51
|
Ruan S, Wang L, Li Y, Li P, Ren Y, Gao R, Ma H. Staple food and health: a comparative study of physiology and gut microbiota of mice fed with potato and traditional staple foods (corn, wheat and rice). Food Funct 2021; 12:1232-1240. [PMID: 33433545 DOI: 10.1039/d0fo02264k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effects of potato and traditional staple foods (corn, wheat and rice) on physiology and gut microbiota were investigated by feeding ICR mice for 12 months. Compared with traditional staple foods, potato significantly improved the food and water intake and survival rate, and inhibited the swelling of viscera of mice, accompanied by a decreased white blood cell count and urine bilirubin content. Furthermore, potato significantly increased the relative abundance of Bacteroides and Faecalibacterium, which are short-chain fatty acid producing bacteria and play very important roles in the maintenance of human health. Meanwhile, potato significantly decreased the relative abundance of spoilage bacteria Pseudomonas and Thiobacillus. Analysis of putative metagenomes indicated that the potato diet upregulated the gene abundance of glycan biosynthesis and metabolism, digestive system and immune system. These findings indicated that potato has the potential to be an excellent substitute for traditional staple foods owing to its good physiological function and favorable gut microbiota modulation.
Collapse
Affiliation(s)
- Siyu Ruan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Lin Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Yunliang Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Peiyu Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Yuhan Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| |
Collapse
|
52
|
Hemida M, Vuori KA, Moore R, Anturaniemi J, Hielm-Björkman A. Early Life Modifiable Exposures and Their Association With Owner Reported Inflammatory Bowel Disease Symptoms in Adult Dogs. Front Vet Sci 2021; 8:552350. [PMID: 33598486 PMCID: PMC7882719 DOI: 10.3389/fvets.2021.552350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/04/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Inflammatory bowel disease (IBD) is an idiopathic multifactorial disease in humans and dogs, usually assigned to the interactions between genes, gut microbiota, diet, environment, and the immune system. We aimed to investigate the modifiable early life exposures associated with IBD in dogs. Materials and Methods: The study data was extracted from the validated owner-reported DogRisk food frequency questionnaire. This was a cross-sectional questionnaire-based study that tested 21 different early life dietary and environmental, demographic and genetic variables for their association with IBD or not, in adult dogs. A total of 7,015 dogs participated in this study. The study covered early life periods; prenatal, neonatal, early, and late postnatal periods. Two feeding patterns, a non-processed meat-based diet (NPMD) and an ultra-processed carbohydrate-based diet (UPCD) were studied. Data was analyzed using logistic regression analysis with a backward stepwise deletion. Results: From the final models we found that the NPMD during early and late postnatal periods were significantly associated with lower IBD risk later in life. The UPCD during the same periods was associated with a higher risk of IBD incidence. Also, the maternal diet during the neonatal period showed a non-significant trend of lower IBD risk in the offspring with the NPMD and a higher IBD risk with the UPCD. Additionally, the normal body weight of puppies during the first 6 months of age was associated with a lower risk of IBD in adulthood while, slim puppies associated significantly with IBD in adulthood. From the non-modifiable background variables, we identified the maternal history of IBD as the strongest risk factor for later incidence of IBD. Furthermore, male dogs were twice as likely to develop IBD as female dogs were. Conclusions: It is reassuring for owners to know that they themselves can have an impact on their dog's health. A high-fat, low-carbohydrate NPMD exposure during early life, and a normal body condition in puppyhood were significantly associated with less IBD in adult dogs. The opposite was true for UPCD exposure and abnormal body condition score in 6 month old puppies.
Collapse
Affiliation(s)
- Manal Hemida
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Kristiina A Vuori
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Robin Moore
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Anturaniemi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
53
|
Kilburn LR, Koester LR, Schmitz-Esser S, Serão NVL, Rossoni Serão MC. High-Fat Diets Led to OTU-Level Shifts in Fecal Samples of Healthy Adult Dogs. Front Microbiol 2020; 11:564160. [PMID: 33363518 PMCID: PMC7752866 DOI: 10.3389/fmicb.2020.564160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
High fat diets have been reported to negatively affect the microbiota in both mice and humans. However, there is a lack of studies in canine models. The variation among the gastrointestinal (GI) tract anatomy/physiology and typical diet compositions of these animal species may lead to vastly different results. Due to the large inclusion rate of dietary fat in pet food, it is critical to understand its effects in a canine model. Therefore, the study objective was to report the effects of high fat, low carbohydrate diets on the fecal microbiota in healthy adult dogs. Eight adult beagles were randomly assigned to one of four dietary treatments within each 15-day period of a replicated 4x4 Latin Square design. Diets contained 32% (T1), 37% (T2), 42% (T3), and 47% (T4) fat. T2, T3, and T4 were created by adding increasing levels of canola oil to T1, a commercially manufactured canned canine diet, which served as the control diet. Fresh fecal samples were collected during the last 5 days of each period for microbial analysis. DNA was extracted from fecal samples and paired-end 16S rRNA gene amplicon sequencing was performed using the Illumina MiSeq platform. When comparing whole microbial communities using PERMANOVA, no significant differences were observed among treatments (P = 0.735). Individual OTUs were analyzed using the GLIMMIX procedure of SAS with fixed effects of diet and room, and the random effects of period and animal. Out of the 100 most abundant individual OTUs, 36 showed significant differences in abundance based on treatment (q < 0.05). Overall, OTUs assigned to genera related to fat digestion increased while OTUs assigned to genera involved in carbohydrate digestion decreased. In conclusion, the microbial community adapted to dietary intervention without jeopardizing the health of the animals, evaluated by body condition score, fecal characteristics, and blood parameters.
Collapse
Affiliation(s)
- Logan R Kilburn
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Lucas R Koester
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Nick V L Serão
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
54
|
Diversity of Gut Microbiota and Bifidobacterial Community of Chinese Subjects of Different Ages and from Different Regions. Microorganisms 2020; 8:microorganisms8081108. [PMID: 32722057 PMCID: PMC7464982 DOI: 10.3390/microorganisms8081108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota composition and functionality are closely linked to host health. In this study, the fecal microbiota and bifidobacterial communities of 111 healthy volunteers from four regions of China of varying age profiles (Child, 1–5 years; Young, 18–50 years; Elder, 60–80 years; Longevity, ≥90 years) were investigated via high-throughput sequencing. Canonical analysis revealed that the gut microbiota, as well as bifidobacteria profiles of the subjects, clustered according to their regions and age. Eight genera were shared among all subjects, however, certain genera distributed differently in subjects grouped by region and age. Faecalibacterium was enriched in samples from Zhongxiang, unclassified Ruminococcaceae and Christensenellaceae were enriched in the Longevity group, and Bifidobacterium was enriched in Child. Within Bifidobacterium, B. longum was the most abundant species in almost all samples except for Child, in which B. pseudocatenulatum was the most abundant. Additionally, the abundances of B. adolescentis and B. dentium were lower in Child. In conclusion, our results suggest that geography and age affect the structure of the gut microbiota, as well as Bifidobacterium composition, and this variation may greatly associate with the metabolic and immune changes that occur during the process of aging.
