51
|
Ferreira T, Prudêncio P, Martinho RG. Drosophila protein kinase N (Pkn) is a negative regulator of actin-myosin activity during oogenesis. Dev Biol 2014; 394:277-91. [PMID: 25131196 DOI: 10.1016/j.ydbio.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 02/05/2023]
Abstract
Nurse cell dumping is an actin-myosin based process, where 15 nurse cells of a given egg chamber contract and transfer their cytoplasmic content through the ring canals into the growing oocyte. We isolated two mutant alleles of protein kinase N (pkn) and showed that Pkn negatively-regulates activation of the actin-myosin cytoskeleton during the onset of dumping. Using live-cell imaging analysis we observed that nurse cell dumping rates sharply increase during the onset of fast dumping. Such rate increase was severely impaired in pkn mutant nurse cells due to excessive nurse cell actin-myosin activity and/or loss of tissue integrity. Our work demonstrates that the transition between slow and fast dumping is a discrete event, with at least a five to six-fold dumping rate increase. We show that Pkn negatively regulates nurse cell actin-myosin activity. This is likely to be important for directional cytoplasmic flow. We propose Pkn provides a negative feedback loop to help avoid excessive contractility after local activation of Rho GTPase.
Collapse
Affiliation(s)
- Tânia Ferreira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2781-901, Portugal
| | - Pedro Prudêncio
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2781-901, Portugal; Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Rui Gonçalo Martinho
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2781-901, Portugal; Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
52
|
Llamusí B, Muñoz-Soriano V, Paricio N, Artero R. The use of whole-mount in situ hybridization to illustrate gene expression regulation. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 42:339-347. [PMID: 24979316 DOI: 10.1002/bmb.20807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
In situ hybridization is a widely used technique for studying gene expression. Here, we describe two experiments addressed to postgraduate genetics students in which the effect of transcription factors on gene expression is analyzed in Drosophila embryos of different genotypes by whole-mount in situ hybridization. In one of the experiments, students analyzed the repressive effect of Snail over rhomboid expression using reporter lines containing different constructs of the rhomboid neuroectodermal enhancer fused to the lacZ gene. In the second experiment, the epistatic relationship between the cabut and decapentaplegic genes was analyzed. These simple experiments allowed students to (1) understand the role of transcription factors and cis-regulatory elements over gene expression regulation and (2) practice a widespread laboratory technique, in situ hybridization with nonradioactive labeled probes, to detect gene expression patterns. These experiments required 12 hr and were organized into four daily sessions that included the discussion of the results with students. Examples of the results obtained and their relevance are shown and discussed herein. The methods described in these laboratory exercises can be easily adapted to model organisms other than Drosophila.
Collapse
Affiliation(s)
- Beatriz Llamusí
- Department of Genetics, Faculty of Biology, Universitat de València, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | | | | | | |
Collapse
|
53
|
Koride S, He L, Xiong LP, Lan G, Montell DJ, Sun SX. Mechanochemical regulation of oscillatory follicle cell dynamics in the developing Drosophila egg chamber. Mol Biol Cell 2014; 25:3709-16. [PMID: 24943847 PMCID: PMC4230628 DOI: 10.1091/mbc.e14-04-0875] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In the epithelium of Drosophila during tissue elongation, contractile forces in follicle cells can oscillate. These oscillations correlate with increasing tension in the epithelium from egg chamber growth. A mathematical model is proposed to explain the observed oscillations, together with a mechanism of active regulation of cellular contractile forces. During tissue elongation from stage 9 to stage 10 in Drosophila oogenesis, the egg chamber increases in length by ∼1.7-fold while increasing in volume by eightfold. During these stages, spontaneous oscillations in the contraction of cell basal surfaces develop in a subset of follicle cells. This patterned activity is required for elongation of the egg chamber; however, the mechanisms generating the spatiotemporal pattern have been unclear. Here we use a combination of quantitative modeling and experimental perturbation to show that mechanochemical interactions are sufficient to generate oscillations of myosin contractile activity in the observed spatiotemporal pattern. We propose that follicle cells in the epithelial layer contract against pressure in the expanding egg chamber. As tension in the epithelial layer increases, Rho kinase signaling activates myosin assembly and contraction. The activation process is cooperative, leading to a limit cycle in the myosin dynamics. Our model produces asynchronous oscillations in follicle cell area and myosin content, consistent with experimental observations. In addition, we test the prediction that removal of the basal lamina will increase the average oscillation period. The model demonstrates that in principle, mechanochemical interactions are sufficient to drive patterning and morphogenesis, independent of patterned gene expression.
Collapse
Affiliation(s)
- Sarita Koride
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Li He
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Li-Ping Xiong
- Department of Physics, George Washington University, Washington, DC 20052
| | - Ganhui Lan
- Department of Physics, George Washington University, Washington, DC 20052
| | - Denise J Montell
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Sean X Sun
- Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218 Department of Mechanical Engineering, Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
54
|
Razzell W, Wood W, Martin P. Recapitulation of morphogenetic cell shape changes enables wound re-epithelialisation. Development 2014; 141:1814-20. [PMID: 24718989 PMCID: PMC3994776 DOI: 10.1242/dev.107045] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Wound repair is a fundamental, conserved mechanism for maintaining tissue homeostasis and shares many parallels with embryonic morphogenesis. Small wounds in simple epithelia rapidly assemble a contractile actomyosin cable at their leading edge, as well as dynamic filopodia that finally knit the wound edges together. Most studies of wound re-epithelialisation have focused on the actin machineries that assemble in the leading edge of front row cells and that resemble the contractile mechanisms that drive morphogenetic episodes, including Drosophila dorsal closure, but, clearly, multiple cell rows back must also contribute for efficient repair of the wound. Here, we examine the role of cells back from the wound edge and show that they also stretch towards the wound and cells anterior-posterior to the wound edge rearrange their junctions with neighbours to drive cell intercalation events. This process in anterior-posterior cells is active and dependent on pulses of actomyosin that lead to ratcheted shrinkage of junctions; the actomyosin pulses are targeted to breaks in the cell polarity protein Par3 at cell vertices. Inhibiting actomyosin dynamics back from the leading edge prevents junction shrinkage and inhibits the wound edge from advancing. These events recapitulate cell rearrangements that occur during germband extension, in which intercalation events drive the elongation of tissues.
Collapse
Affiliation(s)
- William Razzell
- Schools of Biochemistry and, Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
55
|
Jayasinghe AK, Crews SM, Mashburn DN, Hutson MS. Apical oscillations in amnioserosa cells: basolateral coupling and mechanical autonomy. Biophys J 2014; 105:255-65. [PMID: 23823245 DOI: 10.1016/j.bpj.2013.05.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/12/2013] [Accepted: 05/17/2013] [Indexed: 11/15/2022] Open
Abstract
Holographic laser microsurgery is used to isolate single amnioserosa cells in vivo during early dorsal closure. During this stage of Drosophila embryogenesis, amnioserosa cells undergo oscillations in apical surface area. The postisolation behavior of individual cells depends on their preisolation phase in these contraction/expansion cycles: cells that were contracting tend to collapse quickly after isolation; cells that were expanding do not immediately collapse, but instead pause or even continue to expand for ∼40 s. In either case, the postisolation apical collapse can be prevented by prior anesthetization of the embryos with CO2. These results suggest that although the amnioserosa is under tension, its cells are subjected to only small elastic strains. Furthermore, their postisolation apical collapse is not a passive elastic relaxation, and both the contraction and expansion phases of their oscillations are driven by intracellular forces. All of the above require significant changes to existing computational models.
Collapse
Affiliation(s)
- Aroshan K Jayasinghe
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
56
|
Gokhale K, Patil DP, Dhotre DP, Dixit R, Mendki MJ, Patole MS, Shouche YS. Transcriptome analysis of Anopheles stephensi embryo using expressed sequence tags. J Biosci 2013; 38:301-9. [PMID: 23660664 DOI: 10.1007/s12038-013-9320-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Germ band retraction (GBR) stage is one of the important stages during insect development. It is associated with an extensive epithelial morphogenesis and may also be pivotal in generation of morphological diversity in insects. Despite its importance, only a handful of studies report the transcriptome repertoire of this stage in insects. Here, we report generation, annotation and analysis of ESTs from the embryonic stage (16-22 h post fertilization) of laboratoryreared Anopheles stephensi mosquitoes. A total of 1002 contigs were obtained upon clustering of 1140 high-quality ESTs, which demonstrates an astonishingly low transcript redundancy (12.1 percent). Putative functions were assigned only to 213 contigs (21 percent), comprising mainly of transcripts encoding protein synthesis machinery. Approximately 78 percent of the transcripts remain uncharacterized, illustrating a lack of sequence information about the genes expressed in the embryonic stages of mosquitoes. This study highlights several novel transcripts, which apart from insect development, may significantly contribute to the essential biological complexity underlying insect viability in adverse environments. Nonetheless, the generated sequence information from this work provides a comprehensive resource for genome annotation, microarray development, phylogenetic analysis and other molecular biology applications in entomology.
