jason C Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
96
|
Retinal output changes qualitatively with every change in ambient illuminance. Nat Neurosci 2014; 18:66-74. [PMID: 25485757 PMCID: PMC4338531 DOI: 10.1038/nn.3891] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/28/2014] [Indexed: 12/20/2022]
Abstract
The collective activity pattern of retinal ganglion cells, the retinal code, underlies higher visual processing. How does the ambient illuminance of the visual scene influence this retinal output? We recorded from isolated mouse and pig retina and from mouse dLGN in-vivo at up to seven ambient light levels covering the scotopic to photopic regimes. Across each luminance transition, the majority of ganglion cells exhibited qualitative response changes, while maintaining stable responses within each luminance. Strikingly, we commonly observed the appearance and disappearance of ON responses in OFF cells and vice versa. Such qualitative response changes occurred for a variety of stimuli, including full-field and localized contrast steps, and naturalistic movies. Our results suggest that the retinal code is not fixed but varies with every change of ambient luminance. This finding raises new questions about signal processing within the retina and has intriguing implications for visual processing in higher brain areas.
Collapse
|
97
|
Lipin MY, Vigh J. Calcium spike-mediated digital signaling increases glutamate output at the visual threshold of retinal bipolar cells. J Neurophysiol 2014; 113:550-66. [PMID: 25339710 DOI: 10.1152/jn.00378.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most retinal bipolar cells (BCs) transmit visual input from photoreceptors to ganglion cells using graded potentials, but some also generate calcium or sodium spikes. Sodium spikes are thought to increase temporal precision of light-evoked BC signaling; however, the role of calcium spikes in BCs is not fully understood. Here we studied how calcium spikes and graded responses mediate neurotransmitter release from Mb-type BCs, known to produce both. In dark-adapted goldfish retinal slices, light induced spikes in 40% of the axon terminals of intact Mbs; in the rest, light generated graded responses. These light-evoked membrane potentials were used to depolarize axotomized Mb terminals where depolarization-evoked calcium current (ICa) and consequent exocytosis-associated membrane capacitance increases (ΔCm) could be precisely measured. When evoked by identical dim light intensities, spiking responses transferred more calcium (Q(Ca)) and triggered larger exocytosis with higher efficiency (ΔCm/Q(Ca)) than graded potentials. Q(Ca) was translated into exocytosis linearly when transferred with spikes and supralinearly when transferred with graded responses. At the Mb output (ΔCm), spiking responses coded light intensity with numbers and amplitude whereas graded responses coded with amplitude, duration, and steepness. Importantly, spiking responses saturated exocytosis within scotopic range but graded potentials did not. We propose that calcium spikes in Mbs increase signal input-output ratio by boosting Mb glutamate release at threshold intensities. Therefore, spiking Mb responses are suitable to transfer low-light-intensity signals to ganglion cells with higher gain, whereas graded potentials signal for light over a wider range of intensities at the Mb output.
Collapse
Affiliation(s)
- Mikhail Y Lipin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
98
|
Haq W, Arango-Gonzalez B, Zrenner E, Euler T, Schubert T. Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina. Front Neural Circuits 2014; 8:108. [PMID: 25249942 PMCID: PMC4155782 DOI: 10.3389/fncir.2014.00108] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/19/2014] [Indexed: 11/28/2022] Open
Abstract
During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs) establish contacts with remnant cone photoreceptors (cones) as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca(2+) imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs), we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from interneurons such as HCs and/or possibly interplexiform cells. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type) cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates) the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells.