Collapse
|
55
|
Wernimont SM, Radosevich J, Jackson MI, Ephraim E, Badri DV, MacLeay JM, Jewell DE, Suchodolski JS. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front Microbiol 2020; 11:1266. [PMID: 32670224 PMCID: PMC7329990 DOI: 10.3389/fmicb.2020.01266] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) microbiome of cats and dogs is increasingly recognized as a metabolically active organ inextricably linked to pet health. Food serves as a substrate for the GI microbiome of cats and dogs and plays a significant role in defining the composition and metabolism of the GI microbiome. The microbiome, in turn, facilitates the host's nutrient digestion and the production of postbiotics, which are bacterially derived compounds that can influence pet health. Consequently, pet owners have a role in shaping the microbiome of cats and dogs through the food they choose to provide. Yet, a clear understanding of the impact these food choices have on the microbiome, and thus on the overall health of the pet, is lacking. Pet foods are formulated to contain the typical nutritional building blocks of carbohydrates, proteins, and fats, but increasingly include microbiome-targeted ingredients, such as prebiotics and probiotics. Each of these categories, as well as their relative proportions in food, can affect the composition and/or function of the microbiome. Accumulating evidence suggests that dietary components may impact not only GI disease, but also allergies, oral health, weight management, diabetes, and kidney disease through changes in the GI microbiome. Until recently, the focus of microbiome research was to characterize alterations in microbiome composition in disease states, while less research effort has been devoted to understanding how changes in nutrition can influence pet health by modifying the microbiome function. This review summarizes the impact of pet food nutritional components on the composition and function of the microbiome and examines evidence for the role of nutrition in impacting host health through the microbiome in a variety of disease states. Understanding how nutrition can modulate GI microbiome composition and function may reveal new avenues for enhancing the health and resilience of cats and dogs.
Collapse
Affiliation(s)
| | | | | | - Eden Ephraim
- Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | | | | | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Jan S. Suchodolski
- Texas A&M College of Veterinary Medicine & Biomedical Sciences, College Station, TX, United States
| |
Collapse
|
56
|
Sandri M, Sgorlon S, Scarsella E, Stefanon B. Effect of different starch sources in a raw meat-based diet on fecal microbiome in dogs housed in a shelter. ACTA ACUST UNITED AC 2020; 6:353-361. [PMID: 33005769 PMCID: PMC7503078 DOI: 10.1016/j.aninu.2020.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/18/2022]
Abstract
A dietary intervention study was assessed to determine if different sources of starch in homemade diets could significantly modify fecal microbiome of dogs. Twenty-seven adult dogs were enrolled and fed a diet based on a mixture of rice and pasta with fresh raw meat (CD). After 90 d, 8 dogs continued to receive CD diet, 10 dogs received a diet made of a raw meat and a complementary food with rice as the main source of starch (B1), and 9 dogs were fed a diet with the same raw meat and a complementary food with potato as the main source of starch (B2). Samples of feces were collected from each dog in the mornings at the beginning of the study and after 15 d and analyzed for pH, ammonia N (N–NH3) and total N, short chain fatty acids (SCFA) and lactic acid. Relative abundance of fecal microbiota was assessed by sequencing and annotating the V3–V4 regions of the 16S rRNA. Total starch intake was similar between diets but differed in the in vitro rate digestion and in the resistant starch, which was higher in B2 than in B1 and CD diets. Dogs fed B2 diet showed lower (P < 0.05) N–NH3 and pH but higher (P < 0.05) molar proportion of lactic acid. Linear discriminant analysis of the genera relative abundances indicated a significant (P < 0.01) increase of SMB53 genus at the end of the study in B1 diet and of Megamonas genus in B1 and B2 diets in comparison to CD diet. These results suggest that changes of starch source in a raw meat-based diet have limited effects on fecal microbiome in healthy dogs, but underline a high variability of microbiota among dogs.
Collapse
Affiliation(s)
- Misa Sandri
- Department of AgriFood, Environmental and Animal Science, University of Udine, Udine, 33100, Italy
| | - Sandy Sgorlon
- Department of AgriFood, Environmental and Animal Science, University of Udine, Udine, 33100, Italy
| | - Elisa Scarsella
- Department of AgriFood, Environmental and Animal Science, University of Udine, Udine, 33100, Italy
| | - Bruno Stefanon
- Department of AgriFood, Environmental and Animal Science, University of Udine, Udine, 33100, Italy
| |
Collapse
|
57
|
Jha AR, Shmalberg J, Tanprasertsuk J, Perry L, Massey D, Honaker RW. Characterization of gut microbiomes of household pets in the United States using a direct-to-consumer approach. PLoS One 2020; 15:e0227289. [PMID: 32078625 PMCID: PMC7032713 DOI: 10.1371/journal.pone.0227289] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/16/2019] [Indexed: 01/13/2023] Open
Abstract
The role of gut microbiomes as important regulators of mammalian health is increasingly recognized, although feline and canine gut microbiomes remain poorly characterized. In this proof-of-concept study, we assessed the utility of a direct-to-consumer approach to executing pet microbiome studies. We characterized the gut microbiomes of 238 pets (46 cats and 192 dogs) by generating ~11 million merged reads that were mapped to the V4 region of 16S ribosomal RNA gene at a sequencing depth of 45,806 (±22,325) reads per sample. Analyses of these reads revealed that both feline and canine gut microbiomes are dominated by three major phyla, namely Firmicutes, Proteobacteria, and Bacteroides and that alpha diversity is higher in the feline gut. In addition to interspecies differences between the feline and canine gut, we also detected appreciable intraspecies bacterial variation within the canine population. While the dogs in this dataset could be assigned to three distinct clusters based on their gut microbiome, no clustering was observed within the feline population. Integration of additional data obtained from survey questionnaires revealed that geography and body weight may be associated with canine gut microbiome composition. Furthermore, we found that both the inter and intraspecies differences are more pronounced at finer taxonomic levels, indicating that strain-level investigations may be necessary in the future. This study demonstrates that the direct-to-consumer approach overcomes existing limitations in pet microbiome research, for example, it allows collection of large numbers of pet samples. The direct-to-consumer approach has proven successful in human genomics as well as human microbiomics and this study demonstrates that by building partnerships with an engaged general public this approach can also propel the field of pet microbiomics forward.
Collapse
Affiliation(s)
- Aashish R. Jha
- Research & Development Division, NomNomNow, Inc., Oakland, California, United State of America
- * E-mail:
| | - Justin Shmalberg
- Research & Development Division, NomNomNow, Inc., Oakland, California, United State of America
- Department of Comparative, Diagnostic & Population Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jirayu Tanprasertsuk
- Research & Development Division, NomNomNow, Inc., Oakland, California, United State of America
| | - LeeAnn Perry
- Research & Development Division, NomNomNow, Inc., Oakland, California, United State of America
| | - Dan Massey
- Research & Development Division, NomNomNow, Inc., Oakland, California, United State of America
| | - Ryan W. Honaker
- Research & Development Division, NomNomNow, Inc., Oakland, California, United State of America
| |
Collapse
|
58
|
Pilla R, Suchodolski JS. The Role of the Canine Gut Microbiome and Metabolome in Health and Gastrointestinal Disease. Front Vet Sci 2020; 6:498. [PMID: 31993446 PMCID: PMC6971114 DOI: 10.3389/fvets.2019.00498] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
The gut microbiome contributes to host metabolism, protects against pathogens, educates the immune system, and, through these basic functions, affects directly or indirectly most physiologic functions of its host. Molecular techniques have allowed us to expand our knowledge by unveiling a wide range of unculturable bacteria that were previously unknown. Most bacterial sequences identified in the canine gastrointestinal (GI) tract fall into five phyla: Firmicutes, Fusobacteria, Bacteroidetes, Proteobacteria, and Actinobacteria. While there are variations in the microbiome composition along the GI tract, most clinical studies concentrate on fecal microbiota. Age, diet, and many other environmental factors may play a significant role in the maintenance of a healthy microbiome, however, the alterations they cause pale in comparison with the alterations found in diseased animals. GI dysfunctions are the most obvious association with gut dysbiosis. In dogs, intestinal inflammation, whether chronic or acute, is associated with significant differences in the composition of the intestinal microbiota. Gut dysbiosis happens when such alterations result in functional changes in the microbial transcriptome, proteome, or metabolome. Commonly affected metabolites include short-chain fatty acids, and amino acids, including tryptophan and its catabolites. A recently developed PCR-based algorithm termed “Dysbiosis Index” is a tool that allows veterinarians to quantify gut dysbiosis and can be used to monitor disease progression and response to treatment. Alterations or imbalances in the microbiota affect immune function, and strategies to manipulate the gut microbiome may be useful for GI related diseases. Antibiotic usage induces a rapid and significant drop in taxonomic richness, diversity, and evenness. For that reason, a renewed interest has been put on probiotics, prebiotics, and fecal microbiota transplantation (FMT). Although probiotics are typically unable to colonize the gut, the metabolites they produce during their transit through the GI tract can ameliorate clinical signs and modify microbiome composition. Another interesting development is FMT, which may be a promising tool to aid recovery from dysbiosis, but further studies are needed to evaluate its potential and limitations.