Collapse
Affiliation(s)
- Kaustubh Gokhale
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | | | | | | | | | | | | |
Collapse
|
57
|
Jonecová Z, Tóth Š, Varga J, Staško P, Kovalčinová B, Maretta M, Veselá J. The immediate response of jejunal mucosa to small bowel heterotopic allotransplatation in rats. Tissue Cell 2013; 46:21-6. [PMID: 24079856 DOI: 10.1016/j.tice.2013.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 12/18/2022]
Abstract
The course of histopathological alterations within jejunal graft architecture during the initial adaptation phase in the host body was investigated. Graft tissues were compared to the intestinal tissues of the recipients. This study demonstrates: (1) renewal of intestinal epithelial lining in the graft biopsies during initial hours after transplantation is more likely caused by migration and extension of remaining epithelial cells than by their increased mitotic division. (2) Distinct decrease in histopathological injury was observed in transplanted grafts after 6h, but the morphometrical parameters, particularly villus height and wall thickness, remained altered. (3) Significant decrease in apoptotic cell death in the epithelial lining within 6h of graft recirculation was accompanied by no effect on apoptosis levels of the cells in lamina propria connective tissue. (4) Although the apoptosis level in the connective tissue cells was not modulated in the grafts within the first hour after transplantation, caspase-3 dependent apoptosis was decreased significantly.
Collapse
Affiliation(s)
- Z Jonecová
- Department of Histology and Embryology, Faculty of Medicine, Pavol Jozef Šafárik University, Šrobárova 2, 041 80 Košice, Slovakia
| | - Š Tóth
- Department of Histology and Embryology, Faculty of Medicine, Pavol Jozef Šafárik University, Šrobárova 2, 041 80 Košice, Slovakia.
| | - J Varga
- 2(nd) Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University, Rastislavova 73, 041 90 Košice, Slovakia
| | - P Staško
- Department of Vascular Surgery, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia
| | - B Kovalčinová
- Department of Histology and Embryology, Faculty of Medicine, Pavol Jozef Šafárik University, Šrobárova 2, 041 80 Košice, Slovakia
| | - M Maretta
- Department of Histology and Embryology, Faculty of Medicine, Pavol Jozef Šafárik University, Šrobárova 2, 041 80 Košice, Slovakia
| | - J Veselá
- Department of Histology and Embryology, Faculty of Medicine, Pavol Jozef Šafárik University, Šrobárova 2, 041 80 Košice, Slovakia
| |
Collapse
|
58
|
Panfilio KA, Oberhofer G, Roth S. High plasticity in epithelial morphogenesis during insect dorsal closure. Biol Open 2013; 2:1108-18. [PMID: 24244847 PMCID: PMC3828757 DOI: 10.1242/bio.20136072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/05/2013] [Indexed: 01/11/2023] Open
Abstract
Insect embryos complete the outer form of the body via dorsal closure (DC) of the epidermal flanks, replacing the transient extraembryonic (EE) tissue. Cell shape changes and morphogenetic behavior are well characterized for DC in Drosophila, but these data represent a single species with a secondarily reduced EE component (the amnioserosa) that is not representative across the insects. Here, we examine DC in the red flour beetle, Tribolium castaneum, providing the first detailed, functional analysis of DC in an insect with complete EE tissues (distinct amnion and serosa). Surprisingly, we find that differences between Drosophila and Tribolium DC are not restricted to the EE tissue, but also encompass the dorsal epidermis, which differs in cellular architecture and method of final closure (zippering). We then experimentally manipulated EE tissue complement via RNAi for Tc-zen1, allowing us to eliminate the serosa and still examine viable DC in a system with a single EE tissue (the amnion). We find that the EE domain is particularly plastic in morphogenetic behavior and tissue structure. In contrast, embryonic features and overall kinetics are robust to Tc-zen1(RNAi) manipulation in Tribolium and conserved with a more distantly related insect, but remain substantially different from Drosophila. Although correct DC is essential, plasticity and regulative, compensatory capacity have permitted DC to evolve within the insects. Thus, DC does not represent a strong developmental constraint on the nature of EE development, a property that may have contributed to the reduction of the EE component in the fly lineage.
Collapse
Affiliation(s)
- Kristen A. Panfilio
- Institute for Developmental Biology, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Georg Oberhofer
- J. F. Blumenbach Institute of Zoology and Anthropology, Department of Developmental Biology, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Siegfried Roth
- Institute for Developmental Biology, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
59
|
Sharma R, Beermann A, Schröder R. FGF signalling controls anterior extraembryonic and embryonic fate in the beetle Tribolium. Dev Biol 2013; 381:121-33. [DOI: 10.1016/j.ydbio.2013.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 11/30/2022]
|
60
|
Giuliani F, Giuliani G, Bauer R, Rabouille C. Innexin 3, a new gene required for dorsal closure in Drosophila embryo. PLoS One 2013; 8:e69212. [PMID: 23894431 PMCID: PMC3722180 DOI: 10.1371/journal.pone.0069212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 06/10/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dorsal closure is a morphogenetic event that occurs during mid-embryogenesis in many insects including Drosophila, during which the ectoderm migrates on the extraembryonic amnioserosa to seal the embryo dorsally. The contribution of the ectoderm in this event has been known for a long time. However, amnioserosa tension and contractibility have recently been shown also to be instrumental to the closure. A critical pre-requisite for dorsal closure is integrity of these tissues that in part is mediated by cell-cell junctions and cell adhesion. In this regard, mutations impairing junction formation and/or adhesion lead to dorsal closure. However, no role for the gap junction proteins Innexins has so far been described. RESULTS AND DISCUSSION Here, we show that Innexin 1, 2 and 3, are present in the ectoderm but also in the amnioserosa in plaques consistent with gap junctions. However, only the loss of Inx3 leads to dorsal closure defects that are completely rescued by overexpression of inx3::GFP in the whole embryo. Loss of Inx3 leads to the destabilisation of Inx1, Inx2 and DE-cadherin at the plasma membrane, suggesting that these four proteins form a complex. Accordingly, in addition to the known interaction of Inx2 with DE-cadherin, we show that Inx3 can bind to DE-cadherin. Furthermore, Inx3-GFP overexpression recruits DE-cadherin from its wildtype plasma membrane domain to typical Innexin plaques, strengthening the notion that they form a complex. Finally, we show that Inx3 stability is directly dependent on tissue tension. Taken together, we propose that Inx3 is a critical factor for dorsal closure and that it mediates the stability of Inx1, 2 and DE-cadherin by forming a complex.
Collapse
Affiliation(s)
- Fabrizio Giuliani
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- UMC Utrecht, Utrecht, The Netherlands
| | - Giuliano Giuliani
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- UMC Utrecht, Utrecht, The Netherlands
| | - Reinhard Bauer
- LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Laboratory for Molecular Developmental Biology, University of Bonn, Bonn, Germany
| | - Catherine Rabouille
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- UMC Utrecht, Utrecht, The Netherlands
- Department of Cell Biology, UMC Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
61
|
Heckman CA, Plummer HK. Filopodia as sensors. Cell Signal 2013; 25:2298-311. [PMID: 23876793 DOI: 10.1016/j.cellsig.2013.07.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 12/19/2022]
Abstract
Filopodia are sensors on both excitable and non-excitable cells. The sensing function is well documented in neurons and blood vessels of adult animals and is obvious during dorsal closure in embryonic development. Nerve cells extend neurites in a bidirectional fashion with growth cones at the tips where filopodia are concentrated. Their sensing of environmental cues underpins the axon's ability to "guide," bypassing non-target cells and moving toward the target to be innervated. This review focuses on the role of filopodia structure and dynamics in the detection of environmental cues, including both the extracellular matrix (ECM) and the surfaces of neighboring cells. Other protrusions including the stereocilia of the inner ear and epididymus, the invertebrate Type I mechanosensors, and the elongated processes connecting osteocytes, share certain principles of organization with the filopodia. Actin bundles, which may be inside or outside of the excitable cell, function to transduce stress from physical perturbations into ion signals. There are different ways of detecting such perturbations. Osteocyte processes contain an actin core and are physically anchored on an extracellular structure by integrins. Some Type I mechanosensors have bridge proteins that anchor microtubules to the membrane, but bundles of actin in accessory cells exert stress on this complex. Hair cells of the inner ear rely on attachments between the actin-based protrusions to activate ion channels, which then transduce signals to afferent neurons. In adherent filopodia, the focal contacts (FCs) integrated with ECM proteins through integrins may regulate integrin-coupled ion channels to achieve signal transduction. Issues that are not understood include the role of Ca(2+) influx in filopodia dynamics and how integrins coordinate or gate signals arising from perturbation of channels by environmental cues.
