51
|
Guo C, Kong L, Xiao L, Liu K, Cui H, Xin Q, Gu X, Jiang C, Wu J. The impact of the gut microbiome on tumor immunotherapy: from mechanism to application strategies. Cell Biosci 2023; 13:188. [PMID: 37828613 PMCID: PMC10571290 DOI: 10.1186/s13578-023-01135-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapy is one of the fastest developing areas in the field of oncology. Many immunological treatment strategies for refractory tumors have been approved and marketed. Nevertheless, much clinical and preclinical experimental evidence has shown that the efficacy of immunotherapy in tumor treatment varies markedly among individuals. The commensal microbiome mainly colonizes the intestinal lumen in humans, is affected by a variety of factors and exhibits individual variation. Moreover, the gut is considered the largest immune organ of the body due to its influence on the immune system. In the last few decades, with the development of next-generation sequencing (NGS) techniques and in-depth research, the view that the gut microbiota intervenes in antitumor immunotherapy through the immune system has been gradually confirmed. Here, we review important studies published in recent years focusing on the influences of microbiota on immune system and the progression of malignancy. Furthermore, we discuss the mechanism by which microbiota affect tumor immunotherapy, including immune checkpoint blockade (ICB) and adoptive T-cell therapy (ACT), and strategies for modulating the microbial composition to facilitate the antitumor immune response. Finally, opportunity and some challenges are mentioned to enable a more systematic understanding of tumor treatment in the future and promote basic research and clinical application in related fields.
Collapse
Affiliation(s)
- Ciliang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Huawei Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| |
Collapse
|
52
|
Huang J, Gong C, Zhou A. Modulation of gut microbiota: a novel approach to enhancing the effects of immune checkpoint inhibitors. Ther Adv Med Oncol 2023; 15:17588359231204854. [PMID: 37841750 PMCID: PMC10571694 DOI: 10.1177/17588359231204854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have greatly improved the prognosis of some cancer patients, the majority still fail to respond adequately, and the available biomarkers cannot reliably predict drug efficacy. The gut microbiota has received widespread attention among the various intrinsic and extrinsic factors contributing to drug resistance. As an essential regulator of physiological function, the impact of gut microbiota on host immunity and response to cancer therapy is increasingly recognized. Several studies have demonstrated significant differences in gut microbiota between responders and nonresponders. The gut microbiota associated with better clinical outcomes is called 'favorable gut microbiota'. Significantly, interventions can alter the gut microbiota. By shifting the gut microbiota to the 'favorable' one through various modifications, preclinical and clinical studies have yielded more pronounced responses and better clinical outcomes when combined with ICIs treatment, providing novel approaches to improve the efficacy of cancer immunotherapy. These findings may be attributed to the effects of gut microbiota and its metabolites on the immune microenvironment and the systemic immune system, but the underlying mechanisms remain to be discovered. In this review, we summarize the clinical evidence that the gut microbiota is strongly associated with the outcomes of ICI treatment and describe the gut microbiota characteristics associated with better clinical outcomes. We then expand on the current prevalent modalities of gut microbiota regulation, provide a comprehensive overview of preclinical and clinical research advances in improving the therapeutic efficacy and prognosis of ICIs by modulating gut microbiota, and suggest fundamental questions we need to address and potential directions for future research expansion.
Collapse
Affiliation(s)
- Jinglong Huang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caifeng Gong
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aiping Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China
| |
Collapse
|
53
|
Kim L, Coman M, Pusztai L, Park TS. Neoadjuvant Immunotherapy in Early, Triple-Negative Breast Cancers: Catching Up with the Rest. Ann Surg Oncol 2023; 30:6441-6449. [PMID: 37349612 DOI: 10.1245/s10434-023-13714-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Despite breast cancer being long thought to be "immunologically cold," within early, triple-negative breast cancer (TNBC), there has been exciting advances with the use of immune checkpoint modulation combined with neoadjuvant chemotherapy. We review the major trials that have investigated combination immunochemotherapy in the neoadjuvant setting, reviewing both the pathological complete response rates and the maturing data regarding event-free and overall survival. Strategies to deescalate adjuvant therapy in patients with preserving excellent clinical outcome, as well as exploration of combinatorial adjuvant therapies to improve outcome in those with extensive residual are the next-generation challenges. In addition to refinement of existing biomarkers, such as PD-L1, TILs, and tumor mutational burden (TMB), exploration of topics like the microbiome as both a biomarker and a therapeutic has shown promise in other cancer types, which motivates investigating these in breast cancer.
Collapse
Affiliation(s)
- Leah Kim
- Section of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Magdalena Coman
- Section of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Lajos Pusztai
- Yale School of Medicine, Yale Cancer Center, New Haven, CT, USA
| | - Tristen S Park
- Section of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
54
|
Witt RG, Cass SH, Tran T, Damania A, Nelson EE, Sirmans E, Burton EM, Chelvanambi M, Johnson S, Tawbi HA, Gershenwald JE, Davies MA, Spencer C, Mishra A, Wong MC, Ajami NJ, Peterson CB, Daniel CR, Wargo JA, McQuade JL, Nelson KC. Gut Microbiome in Patients With Early-Stage and Late-Stage Melanoma. JAMA Dermatol 2023; 159:1076-1084. [PMID: 37647056 PMCID: PMC10469295 DOI: 10.1001/jamadermatol.2023.2955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/20/2023] [Indexed: 09/01/2023]
Abstract
Importance The gut microbiome modulates the immune system and responses to immunotherapy in patients with late-stage melanoma. It is unknown whether fecal microbiota profiles differ between healthy individuals and patients with melanoma or if microbiota profiles differ among patients with different stages of melanoma. Defining gut microbiota profiles in individuals without melanoma and those with early-stage and late-stage melanoma may reveal features associated with disease progression. Objective To characterize and compare gut microbiota profiles between healthy volunteers and patients with melanoma and between patients with early-stage and late-stage melanoma. Design, Setting, and Participants This single-site case-control study took place at an academic comprehensive cancer center. Fecal samples were collected from systemic treatment-naive patients with stage I to IV melanoma from June 1, 2015, to January 31, 2019, and from healthy volunteers from June 1, 2021, to January 31, 2022. Patients were followed up for disease recurrence until November 30, 2021. Main Outcomes and Measures Fecal microbiota was profiled by 16S ribosomal RNA sequencing. Clinical and pathologic characteristics, treatment, and disease recurrence were extracted from electronic medical records. Fecal microbiome diversity, taxonomic profiles and inferred functional profiles were compared between groups. Results A total of 228 participants were enrolled (126 men [55.3%]; median age, 59 [range, 21-90] years), including 49 volunteers without melanoma, 38 patients with early-stage melanoma (29 with stage I or melanoma in situ and 9 with stage II), and 141 with late-stage melanoma (66 with stage III and 75 with stage IV). Community differences were observed between patients with melanoma and volunteers. Patients with melanoma had a higher relative abundance of Fusobacterium compared with controls on univariate analysis (0.19% vs 0.003%; P < .001), but this association was attenuated when adjusted for covariates (log2 fold change of 5.18 vs controls; P = .09). Microbiomes were distinct between patients with early-stage and late-stage melanoma. Early-stage melanoma had a higher alpha diversity (Inverse Simpson Index 14.6 [IQR, 9.8-23.0] vs 10.8 [IQR, 7.2-16.8]; P = .003), and a higher abundance of the genus Roseburia on univariate analysis (2.4% vs 1.2%; P < .001) though statistical significance was lost with covariate adjustment (log2 fold change of 0.86 vs controls; P = .13). Multiple functional pathways were differentially enriched between groups. No associations were observed between the microbial taxa and disease recurrence in patients with stage III melanoma treated with adjuvant immunotherapy. Conclusions and Relevance The findings of this case-control study suggest that fecal microbiota profiles were significantly different among patients with melanoma and controls and between patients with early-stage and late-stage melanoma. Prospective investigations of the gut microbiome and changes that occur with disease progression may identify future microbial targets for intervention.
Collapse
Affiliation(s)
- Russell G. Witt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Samuel H. Cass
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Tiffaney Tran
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston
| | - Ashish Damania
- Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Emelie E. Nelson
- John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Elizabeth Sirmans
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Elizabeth M. Burton
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Manoj Chelvanambi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Sarah Johnson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jeffrey E. Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Christine Spencer
- Department of Informatics, Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Aditya Mishra
- John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Matthew C. Wong
- John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Nadim J. Ajami
- John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Christine B. Peterson
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston
| | - Carrie R. Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jennifer A. Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Jennifer L. McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Kelly C. Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
55
|
Simpson RC, Shanahan ER, Scolyer RA, Long GV. Towards modulating the gut microbiota to enhance the efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2023; 20:697-715. [PMID: 37488231 DOI: 10.1038/s41571-023-00803-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
The gut microbiota modulates immune processes both locally and systemically. This includes whether and how the immune system reacts to emerging tumours, whether antitumour immune responses are reactivated during treatment with immune-checkpoint inhibitors (ICIs), and whether unintended destructive immune pathologies accompany such treatment. Advances over the past decade have established that the gut microbiota is a promising target and that modulation of the microbiota might overcome resistance to ICIs and/or improve the safety of treatment. However, the specific mechanisms through which the microbiota modulates antitumour immunity remain unclear. Understanding the biology underpinning microbial associations with clinical outcomes in patients receiving ICIs, as well as the landscape of a 'healthy' microbiota would provide a critical foundation to facilitate opportunities to effectively manipulate the microbiota and thus improve patient outcomes. In this Review, we explore the role of diet and the gut microbiota in shaping immune responses during treatment with ICIs and highlight the key challenges in attempting to leverage the gut microbiome as a practical tool for the clinical management of patients with cancer.
Collapse
Affiliation(s)
- Rebecca C Simpson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Erin R Shanahan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia.
| |
Collapse
|
56
|
John Kenneth M, Tsai HC, Fang CY, Hussain B, Chiu YC, Hsu BM. Diet-mediated gut microbial community modulation and signature metabolites as potential biomarkers for early diagnosis, prognosis, prevention and stage-specific treatment of colorectal cancer. J Adv Res 2023; 52:45-57. [PMID: 36596411 PMCID: PMC10555786 DOI: 10.1016/j.jare.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Over the last decade, studies have shown an increased incidence of colorectal cancer (CRC), particularly early onset colorectal cancer (EOCRC). Researchers have demonstrated that dietary behavior, especially among young adults, influences alterations in the gut microbial community, leading to an increased accumulation of pathogenic gut microbiota and a decrease in beneficial ones. Unfortunately, CRC is likely to be diagnosed at a late stage, increasing CRC-related mortality. However, this alteration in the gut microbiota (gut dysbiosis) can be harnessed as a biomarker for non-invasive diagnosis, prognosis, prevention, and treatment of CRC in an effort to prevent late diagnosis and poor prognosis associated with CRC. AIM OF REVIEW This review discusses identification of potential biomarkers by targeting diet-mediated gut dysbiosis for the stage-specific diagnosis, prognosis, treatment, and prevention of CRC. Our findings provide a comprehensive insight into the potential of protumorigenic bacteria (e.g.pathogenic Escherichia coli,enterotoxigenic Bacteroides fragilis and Fusobacterium nucleatum) and their metabolites (e.g., colibactin and B. fragilis toxin) from gut dysbiosis as biomarkers for the diagnosis of CRC. KEY SCIENTIFIC CONCEPTS OF REVIEW Collectively, a detailed understanding of the available data from current studies suggests that, further research on quantification of metabolites and stage-specific pathogenic microbial abundance is required for the diagnosis and treatment of CRC based on microbial dysbiosis. Specifically, future studies on faecal samples, from patient with CRC, should be conducted for F. nucleatum among different opportunistic bacteria, given its repeated occurrence in faecal samples and CRC biopsies in numerous studies. Finally, we discuss the potential of faecal microbial transplantation (FMT) as an intervention to restore damaged gut microbiota during CRC treatment and management.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Psychiatry, Tzu-Chi General Hospital, Hualien, Taiwan
| | - Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Yi-Chou Chiu
- General Surgery, Surgical Department, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan.