Collapse
Affiliation(s)
- Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
59
|
Li Y, Rahman SU, Huang Y, Zhang Y, Ming P, Zhu L, Chu X, Li J, Feng S, Wang X, Wu J. Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity. J Nutr Biochem 2019; 78:108324. [PMID: 32004926 DOI: 10.1016/j.jnutbio.2019.108324] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
Green tea polyphenols (GTPs) exhibit beneficial effects towards obesity and intestinal inflammation; however, the mechanisms and association with gut microbiota are unclear. We examined the role of the gut microbiota of GTPs treatment for obesity and inflammation. Canines were fed either a normal diet or high-fat diet with low (0.48% g/kg), medium (0.96% g/kg), or high (1.92% g/kg), doses of GTPs for 18 weeks. GTPs decreased the relative abundance of Bacteroidetes and Fusobacteria and increased the relative abundance of Firmicutes as revealed by 16S rRNA gene sequencing analysis. The relative proportion of Acidaminococcus, Anaerobiospirillum, Anaerovibrio, Bacteroides, Blautia, Catenibactetium, Citrobacter, Clostridium, Collinsella, and Escherichia were significantly associated with GTPs-induced weight loss. GTPs significantly (P<.01) decreased expression levels of inflammatory cytokines, including TNF-α, IL-6, and IL-1β, and inhibited induction of the TLR4 signaling pathway compared with high-fat diet. We show that the therapeutic effects of GTPs correspond with changes in gut microbiota and intestinal inflammation, which may be related to the anti-inflammatory and anti-obesity mechanisms of GTPs.
Collapse
Affiliation(s)
- Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Yingying Huang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Yafei Zhang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Pengfei Ming
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Lei Zhu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Xiaoyan Chu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Jinchun Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| |
Collapse
|
60
|
Ide K, Shinohara M, Yamagishi S, Endo A, Nishifuji K, Tochio T. Kestose supplementation exerts bifidogenic effect within fecal microbiota and increases fecal butyrate concentration in dogs. J Vet Med Sci 2019; 82:1-8. [PMID: 31761826 PMCID: PMC6983673 DOI: 10.1292/jvms.19-0071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Kestose, a fructooligosaccharide (FOS) with one fructose monomer linked to sucrose, is a key component of the prebiotic activity of FOS. This study aimed to evaluate the prebiotic potential
of Kestose in terms of the impact on population change in the intestinal microbiota and fecal short-chain fatty acid (SCFA) concentration in dogs. Kestose 2 g per dog was administered daily
with conventional diet to 6 healthy, adult beagle dogs for 8 weeks followed by 4 weeks of follow-up period without Kestose supplementation. Fresh fecal samples were obtained before and every
4 weeks until the end of the follow-up period. Genomic DNA extracted from the fecal samples was subjected to 16S rRNA gene analysis using next generation sequencer and to quantitative
polymerase chain reaction (qPCR). Fecal acetate, propionate, butyrate, lactate and ethanol concentrations were measured by high-performance liquid chromatography. 16S rRNA gene analysis and
qPCR showed increasing trend of genus Bifidobacterium after Kestose supplementation while genera Bacteroides and Sutterella decreased.
Clostridium perfringens decreased below the detection limit within first 4 weeks after starting Kestose supplementation. Fecal butyrate concentration was significantly
increased at week 8 and returned to the base level after 4 weeks of the washing period. To the best of our knowledge, this is the first study to reveal effect of Kestose on the populational
changes in fecal microbiota and fecal butyrate concentration in dogs.
Collapse
Affiliation(s)
- Kaori Ide
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Mikako Shinohara
- B Food Science Co., Ltd., 24-12 Kitahama, Chita, Aichi 478-0046, Japan
| | - Shohei Yamagishi
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Akihito Endo
- Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - Koji Nishifuji
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Takumi Tochio
- B Food Science Co., Ltd., 24-12 Kitahama, Chita, Aichi 478-0046, Japan
| |
Collapse
|
61
|
Larsen N, de Souza CB, Krych L, Kot W, Leser TD, Sørensen OB, Blennow A, Venema K, Jespersen L. Effect of potato fiber on survival of Lactobacillus species at simulated gastric conditions and composition of the gut microbiota in vitro. Food Res Int 2019; 125:108644. [DOI: 10.1016/j.foodres.2019.108644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/05/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023]
|
62
|
Jarett JK, Carlson A, Rossoni Serao M, Strickland J, Serfilippi L, Ganz HH. Diets with and without edible cricket support a similar level of diversity in the gut microbiome of dogs. PeerJ 2019; 7:e7661. [PMID: 31565574 PMCID: PMC6743483 DOI: 10.7717/peerj.7661] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome plays an important role in the health of dogs. Both beneficial microbes and overall diversity can be modulated by diet. Fermentable sources of fiber in particular often increase the abundance of beneficial microbes. Banded crickets (Gryllodes sigillatus) contain the fermentable polysaccharides chitin and chitosan. In addition, crickets are an environmentally sustainable protein source. Considering crickets as a potential source of both novel protein and novel fiber for dogs, four diets ranging from 0% to 24% cricket content were fed to determine their effects on healthy dogs’ (n = 32) gut microbiomes. Fecal samples were collected serially at 0, 14, and 29 days, and processed using high-throughput sequencing of 16S rRNA gene PCR amplicons. Microbiomes were generally very similar across all diets at both the phylum and genus level, and alpha and beta diversities did not differ between the various diets at 29 days. A total of 12 ASVs (amplicon sequence variants) from nine genera significantly changed in abundance following the addition of cricket, often in a dose-response fashion with increasing amounts of cricket. A net increase was observed in Catenibacterium, Lachnospiraceae [Ruminococcus], and Faecalitalea, whereas Bacteroides, Faecalibacterium, Lachnospiracaeae NK4A136 group and others decreased in abundance. Similar changes in Catenibacterium and Bacteroides have been associated with gut health benefits in other studies. However, the total magnitude of all changes was small and only a few specific taxa changed in abundance. Overall, we found that diets containing cricket supported the same level of gut microbiome diversity as a standard healthy balanced diet. These results support crickets as a potential healthy, novel food ingredient for dogs.