Collapse
Affiliation(s)
- C A Heckman
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0212, USA.
| | | |
Collapse
|
62
|
Nagarajan VK, Jones CI, Newbury SF, Green PJ. XRN 5'→3' exoribonucleases: structure, mechanisms and functions. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:590-603. [PMID: 23517755 PMCID: PMC3742305 DOI: 10.1016/j.bbagrm.2013.03.005] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 01/11/2023]
Abstract
The XRN family of 5'→3' exoribonucleases is critical for ensuring the fidelity of cellular RNA turnover in eukaryotes. Highly conserved across species, the family is typically represented by one cytoplasmic enzyme (XRN1/PACMAN or XRN4) and one or more nuclear enzymes (XRN2/RAT1 and XRN3). Cytoplasmic and/or nuclear XRNs have proven to be essential in all organisms tested, and deficiencies can have severe developmental phenotypes, demonstrating that XRNs are indispensable in fungi, plants and animals. XRNs degrade diverse RNA substrates during general RNA decay and function in specialized processes integral to RNA metabolism, such as nonsense-mediated decay (NMD), gene silencing, rRNA maturation, and transcription termination. Here, we review current knowledge of XRNs, highlighting recent work of high impact and future potential. One example is the breakthrough in our understanding of how XRN1 processively degrades 5' monophosphorylated RNA, revealed by its crystal structure and mutational analysis. The expanding knowledge of XRN substrates and interacting partners is outlined and the functions of XRNs are interpreted at the organismal level using available mutant phenotypes. Finally, three case studies are discussed in more detail to underscore a few of the most exciting areas of research on XRN function: XRN4 involvement in small RNA-associated processes in plants, the roles of XRN1/PACMAN in Drosophila development, and the function of human XRN2 in nuclear transcriptional quality control. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Vinay K. Nagarajan
- Delaware Biotechnology Institute, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Christopher I. Jones
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Sarah F. Newbury
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Pamela J. Green
- Delaware Biotechnology Institute, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
63
|
Herrera SC, Martín R, Morata G. Tissue homeostasis in the wing disc of Drosophila melanogaster: immediate response to massive damage during development. PLoS Genet 2013; 9:e1003446. [PMID: 23633961 PMCID: PMC3636033 DOI: 10.1371/journal.pgen.1003446] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/27/2013] [Indexed: 11/18/2022] Open
Abstract
All organisms have developed mechanisms to respond to organ or tissue damage that may appear during development or during the adult life. This process of regeneration is a major long-standing problem in Developmental Biology. We are using the Drosophila melanogaster wing imaginal disc to study the response to major damage inflicted during development. Using the Gal4/UAS/Gal80TS conditional system, we have induced massive cell killing by forcing activity of the pro-apoptotic gene hid in two major regions of the disc as defined by Gal4 inserts in the genes rotund (rn) and spalt (sal). The procedure ensures that at the end of a 40–48 hrs of ablation period the great majority of the cells of the original Rn or Sal domains have been eliminated. The results indicate that the damage provokes an immediate response aimed to keep the integrity of the epithelium and to repair the region under ablation. This includes an increase in cell proliferation to compensate for the cell loss and the replacement of the dead cells by others from outside of the damaged area. The response is almost contemporaneous with the damage, so that at the end of the ablation period the targeted region is already reconstructed. We find that the proliferative response is largely systemic, as the number of cells in division increases all over the disc. Furthermore, our results indicate that the Dpp and Wg pathways are not specifically involved in the regenerative response, but that activity of the JNK pathway is necessary both inside and outside the ablated domain for its reconstruction. The study of how organs or tissues regenerate after damage is a classic topic in Developmental Biology. We are studying this process in the developing wing imaginal disc of Drosophila melanogaster, using genetic methods to inflict massive damage in the region destined to form the wing blade. We find that the lesion provokes a very strong and rapid reaction in the remaining disc aimed to reconstruct the lost tissue, both in size and in shape. The response includes an increase of cell proliferation to compensate for the loss of cells and the immigration of cells from neighbouring areas to replace the dead ones. The immigrant cells change their original identity and acquire that of the cells they are replacing. We propose that these experiments reveal the existence of a powerful homeostatic mechanism that is able to cure massive injuries that may appear during development.
Collapse
Affiliation(s)
- Salvador C. Herrera
- Centro de Biología Molecular CSIC–UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Raquel Martín
- Centro de Biología Molecular CSIC–UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ginés Morata
- Centro de Biología Molecular CSIC–UAM, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
64
|
Aldaz S, Escudero LM, Freeman M. Dual role of myosin II during Drosophila imaginal disc metamorphosis. Nat Commun 2013; 4:1761. [PMID: 23612302 PMCID: PMC3736102 DOI: 10.1038/ncomms2763] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 03/18/2013] [Indexed: 11/23/2022] Open
Abstract
The motor protein non-muscle myosin II is a major driver of the movements that sculpt three-dimensional organs from two-dimensional epithelia. The machinery of morphogenesis is well established but the logic of its control remains unclear in complex organs. Here we use live imaging and ex vivo culture to report a dual role of myosin II in regulating the development of the Drosophila wing. First, myosin II drives the contraction of a ring of cells that surround the squamous peripodial epithelium, providing the force to fold the whole disc through about 90°. Second, myosin II is needed to allow the squamous cells to expand and then retract at the end of eversion. The combination of genetics and live imaging allows us to describe and understand the tissue dynamics, and the logic of force generation needed to transform a relatively simple imaginal disc into a more complex and three-dimensional adult wing.
Collapse
|
65
|
Ladoux B, Nicolas A. Physically based principles of cell adhesion mechanosensitivity in tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:116601. [PMID: 23085962 DOI: 10.1088/0034-4885/75/11/116601] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The minimal structural unit that defines living organisms is a single cell. By proliferating and mechanically interacting with each other, cells can build complex organization such as tissues that ultimately organize into even more complex multicellular living organisms, such as mammals, composed of billions of single cells interacting with each other. As opposed to passive materials, living cells actively respond to the mechanical perturbations occurring in their environment. Tissue cell adhesion to its surrounding extracellular matrix or to neighbors is an example of a biological process that adapts to physical cues. The adhesion of tissue cells to their surrounding medium induces the generation of intracellular contraction forces whose amplitude adapts to the mechanical properties of the environment. In turn, solicitation of adhering cells with physical forces, such as blood flow shearing the layer of endothelial cells in the lumen of arteries, reinforces cell adhesion and impacts cell contractility. In biological terms, the sensing of physical signals is transduced into biochemical signaling events that guide cellular responses such as cell differentiation, cell growth and cell death. Regarding the biological and developmental consequences of cell adaptation to mechanical perturbations, understanding mechanotransduction in tissue cell adhesion appears as an important step in numerous fields of biology, such as cancer, regenerative medicine or tissue bioengineering for instance. Physicists were first tempted to view cell adhesion as the wetting transition of a soft bag having a complex, adhesive interaction with the surface. But surprising responses of tissue cell adhesion to mechanical cues challenged this view. This, however, did not exclude that cell adhesion could be understood in physical terms. It meant that new models and descriptions had to be created specifically for these biological issues, and could not straightforwardly be adapted from dead matter. In this review, we present physical concepts of tissue cell adhesion and the unexpected cellular responses to mechanical cues such as external forces and stiffness sensing. We show how biophysical approaches, both experimentally and theoretically, have contributed to our understanding of the regulation of cellular functions through physical force sensing mechanisms. Finally, we discuss the different physical models that could explain how tissue cell adhesion and force sensing can be coupled to internal mechanosensitive processes within the cell body.
Collapse
Affiliation(s)
- Benoit Ladoux
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS UMR 7057 & Université Paris Diderot, Paris, France.
| | | |
Collapse
|
66
|
Behrndt M, Salbreux G, Campinho P, Hauschild R, Oswald F, Roensch J, Grill SW, Heisenberg CP. Forces Driving Epithelial Spreading in Zebrafish Gastrulation. Science 2012; 338:257-60. [DOI: 10.1126/science.1224143] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
67
|
Independent migration of cell populations in the early gastrulation of the amphipod crustacean Parhyale hawaiensis. Dev Biol 2012; 371:94-109. [PMID: 23046627 DOI: 10.1016/j.ydbio.2012.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/15/2012] [Accepted: 08/19/2012] [Indexed: 11/22/2022]
Abstract
Cells are the principal component of tissues and can drive morphogenesis through dynamic changes in structure and interaction. During gastrulation, the primary morphogenetic event of early development, cells change shape, exchange neighbors, and migrate long distances to establish cell layers that will form the tissues of the adult animal. Outside of Drosophila, little is known about how changes in cell behavior might drive gastrulation among arthropods. Here, we focus on three cell populations that form two aggregations during early gastrulation in the crustacean Parhyale hawaiensis. Using cytoskeletal markers and lineage tracing we observe bottle cells in anterior and visceral mesoderm precursors as gastrulation commences, and find that both Cytochalasin D, an inhibitor of actin polymerization, and ROCKOUT, an inhibitor of Rho-kinase activity, prevent gastrulation. Furthermore, by ablating specific cells, we show that each of the three populations acts independently during gastrulation, confirming previous hypotheses that cell behavior during Parhyale gastrulation relies on intrinsic signals instead of an inductive mechanism.