| |
Collapse
|
57
|
Yao D, He W, Hu Y, Yuan Y, Xu H, Wang J, Dai H. Prevalence and influencing factors of probiotic usage among colorectal cancer patients in China: A national database study. PLoS One 2023; 18:e0291864. [PMID: 37733795 PMCID: PMC10513277 DOI: 10.1371/journal.pone.0291864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Probiotics have become increasingly popular among cancer patients. However, there is limited data from a real-world setting. This study aims to conduct a retrospective analysis to understand the trend of probiotic prescriptions in Chinese colorectal cancer patients. The Mann-Kendall and Cochran-Armitage trend test was applied to estimate the trend significance. Gephi software identified the combination of probiotic strains. The binary logistic regression investigated influence factors, and Spearman's rank correlation coefficient calculated correlations between probiotics and antitumor drug usage. The probiotic prescription percentage increased from 3.3% in 2015 to 4.2% in 2021 (Z = 12.77, p < 0.001). Although 48.3% of probiotic prescriptions had no indication-related diagnosis, diarrhea (OR 10.91, 95% CI 10.57-11.26) and dyspepsia (3.97, 3.82-4.12) included prescriptions most likely to contain probiotics. Prescriptions from the tertiary hospital (1.43,1.36-1.50), clinics (1.30, 1.28-1.33), and senior patients (1.018 per year, 1.017-1.019) were more likely to contain probiotics. Most probiotic prescriptions (95.0%) contained one probiotic product but multiple strains (69.3%). Enterococcus faecalis (49.7%), Lactobacillus acidophilus (39.4%), and Clostridium butyricum (27.9%) were the most prescribed strains. The probiotics co-prescribed with antitumor agents increased rapidly from 6.6% to 13.8% in seven years (Z = 15.31, p < 0.001). Oral fluorouracil agents (2.35, 2.14-2.59), regorafenib (1.70,1.27-2.26), and irinotecan (1.27,1.15-1.41) had a higher probability to co-prescribed with probiotics. There was no correlation between probiotic strain selection and specific antitumor drug use. The increasing prescription of probiotics in colorectal cancer patients in China may be related to treating the gastrointestinal toxicity of anti-cancer drugs. With unapproved indications and a lack of strain selectivity, evidence-based guidelines are urgently needed to improve probiotic use in this population.
Collapse
Affiliation(s)
- Difei Yao
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei He
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yangmin Hu
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, Cancer Institute, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huimin Xu
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Juan Wang
- Department of Medical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haibin Dai
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
58
|
Amiri M, Molavi O, Sabetkam S, Jafari S, Montazersaheb S. Stimulators of immunogenic cell death for cancer therapy: focusing on natural compounds. Cancer Cell Int 2023; 23:200. [PMID: 37705051 PMCID: PMC10500939 DOI: 10.1186/s12935-023-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
A growing body of evidence indicates that the anticancer effect of the immune system can be activated by the immunogenic modulation of dying cancer cells. Cancer cell death, as a result of the activation of an immunomodulatory response, is called immunogenic cell death (ICD). This regulated cell death occurs because of increased immunogenicity of cancer cells undergoing ICD. ICD plays a crucial role in stimulating immune system activity in cancer therapy. ICD can therefore be an innovative route to improve anticancer immune responses associated with releasing damage-associated molecular patterns (DAMPs). Several conventional and chemotherapeutics, as well as preclinically investigated compounds from natural sources, possess immunostimulatory properties by ICD induction. Natural compounds have gained much interest in cancer therapy owing to their low toxicity, low cost, and inhibiting cancer cells by interfering with different mechanisms, which are critical in cancer progression. Therefore, identifying natural compounds with ICD-inducing potency presents agents with promising potential in cancer immunotherapy. Naturally derived compounds are believed to act as immunoadjuvants because they elicit cancer stress responses and DAMPs. Acute exposure to DAMP molecules can activate antigen-presenting cells (APCs), such as dendritic cells (DCs), which leads to downstream events by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs). Natural compounds as inducers of ICD may be an interesting approach to ICD induction; however, parameters that determine whether a compound can be used as an ICD inducer should be elucidated. Here, we aimed to discuss the impact of multiple ICD inducers, mainly focusing on natural agents, including plant-derived, marine molecules, and bacterial-based compounds, on the release of DAMP molecules and the activation of the corresponding signaling cascades triggering immune responses. In addition, the potential of synthetic agents for triggering ICD is also discussed.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, university of Kyrenia, Kyrenia, Northern Cyprus
- Department of Anatomy and histopathology, Faculty of medicine, Tabriz medical sciences, Islamic Azad University, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
59
|
Pandey P, Khan F. Gut microbiome in cancer immunotherapy: Current trends, translational challenges and future possibilities. Biochim Biophys Acta Gen Subj 2023; 1867:130401. [PMID: 37307905 DOI: 10.1016/j.bbagen.2023.130401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Gut microbiota is regarded as a crucial regulator of the immune system. Healthy gut microbiota plays a specialized role in host xenobiotics, nutrition, drug metabolism, regulation of the structural integrity of the gut mucosal barrier, defense against infections, and immunomodulation. It is now understood that any imbalance in gut microbiota composition from that present in a healthy state is linked to genetic susceptibility to a number of metabolic disorders, including diabetes, autoimmunity, and cancer. Recent research has suggested that immunotherapy can treat many different cancer types with fewer side effects and better ability to eradicate tumors than conventional chemotherapy or radiotherapy. However, a significant number of patients eventually develop immunotherapy resistance. A strong correlation was observed between the composition of the gut microbiome and the effectiveness of treatment by examining the variations between populations that responded to immunotherapy and those that did not. Therefore, we suggest that modulating the microbiome could be a potential adjuvant therapy for cancer immunotherapy and that the architecture of the gut microbiota may be helpful in explaining the variation in treatment response. Herein, we focus on recent research on the interactions among the gut microbiome, host immunity, and cancer immunotherapy. In addition, we highlighted the clinical manifestations, future opportunities, and limitations of microbiome manipulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India.
| |
Collapse
|
60
|
Lang T, Zhu R, Zhu X, Yan W, Li Y, Zhai Y, Wu T, Huang X, Yin Q, Li Y. Combining gut microbiota modulation and chemotherapy by capecitabine-loaded prebiotic nanoparticle improves colorectal cancer therapy. Nat Commun 2023; 14:4746. [PMID: 37550297 PMCID: PMC10406894 DOI: 10.1038/s41467-023-40439-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Colorectal cancer (CRC) therapy efficiency can be influenced by the microbiota in the gastrointestinal tract. Compared with traditional intervention, prebiotics delivery into the gut is a more controllable method for gut microbiota modulatory therapy. Capecitabine (Cap), the first-line chemotherapeutic agent for CRC, lacks a carrier that can prolong its half-life. Here, we construct a Cap-loaded nanoparticle using the prebiotic xylan-stearic acid conjugate (SCXN). The oral administration of SCXN delays the drug clearance in the blood and increases the intra-tumoral Cap concentration in the CRC mouse model. SCXN also facilitates the probiotic proliferation and short chain fatty acid production. Compared with free Cap, SCXN enhances the anti-tumor immunity and increases the tumor inhibition rate from 5.29 to 71.78%. SCXN exhibits good biocompatibility and prolongs the median survival time of CRC mice from 14 to 33.5 d. This prebiotics-based nanoparticle provides a promising CRC treatment by combining gut microbiota modulation and chemotherapy.
Collapse
Affiliation(s)
- Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, China
| | - Runqi Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yihui Zhai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211116, China
| | - Xin Huang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
61
|
Jalil AT, Thabit SN, Hanan ZK, Alasheqi MQ, Al-Azzawi AKJ, Zabibah RS, Fadhil AA. Modulating gut microbiota using nanotechnology to increase anticancer efficacy of the treatments. Macromol Res 2023; 31:739-752. [DOI: 10.1007/s13233-023-00168-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 04/11/2023] [Indexed: 01/03/2025]
|
62
|
Sumiyoshi A, Fujii H, Okuma Y. Targeting microbiome, drug metabolism, and drug delivery in oncology. Adv Drug Deliv Rev 2023; 199:114902. [PMID: 37263544 DOI: 10.1016/j.addr.2023.114902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Recent emerging scientific evidence shows a relationship between gut microbiota (GM) and immunomodulation. In the recently published "Hallmarks of Cancer", the microbiome has been reported to play a crucial role in cancer research, and perspectives for its clinical implementation to improve the effectiveness of pharmacotherapy were explored. Several studies have shown that GM can affect the outcomes of pharmacotherapy in cancer, suggesting that GM may affect anti-tumor immunity. Thus, studies on GM that analyze big data using computer-based analytical methods are required. In order to successfully deliver GM to an environment conducive to the proliferation of immune cells both within and outside the tumor microenvironment (TME), it is crucial to address a variety of challenges associated with distinct delivery methods, specifically those pertaining to oral, endoscopic, and intravenous delivery. Clinical trials are in progress to evaluate the effects of targeting GM and whether it can enhance immunity or act on the TME, thereby to improve the clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Ai Sumiyoshi
- Department of Pharmacy, National Cancer Center Hospital 5-1-1 Tsukiji Chuo, Tokyo 104-0045, Japan
| | - Hiroyuki Fujii
- Department of Thoracic Oncology, National Cancer Center Hospital 5-1-1 Tsukiji Chuo, Tokyo 104-0045, Japan; Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital 5-1-1 Tsukiji Chuo, Tokyo 104-0045, Japan.
| |
Collapse
|
63
|
Mouradov D, Greenfield P, Li S, In EJ, Storey C, Sakthianandeswaren A, Georgeson P, Buchanan DD, Ward RL, Hawkins NJ, Skinner I, Jones IT, Gibbs P, Ma C, Liew YJ, Fung KYC, Sieber OM. Oncomicrobial Community Profiling Identifies Clinicomolecular and Prognostic Subtypes of Colorectal Cancer. Gastroenterology 2023; 165:104-120. [PMID: 36933623 DOI: 10.1053/j.gastro.2023.03.205] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/20/2023]
Abstract
BACKGROUND & AIMS Dysbiosis of gut microbiota is linked to the development of colorectal cancer (CRC). However, microbiota-based stratification of CRC tissue and how this relates to clinicomolecular characteristics and prognosis remains to be clarified. METHODS Tumor and normal mucosa from 423 patients with stage I to IV CRC were profiled by bacterial 16S rRNA gene sequencing. Tumors were characterized for microsatellite instability (MSI), CpG island methylator phenotype (CIMP), APC, BRAF, KRAS, PIK3CA, FBXW7, SMAD4, and TP53 mutations, subsets for chromosome instability (CIN), mutation signatures, and consensus molecular subtypes (CMS). Microbial clusters were validated in an independent cohort of 293 stage II/III tumors. RESULTS Tumors reproducibly stratified into 3 oncomicrobial community subtypes (OCSs) with distinguishing features: OCS1 (Fusobacterium/oral pathogens, proteolytic, 21%), right-sided, high-grade, MSI-high, CIMP-positive, CMS1, BRAF V600E, and FBXW7 mutated; OCS2 (Firmicutes/Bacteroidetes, saccharolytic, 44%), and OCS3 (Escherichia/Pseudescherichia/Shigella, fatty acid β-oxidation, 35%) both left-sided and exhibiting CIN. OCS1 was associated with MSI-related mutation signatures (SBS15, SBS20, ID2, and ID7) and OCS2 and OCS3 with SBS18 related to damage by reactive oxygen species. Among stage II/III patients, OCS1 and OCS3 both had poorer overall survival compared with OCS2 for microsatellite stable tumors (multivariate hazard ratio [HR], 1.85; 95% confidence interval [CI], 1.15-2.99; P = .012; and HR, 1.52; 95% CI 1.01-2.29; P = .044, respectively) and left-sided tumors (multivariate HR, 2.66; 95% CI, 1.45-4.86; P = .002; and HR, 1.76; 95% CI, 1.03-3.02; P = .039, respectively). CONCLUSIONS OCS classification stratified CRCs into 3 distinct subgroups with different clinicomolecular features and outcomes. Our findings provide a framework for a microbiota-based stratification of CRC to refine prognostication and to inform the development of microbiota-targeted interventions.