Collapse
|
63
|
Barszcz M, Taciak M, Tuśnio A, Čobanová K, Grešáková L. The effect of organic and inorganic zinc source, used in combination with potato fiber, on growth, nutrient digestibility and biochemical blood profile in growing pigs. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
64
|
Scheraiber M, Grześkowiak Ł, Zentek J, Barbosa FF, Félix AP, da Silva AVF. Inclusion of IgY in a dog's diet has moderate impact on the intestinal microbial fermentation. J Appl Microbiol 2019; 127:996-1003. [PMID: 31287945 DOI: 10.1111/jam.14378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 01/04/2023]
Abstract
AIMS This study aimed to evaluate the impact of immunoglobulin Y (IgY) in a diet on the systemic health and the gastrointestinal tract (GIT) of dogs. METHODS AND RESULTS Sixteen healthy 11-month-old Beagle dogs were distributed at random (eight animals per treatment) in two treatments groups: control (0 g kg-1 IgY) and test (2 g IgY per day). The animals were evaluated on days 0 and 40 for a complete blood count (CBC) and biochemical profiles (ALT, ALP, creatinine and urea). Faecal samples were collected from days 35 to 40 to measure nutrient digestibility, faecal characteristics, sialic acid, intestinal microbiota composition and microbial metabolites. The CBC, biochemical profiles, apparent nutrient digestibility and faecal characteristics did not differ between the two treatment groups (P > 0·05). Dog faeces that received IgY were characterized by lower sialic acid and n-valeric concentration, as well as an increase in n-butyric concentration, in contrast to dogs fed a diet without IgY (P < 0·05). The other microbial faecal metabolites did not differ between the two treatment groups (P > 0·05). There tended to be an increase in the copy number of Clostridium cluster XIVa (Clostridium coccoides group) in the IgY group in contrast to the control group (P = 0·07). The other bacteria analysed did not differ between the treatment groups (P > 0·05). The colonic pH in the IgY group was lower than in control group (P < 0·05). CONCLUSIONS The addition of IgY in the diet of healthy dogs maintains the microbial balance and has an interesting effect on microbial metabolites. SIGNIFICANCE AND IMPACT OF THE STUDY The use of IgY, antibodies produced by laying hens, in animal feed is an alternative for the prevention and treatment of intestinal diseases in companion animals.
Collapse
Affiliation(s)
- M Scheraiber
- Department of Physiology, Federal University of Paraná, Curitiba, Paraná, Brazil.,Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Ł Grześkowiak
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | | | - A P Félix
- Department of Animal Sciences, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - A V Fischer da Silva
- Department of Physiology, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
65
|
Sandri M, Sgorlon S, Conte G, Serra A, Dal Monego S, Stefanon B. Substitution of a commercial diet with raw meat complemented with vegetable foods containing chickpeas or peas affects faecal microbiome in healthy dogs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1645624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Misa Sandri
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali,, University of Udine, Udine, Italy
| | - Sandy Sgorlon
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali,, University of Udine, Udine, Italy
| | - Giuseppe Conte
- Dipartimento di Scienze agrarie, Alimentari e Agro-Ambientali, University of Pisa, Pisa, Italy
| | - Andrea Serra
- Dipartimento di Scienze agrarie, Alimentari e Agro-Ambientali, University of Pisa, Pisa, Italy
| | - Simeone Dal Monego
- Cluster in Biomedicine, CBM S.c.r.l, Italy Bioinformatic Services, Trieste, Italy
| | - Bruno Stefanon
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali,, University of Udine, Udine, Italy
| |
Collapse
|
66
|
Gomez A, Sharma AK, Mallott EK, Petrzelkova KJ, Jost Robinson CA, Yeoman CJ, Carbonero F, Pafco B, Rothman JM, Ulanov A, Vlckova K, Amato KR, Schnorr SL, Dominy NJ, Modry D, Todd A, Torralba M, Nelson KE, Burns MB, Blekhman R, Remis M, Stumpf RM, Wilson BA, Gaskins HR, Garber PA, White BA, Leigh SR. Plasticity in the Human Gut Microbiome Defies Evolutionary Constraints. mSphere 2019; 4:e00271-19. [PMID: 31366708 PMCID: PMC6669335 DOI: 10.1128/msphere.00271-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/01/2019] [Indexed: 01/11/2023] Open
Abstract
The gut microbiome of primates, including humans, is reported to closely follow host evolutionary history, with gut microbiome composition being specific to the genetic background of its primate host. However, the comparative models used to date have mainly included a limited set of closely related primates. To further understand the forces that shape the primate gut microbiome, with reference to human populations, we expanded the comparative analysis of variation among gut microbiome compositions and their primate hosts, including 9 different primate species and 4 human groups characterized by a diverse set of subsistence patterns (n = 448 samples). The results show that the taxonomic composition of the human gut microbiome, at the genus level, exhibits increased compositional plasticity. Specifically, we show unexpected similarities between African Old World monkeys that rely on eclectic foraging and human populations engaging in nonindustrial subsistence patterns; these similarities transcend host phylogenetic constraints. Thus, instead of following evolutionary trends that would make their microbiomes more similar to that of conspecifics or more phylogenetically similar apes, gut microbiome composition in humans from nonindustrial populations resembles that of generalist cercopithecine monkeys. We also document that wild cercopithecine monkeys with eclectic diets and humans following nonindustrial subsistence patterns harbor high gut microbiome diversity that is not only higher than that seen in humans engaging in industrialized lifestyles but also higher compared to wild primates that typically consume fiber-rich diets.IMPORTANCE The results of this study indicate a discordance between gut microbiome composition and evolutionary history in primates, calling into question previous notions about host genetic control of the primate gut microbiome. Microbiome similarities between humans consuming nonindustrialized diets and monkeys characterized by subsisting on eclectic, omnivorous diets also raise questions about the ecological and nutritional drivers shaping the human gut microbiome. Moreover, a more detailed understanding of the factors associated with gut microbiome plasticity in primates offers a framework to understand why humans following industrialized lifestyles have deviated from states thought to reflect human evolutionary history. The results also provide perspectives for developing therapeutic dietary manipulations that can reset configurations of the gut microbiome to potentially improve human health.
Collapse
Affiliation(s)
- Andres Gomez
- Department of Animal Science, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Ashok Kumar Sharma
- Department of Animal Science, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Klara J Petrzelkova
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Liberec Zoo, Liberec, Czech Republic
| | | | - Carl J Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Franck Carbonero
- Department of Nutrition & Exercise Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Barbora Pafco
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jessica M Rothman
- Department of Anthropology, Hunter College of CUNY and New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - Alexander Ulanov
- Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Klara Vlckova
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Stephanie L Schnorr
- Department of Anthropology, University of Nevada, Las Vegas, Nevada, USA
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| | - Nathaniel J Dominy
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, USA
| | - David Modry
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- Central European Institute for Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Angelique Todd
- World Wildlife Fund, Dzanga-Sangha Protected Areas, Bayanga, Central African Republic
| | | | | | - Michael B Burns
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Melissa Remis
- Department of Anthropology, Purdue University, West Lafayette, Indiana, USA
| | - Rebecca M Stumpf
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Department of Anthropology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Brenda A Wilson
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - H Rex Gaskins
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Paul A Garber
- Department of Anthropology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Bryan A White
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Steven R Leigh
- Department of Anthropology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
67
|
Nixon SL, Rose L, Muller AT. Efficacy of an orally administered anti-diarrheal probiotic paste (Pro-Kolin Advanced) in dogs with acute diarrhea: A randomized, placebo-controlled, double-blinded clinical study. J Vet Intern Med 2019; 33:1286-1294. [PMID: 30882953 PMCID: PMC6524086 DOI: 10.1111/jvim.15481] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/05/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Acute diarrhea is a common clinical presentation of dogs. The effect of specific anti-diarrheal probiotic pastes (ADPPs) in the management of acute, uncomplicated diarrhea in dogs is unknown. HYPOTHESIS Administration of an ADPP containing Enterococcus faecium 4b1707 will improve the clinical outcome of acute, uncomplicated diarrhea in dogs compared to placebo. ANIMALS One hundred forty-eight client-owned dogs with acute diarrhea as the main clinical sign. METHODS Double-blinded, placebo-controlled, randomized, blocked, multicenter clinical field study conducted at 14 primary care veterinary practices in the United Kingdom and Ireland. RESULTS The ADPP was associated with better clinical outcome compared to placebo in dogs with acute, uncomplicated diarrhea. Dogs in the ADPP group had a significantly shorter duration of diarrhea (ADPP: median, 32 hours; 95% confidence interval [CI], 2-118; n = 51; Placebo: median, 47 hours; 95% CI, 4-167; n = 58; P = .008) and the rate of resolution of diarrhea was 1.60 times faster in the ADPP group than in the Placebo group (ratio, 1.60; 95% CI, 1.08-2.44; P = .02). Fewer dogs required additional medical intervention (AMI) for non-improvement or worsening in the ADPP group compared to the Placebo group (3.5% of dogs and 14.8% of dogs, respectively), with a relative risk of 0.88 (P = .04; AMI, ADPP, 3.5%, 2/57 dogs; Placebo, 14.8%, 9/61 dogs; relative risk, 0.88; 95% CI, 0.77-0.99). CONCLUSION AND CLINICAL IMPORTANCE The ADPP may accelerate resolution of acute diarrhea in dogs and decrease the requirement for AMI.