Collapse
|
68
|
Chisholm AD, Hsiao TI. The Caenorhabditis elegans epidermis as a model skin. I: development, patterning, and growth. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:861-78. [PMID: 23539299 DOI: 10.1002/wdev.79] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The skin of the nematode Caenorhabditis elegans is composed of a simple epidermal epithelium and overlying cuticle. The skin encloses the animal and plays central roles in body morphology and physiology; its simplicity and accessibility make it a tractable genetic model for several aspects of skin biology. Epidermal precursors are specified by a hierarchy of transcriptional regulators. Epidermal cells form on the dorsal surface of the embryo and differentiate to form the epidermal primordium, which then spreads out in a process of epiboly to enclose internal tissues. Subsequent elongation of the embryo into a vermiform larva is driven by cell shape changes and cell fusions in the epidermis. Most epidermal cells fuse in mid-embryogenesis to form a small number of multinucleate syncytia. During mid-embryogenesis the epidermis also becomes intimately associated with underlying muscles, performing a tendon-like role in transmitting muscle force. Post-embryonic development of the epidermis involves growth by addition of new cells to the syncytia from stem cell-like epidermal seam cells and by an increase in cell size driven by endoreplication of the chromosomes in epidermal nuclei.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
69
|
Sokolow A, Toyama Y, Kiehart DP, Edwards GS. Cell ingression and apical shape oscillations during dorsal closure in Drosophila. Biophys J 2012; 102:969-79. [PMID: 22404919 DOI: 10.1016/j.bpj.2012.01.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 01/22/2023] Open
Abstract
Programmed patterns of gene expression, cell-cell signaling, and cellular forces cause morphogenic movements during dorsal closure. We investigated the apical cell-shape changes that characterize amnioserosa cells during dorsal closure in Drosophila embryos with in vivo imaging of green-fluorescent-protein-labeled DE-cadherin. Time-lapsed, confocal images were assessed with a novel segmentation algorithm, Fourier analysis, and kinematic and dynamical modeling. We found two generic processes, reversible oscillations in apical cross-sectional area and cell ingression characterized by persistent loss of apical area. We quantified a time-dependent, spatially-averaged sum of intracellular and intercellular forces acting on each cell's apical belt of DE-cadherin. We observed that a substantial fraction of amnioserosa cells ingress near the leading edges of lateral epidermis, consistent with the view that ingression can be regulated by leading-edge cells. This is in addition to previously observed ingression processes associated with zipping and apoptosis. Although there is cell-to-cell variability in the maximum rate for decreasing apical area (0.3-9.5 μm(2)/min), the rate for completing ingression is remarkably constant (0.83 cells/min, r(2) > 0.99). We propose that this constant ingression rate contributes to the spatiotemporal regularity of mechanical stress exerted by the amnioserosa on each leading edge during closure.
Collapse
Affiliation(s)
- Adam Sokolow
- Physics Department, Duke University, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
70
|
Vanderploeg J, Vazquez Paz LL, MacMullin A, Jacobs JR. Integrins are required for cardioblast polarisation in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2012; 12:8. [PMID: 22353787 PMCID: PMC3305622 DOI: 10.1186/1471-213x-12-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 02/21/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND The formation of a tubular organ, such as the heart, requires the communication of positional and polarity signals between migratory cells. Key to this process is the establishment of a new luminal domain on the cell surface, generally from the apical domain of a migratory cell. This domain will also acquire basal properties, as it will produce a luminal extracellular matrix. Integrin receptors are the primary means of cell adhesion and adhesion signaling with the extracellular matrix. Here we characterise the requirement of Integrins in a genetic model of vasculogenesis, the formation of the heart in Drosophila. RESULTS As with vertebrates, the Drosophila heart arises from lateral mesoderm that migrates medially to meet their contralateral partners, to then assemble a midline vessel. During migration, Integrins are among the first proteins restricted to the presumptive luminal domain of cardioblasts. Integrins are required for normal levels of leading edge membrane motility. Apical accumulation of Integrins is enhanced by Robo, and reciprocally, apicalisation of luminal factors like Slit and Robo requires Integrin function. Integrins may provide a template for the formation of a lumen by stabilising lumen factors like Robo. Subsequent to migration, Integrin is required for normal cardioblast alignment and lumen formation. This phenotype is most readily modified by other mutations that affect adhesion, such as Talin and extracellular matrix ligands. CONCLUSION Our findings reveal an instructive role for Integrins in communicating polarising information to cells during migration, and during transition to an epithelial tube structure.
Collapse
Affiliation(s)
- Jessica Vanderploeg
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - L Lourdes Vazquez Paz
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Allison MacMullin
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
- Life Technologies, Burlington, ON L7L 5Z1, Canada
| | - J Roger Jacobs
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
71
|
Lada K, Gorfinkiel N, Martinez Arias A. Interactions between the amnioserosa and the epidermis revealed by the function of the u-shaped gene. Biol Open 2012; 1:353-61. [PMID: 23213425 PMCID: PMC3509461 DOI: 10.1242/bio.2012497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dorsal closure (DC) is an essential step during Drosophila development whereby a hole is sealed in the dorsal epidermis and serves as a model for cell sheet morphogenesis and wound healing. It involves the orchestrated interplay of transcriptional networks and dynamic regulation of cell machinery to bring about shape changes, mechanical forces, and emergent properties. Here we provide insight into the regulation of dorsal closure by describing novel autonomous and non-autonomous roles for U-shaped (Ush) in the amnioserosa, the epidermis, and in mediation of communication between the tissues. We identified Ush by gene expression microarray analysis of Dpp signaling targets and show that Ush mediates some DC functions of Dpp. By selectively restoring Ush function in either the AS or the epidermis in ush mutants, we show that the AS makes a greater (Ush-dependent) contribution to closure than the epidermis. A signal from the AS induces epidermal cell elongation and JNK activation in the DME, while cable formation requires Ush on both sides of the leading edge, i.e. in both the AS and epidermis. Our study demonstrates that the amnioserosa and epidermis communicate at several steps during the process: sometimes the epidermis instructs the amnioserosa, other times the AS instructs the epidermis, and still other times they appear to collaborate.
Collapse
Affiliation(s)
- Karolina Lada
- Department of Genetics, University of Cambridge , CB2 3EH, Cambridge , UK
| | | | | |
Collapse
|
72
|
Wang S, Samakovlis C. Grainy head and its target genes in epithelial morphogenesis and wound healing. Curr Top Dev Biol 2012; 98:35-63. [PMID: 22305158 DOI: 10.1016/b978-0-12-386499-4.00002-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Grainy head (Grh) family of transcription factors is characterized by a unique DNA-binding domain that binds to a conserved consensus sequence. Nematodes and flies have a single grh gene, whereas mice and humans have evolved three genes encoding Grainy head-like (Grhl) factors. We review the biological function of Grh in different animals and the mechanisms modulating its activity. grh and grhl genes play a remarkably conserved role in epithelial organ development and extracellular barrier repair after tissue damage. Recent studies in flies and vertebrates suggest that Grh factors may be primary determinants of cell adhesion and epithelial tissue formation. Grh proteins can dimerize and act as activators or repressors in different developmental contexts. In flies, tissue-specific, alternative splicing generates different Grh isoforms with different DNA-binding specificities and functions. Grh activity is also modulated by receptor tyrosine kinases: it is phosphorylated by extracellular signal regulated kinase, and this phosphorylation is selectively required for epidermal barrier repair. Two mechanisms have been proposed to explain the repressive function of Grh on target gene transcription. First, Grh can target the Polycomb silencing complex to specific response elements. Second, it can directly compete for DNA binding with transcriptional activators. Understanding the molecular mechanisms of gene regulation by Grh factors is likely to elucidate phylogenetically conserved mechanisms of epithelial cell morphogenesis and regeneration upon tissue damage.
Collapse
Affiliation(s)
- Shenqiu Wang
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
73
|
Harris TJ. Adherens Junction Assembly and Function in the Drosophila Embryo. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:45-83. [DOI: 10.1016/b978-0-12-394304-0.00007-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
74
|
Abstract
Drosophila represents a paradigm for the analysis of the cellular, molecular and genetic mechanisms of development and is an ideal model system to study the contribution of Adherens Junctions (AJs) and their major components, cadherins, to morphogenesis. The combination of different techniques and approaches has allowed researchers to identify the requirements of these epithelial junctions in vivo in the context of a whole organism. The functional analysis of mutants for AJ core components, particularly for Drosophila DE-cadherin, has shown that AJs play critical roles in virtually all stages of development. For instance, AJs maintain tissue integrity while allowing the remodelling and homeostasis of many tissues. They control cell shape, contribute to cell polarity, facilitate cell-cell recognition during cell sorting, orient cell divisions, or regulate cell rearrangements, among other activities. Remarkably, these activities require a very fine control of the organisation and turnover of AJs during development. In addition, AJs engage in diverse and complex interactions with the cytoskeleton, signalling networks, intracellular trafficking machinery or polarity cues to perform these functions. Here, by summarising the requirements of AJs and cadherins during Drosophila morphogenesis, we illustrate the capital contribution of this model system to our knowledge of the mechanisms and biology of AJs.