Collapse
Affiliation(s)
- Dmitri Mouradov
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Greenfield
- Energy Business Unit, Commonwealth Scientific and Industrial Research Organization, Lindfield, New South Wales, Australia; School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Shan Li
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Eun-Jung In
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Claire Storey
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Anuratha Sakthianandeswaren
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia; University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Melbourne, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia; University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Melbourne, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Robyn L Ward
- Prince of Wales Clinical School and Lowy Cancer Research Center, UNSW Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas J Hawkins
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Iain Skinner
- Department of Surgery, Western Health, Footscray, Victoria, Australia
| | - Ian T Jones
- Department of Surgery, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Peter Gibbs
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Department of Medical Oncology, Western Health, St Albans, Victoria, Australia; Department of Medical Oncology, Western Health, Footscray, Victoria, Australia
| | - Chenkai Ma
- Molecular Diagnostics Solutions, Commonwealth Scientific and Industrial Research Organization Health and Biosecurity, Westmead, New South Wales, Australia
| | - Yi Jin Liew
- Molecular Diagnostics Solutions, Commonwealth Scientific and Industrial Research Organization Health and Biosecurity, Westmead, New South Wales, Australia
| | - Kim Y C Fung
- Molecular Diagnostics Solutions, Commonwealth Scientific and Industrial Research Organization Health and Biosecurity, Westmead, New South Wales, Australia
| | - Oliver M Sieber
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
64
|
Wang M, Yang G, Tian Y, Zhang Q, Liu Z, Xin Y. The role of the gut microbiota in gastric cancer: the immunoregulation and immunotherapy. Front Immunol 2023; 14:1183331. [PMID: 37457738 PMCID: PMC10348752 DOI: 10.3389/fimmu.2023.1183331] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/11/2023] [Indexed: 07/18/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers, leading to the deaths of millions of people worldwide. Therefore, early detection and effective therapeutic strategies are of great value for decreasing the occurrence of advanced GC. The human microbiota is involved not only in the maintenance of physiological conditions, but also in human diseases such as obesity, diabetes, allergic and atopic diseases, and cancer. Currently, the composition of the bacteria in the host, their functions, and their influence on disease progression and treatment are being discussed. Previous studies on the gut microbiome have mostly focused on Helicobacter pylori (Hp) owing to its significant role in the development of GC. Nevertheless, the enrichment and diversity of other bacteria that can modulate the tumor microenvironment are involved in the progression of GC and the efficacy of immunotherapy. This review provides systematic insight into the components of the gut microbiota and their application in GC, including the specific bacteria of GC, their immunoregulatory effect, and their diagnostic value. Furthermore, we discuss the relationship between the metabolism of microbes and their potential applications, which may serve as a new approach for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ge Yang
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yuan Tian
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Qihe Zhang
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Xin
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
65
|
Shi S, Wang K, Zhong R, Cassidy A, Rimm EB, Nimptsch K, Wu K, Chan AT, Giovannucci EL, Ogino S, Ng K, Meyerhardt JA, Song M. Flavonoid intake and survival after diagnosis of colorectal cancer: a prospective study in 2 US cohorts. Am J Clin Nutr 2023; 117:1121-1129. [PMID: 37011765 PMCID: PMC10447476 DOI: 10.1016/j.ajcnut.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Although experimental evidence supports anticancer effects of flavonoids, the influence of flavonoid intake on colorectal cancer (CRC) survival remains unknown. OBJECTIVES This study aimed to assess the association of postdiagnostic flavonoid intake with mortality. METHODS We prospectively assessed the association of postdiagnostic flavonoid intake with CRC-specific and all-cause mortality in 2552 patients diagnosed with stage I-III CRC in 2 cohort studies-the Nurses' Health Study and the Health Professionals Follow-up Study. We assessed the intake of total flavonoids and their subclasses using validated food frequency questionnaires. We used the inverse probability-weighted multivariable Cox proportional hazards regression model to calculate the hazard ratio (HR) of mortality after adjusting for prediagnostic flavonoid intake and other potential confounders. We performed spline analysis to evaluate dose-response relationships. RESULTS The mean [standard deviation (SD)] age of patients at diagnosis was 68.7 (9.4) y. During 31,026 person-y of follow-up, we documented 1689 deaths, of which 327 were due to CRC. The total flavonoid intake was not associated with mortality, but a higher intake of flavan-3-ols was suggestively associated with lower CRC-specific and all-cause mortality, with multivariable HR (95% CI) per 1-SD increases of 0.83 (0.69-0.99; P = 0.04) and 0.91 (0.84-0.99; P = 0.02), respectively. The spline analysis showed a linear relationship between postdiagnostic flavan-3-ol intake and CRC-specific mortality (P = 0.01 for linearity). As the major contributor to flavan-3-ol intake, tea showed an inverse association with CRC-specific and all-cause mortality, with multivariable HRs per 1 cup/d of tea of 0.86 (0.75-0.99; P = 0.03) and 0.90 (0.85-0.95; P < 0.001), respectively. No beneficial associations were found for other flavonoid subclasses. CONCLUSIONS Higher intake of flavan-3-ol after CRC diagnosis was associated with lower CRC-specific mortality. Small, readily achievable increases in the intake of flavan-3-ol-rich foods, such as tea, may help improve survival in patients with CRC.
Collapse
Affiliation(s)
- Shanshan Shi
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Rong Zhong
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Aedín Cassidy
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Eric B Rimm
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Katharina Nimptsch
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States; Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
66
|
Chai Y, Huang Z, Shen X, Lin T, Zhang Y, Feng X, Mao Q, Liang Y. Microbiota Regulates Pancreatic Cancer Carcinogenesis through Altered Immune Response. Microorganisms 2023; 11:1240. [PMID: 37317214 PMCID: PMC10221276 DOI: 10.3390/microorganisms11051240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The microbiota is present in many parts of the human body and plays essential roles. The most typical case is the occurrence and development of cancer. Pancreatic cancer (PC), one of the most aggressive and lethal types of cancer, has recently attracted the attention of researchers. Recent research has revealed that the microbiota regulates PC carcinogenesis via an altered immune response. Specifically, the microbiota, in several sites, including the oral cavity, gastrointestinal tract, and pancreatic tissue, along with the numerous small molecules and metabolites it produces, influences cancer progression and treatment by activating oncogenic signaling, enhancing oncogenic metabolic pathways, altering cancer cell proliferation, and triggering chronic inflammation that suppresses tumor immunity. Diagnostics and treatments based on or in combination with the microbiota offer novel insights to improve efficiency compared with existing therapies.
Collapse
Affiliation(s)
- Yihan Chai
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Zhengze Huang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xuqiu Shen
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Tianyu Lin
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xu Feng
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Qijiang Mao
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| | - Yuelong Liang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| |
Collapse
|
67
|
Li X, Wei H, Qi J, Ma K, Luo Y, Weng L. Interactions of Nanomaterials with Gut Microbiota and Their Applications in Cancer Therapy. SENSORS (BASEL, SWITZERLAND) 2023; 23:4428. [PMID: 37177631 PMCID: PMC10181640 DOI: 10.3390/s23094428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Cancer treatment is a challenge by its incredible complexity. As a key driver and player of cancer, gut microbiota influences the efficacy of cancer treatment. Modalities to manipulate gut microbiota have been reported to enhance antitumor efficacy in some cases. Nanomaterials (NMs) have been comprehensively applied in cancer diagnosis, imaging, and theranostics due to their unique and excellent properties, and their effectiveness is also influenced by gut microbiota. Nanotechnology is capable of targeting and manipulating gut microbiota, which offers massive opportunities to potentiate cancer treatment. Given the complexity of gut microbiota-host interactions, understanding NMs-gut interactions and NMs-gut microbiota interactions are important for applying nanotechnologies towards manipulating gut microbiota in cancer prevention and treatment. In this review, we provide an overview of NMs-gut interactions and NMs-gut microbiota interactions and highlight the influences of gut microbiota on the diagnosis and treatment effects of NMs, further illustrating the potential of nanotechnologies in cancer therapy. Investigation of the influences of NMs on cancer from the perspective of gut microbiota will boost the prospect of nanotechnology intervention of gut microbiota for cancer therapy.
Collapse
Affiliation(s)
- Xiaohui Li
- School of Geography and Bioinformatics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.L.)
| | - Huan Wei
- School of Geography and Bioinformatics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.L.)
| | - Jiachen Qi
- School of Geography and Bioinformatics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.L.)
| | - Ke Ma
- School of Geography and Bioinformatics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.L.)
| | - Yucheng Luo
- College of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- School of Geography and Bioinformatics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.L.)
| |
Collapse
|
68
|
Carnevale S, Di Ceglie I, Grieco G, Rigatelli A, Bonavita E, Jaillon S. Neutrophil diversity in inflammation and cancer. Front Immunol 2023; 14:1180810. [PMID: 37180120 PMCID: PMC10169606 DOI: 10.3389/fimmu.2023.1180810] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Neutrophils are the most abundant circulating leukocytes in humans and the first immune cells recruited at the site of inflammation. Classically perceived as short-lived effector cells with limited plasticity and diversity, neutrophils are now recognized as highly heterogenous immune cells, which can adapt to various environmental cues. In addition to playing a central role in the host defence, neutrophils are involved in pathological contexts such as inflammatory diseases and cancer. The prevalence of neutrophils in these conditions is usually associated with detrimental inflammatory responses and poor clinical outcomes. However, a beneficial role for neutrophils is emerging in several pathological contexts, including in cancer. Here we will review the current knowledge of neutrophil biology and heterogeneity in steady state and during inflammation, with a focus on the opposing roles of neutrophils in different pathological contexts.