Collapse
|
68
|
Pafčo B, Sharma AK, Petrželková KJ, Vlčková K, Todd A, Yeoman CJ, Wilson BA, Stumpf R, White BA, Nelson KE, Leigh S, Gomez A. Gut microbiome composition of wild western lowland gorillas is associated with individual age and sex factors. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:575-585. [PMID: 31025322 DOI: 10.1002/ajpa.23842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Environmental and ecological factors, such as geographic range, anthropogenic pressure, group identity, and feeding behavior are known to influence the gastrointestinal microbiomes of great apes. However, the influence of individual host traits such as age and sex, given specific dietary and social constraints, has been less studied. The objective of this investigation was to determine the associations between an individual's age and sex on the diversity and composition of the gut microbiome in wild western lowland gorillas. MATERIALS AND METHODS Publicly available 16S rRNA data generated from fecal samples of different groups of Gorilla gorilla gorilla in the Central African Republic were downloaded and bioinformatically processed. The groups analyzed included habituated, partially habituated and unhabituated gorillas, sampled during low fruit (dry, n = 28) and high fruit (wet, n = 82) seasons. Microbial community analyses (alpha and beta diversity and analyses of discriminant taxa), in tandem with network-wide approaches, were used to (a) mine for specific age and sex based differences in gut bacterial community composition and to (b) asses for gut community modularity and bacterial taxa with potential functional roles, in the context of seasonal food variation, and social group affiliation. RESULTS Both age and sex significantly influenced gut microbiome diversity and composition in wild western lowland gorillas. However, the largest differences were observed between infants and adults in habituated groups and between adults and immature gorillas within all groups, and across dry and wet seasons. Specifically, although adults always showed greater bacterial richness than infants and immature gorillas, network-wide analyses showed higher microbial community complexity and modularity in the infant gorilla gut. Sex-based microbiome differences were not evident among adults, being only detected among immature gorillas. CONCLUSIONS The results presented point to a dynamic gut microbiome in Gorilla spp., associated with ontogeny and individual development. Of note, the gut microbiomes of breastfeeding infants seemed to reflect early exposure to complex, herbaceous vegetation. Whether increased compositional complexity of the infant gorilla gut microbiome is an adaptive response to an energy-limited diet and an underdeveloped gut needs to be further tested. Overall, age and sex based gut microbiome differences, as shown here, maybe mainly attributed to access to specific feeding sources, and social interactions between individuals within groups.
Collapse
Affiliation(s)
- Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Ashok K Sharma
- Department of Animal Science, University of Minnesota Twin Cities, St. Paul, Minnesota
| | - Klára J Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Klára Vlčková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,School of Microbiology and APC Microbiome Ireland, Food Science Building, University College Cork, Cork, Ireland
| | | | - Carl J Yeoman
- Department of Animal & Range Sciences, Montana State University, Bozeman, Montana
| | - Brenda A Wilson
- Carl R. Woese Institute for Genomic Biology, Urbana, Illinois.,Department of Microbiology, University of Illinois, Urbana, Illinois
| | - Rebecca Stumpf
- Carl R. Woese Institute for Genomic Biology, Urbana, Illinois.,Department of Anthropology, University of Illinois, Urbana, Illinois
| | - Bryan A White
- Carl R. Woese Institute for Genomic Biology, Urbana, Illinois
| | | | - Steven Leigh
- Carl R. Woese Institute for Genomic Biology, Urbana, Illinois.,Department of Anthropology, University of Colorado, Boulder, Colorado
| | - Andres Gomez
- Department of Animal Science, University of Minnesota Twin Cities, St. Paul, Minnesota
| |
Collapse
|
69
|
Wu Y, Hu H, Dai X, Che H, Zhang H. Effects of dietary intake of potatoes on body weight gain, satiety-related hormones, and gut microbiota in healthy rats. RSC Adv 2019; 9:33290-33301. [PMID: 35529109 PMCID: PMC9073283 DOI: 10.1039/c9ra04867g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/03/2019] [Indexed: 12/27/2022] Open
Abstract
Potatoes, as a prominent staple food, have exerted diverse intestinal health benefits, but few studies have addressed the gut microecology modulatory effects of consuming potatoes in realistic quantities. The objective of this study was to evaluate the effects of ingesting potatoes in different doses on body weight gain (BWG), food intake, short chain fatty acids (SCFAs), fecal microbiota, gut hormones, and colon morphology of healthy rats. Male Sprague-Dawley rats of 6–8 weeks old were randomized to five groups and fed AIN-93 G or diets containing graded concentrations of potato powder (low, medium, high, and higher) for 7 weeks. Accordingly, the final body weight was significantly lower for rats fed the high and/or higher potato diets than their control counterparts (P < 0.05). Potato intervention caused a significant dose-dependent increment in full cecum, and SCFAs production. The relative abundance of “S24-7” (order Bacteroidales), Bifidobacterium, “NK3B31” (family Prevotellaceae), Parasutterella, and Ruminococcus_1 increased in high and higher potato diets. Furthermore, a Spearman's correlation analysis revealed that Parasutterella was negatively correlated with BWG, triglyceride (TG), and low-density lipoproteins (LDL). The maximum number of goblet cells, longest crypt depth, and highest level of PYY were found in the distal colon of rats fed higher potato diets. The results suggested that potato powder could provide the potential for hopeful impact on weight control. Supplementation of potato powders with 54.88 g kg−1 would significantly reduce the body weight gain by enriching Bifidobacterium and Parasutterella.![]()
Collapse
Affiliation(s)
- Yu Wu
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
- China
| | - Honghai Hu
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
- China
| | - Xiaofeng Dai
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
- China
| | - Huilian Che
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Hong Zhang
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
- China
| |
Collapse
|
70
|
Jackson MI, Jewell DE. Balance of saccharolysis and proteolysis underpins improvements in stool quality induced by adding a fiber bundle containing bound polyphenols to either hydrolyzed meat or grain-rich foods. Gut Microbes 2018; 10:298-320. [PMID: 30376392 PMCID: PMC6546335 DOI: 10.1080/19490976.2018.1526580] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dietary fiber is a key component in gastrointestinal health maintenance partly due to its fermentation by the gut microbiome. The food-dependent effects of a novel fiber bundle added to hydrolyzed meat (HM) or grain-rich (GR) foods in healthy dogs (n = 16) or those with chronic enteritis/gastroenteritis (n = 16) were examined. Addition of fiber to either food improved stool quality in dogs regardless of health status; microbiome diversity of dogs with chronic enteritis/gastroenteritis became more similar to healthy dogs. The abundance of bacteria mediating beneficial saccharolytic processes (eg, Lachnospiraceae) significantly increased on addition of fiber to the GR food, while those mediating detrimental proteolytic catabolism (eg, Desulfovibrionaceae) significantly decreased. Fiber addition to the HM food led to significant changes in saccharolytic/proteolytic bacteria. Higher levels of free saccharides in feces upon fiber addition to either food indicated increased saccharolysis. Fiber addition to the GR food decreased levels of fecal free amino acids, indicating decreased proteolysis. Addition of fiber decreased fecal pH for both foods but likely by different mechanisms: addition of fiber to the HM food led to increased straight-chain short-chain fatty acids (SCFAs) and no significant change in proteolytic branched-chain SFCAs, while in the GR food, fiber mainly led to decreased proteolytic branched-chain SFCAs. Other postbiotics related to intestinal health were consistently altered when fiber was added to either food. Plant-derived bioactive molecules were enriched in feces from dogs fed either food with added fiber, which could account for the observed modulation of the canine gut microbiome and shifts in metabolic capacity.