Collapse
Affiliation(s)
- Annalisa Letizia
- Developmental Biology, Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona Baldiri Reixac 10-12, 08028, Barcelona, Spain,
| | | |
Collapse
|
75
|
Murrell M, Kamm R, Matsudaira P. Substrate viscosity enhances correlation in epithelial sheet movement. Biophys J 2011; 101:297-306. [PMID: 21767481 DOI: 10.1016/j.bpj.2011.05.048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 05/17/2011] [Accepted: 05/20/2011] [Indexed: 11/25/2022] Open
Abstract
The movement of the epithelium plays vital roles in the development and renewal of complex tissues, from the separation of tissues in the early embryo, to turnover in the homeostasis of the gastrointestinal mucosa. Yet, despite its importance, a clear interpretation of the mechanism for collective motion in epithelial sheets remains elusive. This interpretation is prohibited by the lack of understanding of the relationship between motion and cell-cell contact, and their mediation by the mechanical properties of the underlying substrate. To better mimic physiological substrates that have inherent viscosity, we probe this relationship using polydimethylsiloxane, a substrate whose mechanical properties can be tuned from predominantly elastic to viscous by altering its cross-linking content. We therefore characterize the comparative spatiotemporal correlations in cell velocity during the movement of an epithelial monolayer as a function of the viscoelasticity of the substrate. Our results show that high correlation in cell velocity is achieved when the substrate G''(ω) is ~0.4 × G'(ω). This correlation is driven by a balance between cell-cell contact and the adhesion and contraction of the extracellular matrix. For G'(ω) > G'(ω), this balance shifts, and contraction of the tissue drives the substrate to flow, further elevating the correlation in movement.
Collapse
Affiliation(s)
- Michael Murrell
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | | | |
Collapse
|
76
|
Mateus AM, Martinez Arias A. Patterned cell adhesion associated with tissue deformations during dorsal closure in Drosophila. PLoS One 2011; 6:e27159. [PMID: 22076130 PMCID: PMC3208594 DOI: 10.1371/journal.pone.0027159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 10/11/2011] [Indexed: 12/19/2022] Open
Abstract
Cell shape changes within epithelia require the regulation of adhesive molecules that maintain tissue integrity. How remodelling of cell contacts is achieved while tissue integrity is maintained remains a fundamental question in morphogenesis. Dorsal Closure is a good system to study the dynamics of DE-Cadherin during morphogenesis. It relies on concerted cell shape changes of two epithelial sheets: amnioserosa cell contraction and epidermal cell elongation. To investigate the modulation of DE-Cadherin we performed antibody uptake experiments in live embryos during Dorsal Closure. We found that some antibodies access certain epitopes of the extracellular domain of native DE-Cadherin only in the amnioserosa and epidermal cells attached to the amnioserosa, which has never been observed in fixed DE-Cadherin in Drosophila embryos. These differences correlate with the different cell behaviour of these regions and therefore we suggest that DE-Cadherin exists in different forms that confer different adhesive strengths. We propose this to be a widespread mechanism for the differential modulation of adhesion during morphogenesis.
Collapse
Affiliation(s)
- Ana Margarida Mateus
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Gulbenkian PhD Programme in Biomedicine, Oeiras, Portugal
| | | |
Collapse
|
77
|
Belacortu Y, Paricio N. Drosophila as a model of wound healing and tissue regeneration in vertebrates. Dev Dyn 2011; 240:2379-404. [PMID: 21953647 DOI: 10.1002/dvdy.22753] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2011] [Indexed: 11/11/2022] Open
Abstract
Understanding the molecular basis of wound healing and regeneration in vertebrates is one of the main challenges in biology and medicine. This understanding will lead to medical advances allowing accelerated tissue repair after wounding, rebuilding new tissues/organs and restoring homeostasis. Drosophila has emerged as a valuable model for studying these processes because the genetic networks and cytoskeletal machinery involved in epithelial movements occurring during embryonic dorsal closure, larval imaginal disc fusion/regeneration, and epithelial repair are similar to those acting during wound healing and regeneration in vertebrates. Recent studies have also focused on the use of Drosophila adult stem cells to maintain tissue homeostasis. Here, we review how Drosophila has contributed to our understanding of these processes, primarily through live-imaging and genetic tools that are impractical in mammals. Furthermore, we highlight future research areas where this insect may provide novel insights and potential therapeutic strategies for wound healing and regeneration.
Collapse
Affiliation(s)
- Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
| | | |
Collapse
|
78
|
Kolahgar G, Bardet PL, Langton PF, Alexandre C, Vincent JP. Apical deficiency triggers JNK-dependent apoptosis in the embryonic epidermis of Drosophila. Development 2011; 138:3021-31. [PMID: 21693518 DOI: 10.1242/dev.059980] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial homeostasis and the avoidance of diseases such as cancer require the elimination of defective cells by apoptosis. Here, we investigate how loss of apical determinants triggers apoptosis in the embryonic epidermis of Drosophila. Transcriptional profiling and in situ hybridisation show that JNK signalling is upregulated in mutants lacking Crumbs or other apical determinants. This leads to transcriptional activation of the pro-apoptotic gene reaper and to apoptosis. Suppression of JNK signalling by overexpression of Puckered, a feedback inhibitor of the pathway, prevents reaper upregulation and apoptosis. Moreover, removal of endogenous Puckered leads to ectopic reaper expression. Importantly, disruption of the basolateral domain in the embryonic epidermis does not trigger JNK signalling or apoptosis. We suggest that apical, not basolateral, integrity could be intrinsically required for the survival of epithelial cells. In apically deficient embryos, JNK signalling is activated throughout the epidermis. Yet, in the dorsal region, reaper expression is not activated and cells survive. One characteristic of these surviving cells is that they retain discernible adherens junctions despite the apical deficit. We suggest that junctional integrity could restrain the pro-apoptotic influence of JNK signalling.
Collapse
Affiliation(s)
- Golnar Kolahgar
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
79
|
Muliyil S, Krishnakumar P, Narasimha M. Spatial, temporal and molecular hierarchies in the link between death, delamination and dorsal closure. Development 2011; 138:3043-54. [PMID: 21693520 DOI: 10.1242/dev.060731] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dead cells in most epithelia are eliminated by cell extrusion. Here, we explore whether cell delamination in the amnioserosa, a seemingly stochastic event that results in the extrusion of a small fraction of cells and known to provide a force for dorsal closure, is contingent upon the receipt of an apoptotic signal. Through the analysis of mutant combinations and the profiling of apoptotic signals in situ, we establish spatial, temporal and molecular hierarchies in the link between death and delamination. We show that although an apoptotic signal is necessary and sufficient to provide cell-autonomous instructions for delamination, its induction during natural delamination occurs downstream of mitochondrial fragmentation. We further show that apoptotic regulators can influence both delamination and dorsal closure cell non-autonomously, presumably by influencing tissue mechanics. The spatial heterogeneities in delamination frequency and mitochondrial morphology suggest that mechanical stresses may underlie the activation of the apoptotic cascade through their influence on mitochondrial dynamics. Our results document for the first time the temporal propagation of an apoptotic signal in the context of cell behaviours that accomplish morphogenesis during development. They highlight the importance of mitochondrial dynamics and tissue mechanics in its regulation. Together, they provide novel insights into how apoptotic signals can be deployed to pattern tissues.
Collapse
Affiliation(s)
- Sonia Muliyil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | | | | |
Collapse
|
80
|
Murrell M, Kamm R, Matsudaira P. Tension, free space, and cell damage in a microfluidic wound healing assay. PLoS One 2011; 6:e24283. [PMID: 21915305 PMCID: PMC3167843 DOI: 10.1371/journal.pone.0024283] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 08/09/2011] [Indexed: 12/20/2022] Open
Abstract
We use a novel, microfluidics-based technique to deconstruct the classical wound healing scratch assay, decoupling the contribution of free space and cell damage on the migratory dynamics of an epithelial sheet. This method utilizes multiple laminar flows to selectively cleave cells enzymatically, and allows us to present a 'damage free' denudation. We therefore isolate the influence of free space on the onset of sheet migration. First, we observe denudation directly to measure the retraction in the cell sheet that occurs after cell-cell contact is broken, providing direct and quantitative evidence of strong tension within the sheet. We further probe the mechanical integrity of the sheet without denudation, instead using laminar flows to selectively inactivate actomyosin contractility. In both cases, retraction is observed over many cell diameters. We then extend this method and complement the enzymatic denudation with analogies to wounding, including gradients in signals associated with cell damage, such as reactive oxygen species, suspected to play a role in the induction of movement after wounding. These chemical factors are evaluated in combination with the enzymatic cleavage of cells, and are assessed for their influence on the collective migration of a non-abrasively denuded epithelial sheet. We conclude that free space alone is sufficient to induce movement, but this movement is predominantly limited to the leading edge, leaving cells further from the edge less able to move towards the wound. Surprisingly, when coupled with a gradient in ROS to simulate the chemical effects of abrasion however, motility was not restored, but further inhibited.
Collapse
Affiliation(s)
- Michael Murrell
- Department of Biological Engineering/Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
| | | | | |
Collapse
|
81
|
Khurana S, George SP. The role of actin bundling proteins in the assembly of filopodia in epithelial cells. Cell Adh Migr 2011; 5:409-20. [PMID: 21975550 PMCID: PMC3218608 DOI: 10.4161/cam.5.5.17644] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/05/2011] [Indexed: 01/22/2023] Open
Abstract
The goal of this review is to highlight how emerging new models of filopodia assembly, which include tissue specific actin-bundling proteins, could provide more comprehensive representations of filopodia assembly that would describe more adequately and effectively the complexity and plasticity of epithelial cells. This review also describes how the true diversity of actin bundling proteins must be considered to predict the far-reaching significance and versatile functions of filopodia in epithelial cells.