Collapse
Affiliation(s)
| | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
69
|
Crowder SL, Jim HSL, Hogue S, Carson TL, Byrd DA. Gut microbiome and cancer implications: Potential opportunities for fermented foods. Biochim Biophys Acta Rev Cancer 2023; 1878:188897. [PMID: 37086870 DOI: 10.1016/j.bbcan.2023.188897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
There is a critical opportunity to improve response to immunotherapies and overall cancer survivorship via dietary interventions targeted to modify the gut microbiome, and in turn, potentially enhance anti-cancer immunity. A promising dietary intervention is fermented foods, which may alter gut microbiome composition and, in turn, improve immunity. In this article, we summarize the state of the literature pertaining to the gut microbiome and response to immunotherapy and other cancer treatments, potential clinical implications of utilizing a fermented foods dietary approach to improve cancer treatment outcomes, and existing gaps in the literature regarding the implementation of fermented food interventions among individuals with cancer or with a history of cancer. This review synthesizes a compelling rationale across different disciplines to lay a roadmap for future fermented food dietary intervention research aimed at modulating the gut microbiome to reduce cancer burden.
Collapse
Affiliation(s)
- Sylvia L Crowder
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Heather S L Jim
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Stephanie Hogue
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tiffany L Carson
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Doratha A Byrd
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
70
|
Russo E, Gloria LD, Nannini G, Meoni G, Niccolai E, Ringressi MN, Baldi S, Fani R, Tenori L, Taddei A, Ramazzotti M, Amedei A. From adenoma to CRC stages: the oral-gut microbiome axis as a source of potential microbial and metabolic biomarkers of malignancy. Neoplasia 2023; 40:100901. [PMID: 37058886 PMCID: PMC10130693 DOI: 10.1016/j.neo.2023.100901] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Approximately 95% of Colorectal cancers (CRC) consist of adenocarcinomas originating from colonic Adenomatous polyps (AP). Increasing importance in CRC occurrence and progression has been attributed to the gut microbiota; however, a huge proportion of microorganisms inhabit the human digestive system. So, to comprehensively study the microbial spatial variations and their role in CRC progression, from AP to the different CRC phases, a holistic vision is imperative, including the simultaneous evaluation of multiple niches from the gastrointestinal system. Through an integrated approach, we identified potential microbial and metabolic biomarkers, able to discriminate human CRC from AP and/or also the different Tumor node metastasis (TNM) staging. In addition, as the microbiota contributes to the production of essential metabolic products detectable in fecal samples, we analysed and compared metabolites obtained from CRC and AP patients by using a Nuclear magnetic resonance (NMR) approach. METHODS In this observational study, saliva, tissue and stool samples from 61 patients, have been collected, including 46 CRC and 15 AP patients, age and sex-matched, undergoing surgery in 2018 at the Careggi University Hospital (Florence, Italy). First, the microbiota in the three-district between CRC and AP patients has been characterized, as well as in different CRC TNM stages. Subsequently, proton NMR spectroscopy has been used in combination with multivariate and univariate statistical approaches, to define the fecal metabolic profile of a restricted group of CRC and AP patients. RESULTS CRC patients display a different profile of tissue and fecal microbiota with respect to AP patients. Significant differences have been observed in CRC tissue microbial clades, with a rise of the Fusobacterium genus. In addition, significant taxa increase at the genus level has been observed in stool samples of CRC patients. Furthermore, Fusobacterium found in intestinal tissue has been positively correlated with fecal Parvimonas, for the first time. Moreover, as predicted by metagenomics pathway analysis, a significant increase of lactate (p=0.037) has been observed in the CRC fecal metabolic profiles, and positively correlated with Bifidobacterium (p=0.036). Finally, minor bacterial differences in CRC patients at stage T2 (TNM classification) have been detected, with a raise of the Spirochaetota phylum in CRC samples, with a slight increase of the Alphaproteobacteria class in fecal samples. CONCLUSION Our results suggest the importance of microbiota communities and oncometabolites in CRC development. Further studies on CRC/AP management with a focus on CRC assessment are needed to investigate novel microbial-related diagnostic tools aimed to improve therapeutic interventions.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" University of Florence, Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Antonio Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" University of Florence, Florence, Italy.
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy..
| |
Collapse
|
71
|
Chen Y, Liao X, Li Y, Cao H, Zhang F, Fei B, Bao C, Cao H, Mao Y, Chen X, Gao X, Zhao W, Xu J. Effects of prebiotic supplement on gut microbiota, drug bioavailability, and adverse effects in patients with colorectal cancer at different primary tumor locations receiving chemotherapy: study protocol for a randomized clinical trial. Trials 2023; 24:268. [PMID: 37046334 PMCID: PMC10091326 DOI: 10.1186/s13063-023-07137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/05/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND The prevalence of colorectal cancer (CRC) worldwide is a huge challenge to human health. Primary tumor locations found to impact prognosis and response to therapy. The important role of gut microbiota in the progression and treatment of CRC has led to many attempts of alleviating chemotherapy-induced adverse effects using microecologics. However, the underlying mechanism of the difference in the prognosis of different primary tumor locations and the synergistic effect of prebiotics on chemotherapy need to be further elucidated. This study aims to explore the differences in tumor microbiota and examine the effectiveness of xylooligosaccharides (XOS) on gut microbiota, adverse effects, and bioavailability of chemotherapy drugs in CRC patients at different primary tumor locations. METHODS This is a double-blinded, randomized, parallel controlled clinical trial. Participants with left-sided CRC (LSCRC, n = 50) and right-sided CC (RSCC, n = 50) will randomly allocated to prebiotic group (n = 25) or control group (n = 25) and will receive either a daily XOS (3 g/day) or placebo, respectively, for 12 weeks. The primary outcomes will be the differences in the mucosa microbiota composition at different tumor locations and differences in gut microbiota composition, adverse effects, and blood concentration of capecitabine posttreatment. The secondary outcomes will include other blood indicators, short-chain fatty acids (SCFAs) concentration, quality of life, and mental health. DISCUSSION This study will reveal the potential benefits of prebiotic for improving the gut microbiota composition, alleviating the adverse effects, and improving the efficacy of chemotherapy in patients with CRC. In addition, this study will provide data on the different distribution of tumor microbiota and the different changes of gut microbiota during treatment in LSCRC and RSCC, which may provide novel insights into personalized cancer treatment strategies based on primary tumor locations and gut microbiota in the future. TRIAL REGISTRATION Chinese Clinical Trial Registry ( www.chictr.org.cn ): ChiCTR2100046237. Registered on 12 May 2021.
Collapse
Affiliation(s)
- Ya Chen
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Xiaowei Liao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yanmin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hong Cao
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Feng Zhang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Chuanqing Bao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Huaxiang Cao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Xiaoping Chen
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Xiang Gao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Jianmin Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
72
|
Ransohoff JD, Ritter V, Purington N, Andrade K, Han S, Liu M, Liang SY, John EM, Gomez SL, Telli ML, Schapira L, Itakura H, Sledge GW, Bhatt AS, Kurian AW. Antimicrobial exposure is associated with decreased survival in triple-negative breast cancer. Nat Commun 2023; 14:2053. [PMID: 37045824 PMCID: PMC10097670 DOI: 10.1038/s41467-023-37636-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Antimicrobial exposure during curative-intent treatment of triple-negative breast cancer (TNBC) may lead to gut microbiome dysbiosis, decreased circulating and tumor-infiltrating lymphocytes, and inferior outcomes. Here, we investigate the association of antimicrobial exposure and peripheral lymphocyte count during TNBC treatment with survival, using integrated electronic medical record and California Cancer Registry data in the Oncoshare database. Of 772 women with stage I-III TNBC treated with and without standard cytotoxic chemotherapy - prior to the immune checkpoint inhibitor era - most (654, 85%) used antimicrobials. Applying multivariate analyses, we show that each additional total or unique monthly antimicrobial prescription is associated with inferior overall and breast cancer-specific survival. This antimicrobial-mortality association is independent of changes in neutrophil count, is unrelated to disease severity, and is sustained through year three following diagnosis, suggesting antimicrobial exposure negatively impacts TNBC survival. These results may inform mechanistic studies and antimicrobial prescribing decisions in TNBC and other hormone receptor-independent cancers.
Collapse
Grants
- R01 AI143757 NIAID NIH HHS
- HHSN261201800032I NCI NIH HHS
- HHSN261201800015I NCI NIH HHS
- NU58DP006344 NCCDPHP CDC HHS
- P30 CA124435 NCI NIH HHS
- T32 HG000044 NHGRI NIH HHS
- HHSN261201800009I NCI NIH HHS
- This work was supported by Breast Cancer Research Foundation, the Susan and Richard Levy Gift Fund, the Suzanne Pride Bryan Fund for Breast Cancer Research, the Jan Weimer Junior Faculty Chair in Breast Oncology, the Regents of the University of California’s California Breast Cancer Research Program (16OB-0149 and 19IB-0124), the BRCA Foundation, the G. Willard Miller Foundation, and the Biostatistics Shared Resource of the NIH-funded Stanford Cancer Institute (P30CA124435). The collection of cancer incidence data used in this study was supported by the California Department of Public Health pursuant to California Health and Safety Code Section 103885; the Centers for Disease Control and Prevention’s National Program of Cancer Registries, under Cooperative Agreement No. 5NU58DP006344; and the National Cancer Institute’s SEER Program under Contract No. HHSN261201800032I awarded to the University of California, San Francisco, Contract No. HHSN261201800015I awarded to the University of Southern California, and Contract No. HHSN261201800009I awarded to the Public Health Institute, Cancer Registry of Greater California. K.A. was supported by NIH 5T32HG000044. This work was further supported by a Stand Up 2 Cancer grant, a V Foundation Fellowship, and Damon Runyon Clinical Investigator Award and NIH R01AI14375702 (to A.S.B.).
Collapse
Affiliation(s)
- Julia D Ransohoff
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Victor Ritter
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Natasha Purington
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Karen Andrade
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Summer Han
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mina Liu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Su-Ying Liang
- Palo Alto Medical Foundation Research Institute, Sutter Health, Palo Alto, CA, USA
| | - Esther M John
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Scarlett L Gomez
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Melinda L Telli
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lidia Schapira
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Haruka Itakura
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - George W Sledge
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ami S Bhatt
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Allison W Kurian
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
73
|
Bauer KC, Greten TF. A gut response: Modulating chemotherapy efficacy with microbial metabolites. Immunity 2023; 56:750-752. [PMID: 37044066 DOI: 10.1016/j.immuni.2023.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/14/2023]
Abstract
Despite clinical advances, chemotherapy largely fails in metastatic cancers. Commensal bacteria can indicate chemotherapy efficacy. In a recent issue of Nature, Tintelnot et al.1 demonstrate that bacterial metabolite 3-IAA amplifies chemotherapy outcomes via autophagy pathways in metastatic pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Kylynda C Bauer
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
74
|
Pinto C, Aluai-Cunha C, Santos A. The human and animals' malignant melanoma: comparative tumor models and the role of microbiome in dogs and humans. Melanoma Res 2023; 33:87-103. [PMID: 36662668 DOI: 10.1097/cmr.0000000000000880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Currently, the most progressively occurring incident cancer is melanoma. The mouse is the most popular model in human melanoma research given its various benefits as a laboratory animal. Nevertheless, unlike humans, mice do not develop melanoma spontaneously, so they need to be genetically manipulated. In opposition, there are several reports of other animals, ranging from wild to domesticated animals, that spontaneously develop melanoma and that have cancer pathways that are similar to those of humans. The influence of the gut microbiome on health and disease is being the aim of many recent studies. It has been proven that the microbiome is a determinant of the host's immune status and disease prevention. In human medicine, there is increasing evidence that changes in the microbiome influences malignant melanoma progression and response to therapy. There are several similarities between some animals and human melanoma, especially between canine and human oral malignant melanoma as well as between the gut microbiome of both species. However, microbiome studies are scarce in veterinary medicine, especially in the oncology field. Future studies need to address the relevance of gut and tissue microbiome for canine malignant melanoma development, which results will certainly benefit both species in the context of translational medicine.