Collapse
Affiliation(s)
- Matthew I. Jackson
- Pet Nutrition Center, Hill’s Pet Nutrition, Inc., Topeka, KS, USA,CONTACT Matthew I. Jackson Pet Nutrition Center, Hill’s Pet Nutrition, Inc., 1035 NE 43rd St., Topeka, KS, 66617-1587, USA
| | - Dennis E. Jewell
- Pet Nutrition Center, Hill’s Pet Nutrition, Inc., Topeka, KS, USA
| |
Collapse
|
71
|
Bresciani F, Minamoto Y, Suchodolski JS, Galiazzo G, Vecchiato CG, Pinna C, Biagi G, Pietra M. Effect of an extruded animal protein-free diet on fecal microbiota of dogs with food-responsive enteropathy. J Vet Intern Med 2018; 32:1903-1910. [PMID: 30353569 PMCID: PMC6271313 DOI: 10.1111/jvim.15227] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/13/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Background Dietary interventions are thought to modify gut microbial communities in healthy individuals. In dogs with chronic enteropathies, resolution of dysbiosis, along with remission of clinical signs, is expected with treatment. Hypothesis/Objective To evaluate changes in the fecal microbiota in dogs with food‐responsive chronic enteropathy (FRE) and in healthy control (HC) dogs before and after an elimination dietary trial with an animal protein‐free diet (APFD). Animals Dogs with FRE (n = 10) and HC (n = 14). Methods Dogs were fed the APFD for 60 days. Fecal microbiota was analyzed by Illumina 16S rRNA sequencing and quantitative polymerase chain reaction (PCR). Results A significantly lower bacterial alpha‐diversity was observed in dogs with FRE compared with HC dogs at baseline, and compared with FRE dogs after the trial. Distinct microbial communities were observed in dogs with FRE at baseline compared with HC dogs at baseline and compared with dogs with FRE after the trial. Microbial communities still were different in FRE dogs after the trial compared with HC dogs at baseline. In HC dogs, the fecal microbiota did not show a significant modification after administration of the APFD. Conclusion and Clinical Importance Our results suggest that, in FRE dogs, treatment with the APFD led to a partial recovery of the fecal microbiota by significantly increasing microbiota richness, which was significantly closer to a healthy microbiota after the treatment. In contrast, no changes were detected in the fecal microbiota of HC dogs fed the same APFD.
Collapse
Affiliation(s)
- Francesca Bresciani
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Yasushi Minamoto
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Carla G Vecchiato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Carlo Pinna
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Biagi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
72
|
Schauf S, de la Fuente G, Newbold CJ, Salas-Mani A, Torre C, Abecia L, Castrillo C. Effect of dietary fat to starch content on fecal microbiota composition and activity in dogs1. J Anim Sci 2018; 96:3684-3698. [PMID: 30060077 PMCID: PMC6127775 DOI: 10.1093/jas/sky264] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Dietary fat is known to modulate the hindgut microbiota in rodents; however, there is no clear evidence on the impact of high-fat diets on canine gut microbiota. The purpose of this study was to investigate the effect of feeding of diets differing in the amount of ME provided by fat and starch on the composition and activity of canine fecal microbiota. Twelve adult (3 to 7 yr of age) spayed Beagle dogs received a low-fat-high-starch diet (LF-HS; approximately 23%, 42%, and 25% ME provided by fat, starch, and CP, respectively) and a high-fat-low-starch diet (HF-LS; approximately 43%, 22%, and 25% ME provided by fat, starch, and CP, respectively) following a 2-period crossover arrangement. The higher amount of fat in the HF-LS diet was provided by lard, whereas the higher amount of starch in the LF-HS diet was provided primarily by maize and broken rice. Each period lasted 7 wk and included 4 wk for diet adaptation. Dogs were fed to meet their daily energy requirements (set at 480 kJ ME/kg BW0.75). Fecal samples were collected on weeks 5 and 6 of each period for the analysis of bacterial richness, diversity, and composition [by Ion-Torrent next-generation sequencing], bile acids, ammonia, and VFA. Additional fecal samples were collected from four dogs per diet and period to use as inocula for in vitro fermentation using xylan and pectin as substrates. Gas production was measured at 2, 4, 6, 9, 12, and 24 h of incubation. On week 7, blood samples were collected at 0- and 180-min postfeeding for the analysis of bacterial lipopolysaccharide (LPS). Feeding the HF-LS diet led to a greater (P < 0.05) fecal bile acid concentration compared with the LF-HS diet. Bacterial richness and diversity did not differ between diets (P > 0.10). However, dogs showed a lower relative abundance of Prevotella (P < 0.01), Solobacterium (P < 0.05), and Coprobacillus (P ˂ 0.05) when fed of the HF-LS diet. Fecal ammonia and VFA contents were not affected by diet (P > 0.10). Relative to the LF-HS diet, in vitro fermentation of xylan using feces of dogs fed the HF-LS diet produced less gas at 6 h (P < 0.01) and 9 h (P < 0.05). Blood LPS did not increase at 180-min postfeeding with either diet (P < 0.10). These findings indicate that feeding a HF-LS diet to dogs does not affect bacterial diversity or fermentative end products in feces, but may have a negative impact on Prevotella and xylan fermentation.