Collapse
Affiliation(s)
- Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | | |
Collapse
|
82
|
Takemura M, Adachi-Yamada T. Repair responses to abnormalities in morphogen activity gradient. Dev Growth Differ 2011; 53:161-7. [PMID: 21338342 DOI: 10.1111/j.1440-169x.2011.01249.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Establishing and maintaining a morphogen gradient are important in the growth and patterning of developing organs. When a discontinuity in a morphogen signal gradient is created by somatic mutant clones with aberrant intensities of morphogen signals within the Drosophila wing disc, the clones can be removed by apoptosis to restore the morphogen signal gradient. This apoptosis is termed "morphogenetic apoptosis" and has been observed to occur in a cell autonomous or non-cell autonomous manner. This review discusses possible molecular mechanisms of both autonomous and non-cell autonomous apoptosis in addition to similar cellular events in reference to recent findings.
Collapse
Affiliation(s)
- Masahiko Takemura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | | |
Collapse
|
83
|
Integrin adhesion drives the emergent polarization of active cytoskeletal stresses to pattern cell delamination. Proc Natl Acad Sci U S A 2011; 108:9107-12. [PMID: 21571643 DOI: 10.1073/pnas.1018652108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tissue patterning relies on cellular reorganization through the interplay between signaling pathways and mechanical stresses. Their integration and spatiotemporal coordination remain poorly understood. Here we investigate the mechanisms driving the dynamics of cell delamination, diversely deployed to extrude dead cells or specify distinct cell fates. We show that a local mechanical stimulus (subcellular laser perturbation) releases cellular prestress and triggers cell delamination in the amnioserosa during Drosophila dorsal closure, which, like spontaneous delamination, results in the rearrangement of nearest neighbors around the delaminating cell into a rosette. We demonstrate that a sequence of "emergent cytoskeletal polarities" in the nearest neighbors (directed myosin flows, lamellipodial growth, polarized actomyosin collars, microtubule asters), triggered by the mechanical stimulus and dependent on integrin adhesion, generate active stresses that drive delamination. We interpret these patterns in the language of active gels as asters formed by active force dipoles involving surface and body stresses generated by each cell and liken delamination to mechanical yielding that ensues when these stresses exceed a threshold. We suggest that differential contributions of adhesion, cytoskeletal, and external stresses must underlie differences in spatial pattern.
Collapse
|
84
|
Pines M, Fairchild MJ, Tanentzapf G. Distinct regulatory mechanisms control integrin adhesive processes during tissue morphogenesis. Dev Dyn 2011; 240:36-51. [PMID: 21089076 DOI: 10.1002/dvdy.22488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell adhesion must be precisely regulated to enable both dynamic morphogenetic processes and the subsequent transition to stable tissue maintenance. Integrins link the intracellular cytoskeleton and extracellular matrix, relaying bidirectional signals across the plasma membrane. In vitro studies have demonstrated that multiple mechanisms control integrin-mediated adhesion; however, their roles during development are poorly understood. We used mutations that activate or deactivate specific functions of vertebrate β-integrins in vitro to investigate how perturbing Drosophila βPS-integrin regulation in developing embryos regulation affects tissue morphogenesis and maintenance. We found that morphogenetic processes use various β-integrin regulatory mechanisms to differing degrees and that conformational changes associated with outside-in activation are essential for developmental integrin functions. Long-term adhesion is also sensitive to integrin dysregulation, suggesting integrins must be continuously regulated to support stable tissue maintenance. Altogether, in vivo phenotypic analyses allowed us to identify the importance of various β-integrin regulatory mechanisms during different morphogenetic processes.
Collapse
Affiliation(s)
- Mary Pines
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Institute, Vancouver, BC, Canada
| | | | | |
Collapse
|
85
|
Mateus AM, Gorfinkiel N, Schamberg S, Martinez Arias A. Endocytic and recycling endosomes modulate cell shape changes and tissue behaviour during morphogenesis in Drosophila. PLoS One 2011; 6:e18729. [PMID: 21533196 PMCID: PMC3077405 DOI: 10.1371/journal.pone.0018729] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/10/2011] [Indexed: 12/27/2022] Open
Abstract
During development tissue deformations are essential for the generation of organs and to provide the final form of an organism. These deformations rely on the coordination of individual cell behaviours which have their origin in the modulation of subcellular activities. Here we explore the role endocytosis and recycling on tissue deformations that occur during dorsal closure of the Drosophila embryo. During this process the AS contracts and the epidermis elongates in a coordinated fashion, leading to the closure of a discontinuity in the dorsal epidermis of the Drosophila embryo. We used dominant negative forms of Rab5 and Rab11 to monitor the impact on tissue morphogenesis of altering endocytosis and recycling at the level of single cells. We found different requirements for endocytosis (Rab5) and recycling (Rab11) in dorsal closure, furthermore we found that the two processes are differentially used in the two tissues. Endocytosis is required in the AS to remove membrane during apical constriction, but is not essential in the epidermis. Recycling is required in the AS at early stages and in the epidermis for cell elongation, suggesting a role in membrane addition during these processes. We propose that the modulation of the balance between endocytosis and recycling can regulate cellular morphology and tissue deformations during morphogenesis.
Collapse
Affiliation(s)
- Ana Margarida Mateus
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Gulbenkian PhD Programme in Biomedicine, Oeiras, Portugal
- * E-mail: (AMM); (AMA)
| | - Nicole Gorfinkiel
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Sabine Schamberg
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Alfonso Martinez Arias
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (AMM); (AMA)
| |
Collapse
|
86
|
Laplante C, Nilson LA. Asymmetric distribution of Echinoid defines the epidermal leading edge during Drosophila dorsal closure. ACTA ACUST UNITED AC 2011; 192:335-48. [PMID: 21263031 PMCID: PMC3172166 DOI: 10.1083/jcb.201009022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Upon loss of a binding partner in apposed tissue, the homophilic cell adhesion protein Echinoid adopts a planar polarized localization, which promotes the planar polarized localization of the planar cell polarity protein Bazooka/Par-3 and targets actomyosin cable assembly to the epidermal leading edge, thus establishing the migration direction of the developing epidermis. During Drosophila melanogaster dorsal closure, lateral sheets of embryonic epidermis assemble an actomyosin cable at their leading edge and migrate dorsally over the amnioserosa, converging at the dorsal midline. We show that disappearance of the homophilic cell adhesion molecule Echinoid (Ed) from the amnioserosa just before dorsal closure eliminates homophilic interactions with the adjacent dorsal-most epidermal (DME) cells, which comprise the leading edge. The resulting planar polarized distribution of Ed in the DME cells is essential for the localized accumulation of actin regulators and for actomyosin cable formation at the leading edge and for the polarized localization of the scaffolding protein Bazooka/PAR-3. DME cells with uniform Ed fail to assemble a cable and protrude dorsally, suggesting that the cable restricts dorsal migration. The planar polarized distribution of Ed in the DME cells thus provides a spatial cue that polarizes the DME cell actin cytoskeleton, defining the epidermal leading edge and establishing its contractile properties.
Collapse
Affiliation(s)
- Caroline Laplante
- Department of Biology, McGill University, Montréal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
87
|
Gorfinkiel N, Schamberg S, Blanchard GB. Integrative approaches to morphogenesis: Lessons from dorsal closure. Genesis 2011; 49:522-33. [DOI: 10.1002/dvg.20704] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/30/2010] [Accepted: 12/08/2010] [Indexed: 12/26/2022]
|
88
|
Wang X, Ward RE. Sec61alpha is required for dorsal closure during Drosophila embryogenesis through its regulation of Dpp signaling. Dev Dyn 2010; 239:784-97. [PMID: 20112345 DOI: 10.1002/dvdy.22219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
During dorsal closure in Drosophila, signaling events in the dorsalmost row of epidermal cells (DME cells) direct the migration of lateral epidermal sheets towards the dorsal midline where they fuse to enclose the embryo. A Jun amino-terminal kinase (JNK) cascade in the DME cells induces the expression of Decapentaplegic (Dpp). Dpp signaling then regulates the cytoskeleton in the DME cells and amnioserosa to affect the cell shape changes necessary to complete dorsal closure. We identified a mutation in Sec61alpha that specifically perturbs dorsal closure. Sec61alpha encodes the main subunit of the translocon complex for co-translational import of proteins into the ER. JNK signaling is normal in Sec61alpha mutant embryos, but Dpp signaling is attenuated and the DME cells fail to maintain an actinomyosin cable as epithelial migration fails. Consistent with this model, dorsal closure is rescued in Sec61alpha mutant embryos by an activated form of the Dpp receptor Thick veins.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
89
|
Belacortu Y, Weiss R, Kadener S, Paricio N. Expression of Drosophila Cabut during early embryogenesis, dorsal closure and nervous system development. Gene Expr Patterns 2010; 11:190-201. [PMID: 21109026 DOI: 10.1016/j.gep.2010.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/05/2010] [Accepted: 11/18/2010] [Indexed: 01/21/2023]
Abstract
cabut (cbt) encodes a transcription factor involved in Drosophila dorsal closure (DC), and it is expressed in embryonic epithelial sheets and yolk cell during this process upon activation of the Jun N-terminal kinase (JNK) signaling pathway. Additional studies suggest that cbt may have a role in multiple developmental processes. To analyze Cbt localization through embryogenesis, we generated a Cbt specific antibody that has allowed detecting new Cbt expression patterns. Immunohistochemical analyses on syncytial embryos and S2 cells reveal that Cbt is localized on the surface of mitotic chromosomes at all mitotic phases. During DC, Cbt is expressed in the yolk cell, in epidermal cells and in the hindgut, but also in amnioserosal cells, which also contribute to the process, albeit cbt transcripts were not detected in that tissue. At later embryonic stages, Cbt is expressed in neurons and glial cells in the central nervous system, and is detected in axons of the central and peripheral nervous systems. Most of these expression patterns are recapitulated by GFP reporter gene constructs driven by different cbt genomic regions. Moreover, they have been further validated by immunostainings of embryos from other Drosophila species, thus suggesting that Cbt function during embryogenesis appears to be conserved in evolution.