Collapse
Affiliation(s)
- Catarina Pinto
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
| | - Catarina Aluai-Cunha
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
| | - Andreia Santos
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
- Animal Science and Study Centre (CECA), Food and Agragrian Sciences and Technologies Institute (ICETA), Apartado, Porto, Portugal
| |
Collapse
|
75
|
Chen H, Tong T, Lu SY, Ji L, Xuan B, Zhao G, Yan Y, Song L, Zhao L, Xie Y, Leng X, Zhang X, Cui Y, Chen X, Xiong H, Yu T, Li X, Sun T, Wang Z, Chen J, Chen YX, Hong J, Fang JY. Urea cycle activation triggered by host-microbiota maladaptation driving colorectal tumorigenesis. Cell Metab 2023; 35:651-666.e7. [PMID: 36963394 DOI: 10.1016/j.cmet.2023.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023]
Abstract
Maladaptation of host-microbiota metabolic interplay plays a critical role in colorectal cancer initiation. Here, through a combination of single-cell transcriptomics, microbiome profiling, metabonomics, and clinical analysis on colorectal adenoma and carcinoma tissues, we demonstrate that host's urea cycle metabolism is significantly activated during colorectal tumorigenesis, accompanied by the absence of beneficial bacteria with ureolytic capacity, such as Bifidobacterium, and the overabundance of pathogenic bacteria lacking ureolytic function. Urea could enter into macrophages, inhibit the binding efficiency of p-STAT1 to SAT1 promotor region, and further skew macrophages toward a pro-tumoral phenotype characterized by the accumulation of polyamines. Treating a murine model using urea cycle inhibitors or Bifidobacterium-based supplements could mitigate urea-mediated tumorigenesis. Collectively, this study highlights the utility of urea cycle inhibitors or therapeutically manipulating microbial composition using probiotics to prevent colorectal cancer.
Collapse
Affiliation(s)
- Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Tianying Tong
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Shi-Yuan Lu
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Linhua Ji
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Baoqin Xuan
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuqing Yan
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Linhong Song
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Licong Zhao
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yile Xie
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Xiaoxu Leng
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Xinyu Zhang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yun Cui
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Xiaoyu Chen
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Hua Xiong
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - TaChung Yu
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Xiaobo Li
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Tiantian Sun
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinxian Chen
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying-Xuan Chen
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| |
Collapse
|
76
|
Frenkel M, David A, Sapire K, Hausner D. Complementary and Integrative Medicine in Pancreatic Cancer. Curr Oncol Rep 2023; 25:231-242. [PMID: 36735141 DOI: 10.1007/s11912-023-01370-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW Pancreatic cancer has high mortality and morbidity rates, associated with the issues of typically late diagnosis and the limited effectiveness of current treatments. Patients tend to experience multiple symptoms that can include anxiety, fear, depression, fatigue, weakness, peripheral neuropathy, and abdominal pain, which reduce quality of life (QoL) and may compromise the treatment continuum. Many of those symptoms are amenable to complementary and integrative medicine (CIM) therapies as a part of supportive and palliative care. This article reviews research findings on the beneficial effect of use of CIM modalities in regard to pancreatic cancer, with emphasis on pancreatic ductal adenocarcinoma (PDAC). RECENT FINDINGS Given the often-poor prognosis of the disease, patients with PDAC often seek integrative therapies to help manage the disease itself, to provide support through cancer treatment and its symptoms, and to provide emotional stress relief. Data is accumulating in the past few years on the potential benefits of CIM to the management of pancreatic cancer symptoms and treatment side effects, in order to augment supportive care. This data reveal that nutrition counselling; digestive enzyme therapy; microbiome support; dietary supplements; lifestyle interventions (physical activity and circadian health/sleep hygiene) appear to improve QoL of these patients through reduced symptom burden and meeting psychological needs, such as distress and fatigue. Acupuncture, mindfulness, yoga, reflexology, massage, and homeopathy may also contribute to symptom reduction, both physical and psychological, in all stages of the disease. There is supporting evidence that some CIM modalities may alleviate side effects and symptoms related to pancreatic cancer and its treatment, suggesting that practitioners might consider integrating these modalities in certain situations encountered in the treatment of pancreatic cancer. Further investigation is needed to define the optimal integration of CIM into the treatment and supportive care of patients affected by pancreatic cancer.
Collapse
Affiliation(s)
- Moshe Frenkel
- Complementary and Integrative Medicine Service, Oncology Division, Rambam Health Care Campus, Haifa, Israel.
| | - Adi David
- Tal Center for Integrative Medicine, Institute of Oncology, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Kenneth Sapire
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Hausner
- Tal Center for Integrative Medicine, Institute of Oncology, Chaim Sheba Medical Center, Ramat-Gan, Israel.,Palliative Care Service, Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
77
|
Tintelnot J, Xu Y, Lesker TR, Schönlein M, Konczalla L, Giannou AD, Pelczar P, Kylies D, Puelles VG, Bielecka AA, Peschka M, Cortesi F, Riecken K, Jung M, Amend L, Bröring TS, Trajkovic-Arsic M, Siveke JT, Renné T, Zhang D, Boeck S, Strowig T, Uzunoglu FG, Güngör C, Stein A, Izbicki JR, Bokemeyer C, Sinn M, Kimmelman AC, Huber S, Gagliani N. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature 2023; 615:168-174. [PMID: 36813961 PMCID: PMC9977685 DOI: 10.1038/s41586-023-05728-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 01/12/2023] [Indexed: 02/24/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is expected to be the second most deadly cancer by 2040, owing to the high incidence of metastatic disease and limited responses to treatment1,2. Less than half of all patients respond to the primary treatment for PDAC, chemotherapy3,4, and genetic alterations alone cannot explain this5. Diet is an environmental factor that can influence the response to therapies, but its role in PDAC is unclear. Here, using shotgun metagenomic sequencing and metabolomic screening, we show that the microbiota-derived tryptophan metabolite indole-3-acetic acid (3-IAA) is enriched in patients who respond to treatment. Faecal microbiota transplantation, short-term dietary manipulation of tryptophan and oral 3-IAA administration increase the efficacy of chemotherapy in humanized gnotobiotic mouse models of PDAC. Using a combination of loss- and gain-of-function experiments, we show that the efficacy of 3-IAA and chemotherapy is licensed by neutrophil-derived myeloperoxidase. Myeloperoxidase oxidizes 3-IAA, which in combination with chemotherapy induces a downregulation of the reactive oxygen species (ROS)-degrading enzymes glutathione peroxidase 3 and glutathione peroxidase 7. All of this results in the accumulation of ROS and the downregulation of autophagy in cancer cells, which compromises their metabolic fitness and, ultimately, their proliferation. In humans, we observed a significant correlation between the levels of 3-IAA and the efficacy of therapy in two independent PDAC cohorts. In summary, we identify a microbiota-derived metabolite that has clinical implications in the treatment of PDAC, and provide a motivation for considering nutritional interventions during the treatment of patients with cancer.
Collapse
Affiliation(s)
- Joseph Tintelnot
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Yang Xu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till R Lesker
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Schönlein
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Konczalla
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasios D Giannou
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Penelope Pelczar
- I. Department of Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Agata A Bielecka
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manuela Peschka
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Newborn Screening and Metabolic Laboratory, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Filippo Cortesi
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Jung
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Amend
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tobias S Bröring
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Danmei Zhang
- Department of Internal Medicine III, Ludwig-Maximilians-University (LMU) Hospital, Munich, Germany
| | - Stefan Boeck
- Department of Internal Medicine III, Ludwig-Maximilians-University (LMU) Hospital, Munich, Germany
| | - Till Strowig
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Hannover Medical School (MHH), Hannover, Germany
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Stein
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hematology-Oncology Practice Hamburg (HOPE), University Cancer Center Hamburg, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marianne Sinn
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- I. Department of Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany.
| |
Collapse
|
78
|
Wen X, Ye X, Yang X, Jiang R, Qian C, Wang X. The crosstalk between intestinal bacterial microbiota and immune cells in colorectal cancer progression. Clin Transl Oncol 2023; 25:620-632. [PMID: 36376701 DOI: 10.1007/s12094-022-02995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Different types of cells that are involved in tumor immunity play a significant part in antitumor therapy. The intestinal microbiota consist of the trillions of diverse microorganisms that inhabit the gastrointestinal tract. Recently, much emphasis has been paid to the link between these symbionts and colorectal cancer (CRC). This association might be anything from oncogenesis and cancer development to resistance or susceptibility to chemotherapeutic medicines. Cancer patients have a significantly different microbial composition in their guts compared to healthy persons. The microbiome may play a role in the development and development of cancer through the modulation of tumor immunosurveillance, as shown by these studies; however, the specific processes underlying this role are still poorly understood. This review focuses on the relationship between the intestinal bacterial microbiota and immune cells to determine how the commensal microbiome influences the initiation and development of CRC.
Collapse
Affiliation(s)
- Xiaozi Wen
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xufang Ye
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejun Yang
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rujin Jiang
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chunyan Qian
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xianjun Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
79
|
Wang F, Li C, Zhang R, Liu Y, Lin H, Nan L, Khan MA, Xiao Y, Shum HC, Deng H. A composition-tunable cold atmospheric plasma chip for multiplex-treatment of cells. LAB ON A CHIP 2023; 23:580-590. [PMID: 36644992 DOI: 10.1039/d2lc00951j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cold atmospheric plasma treatment promises a targeted cancer therapy due to its selectivity and specificity in killing tumor cells. However, the current plasma exposure devices produce diverse and coupled reactive species, impeding the investigation of the underlying plasma-anticancer mechanisms. Also, the limited mono-sample and mono-dosage treatment modality result in tedious and manual experimental tasks. Here, we propose a cold atmospheric plasma chip producing targeted species, delivering multiple dosages, and treating multiple cell lines in a single treatment. Three modules are integrated into the chip. The environment control module and multi-inlet gas-feed module coordinately ignite component-tunable and uniformly distributed plasma. The multi-sample holding module enables multiplex treatment: multi-sample and -dosage treatment with single radiation. By exposing the HepG2 cell line to nitrogen-feed plasmas, we prove the crucial role of nitrogen-based species in inhibiting cell growth and stimulating apoptosis. By loading four-type cell lines on our chip, we can identify the most vulnerable cell line for plasma oncotherapy. Simultaneously, three-level treatment dosages are imposed on the cells with single radiation to optimize the applicable treatment dosage for plasma oncotherapy. Our chip will broaden the design principles of plasma exposure devices, potentially help clarify plasma-induced anticancer mechanisms, and guide the clinical application of plasma-based oncotherapy.
Collapse
Affiliation(s)
- Fang Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Shenzhen, Guangdong, China.