Collapse
Affiliation(s)
- Sofia Schauf
- Department of Animal Nutrition and Food Science, University of Zaragoza, Zaragoza, Spain
| | - Gabriel de la Fuente
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
- Departament de Ciència Animal, Universitat de Lleida, Lleida, Spain
| | - Charles J Newbold
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
- Scotland’s Rural College (SRUC), Edinburgh, UK
| | - Anna Salas-Mani
- Research and Development Department, Affinity Petcare, Barcelona, Spain
| | - Celina Torre
- Research and Development Department, Affinity Petcare, Barcelona, Spain
| | - Leticia Abecia
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Carlos Castrillo
- Department of Animal Nutrition and Food Science, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
73
|
Schmidt M, Unterer S, Suchodolski JS, Honneffer JB, Guard BC, Lidbury JA, Steiner JM, Fritz J, Kölle P. The fecal microbiome and metabolome differs between dogs fed Bones and Raw Food (BARF) diets and dogs fed commercial diets. PLoS One 2018; 13:e0201279. [PMID: 30110340 PMCID: PMC6093636 DOI: 10.1371/journal.pone.0201279] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 07/12/2018] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Feeding a Bones and Raw Food (BARF) diet has become an increasing trend in canine nutrition. Bones and Raw Food diets contain a high amount of animal components like meat, offal, and raw meaty bones, combined with comparatively small amounts of plant ingredients like vegetables and fruits as well as different sorts of oil and supplements. While many studies have focused on transmission of pathogens via contaminated meat and on nutritional imbalances, only few studies have evaluated the effect of BARF diets on the fecal microbiome and metabolome. The aim of the study was to investigate differences in the fecal microbiome and the metabolome between dogs on a BARF diet and dogs on a commercial diet (canned and dry dog food). METHODS Naturally passed fecal samples were obtained from 27 BARF and 19 commercially fed dogs. Differences in crude protein, fat, fiber, and NFE (Nitrogen-Free Extract) between diets were calculated with a scientific nutrient database. The fecal microbiota was analyzed by 16S rRNA gene sequencing and quantitative PCR assays. The fecal metabolome was analyzed in 10 BARF and 9 commercially fed dogs via untargeted metabolomics approach. RESULTS Dogs in the BARF group were fed a significantly higher amount of protein and fat and significantly lower amount of NFE and fiber. There was no significant difference in alpha-diversity measures between diet groups. Analysis of similarity (ANOSIM) revealed a significant difference in beta-diversity (p < 0.01) between both groups. Linear discriminant analysis effect size (LefSe) showed a higher abundance of Lactobacillales, Enterobacteriaceae, Fusobacterium and, Clostridium in the BARF group while conventionally fed dogs had a higher abundance of Clostridiaceae, Erysipelotrichaceae, Ruminococcaceae, and Lachnospiraceae. The qPCR assays revealed significantly higher abundance of Escherichia coli (E. coli) and Clostridium (C.). perfringens and an increased Dysbiosis Index in the BARF group. Principal component analysis (PCA) plots of metabolomics data showed clustering between diet groups. Random forest analysis showed differences in the abundance of various components, including increased 4-hydroxybutryric acid (GBH) and 4-aminobutyric acid (GABA) in the BARF group. Based on univariate statistics, several metabolites were significantly different between diet groups, but lost significance after adjusting for multiple comparison. No differences were found in fecal bile acid concentrations, but the BARF group had a higher fecal concentration of cholesterol in their feces compared to conventionally fed dogs. CONCLUSION Microbial communities and metabolome vary significantly between BARF and commercially fed dogs.
Collapse
Affiliation(s)
- Milena Schmidt
- Clinic of Small Animal Medicine, LMU University of Munich, Munich, Germany
| | - Stefan Unterer
- Clinic of Small Animal Medicine, LMU University of Munich, Munich, Germany
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Julia B. Honneffer
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Blake C. Guard
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jörg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Julia Fritz
- Napfcheck, small animal nutrition consultation, Munich, Germany
| | - Petra Kölle
- Clinic of Small Animal Medicine, LMU University of Munich, Munich, Germany
| |
Collapse
|
74
|
Moon CD, Young W, Maclean PH, Cookson AL, Bermingham EN. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. Microbiologyopen 2018; 7:e00677. [PMID: 29911322 PMCID: PMC6182564 DOI: 10.1002/mbo3.677] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 12/17/2022] Open
Abstract
Interests in the impact of the gastrointestinal microbiota on health and wellbeing have extended from humans to that of companion animals. While relatively fewer studies to date have examined canine and feline gut microbiomes, analysis of the metagenomic DNA from fecal communities using next‐generation sequencing technologies have provided insights into the microbes that are present, their function, and potential to contribute to overall host nutrition and health. As carnivores, healthy dogs and cats possess fecal microbiomes that reflect the generally higher concentrations of protein and fat in their diets, relative to omnivores and herbivores. The phyla Firmicutes and Bacteroidetes are highly abundant, and Fusobacteria, Actinobacteria, and Proteobacteria also feature prominently. Proteobacteria is the most diverse bacterial phylum and commonly features in the fecal microbiota of healthy dogs and cats, although its reputation is often sullied as its members include a number of well‐known opportunistic pathogens, such as Escherichia coli, Salmonella, and Campylobacter, which may impact the health of the host and its owner. Furthermore, in other host species, high abundances of Proteobacteria have been associated with dysbiosis in hosts with metabolic or inflammatory disorders. In this review, we seek to gain further insight into the prevalence and roles of the Proteobacteria within the gastrointestinal microbiomes of healthy dogs and cats. We draw upon the growing number of metagenomic DNA sequence‐based studies which now allow us take a culture‐independent approach to examine the functions that this more minor, yet important, group contribute to normal microbiome function. The fecal microbiomes of healthy dogs and cats often include Proteobacteria at varying abundances. This phylum can have a sullied reputation as it contains a number of well‐known pathogenic members. We explored the functions of the Proteobacteria in fecal shotgun metagenome datasets from healthy dogs and cats. The Proteobacteria appeared to be enriched for functions that are consistent with a role in helping to maintain the anaerobic environment of the gut for normal microbiome function.
Collapse
Affiliation(s)
- Christina D Moon
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Wayne Young
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Paul H Maclean
- AgResearch, Lincoln Research Centre, Lincoln, New Zealand
| | - Adrian L Cookson
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Emma N Bermingham
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,High-Value Nutrition, National Science Challenge, Auckland, New Zealand
| |
Collapse
|
75
|
Borde A, Åstrand A. Alopecia areata and the gut-the link opens up for novel therapeutic interventions. Expert Opin Ther Targets 2018; 22:503-511. [PMID: 29808708 DOI: 10.1080/14728222.2018.1481504] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION This review aims to raise the potential of the modern society's impact on gut integrity often leading to increased intestinal permeability, as a cause or driver of Alopecia Areata (AA) in genetically susceptible people. With the increasing rate of T cell-driven autoimmunity, we hypothesize that there is a common root cause of these diseases that originates from chronic inflammation, and that the gut is the most commonly exposed area with our modern lifestyle. Areas covered: We will discuss the complexity in the induction of AA and its potential link to increased intestinal permeability. Our main focus will be on the gut microbiome and mechanisms involved in the interplay with the immune system that may lead to local and/or peripheral inflammation and finally, tissue destruction. Expert opinion: We have seen a link between AA and a dysfunctional gastrointestinal system which raised the hypothesis that an underlying intestinal inflammation drives the priming and dysregulation of immune cells that lead to hair follicle destruction. While it is still important to resolve local inflammation and restore the IP around the hair follicles, we believe that the root cause needs to be eradicated by long-term interventions to extinguish the fire driving the disease.
Collapse
Affiliation(s)
- Annika Borde
- a Respiratory, Inflammation and Autoimmunity IMED Biotech Unit , AstraZeneca , Gothenburg , Sweden
| | - Annika Åstrand
- a Respiratory, Inflammation and Autoimmunity IMED Biotech Unit , AstraZeneca , Gothenburg , Sweden
| |
Collapse
|
76
|
Graf BL, Zhang L, Corradini MG, Kuhn P, Newman SS, Salbaum JM, Raskin I. Physicochemical differences between malanga ( Xanthosoma sagittifolium) and potato ( Solanum tuberosum) tubers are associated with differential effects on the gut microbiome. J Funct Foods 2018; 45:268-276. [PMID: 30416540 PMCID: PMC6221202 DOI: 10.1016/j.jff.2018.04.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Malanga (Xanthosoma sagittifolium) is used as a medicinal food for infant development and gastritis. We compared the physicochemical properties and gut microbial effects of malanga versus potato (Solanum tuberosum) using nutritional analysis, rheometry, in vitro TNO Intestinal Model, and C57Bl/6J mouse models. Malanga was characterized by higher starch (70.7% v. 66.3%), lower amylose:amylopectin (0.33 v. 0.59), higher free sugar (5.44% v. 3.23%), lower viscosity (271.0 v. 863.0 mPa.s), and higher bioaccessible and bioavailable sugar (0.89 v. 0.11 g bioaccessible sucrose per 20 g load in vitro; blood glucose levels of 129.1 v. 95.2 and 133.8 v. 104.3 mg/dL after 20 and 60 min in vivo). Gut microbiota of mice fed a high fat diet containing 20% malanga for 14 d exhibited significantly higher α diversity than those fed 20% potato, indicating that minor physicochemical differences between similar tuber crops are associated with significantly different effects on the gut microbiome.