Collapse
Affiliation(s)
- Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjasot, Spain
| | | | | | | |
Collapse
|
90
|
Zhang L, Ward RE. Distinct tissue distributions and subcellular localizations of differently phosphorylated forms of the myosin regulatory light chain in Drosophila. Gene Expr Patterns 2010; 11:93-104. [PMID: 20920606 DOI: 10.1016/j.gep.2010.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 09/24/2010] [Accepted: 09/28/2010] [Indexed: 11/29/2022]
Abstract
Nonmuscle myosin II (myosin hereafter) has well-established roles in generating contractile force on actin filaments during morphogenetic processes in all metazoans. Myosin activation is regulated by phosphorylation of the myosin regulatory light chain (MRLC, encoded by spaghettisquash or sqh in Drosophila) first on Ser21 and subsequently on Thr20. These phosphorylation events are positively controlled by a variety of kinases including myosin light chain kinase, Rho kinase, citron kinase, and AMP kinase and are negatively regulated by myosin phosphatase. The activation of myosin is thus highly regulated and likely developmentally controlled. In order to monitor the activity of myosin during development, we have generated antibodies against the monophosphorylated (Sqh1P) and diphosphorylated (Sqh2P) forms of Sqh. We first show that the antibodies are highly specific. We then used these antibodies to monitor myosin activation in wild type Drosophila tissues. Interestingly, Sqh1P and Sqh2P show distinct patterns of expression in embryos. Sqh1P is expressed nearly ubiquitously and outlines cells consistent with a junctional localization, whereas Sqh2P is strongly expressed on the apical surfaces and in filopodia of tissues undergoing extensive cell shape change or cell movements including the invaginating fore- and hindgut, the invaginating tracheal system, the dorsal pouch and the dorsal most row of epidermal (DME) cells during dorsal closure. In imaginal discs, Sqh1P predominantly localizes in the adherens junction, whereas Sqh2P locates to the apical domain. These antibodies thus have the potential to be very useful in monitoring myosin activation for functional studies of morphogenesis in Drosophila.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | |
Collapse
|
91
|
POSH is involved in Eiger-Basket (TNF-JNK) signaling and embryogenesis in Drosophila. J Genet Genomics 2010; 37:605-19. [DOI: 10.1016/s1673-8527(09)60080-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/07/2010] [Accepted: 06/17/2010] [Indexed: 01/08/2023]
|
92
|
Garlena RA, Gonda RL, Green AB, Pileggi RM, Stronach B. Regulation of mixed-lineage kinase activation in JNK-dependent morphogenesis. J Cell Sci 2010; 123:3177-88. [PMID: 20736302 DOI: 10.1242/jcs.063313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Normal cells respond appropriately to various signals, while sustaining proper developmental programs and tissue homeostasis. Inappropriate signal reception, response or attenuation, can upset the normal balance of signaling within cells, leading to dysfunction or tissue malformation. To understand the molecular mechanisms that regulate protein-kinase-based signaling in the context of tissue morphogenesis, we analyzed the domain requirements of Drosophila Slpr, a mixed-lineage kinase (MLK), for Jun N-terminal kinase (JNK) signaling. The N-terminal half of Slpr is involved in regulated signaling whereas the C-terminal half promotes cortical protein localization. The SH3 domain negatively regulates Slpr activity consistent with autoinhibition via a conserved proline motif. Also, like many kinases, conserved residues in the activation segment of the catalytic domain regulate Slpr. Threonine 295, in particular, is essential for function. Slpr activation requires dual input from the MAP4K Misshapen (Msn), through its C-terminal regulatory domain, and the GTPase Rac, which both bind to the LZ-CRIB region of Slpr in vitro. Although Rac is sufficient to activate JNK signaling, our results indicate that there are Slpr-independent functions for Rac in dorsal closure. Finally, expression of various Slpr constructs alone or with upstream activators reveals a wide-ranging response at the cell and tissue level.
Collapse
Affiliation(s)
- Rebecca A Garlena
- University of Pittsburgh, Department of Biological Sciences, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
93
|
Chen J, Miller EM, Gallo KA. MLK3 is critical for breast cancer cell migration and promotes a malignant phenotype in mammary epithelial cells. Oncogene 2010; 29:4399-411. [PMID: 20514022 DOI: 10.1038/onc.2010.198] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/21/2010] [Accepted: 04/23/2010] [Indexed: 12/18/2022]
Abstract
The malignant phenotype in breast cancer is driven by aberrant signal transduction pathways. Mixed-lineage kinase-3 (MLK3) is a mammalian mitogen-activated protein kinase kinase kinase (MAP3K) that activates multiple MAPK pathways. Depending on the cellular context, MLK3 has been implicated in apoptosis, proliferation, migration and differentiation. Here we investigated the effect of MLK3 and its signaling to MAPKs in the acquisition of malignancy in breast cancer. We show that MLK3 is highly expressed in breast cancer cells. We provide evidence that MLK3's catalytic activity and signaling to c-jun N-terminal kinase (JNK) is required for migration of highly invasive breast cancer cells and for MLK3-induced migration of mammary epithelial cells. Expression of active MLK3 is sufficient to induce the invasion of mammary epithelial cells, which requires AP-1 activity and is accompanied by the expression of several proteins corresponding to AP-1-regulated invasion genes. To assess MLK3's contribution to the breast cancer malignant phenotype in a more physiological setting, we implemented a strategy to inducibly express active MLK3 in the preformed acini of MCF10A cells grown in 3D Matrigel. Induction of MLK3 expression dramatically increases acinar size and modestly perturbs apicobasal polarity. Remarkably, MLK3 expression induces luminal repopulation and suppresses the expression of the pro-apoptotic protein BimEL, as has been observed in Her2/Neu-expressing acini. Taken together, our data show that MLK3-JNK-AP-1 signaling is critical for breast cancer cell migration and invasion. Our current study uncovers both a proliferative and novel antiapoptotic role for MLK3 in the acquisition of a malignant phenotype in mammary epithelial cells. Thus, MLK3 may be an important therapeutic target for the treatment of invasive breast cancer.
Collapse
Affiliation(s)
- J Chen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | | | | |
Collapse
|
94
|
Franke JD, Montague RA, Kiehart DP. Nonmuscle myosin II is required for cell proliferation, cell sheet adhesion and wing hair morphology during wing morphogenesis. Dev Biol 2010; 345:117-32. [PMID: 20599890 DOI: 10.1016/j.ydbio.2010.06.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/19/2010] [Accepted: 06/21/2010] [Indexed: 01/22/2023]
Abstract
Metazoan development involves a myriad of dynamic cellular processes that require cytoskeletal function. Nonmuscle myosin II plays essential roles in embryonic development; however, knowledge of its role in post-embryonic development, even in model organisms such as Drosophila melanogaster, is only recently being revealed. In this study, truncation alleles were generated and enable the conditional perturbation, in a graded fashion, of nonmuscle myosin II function. During wing development they demonstrate novel roles for nonmuscle myosin II, including in adhesion between the dorsal and ventral wing epithelial sheets; in the formation of a single actin-based wing hair from the distal vertex of each cell; in forming unbranched wing hairs; and in the correct positioning of veins and crossveins. Many of these phenotypes overlap with those observed when clonal mosaic analysis was performed in the wing using loss of function alleles. Additional requirements for nonmuscle myosin II are in the correct formation of other actin-based cellular protrusions (microchaetae and macrochaetae). We confirm and extend genetic interaction studies to show that nonmuscle myosin II and an unconventional myosin, encoded by crinkled (ck/MyoVIIA), act antagonistically in multiple processes necessary for wing development. Lastly, we demonstrate that truncation alleles can perturb nonmuscle myosin II function via two distinct mechanisms--by titrating light chains away from endogenous heavy chains or by recruiting endogenous heavy chains into intracellular aggregates. By allowing myosin II function to be perturbed in a controlled manner, these novel tools enable the elucidation of post-embryonic roles for nonmuscle myosin II during targeted stages of fly development.