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Chang Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Ruotong Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Yuan Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Haisong Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Lang Nan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Muhammad Ajmal Khan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Shenzhen, Guangdong, China.
| | - Yang Xiao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Hui Deng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Shenzhen, Guangdong, China.
| |
Collapse
|
80
|
Gupta Y, Ernst AL, Vorobyev A, Beltsiou F, Zillikens D, Bieber K, Sanna-Cherchi S, Christiano AM, Sadik CD, Ludwig RJ, Sezin T. Impact of diet and host genetics on the murine intestinal mycobiome. Nat Commun 2023; 14:834. [PMID: 36788222 PMCID: PMC9929102 DOI: 10.1038/s41467-023-36479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
The mammalian gut is home to a diverse microbial ecosystem, whose composition affects various physiological traits of the host. Next-generation sequencing-based metagenomic approaches demonstrated how the interplay of host genetics, bacteria, and environmental factors shape complex traits and clinical outcomes. However, the role of fungi in these complex interactions remains understudied. Here, using 228 males and 363 females from an advanced-intercross mouse line, we provide evidence that fungi are regulated by host genetics. In addition, we map quantitative trait loci associated with various fungal species to single genes in mice using whole genome sequencing and genotyping. Moreover, we show that diet and its' interaction with host genetics alter the composition of fungi in outbred mice, and identify fungal indicator species associated with different dietary regimes. Collectively, in this work, we uncover an association of the intestinal fungal community with host genetics and a regulatory role of diet in this ecological niche.
Collapse
Affiliation(s)
- Yask Gupta
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Lara Ernst
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Artem Vorobyev
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Foteini Beltsiou
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela M Christiano
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| | - Tanya Sezin
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
81
|
García-Llorca A, Kararigas G. Sex-Related Effects of Gut Microbiota in Metabolic Syndrome-Related Diabetic Retinopathy. Microorganisms 2023; 11:microorganisms11020447. [PMID: 36838411 PMCID: PMC9967826 DOI: 10.3390/microorganisms11020447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
The metabolic syndrome (MetS) is a complex disease of metabolic abnormalities, including obesity, insulin resistance, hypertension and dyslipidaemia, and it is associated with an increased risk of cardiovascular disease (CVD). Diabetic retinopathy (DR) is the leading cause of vision loss among working-aged adults around the world and is the most frequent complication in type 2 diabetic (T2D) patients. The gut microbiota are a complex ecosystem made up of more than 100 trillion of microbial cells and their composition and diversity have been identified as potential risk factors for the development of several metabolic disorders, including MetS, T2D, DR and CVD. Biomarkers are used to monitor or analyse biological processes, therapeutic responses, as well as for the early detection of pathogenic disorders. Here, we discuss molecular mechanisms underlying MetS, the effects of biological sex in MetS-related DR and gut microbiota, as well as the latest advances in biomarker research in the field. We conclude that sex may play an important role in gut microbiota influencing MetS-related DR.
Collapse
|
82
|
Chen C, Wang Z, Ding Y, Qin Y. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol 2023; 14:1133308. [PMID: 36845131 PMCID: PMC9950271 DOI: 10.3389/fimmu.2023.1133308] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the third leading cause of tumor-related mortality worldwide. In recent years, the emergency of immune checkpoint inhibitor (ICI) has revolutionized the management of HCC. Especially, the combination of atezolizumab (anti-PD1) and bevacizumab (anti-VEGF) has been approved by the FDA as the first-line treatment for advanced HCC. Despite great breakthrough in systemic therapy, HCC continues to portend a poor prognosis owing to drug resistance and frequent recurrence. The tumor microenvironment (TME) of HCC is a complex and structured mixture characterized by abnormal angiogenesis, chronic inflammation, and dysregulated extracellular matrix (ECM) remodeling, collectively contributing to the immunosuppressive milieu that in turn prompts HCC proliferation, invasion, and metastasis. The tumor microenvironment coexists and interacts with various immune cells to maintain the development of HCC. It is widely accepted that a dysfunctional tumor-immune ecosystem can lead to the failure of immune surveillance. The immunosuppressive TME is an external cause for immune evasion in HCC consisting of 1) immunosuppressive cells; 2) co-inhibitory signals; 3) soluble cytokines and signaling cascades; 4) metabolically hostile tumor microenvironment; 5) the gut microbiota that affects the immune microenvironment. Importantly, the effectiveness of immunotherapy largely depends on the tumor immune microenvironment (TIME). Also, the gut microbiota and metabolism profoundly affect the immune microenvironment. Understanding how TME affects HCC development and progression will contribute to better preventing HCC-specific immune evasion and overcoming resistance to already developed therapies. In this review, we mainly introduce immune evasion of HCC underlying the role of immune microenvironment, describe the dynamic interaction of immune microenvironment with dysfunctional metabolism and the gut microbiome, and propose therapeutic strategies to manipulate the TME in favor of more effective immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
83
|
Dong YH, Fu Z, Zhang NN, Shao JY, Shen J, Yang E, Sun SY, Zhao ZM, Xiao A, Liu CJ, Li XR. Urogenital tract and rectal microbiota composition and its influence on reproductive outcomes in infertile patients. Front Microbiol 2023; 14:1051437. [PMID: 36846767 PMCID: PMC9950574 DOI: 10.3389/fmicb.2023.1051437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Microbiota in the human body are closely related to human diseases. Female urogenital tract and rectal microbes have been considered as important factors affecting female pregnancy, but the mechanism is unknown. Methods Cervical, vaginal, urethral, and rectal swabs were collected from 22 infertile patients and 10 controls, and follicular fluid was extracted from 22 infertile patients. The microbial composition of different sampling sites of infertile patients was examined. By comparing the microbial composition difference between infertile patients and controls and combining bioinformatics methods to analyze the potential impact of the female urogenital tract (cervical, vaginal and urethral) and rectal microbial diversity on female infertility and pregnancy outcomes. Results Lactobacillus predominated in the female urogenital tract, but its abundance decreased in infertile patients, whereas the abundance of Gardnerella and Atopobium increased. The microbial changes in the urethra had the same trend as that in the vagina. Compared with healthy controls, the cervical and rectal microbial diversity of infertile patients were significantly increased and decreased, respectively. There might be interactions between microbes in different parts of female. Geobacillus thermogeniticans was enriched in the urogenital tract and rectum of infertile patients, and has a good predictive effect on infertility. Compared with infertile patients, L. johnsonii was enriched in the vagina, urethra, and intestine of the control group. L. acidophilus in follicular fluid might be associated with Non-pregnancy. Conclusion This study found that the microbial composition of infertile patients was changed compared with that of healthy people. The translocation of Lactobacillus between the rectum and urogenital tract might play a protective barrier role. The changes of Lactobacillus and Geobacillus might be related to female infertility or pregnancy outcome. The study provided a theoretical basis for the future treatment of female infertility from the perspective of microorganisms by detecting the microbial changes associated with female infertility.
Collapse
Affiliation(s)
- Yong-Hong Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhong Fu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ning-Nan Zhang
- Urology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China,Urology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jing-Yi Shao
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China,Reproductive Medical Center of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Shen
- Urology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China,Urology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - En Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shi-Yi Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhi-Min Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - An Xiao
- Department of Infectious Diseases and Hepatic Disease, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China,Department of Infectious Diseases and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Ran Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,*Correspondence: Xiao-Ran Li,
| |
Collapse
|
84
|
Parke EC, Plutynski A. Going big by going small: Trade-offs in microbiome explanations of cancer. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2023; 97:101-110. [PMID: 36645963 DOI: 10.1016/j.shpsa.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 09/29/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Microbial factors have been implicated in cancer risk, disease progression, treatment and prevention. The key word, however, is "implicated." Our aim in this paper is to map out some of the tensions between competing methods, goals, and standards of evidence in cancer research with respect to the causal role of microbial factors. We discuss an array of pragmatic and epistemic trade-offs in this research area: prioritizing coarse-grained versus fine-grained explanations of the roles of microbiota in cancer; explaining general versus specific cancer targets; studying model organisms versus human patients; and understanding and explaining cancer versus developing diagnostic tools and treatments. In light of these trade-offs and the distinctive complexity and heterogeneity on both sides of the microbiome-cancer relationship, we suggest that it would be more productive and intellectually honest to frame much of this work, at least currently, in terms of generating causal hypotheses to investigate further. Claims of established causal connections between the microbiome and cancer are in many cases overstated. We also discuss the value of "black boxing" microbial causal variables in this research context and draw some general cautionary lessons for ongoing discussions of microbiomes and cancer.
Collapse
Affiliation(s)
- Emily C Parke
- Philosophy, School of Humanities, University of Auckland, New Zealand.
| | - Anya Plutynski
- Philosophy, Washington University in St. Louis, United States
| |
Collapse
|
85
|
Alzahrani A, Alzahrani AJ, Shori AB. Inflammatory Bowel Disease: A focus on the Role of Probiotics in Ulcerative Colitis. Open Access Maced J Med Sci 2023. [DOI: 10.3889/oamjms.2023.11020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a cluster of disorders of the gastrointestinal tract characterized by chronic inflammation and imbalance of the gut microbiota in a genetically vulnerable host. Crohn’s disease and ulcerative colitis (UC) are well-known types of IBD, and due to its high prevalence, IBD has attracted the attention of researchers globally. The exact etiology of IBD is still unknown; however, various theories have been proposed to provide some explanatory clues that include gene-environment interactions and dysregulated immune response to the intestinal microbiota. These diseases are manifested by several clinical symptoms that depend on the affected segment of the intestine such as diarrhea, abdominal pain, and rectal bleeding. In this era of personalized medicine, various options are developing starting from improved intestinal microecology, small molecules, exosome therapy, to lastly stem cell transplantation. From another aspect, and in parallel to pharmacological intervention, nutrition, and dietary support have shown effectiveness in IBD management. There is an increasing evidence supporting the benefit of probiotics in the prophylaxis and treatment of IBD. There are several studies that have demonstrated that different probiotics alleviate UC. The present review summarizes the progress in the IBD studies focusing and exploring more on the role of probiotics as a potential adjunct approach in UC management.
Collapse
|
86
|
Chen Z, Ding C, Gu Y, He Y, Chen B, Zheng S, Li Q. Association between gut microbiota and hepatocellular carcinoma from 2011 to 2022: Bibliometric analysis and global trends. Front Oncol 2023; 13:1120515. [PMID: 37064156 PMCID: PMC10098157 DOI: 10.3389/fonc.2023.1120515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a primary malignant tumor responsible for approximately 90% of all liver cancers in humans, making it one of the leading public health problems worldwide. The gut microbiota is a complex microbial ecosystem that can influence tumor formation, metastasis, and resistance to treatment. Therefore, understanding the potential mechanisms of gut microbiota pathogenesis is critical for the prevention and treatment of HCC. Materials and methods A search was conducted in the Web of Science Core Collection (WoSCC) database for English literature studies on the relationship between gut microbiota and HCC from 2011 to 2022. Bibliometric analysis tools such as VOSviewer, CiteSpace, and R Studio were used to analyze global trends and research hotspots in this field. Results A total of 739 eligible publications, comprising of 383 articles and 356 reviews, were analyzed. Over the past 11 years, there has been a rapid increase in the annual number of publications and average citation levels, especially in the last five years. The majority of published articles on this topic originated from China (n=257, 34.78%), followed by the United States of America (n=203, 27.47%), and Italy (n=85, 11.50%). American scholars demonstrated high productivity, prominence, and academic environment influence in the research of this subject. Furthermore, the University of California, San Diego published the most papers (n=24) and had the highest average citation value (value=152.17) in the study of the relationship between gut microbiota and HCC. Schnabl B from the USA and Ohtani N from Japan were the authors with the highest number of publications and average citation value, respectively. Conclusion In recent years, research on the gut microbiota's role in HCC has made rapid progress. Through a review of published literature, it has been found that the gut microbiota is crucial in the pathogenesis of HCC and in oncotherapy.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Chenchen Ding
- Affiliated Mental Health Centre & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangjun Gu
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Yahui He
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- School of Medicine, Zhejiang Chinese Medical University, Zhejiang Shuren College, Hangzhou, China
| | - Bing Chen
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- School of Medicine, Zhejiang Chinese Medical University, Zhejiang Shuren College, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- *Correspondence: Qiyong Li, ; Shusen Zheng,
| | - Qiyong Li
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Qiyong Li, ; Shusen Zheng,
| |
Collapse
|
87
|
Shi Y, Zhang L, Do KA, Jenq R, Peterson CB. Sparse tree-based clustering of microbiome data to characterize microbiome heterogeneity in pancreatic cancer. J R Stat Soc Ser C Appl Stat 2023; 72:20-36. [PMID: 37034187 PMCID: PMC10077950 DOI: 10.1093/jrsssc/qlac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
There is a keen interest in characterizing variation in the microbiome across cancer patients, given increasing evidence of its important role in determining treatment outcomes. Here our goal is to discover subgroups of patients with similar microbiome profiles. We propose a novel unsupervised clustering approach in the Bayesian framework that innovates over existing model-based clustering approaches, such as the Dirichlet multinomial mixture model, in three key respects: we incorporate feature selection, learn the appropriate number of clusters from the data, and integrate information on the tree structure relating the observed features. We compare the performance of our proposed method to existing methods on simulated data designed to mimic real microbiome data. We then illustrate results obtained for our motivating data set, a clinical study aimed at characterizing the tumor microbiome of pancreatic cancer patients.