Collapse
Affiliation(s)
- Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, University of TübingenTübingen, Germany
| | - Blanca Arango-Gonzalez
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
| | - Eberhart Zrenner
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, University of TübingenTübingen, Germany
| | - Thomas Euler
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, University of TübingenTübingen, Germany
| | - Timm Schubert
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
| |
Collapse
|
99
|
Grimes WN, Hoon M, Briggman KL, Wong RO, Rieke F. Cross-synaptic synchrony and transmission of signal and noise across the mouse retina. eLife 2014; 3:e03892. [PMID: 25180102 PMCID: PMC4174577 DOI: 10.7554/elife.03892] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/26/2014] [Indexed: 11/13/2022] Open
Abstract
Cross-synaptic synchrony—correlations in transmitter release across output synapses of a single neuron—is a key determinant of how signal and noise traverse neural circuits. The anatomical connectivity between rod bipolar and A17 amacrine cells in the mammalian retina, specifically that neighboring A17s often receive input from many of the same rod bipolar cells, provides a rare technical opportunity to measure cross-synaptic synchrony under physiological conditions. This approach reveals that synchronization of rod bipolar cell synapses is near perfect in the dark and decreases with increasing light level. Strong synaptic synchronization in the dark minimizes intrinsic synaptic noise and allows rod bipolar cells to faithfully transmit upstream signal and noise to downstream neurons. Desynchronization in steady light lowers the sensitivity of the rod bipolar output to upstream voltage fluctuations. This work reveals how cross-synaptic synchrony shapes retinal responses to physiological light inputs and, more generally, signaling in complex neural networks. DOI:http://dx.doi.org/10.7554/eLife.03892.001 The human eye is capable of detecting a single photon of starlight. This level of sensitivity is made possible by the high sensitivity of photoreceptors called rods. There are around 120 million rods in the retina, and they support vision in levels of light that are too low to activate the photoreceptors called cones that allow us to see in color. This is why we cannot see colors in the dark. Signals are relayed through the retina via a circuit made up of multiple types of neurons. The activation of rods leads to activation of cells known as ‘rod bipolar cells’ which, in turn, activate amacrine cells and ganglion cells, with the latter sending signals via the optic nerve to the brain. All of these neurons communicate with one another at junctions called synapses. Activation of a rod bipolar cell, for example, triggers the release of molecules called neurotransmitters: these molecules bind to and activate receptors on the amacrine cells, enabling the signal to be transmitted. For the brain to detect that a single photon has struck a rod, the eye must transmit information along this chain of neurons in a way that is highly reliable while adding very little noise to the signal. Grimes et al. have now revealed a key step in how this is achieved. Electrical recordings from the mouse retina revealed that, in the dark, small fluctuations in the activity of rod bipolar cells lead to the near-deterministic release of neurotransmitters. This reduces the impact of random fluctuations in neurotransmitter release produced at individual synapses and ensures that the signals from rod bipolar cells (and thus from rods) are transmitted faithfully through the circuit with minimal added noise. As light levels increase, this tight synchrony of transmitter release breaks down, reducing the sensitivity to individual photons. Given that many other brain regions share the features that enable retinal cells to coordinate the release of neurotransmitters, this mechanism might be used throughout the brain to increase the signal-to-noise ratio for the transmission of information through neural circuits. DOI:http://dx.doi.org/10.7554/eLife.03892.002
Collapse
Affiliation(s)
- William N Grimes
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, United States
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Fred Rieke
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|
100
|
Macé E, Caplette R, Marre O, Sengupta A, Chaffiol A, Barbe P, Desrosiers M, Bamberg E, Sahel JA, Picaud S, Duebel J, Dalkara D. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV Restores ON and OFF visual responses in blind mice. Mol Ther 2014; 23:7-16. [PMID: 25095892 DOI: 10.1038/mt.2014.154] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/29/2014] [Indexed: 12/12/2022] Open
Abstract
Most inherited retinal dystrophies display progressive photoreceptor cell degeneration leading to severe visual impairment. Optogenetic reactivation of retinal neurons mediated by adeno-associated virus (AAV) gene therapy has the potential to restore vision regardless of patient-specific mutations. The challenge for clinical translatability is to restore a vision as close to natural vision as possible, while using a surgically safe delivery route for the fragile degenerated retina. To preserve the visual processing of the inner retina, we targeted ON bipolar cells, which are still present at late stages of disease. For safe gene delivery, we used a recently engineered AAV variant that can transduce the bipolar cells after injection into the eye's easily accessible vitreous humor. We show that AAV encoding channelrhodopsin under the ON bipolar cell-specific promoter mediates long-term gene delivery restricted to ON-bipolar cells after intravitreal administration. Channelrhodopsin expression in ON bipolar cells leads to restoration of ON and OFF responses at the retinal and cortical levels. Moreover, light-induced locomotory behavior is restored in treated blind mice. Our results support the clinical relevance of a minimally invasive AAV-mediated optogenetic therapy for visual restoration.
Collapse
Affiliation(s)
- Emilie Macé
- 1] INSERM, U968, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France [3] CNRS, UMR_7210, Paris, France
| | - Romain Caplette
- 1] INSERM, U968, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France [3] CNRS, UMR_7210, Paris, France
| | - Olivier Marre
- 1] INSERM, U968, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France [3] CNRS, UMR_7210, Paris, France
| | - Abhishek Sengupta
- 1] INSERM, U968, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France [3] CNRS, UMR_7210, Paris, France
| | - Antoine Chaffiol
- 1] INSERM, U968, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France [3] CNRS, UMR_7210, Paris, France
| | - Peggy Barbe
- 1] INSERM, U968, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France [3] CNRS, UMR_7210, Paris, France
| | - Mélissa Desrosiers
- 1] INSERM, U968, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France [3] CNRS, UMR_7210, Paris, France
| | - Ernst Bamberg
- Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Jose-Alain Sahel
- 1] INSERM, U968, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France [3] CNRS, UMR_7210, Paris, France [4] Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, France [5] Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Serge Picaud
- 1] INSERM, U968, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France [3] CNRS, UMR_7210, Paris, France
| | - Jens Duebel
- 1] INSERM, U968, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France [3] CNRS, UMR_7210, Paris, France
| | - Deniz Dalkara
- 1] INSERM, U968, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France [3] CNRS, UMR_7210, Paris, France
| |
Collapse
|