Collapse
Affiliation(s)
- Josef D Franke
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
95
|
Gettings M, Serman F, Rousset R, Bagnerini P, Almeida L, Noselli S. JNK signalling controls remodelling of the segment boundary through cell reprogramming during Drosophila morphogenesis. PLoS Biol 2010; 8:e1000390. [PMID: 20543996 PMCID: PMC2882433 DOI: 10.1371/journal.pbio.1000390] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 04/26/2010] [Indexed: 11/19/2022] Open
Abstract
Segments are fundamental units in animal development which are made of distinct cell lineages separated by boundaries. Although boundaries show limited plasticity during their formation for sharpening, cell lineages make compartments that become tightly restricted as development goes on. Here, we characterize a unique case of breaking of the segment boundary in late drosophila embryos. During dorsal closure, specific cells from anterior compartments cross the segment boundary and enter the adjacent posterior compartments. This cell mixing behaviour is driven by an anterior-to-posterior reprogramming mechanism involving de novo expression of the homeodomain protein Engrailed. Mixing is accompanied by stereotyped local cell intercalation, converting the segment boundary into a relaxation compartment important for tension-release during morphogenesis. This process of lineage switching and cell remodelling is controlled by JNK signalling. Our results reveal plasticity of segment boundaries during late morphogenesis and a role for JNK-dependent developmental reprogramming in this process.
Collapse
Affiliation(s)
- Melanie Gettings
- Institute of Developmental Biology and Cancer, University of Nice, CNRS, Nice, France
| | - Fanny Serman
- Institute of Developmental Biology and Cancer, University of Nice, CNRS, Nice, France
| | - Raphaël Rousset
- Institute of Developmental Biology and Cancer, University of Nice, CNRS, Nice, France
| | | | - Luis Almeida
- Laboratoire JA Dieudonné, University of Nice, CNRS, Nice, France
| | - Stéphane Noselli
- Institute of Developmental Biology and Cancer, University of Nice, CNRS, Nice, France
- * E-mail:
| |
Collapse
|
96
|
David DJV, Tishkina A, Harris TJC. The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila. Development 2010; 137:1645-55. [PMID: 20392741 DOI: 10.1242/dev.044107] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apical constriction is a major mechanism underlying tissue internalization during development. This cell constriction typically requires actomyosin contractility. Thus, understanding apical constriction requires characterization of the mechanics and regulation of actomyosin assemblies. We have analyzed the relationship between myosin and the polarity regulators Par-6, aPKC and Bazooka (Par-3) (the PAR complex) during amnioserosa apical constriction at Drosophila dorsal closure. The PAR complex and myosin accumulate at the apical surface domain of amnioserosa cells at dorsal closure, the PAR complex forming a patch of puncta and myosin forming an associated network. Genetic interactions indicate that the PAR complex supports myosin activity during dorsal closure, as well as during other steps of embryogenesis. We find that actomyosin contractility in amnioserosa cells is based on the repeated assembly and disassembly of apical actomyosin networks, with each assembly event driving constriction of the apical domain. As the networks assemble they translocate across the apical patch of PAR proteins, which persist at the apical domain. Through loss- and gain-of-function studies, we find that different PAR complex components regulate distinct phases of the actomyosin assembly/disassembly cycle: Bazooka promotes the duration of actomyosin pulses and Par-6/aPKC promotes the lull time between pulses. These results identify the mechanics of actomyosin contractility that drive amnioserosa apical constriction and how specific steps of the contractile mechanism are regulated by the PAR complex.
Collapse
Affiliation(s)
- Daryl J V David
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
97
|
Bergantiños C, Corominas M, Serras F. Cell death-induced regeneration in wing imaginal discs requires JNK signalling. Development 2010; 137:1169-79. [PMID: 20215351 DOI: 10.1242/dev.045559] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regeneration and tissue repair allow damaged or lost body parts to be replaced. After injury or fragmentation of Drosophila imaginal discs, regeneration leads to the development of normal adult structures. This process is likely to involve a combination of cell rearrangement and compensatory proliferation. However, the detailed mechanisms underlying these processes are poorly understood. We have established a system to allow temporally restricted induction of cell death in situ. Using Gal4/Gal80 and UAS-rpr constructs, targeted ablation of a region of the disc could be performed and regeneration monitored without the requirement for microsurgical manipulation. Using a ptc-Gal4 construct to drive rpr expression in the wing disc resulted in a stripe of dead cells in the anterior compartment flanking the anteroposterior boundary, whereas a sal-Gal4 driver generated a dead domain that includes both anterior and posterior cells. Under these conditions, regenerated tissues were derived from the damaged compartment, suggesting that compartment restrictions are preserved during regeneration. Our studies reveal that during regeneration the live cells bordering the domain in which cell death was induced first display cytoskeletal reorganisation and apical-to-basal closure of the epithelium. Then, proliferation begins locally in the vicinity of the wound and later more extensively in the affected compartment. Finally, we show that regeneration of genetically ablated tissue requires JNK activity. During cell death-induced regeneration, the JNK pathway is activated at the leading edges of healing tissue and not in the apoptotic cells, and is required for the regulation of healing and regenerative growth.
Collapse
Affiliation(s)
- Cora Bergantiños
- Departament de Genètica, Facultat de Biologia, and Institut de Biomedicina de la Universitat de Barcelona IBUB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | | |
Collapse
|
98
|
Scarface, a secreted serine protease-like protein, regulates polarized localization of laminin A at the basement membrane of the Drosophila embryo. EMBO Rep 2010; 11:373-9. [PMID: 20379222 DOI: 10.1038/embor.2010.43] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 11/08/2022] Open
Abstract
Cell-matrix interactions brought about by the activity of integrins and laminins maintain the polarized architecture of epithelia and mediate morphogenetic interactions between apposing tissues. Although the polarized localization of laminins at the basement membrane is a crucial step in these processes, little is known about how this polarized distribution is achieved. Here, in Drosophila, we analyse the role of the secreted serine protease-like protein Scarface in germ-band retraction and dorsal closure-morphogenetic processes that rely on the activity of integrins and laminins. We present evidence that scarface is regulated by c-Jun amino-terminal kinase and that scarface mutant embryos show defects in these morphogenetic processes. Anomalous accumulation of laminin A on the apical surface of epithelial cells was observed in these embryos before a loss of epithelial polarity was induced. We propose that Scarface has a key role in regulating the polarized localization of laminin A in this developmental context.
Collapse
|
99
|
Warner SJ, Yashiro H, Longmore GD. The Cdc42/Par6/aPKC polarity complex regulates apoptosis-induced compensatory proliferation in epithelia. Curr Biol 2010; 20:677-86. [PMID: 20381350 DOI: 10.1016/j.cub.2010.03.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 03/12/2010] [Accepted: 03/12/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND In response to stress- or tissue-damage-induced apoptosis, unaffected epithelial cells undergo compensatory proliferation to maintain the integrity of the epithelium. Proximal signals regulating this response are not fully understood, but c-Jun N-terminal kinase (JNK) activity appears to be critical for both apoptosis and compensatory proliferation. Disruption of epithelial cell apical-basal polarity occurs in early cancer development and is often correlated with increased proliferation by means not fully characterized. We considered whether disruption of the various polarity complexes could provide signals identifying damaged epithelial cells and thus lead to apoptosis-induced compensatory proliferation. RESULTS We identify the Cdc42/Par6/atypical protein kinase C (aPKC) Par polarity complex as uniquely and specifically regulating apoptosis-induced compensatory proliferation in Drosophila epithelia. Genetic depletion of individual components or disruption of formation and localization of this complex, but not other polarity complexes, induces JNK-dependent apoptosis and JNK-dependent compensatory proliferation following radiation injury. When apoptosis execution is blocked, by p35 expression, Cdc42/Par6/aPKC-depleted tissues uniquely hyperproliferate, leading to tissue and organ overgrowth. Disruption of Cdc42/Par6/aPKC leads to activation of JNK through increased Rho1 and Rok activity and Rok's capacity to activate myosin but not F-actin. CONCLUSIONS We show that the Cdc42/Par6/aPKC polarity complex influences both a physiologic compensatory proliferation response after irradiation injury and a contrived compensatory non-cell-autonomous hyperproliferation response when cell-autonomous apoptosis, resulting from Cdc42/Par6/aPKC disruption, is inhibited. These results suggest the possibility that in cancer where apoptotic regulation is disrupted, loss of Cdc42/Par6/aPKC polarity complex organization or localization could contribute to tumor hyperproliferation and explain how polarity disruption contributes to tumor development.
Collapse
Affiliation(s)
- Stephen J Warner
- Department of Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
100
|
Abstract
Together with cell growth, division and death, changes in cell shape are of central importance for tissue morphogenesis during development. Cell shape is the product of a cell's material and active properties balanced by external forces. Control of cell shape, therefore, relies on both tight regulation of intracellular mechanics and the cell's physical interaction with its environment. In this review, we first discuss the biological and physical mechanisms of cell shape control. We next examine a number of developmental processes in which cell shape change - either individually or in a coordinated manner - drives embryonic morphogenesis and discuss how cell shape is controlled in these processes. Finally, we emphasize that cell shape control during tissue morphogenesis can only be fully understood by using a combination of cellular, molecular, developmental and biophysical approaches.
Collapse
Affiliation(s)
- Ewa Paluch
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|