Collapse
Affiliation(s)
- Yushu Shi
- Department of Statistics, University of Missouri, Columbia, Columbia, MO, USA
| | - Liangliang Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
88
|
Lee BY, Ordovás JM, Parks EJ, Anderson CAM, Barabási AL, Clinton SK, de la Haye K, Duffy VB, Franks PW, Ginexi EM, Hammond KJ, Hanlon EC, Hittle M, Ho E, Horn AL, Isaacson RS, Mabry PL, Malone S, Martin CK, Mattei J, Meydani SN, Nelson LM, Neuhouser ML, Parent B, Pronk NP, Roche HM, Saria S, Scheer FAJL, Segal E, Sevick MA, Spector TD, Van Horn L, Varady KA, Voruganti VS, Martinez MF. Research gaps and opportunities in precision nutrition: an NIH workshop report. Am J Clin Nutr 2022; 116:1877-1900. [PMID: 36055772 PMCID: PMC9761773 DOI: 10.1093/ajcn/nqac237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/06/2022] [Accepted: 08/30/2022] [Indexed: 02/01/2023] Open
Abstract
Precision nutrition is an emerging concept that aims to develop nutrition recommendations tailored to different people's circumstances and biological characteristics. Responses to dietary change and the resulting health outcomes from consuming different diets may vary significantly between people based on interactions between their genetic backgrounds, physiology, microbiome, underlying health status, behaviors, social influences, and environmental exposures. On 11-12 January 2021, the National Institutes of Health convened a workshop entitled "Precision Nutrition: Research Gaps and Opportunities" to bring together experts to discuss the issues involved in better understanding and addressing precision nutrition. The workshop proceeded in 3 parts: part I covered many aspects of genetics and physiology that mediate the links between nutrient intake and health conditions such as cardiovascular disease, Alzheimer disease, and cancer; part II reviewed potential contributors to interindividual variability in dietary exposures and responses such as baseline nutritional status, circadian rhythm/sleep, environmental exposures, sensory properties of food, stress, inflammation, and the social determinants of health; part III presented the need for systems approaches, with new methods and technologies that can facilitate the study and implementation of precision nutrition, and workforce development needed to create a new generation of researchers. The workshop concluded that much research will be needed before more precise nutrition recommendations can be achieved. This includes better understanding and accounting for variables such as age, sex, ethnicity, medical history, genetics, and social and environmental factors. The advent of new methods and technologies and the availability of considerably more data bring tremendous opportunity. However, the field must proceed with appropriate levels of caution and make sure the factors listed above are all considered, and systems approaches and methods are incorporated. It will be important to develop and train an expanded workforce with the goal of reducing health disparities and improving precision nutritional advice for all Americans.
Collapse
Affiliation(s)
- Bruce Y Lee
- Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - José M Ordovás
- USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Elizabeth J Parks
- Nutrition and Exercise Physiology, University of Missouri School of Medicine, MO, USA
| | | | - Albert-László Barabási
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA
| | | | - Kayla de la Haye
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Paul W Franks
- Novo Nordisk Foundation, Hellerup, Denmark, Copenhagen, Denmark, and Lund University Diabetes Center, Sweden
- The Lund University Diabetes Center, Malmo, SwedenInsert Affiliation Text Here
| | - Elizabeth M Ginexi
- National Institutes of Health, Office of Behavioral and Social Sciences Research, Bethesda, MD, USA
| | - Kristian J Hammond
- Computer Science, Northwestern University McCormick School of Engineering, IL, USA
| | - Erin C Hanlon
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Michael Hittle
- Epidemiology and Clinical Research, Stanford University, Stanford, CA, USA
| | - Emily Ho
- Public Health and Human Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Abigail L Horn
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | - Susan Malone
- Rory Meyers College of Nursing, New York University, New York, NY, USA
| | - Corby K Martin
- Ingestive Behavior Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Josiemer Mattei
- Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Simin Nikbin Meydani
- USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lorene M Nelson
- Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | | | - Brendan Parent
- Grossman School of Medicine, New York University, New York, NY, USA
| | | | - Helen M Roche
- UCD Conway Institute, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
| | - Suchi Saria
- Johns Hopkins University, Baltimore, MD, USA
| | - Frank A J L Scheer
- Brigham and Women's Hospital, Boston, MA, USA
- Medicine and Neurology, Harvard Medical School, Boston, MA, USA
| | - Eran Segal
- Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Mary Ann Sevick
- Grossman School of Medicine, New York University, New York, NY, USA
| | - Tim D Spector
- Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Linda Van Horn
- Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Krista A Varady
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Venkata Saroja Voruganti
- Nutrition and Nutrition Research Institute, Gillings School of Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - Marie F Martinez
- Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| |
Collapse
|
89
|
Patel M, McAllister M, Nagaraju R, Badran SSFA, Edwards J, McBain AJ, Barriuso J, Aziz O. The intestinal microbiota in colorectal cancer metastasis – Passive observer or key player? Crit Rev Oncol Hematol 2022; 180:103856. [DOI: 10.1016/j.critrevonc.2022.103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
|
90
|
Akkermansia muciniphila and Faecalibacterium prausnitzii in Immune-Related Diseases. Microorganisms 2022; 10:microorganisms10122382. [PMID: 36557635 PMCID: PMC9782003 DOI: 10.3390/microorganisms10122382] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Probiotics and synbiotics are used to treat chronic illnesses due to their roles in immune system modulation and anti-inflammatory response. They have been shown to reduce inflammation in a number of immune-related disorders, including systemic lupus erythematosus (SLE), human immunodeficiency virus (HIV), and chronic inflammatory skin conditions such as psoriasis and atopic dermatitis (AD). Akkermansia muciniphila (A. muciniphila) and Faecalibacterium prausnitzii (F. prausnitzii) are two different types of bacteria that play a significant part in this function. It has been established that Akkermansia and Faecalibacterium are abundant in normal populations and have protective benefits on digestive health while also enhancing the immune system, metabolism, and gut barrier of the host. They have the potential to be a therapeutic target in diseases connected to the microbiota, such as immunological disorders and cancer immunotherapy. There has not been a review of the anti-inflammatory effects of Akkermansia and Faecalibacterium, particularly in immunological diseases. In this review, we highlight the most recent scientific findings regarding A. muciniphila and F. prausnitzii as two significant gut microbiota for microbiome alterations and seek to provide cutting-edge insight in terms of microbiome-targeted therapies as promising preventive and therapeutic tools in immune-related diseases and cancer immunotherapy.
Collapse
|
91
|
Li X, Zhou L, Yu Y, Zhang J, Wang J, Sun B. The Potential Functions and Mechanisms of Oat on Cancer Prevention: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14588-14599. [PMID: 36376030 DOI: 10.1021/acs.jafc.2c06518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oat is classified as a whole grain and contains high contents of protein, lipids, carbohydrates, vitamins, minerals, and phytochemicals (such as polyphenols, flavonoids, and saponins). In recent years, studies have focused on the effects of oat consumption on reducing the risk of a variety of diseases. Reports have indicated that an oat diet exerts certain biological functions, such as preventing cardiovascular diseases, reducing blood glucose, and promoting intestinal health, along with antiallergy, antioxidation, and cancer preventive effects. At present, cancer is the second leading cause of death worldwide. The natural products of oat are an important breakthrough for developing new strategies of cancer prevention, and their ability to interact with multiple cellular targets helps to combat the complexity of cancer pathogenesis. In addition, the comprehensive study of the cancer prevention activity and potential mechanism of oat nutrients and phytochemicals has become a research hotspot. In this Review, we focused on the potential functions of peptides, dietary fiber, and phytochemicals in oats on cancer prevention and further revealed novel mechanisms and prospects for clinical application. These findings might provide a novel approach to deeply understand the functions and mechanisms for cancer prevention of oat consumption.
Collapse
Affiliation(s)
- Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
92
|
Xu K, Cai J, Xing J, Li X, Wu B, Zhu Z, Zhang Z. Broad-spectrum antibiotics associated gut microbiome disturbance impairs T cell immunity and promotes lung cancer metastasis: a retrospective study. BMC Cancer 2022; 22:1182. [DOI: 10.1186/s12885-022-10307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
Gut microbiome has been linked to a regulatory role in cancer progression. However, whether broad-spectrum antibiotics (ATB) associated gut microbiome dysbiosis contributes to an impaired T cell immune function, and ultimately promotes lung cancer metastasis is not well known.
Methods
In this study, a retrospective analysis was performed in a cohort of 263 patients initially diagnosed with non-small cell lung cancer (NSCLC) patients, including the ATB group (patients with broad-spectrum antibiotics treatment) (n = 124), and non-ATB group (n = 139) as control. ATB patients were prescribed ATB for over 5 days within 30 days prior to the collection of blood and fecal specimens and followed surgical treatment or first-line therapy. T cell immune function and metastasis-free survival (MFS) were evaluated between the two groups. Gut microbiota was evaluated by 16S rDNA sequencing. The predictive value of T cell immunity for MFS was evaluated by ROC analysis and Cox regression analysis.
Results
Our results suggest that broad-spectrum antibiotics (ATB) impair T cell immune function in patients with either early-stage or advanced NSCLC, which likely contribute to the promotion of lung cancer metastasis. Results of the survival analysis show that metastasis-free survival (MFS) is significantly shorter in the ATB patients than that in the non-ATB patients with stage III NSCLC. The 16S rDNA sequencing shows that ATB administration contributes to a significant dysbiosis of the composition and diversity of gut microbiota. Moreover, ROC analysis results of CD4 (AUC 0.642, p = 0.011), CD8 (AUC was 0.729, p < 0.001), CD16 + 56 + (AUC 0.643, p = 0.003), and the combination of CD4, CD8 and CD16 + 56+ (AUC 0.810, p < 0.001), or Cox regression analysis results of CD4 (HR 0.206, p < 0.001), CD8 (HR 0.555, p = 0.009), which is likely regulated by ATB administration, have significantly predictive values for MFS.
Conclusion
These results provide evidence of gut microbiome disturbance due to ATB administration is involved in the regulation of T cell immunity, and their predictive value for the tumor metastasis in lung cancer patients. Thus, gut microbiota may serve as a therapeutic target for lung cancer. Consequently, caution should be exercised before the long-term administration of broad-spectrum antibiotics in cancer patients.
Collapse
|
93
|
Multi-Omics Approaches in Colorectal Cancer Screening and Diagnosis, Recent Updates and Future Perspectives. Cancers (Basel) 2022; 14:cancers14225545. [PMID: 36428637 PMCID: PMC9688479 DOI: 10.3390/cancers14225545] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) is common Cancer as well as the third leading cause of mortality around the world; its exact molecular mechanism remains elusive. Although CRC risk is significantly correlated with genetic factors, the pathophysiology of CRC is also influenced by external and internal exposures and their interactions with genetic factors. The field of CRC research has recently benefited from significant advances through Omics technologies for screening biomarkers, including genes, transcripts, proteins, metabolites, microbiome, and lipidome unbiasedly. A promising application of omics technologies could enable new biomarkers to be found for the screening and diagnosis of CRC. Single-omics technologies cannot fully understand the molecular mechanisms of CRC. Therefore, this review article aims to summarize the multi-omics studies of Colorectal cancer, including genomics, transcriptomics, proteomics, microbiomics, metabolomics, and lipidomics that may shed new light on the discovery of novel biomarkers. It can contribute to identifying and validating new CRC biomarkers and better understanding colorectal carcinogenesis. Discovering biomarkers through multi-omics technologies could be difficult but valuable for disease genotyping and phenotyping. That can provide a better knowledge of CRC prognosis, diagnosis, and treatments.
Collapse
|
94
|
Ren Z, Hong Y, Huo Y, Peng L, Lv H, Chen J, Wu Z, Wan C. Prospects of Probiotic Adjuvant Drugs in Clinical Treatment. Nutrients 2022; 14:4723. [PMID: 36432410 PMCID: PMC9697729 DOI: 10.3390/nu14224723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
In modern society, where new diseases and viruses are constantly emerging, drugs are still the most important means of resistance. However, adverse effects and diminished efficacy remain the leading cause of treatment failure and a major determinant of impaired health-related quality of life for patients. Clinical studies have shown that the disturbance of the gut microbial structure plays a crucial role in the toxic and side effects of drugs. It is well known that probiotics have the ability to maintain the balance of intestinal microecology, which implies their potential as an adjunct to prevent and alleviate the adverse reactions of drugs and to make medicines play a better role. In addition, in the past decade, probiotics have been found to have excellent prevention and alleviation effects in drug toxicity side effects, such as liver injury. In this review, we summarize the development history of probiotics, discuss the impact on drug side effects of probiotics, and propose the underlying mechanisms. Probiotics will be a new star in the world of complementary medicine.
Collapse
Affiliation(s)
- Zhongyue Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yan Hong
- Jiangxi Institution for Drug Control, Nanchang 330024, China
| | - Yalan Huo
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 W Stadium Ave., West Lafayette, IN 47907, USA
| | - Lingling Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huihui Lv
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiahui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Cuixiang Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
95
|
Hou X, Zheng Z, Wei J, Zhao L. Effects of gut microbiota on immune responses and immunotherapy in colorectal cancer. Front Immunol 2022; 13:1030745. [PMID: 36426359 PMCID: PMC9681148 DOI: 10.3389/fimmu.2022.1030745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Accumulating evidence suggests that gut microbial dysbiosis is implicated in colorectal cancer (CRC) initiation and progression through interaction with host immune system. Given the intimate relationship between the gut microbiota and the antitumor immune responses, the microbiota has proven to be effective targets in modulating immunotherapy responses of preclinical CRC models. However, the proposed putative mechanisms of how these bacteria affect immune responses and immunotherapy efficacy remains obscure. In this review, we summarize recent findings of clinical gut microbial dysbiosis in CRC patients, the reciprocal interactions between gut microbiota and the innate and/or the adaptive immune system, as well as the effect of gut microbiota on immunotherapy response in CRC. Increased understanding of the gut microbiota-immune system interactions will benefit the rational application of microbiota to the clinical promising biomarker or therapeutic strategy as a cancer immunotherapy adjuvant.
Collapse
Affiliation(s)
| | | | | | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
96
|
Tateishi AT, Okuma Y. Onco-biome in pharmacotherapy for lung cancer: a narrative review. Transl Lung Cancer Res 2022; 11:2332-2345. [PMID: 36519027 PMCID: PMC9742621 DOI: 10.21037/tlcr-22-299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/11/2022] [Indexed: 08/30/2023]
Abstract
BACKGROUND AND OBJECTIVE The gut microbiota (GM) was recently recognized to play an important role in modulating systemic immune responses and is known to influence the effects or adverse events of immune checkpoint blockade (ICB) or carcinogenesis by crosstalk with regulators of cancer-related immunity, and this relationship is complex and multifactorial. Diversity in the gut microbiome and the abundance of specific bacterial species have been identified to be associated with better response and prognosis. Therefore, the purpose of the current interest in the gut microbiome is to enable modulation of the immune system in donor cancer patients by the administration of specific bacterial species and enabling their dominance. To understand this "terra incognita" is to uncover the role of the mechanisms underlying unknown organ functions, and this knowledge will lead to enhanced immunotherapy for lung cancer patients. METHODS In this article, we summarized the literature on the relationship between the microbiome and lung cancer and the potential of the microbiome as a therapeutic target. KEY CONTENT AND FINDINGS This article is organized into the following sections: introduction, methods, microbiota and cancer development, microbiota and lung cancer treatment, future directions, and conclusion. CONCLUSIONS The gut microbiome is currently becoming the hallmark of cancer research and has an established and critical role in regulating antitumor immunity and the response to ICB in patients with lung cancers.
Collapse
|
97
|
Najmi M, Tran T, Witt RG, Nelson KC. Modulation of the Gut Microbiome to Enhance Immunotherapy Response in Metastatic Melanoma Patients: A Clinical Review. Dermatol Ther (Heidelb) 2022; 12:2489-2497. [PMID: 36153786 PMCID: PMC9588106 DOI: 10.1007/s13555-022-00810-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
For patients with metastatic melanoma, immunotherapy agents represent a promising treatment option, and researchers are actively seeking to identify factors that may predict a favorable response in patients. Recent studies have elucidated possible associations between the gut microbiome and the effects of immunotherapy, where variations in the gut microbiome may influence treatment response and frequency of adverse effects. In this clinical review, we describe the current literature related to the gut microbiome in the setting of immunotherapy, and we provide an overview of interventions under investigation that may modulate the gut microbiome. These interventions include fecal microbiota transplantation, probiotics, and dietary modifications.
Collapse
Affiliation(s)
- Maleka Najmi
- Department of Internal Medicine, Baylor Scott & White Medical Center, 2401 S 31st St MS-01-161B, Temple, TX 76508 USA
| | | | - Russell G. Witt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Kelly C. Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
98
|
Haque S, Raina R, Afroze N, Hussain A, Alsulimani A, Singh V, Mishra BN, Kaul S, Kharwar RN. Microbial dysbiosis and epigenetics modulation in cancer development - A chemopreventive approach. Semin Cancer Biol 2022; 86:666-681. [PMID: 34216789 DOI: 10.1016/j.semcancer.2021.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/27/2023]
Abstract
An overwhelming number of research articles have reported a strong relationship of the microbiome with cancer. Microbes have been observed more commonly in the body fluids like urine, stool, mucus of people with cancer compared to the healthy controls. The microbiota is responsible for both progression and suppression activities of various diseases. Thus, to maintain healthy human physiology, host and microbiota relationship should be in a balanced state. Any disturbance in this equilibrium, referred as microbiome dysbiosis becomes a prime cause for the human body to become more prone to immunodeficiency and cancer. It is well established that some of these microbes are the causative agents, whereas others may encourage the formation of tumours, but very little is known about how these microbial communications causing change at gene and epigenome level and trigger as well as encourage the tumour growth. Various studies have reported that microbes in the gut influence DNA methylation, DNA repair and DNA damage. The genes and pathways that are altered by gut microbes are also associated with cancer advancement, predominantly those implicated in cell growth and cell signalling pathways. This study exhaustively reviews the current research advancements in understanding of dysbiosis linked with colon, lung, ovarian, breast cancers and insights into the potential molecular targets of the microbiome promoting carcinogenesis, the epigenetic alterations of various potential targets by altered microbiota, as well as the role of various chemopreventive agents for timely prevention and customized treatment against various types of cancers.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Ritu Raina
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates.
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, 226021, Uttar Pradesh, India
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, 226021, Uttar Pradesh, India
| | - Sanjana Kaul
- School of Biotechnology, University of Jammu, Jammu, 180006, J&K, India
| | - Ravindra Nath Kharwar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
99
|
Gu X, Zhang S, Yang X, Guan T, Hou Z, Cao M, Li H, Zhang T. Drug-related adverse events potentially predict the efficacy of apatinib on advanced hepatocellular carcinoma. BMC Gastroenterol 2022; 22:441. [PMCID: PMC9620633 DOI: 10.1186/s12876-022-02542-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide every year, and most HCC patients are diagnosed with advanced disease and can only receive systemic treatment. TKIs are the most important components of the systemic treatment of HCC and have both good efficacy and adverse events (AEs). Methods This analysis included 207 patients with locally advanced unresectable or metastatic HCC who received oral treatment with apatinib. We analyzed the overall survival (OS) and progression-free survival (PFS) of patients with or without corresponding AEs to evaluate which AEs can predict the efficacy of apatinib. Results Patients with hand-foot syndrome (HFS; p = 0.005), proteinuria (p = 0.006) and diarrhea (p < 0.001) had significantly better OS than those without corresponding AEs, and the appearance of HFS (p = 0.006) and proteinuria (p = 0.004) was associated with longer PFS. Conclusion Among all the AEs induced by apatinib in the treatment of advanced HCC, proteinuria could potentially predict PFS, and diarrhea was a potential predictor of OS. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02542-0.
Collapse
Affiliation(s)
- Xiaoying Gu
- grid.411918.40000 0004 1798 6427Department of Hepatobiliary Surgery, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Su Zhang
- grid.411918.40000 0004 1798 6427Department of Gynecologic Oncology, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Xuejiao Yang
- grid.411918.40000 0004 1798 6427Department of Hepatobiliary Surgery, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.507043.5Present Address: Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 445000 EnshiHubei, China
| | - Tao Guan
- grid.411918.40000 0004 1798 6427Department of Hepatobiliary Surgery, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Zhenyu Hou
- grid.411918.40000 0004 1798 6427Department of Hepatobiliary Surgery, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Manqing Cao
- grid.411918.40000 0004 1798 6427Department of Breast Surgery, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Huikai Li
- grid.411918.40000 0004 1798 6427Department of Hepatobiliary Surgery, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Ti Zhang
- grid.411918.40000 0004 1798 6427Department of Hepatobiliary Surgery, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060 China ,Present Address: Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, 200032 Shanghai, People’s Republic of China
| |
Collapse
|
100
|
Alrahawy M, Javed S, Atif H, Elsanhoury K, Mekhaeil K, Eskander G. Microbiome and Colorectal Cancer Management. Cureus 2022; 14:e30720. [DOI: 10.7759/cureus.30720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|