Collapse
Affiliation(s)
- Brittany L. Graf
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Li Zhang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Maria G. Corradini
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Peter Kuhn
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Susan S. Newman
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA
| | - J. Michael Salbaum
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA
| | - Ilya Raskin
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
77
|
Omatsu T, Omura M, Katayama Y, Kimura T, Okumura M, Okumura A, Murata Y, Mizutani T. Molecular diversity of the faecal microbiota of Toy Poodles in Japan. J Vet Med Sci 2018; 80:749-754. [PMID: 29643280 PMCID: PMC5989017 DOI: 10.1292/jvms.17-0582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The intestinal microbiota was revealed with the recent advances in molecular techniques, such as high-throughput sequencing analysis. As a result, the microbial changes are thought to
influence the health of humans and animals and such changes are affected by several factors including diet, genetics, age, sex, and diseases. Similar studies are being conducted in dogs, and
the knowledge of intestinal microbiota in dogs is expanding. Nonetheless, basic information on intestinal microbiota in dogs is less than that of humans. Our aim was to study toy poodles
(n=21), a popular companion dog, in terms of basic characteristics of the faecal microbiota by 16S rRNA gene barcoding analysis. In the faecal microbiota, Firmicutes, Bacteroidetes,
Proteobacteria, and Fusobacteria were the dominant phyla (over 93.4% of faecal microbiota) regardless of the attributes of the dogs. In family level, Enterobacteriaceae, Bacteroidaceae, and
Lachnospiraceae were most prevalent. In case of a dog with protein-losing enteropathy, the diversity of faecal microbiota was different between before and after treatment. This study
provides basic information for studying on faecal microbiota in toy poodles.
Collapse
Affiliation(s)
- Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Miki Omura
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan.,Minami Koganei Animal Hospital, Koganei-shi, Tokyo 184-0014, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Toru Kimura
- Minami Koganei Animal Hospital, Koganei-shi, Tokyo 184-0014, Japan
| | - Maho Okumura
- Drexel University Dornsife School of Public Health, Philadelphia PA 19104, U.S.A
| | - Atsushi Okumura
- Centre for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, U.S.A
| | - Yoshiteru Murata
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan.,Murata Animal Hospital, Mobara-shi, Chiba 299-4114, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
78
|
Jenkins EK, DeChant MT, Perry EB. When the Nose Doesn't Know: Canine Olfactory Function Associated With Health, Management, and Potential Links to Microbiota. Front Vet Sci 2018; 5:56. [PMID: 29651421 PMCID: PMC5884888 DOI: 10.3389/fvets.2018.00056] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
The impact of health, management, and microbiota on olfactory function in canines has not been examined in review. The most important characteristic of the detection canine is its sense of smell. Olfactory receptors are primarily located on the ethmoturbinates of the nasal cavity. The vomeronasal organ is an additional site of odor detection that detects chemical signals that stimulate behavioral and/or physiological changes. Recent advances in the genetics of olfaction suggest that genetic changes, along with the unique anatomy and airflow of the canine nose, are responsible for the macrosmia of the species. Inflammation, alterations in blood flow and hydration, and systemic diseases alter olfaction and may impact working efficiency of detection canines. The scientific literature contains abundant information on the potential impact of pharmaceuticals on olfaction in humans, but only steroids, antibiotics, and anesthetic agents have been studied in the canine. Physical stressors including exercise, lack of conditioning, and high ambient temperature impact olfaction directly or indirectly in the canine. Dietary fat content, amount of food per meal, and timing of meals have been demonstrated to impact olfaction in mice and dogs. Gastrointestinal (GI) microbiota likely impacts olfaction via bidirectional communication between the GI tract and brain, and the microbiota is impacted by exercise, diet, and stress. The objective of this literature review is to discuss the specific effects of health, management, and microbiota shifts on olfactory performance in working canines.
Collapse
Affiliation(s)
- Eileen K Jenkins
- First Year Graduate Veterinary Education Program, Public Health Activity - Fort Bragg, United States Army, Fort Bragg, NC, United States
| | - Mallory T DeChant
- Department of Animal Science, Food & Nutrition, College of Agricultural Science, Southern Illinois University, Carbondale, IL, United States
| | - Erin B Perry
- Department of Animal Science, Food & Nutrition, College of Agricultural Science, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
79
|
Bai J, Zhu Y, Dong Y. Modulation of gut microbiota and gut-generated metabolites by bitter melon results in improvement in the metabolic status in high fat diet-induced obese rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
80
|
Barko P, McMichael M, Swanson K, Williams D. The Gastrointestinal Microbiome: A Review. J Vet Intern Med 2018; 32:9-25. [PMID: 29171095 PMCID: PMC5787212 DOI: 10.1111/jvim.14875] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/30/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022] Open
Abstract
The gastrointestinal microbiome is a diverse consortium of bacteria, archaea, fungi, protozoa, and viruses that inhabit the gut of all mammals. Studies in humans and other mammals have implicated the microbiome in a range of physiologic processes that are vital to host health including energy homeostasis, metabolism, gut epithelial health, immunologic activity, and neurobehavioral development. The microbial genome confers metabolic capabilities exceeding those of the host organism alone, making the gut microbiome an active participant in host physiology. Recent advances in DNA sequencing technology and computational biology have revolutionized the field of microbiomics, permitting mechanistic evaluation of the relationships between an animal and its microbial symbionts. Changes in the gastrointestinal microbiome are associated with diseases in humans and animals including inflammatory bowel disease, asthma, obesity, metabolic syndrome, cardiovascular disease, immune-mediated conditions, and neurodevelopmental conditions such as autism spectrum disorder. While there remains a paucity of data regarding the intestinal microbiome in small animals, recent studies have helped to characterize its role in host animal health and associated disease states. This review is intended to familiarize small animal veterinarians with recent advances in the field of microbiomics and to prime them for a future in which diagnostic tests and therapies will incorporate these developments into clinical practice.
Collapse
Affiliation(s)
- P.C. Barko
- Veterinary Clinical MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIL
| | - M.A. McMichael
- Veterinary Clinical MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIL
| | - K.S. Swanson
- Veterinary Clinical MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIL
- Department of Animal SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL
| | - D.A. Williams
- Veterinary Clinical MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIL
| |
Collapse
|
81
|
Harkey MA, Villagran AM, Venkataraman GM, Leisenring WM, Hullar MAJ, Torok-Storb BJ. Associations between gastric dilatation-volvulus in Great Danes and specific alleles of the canine immune-system genes DLA88, DRB1, and TLR5. Am J Vet Res 2017; 78:934-945. [PMID: 28738011 DOI: 10.2460/ajvr.78.8.934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether specific alleles of candidate genes of the major histocompatibility complex (MHC) and innate immune system were associated with gastric dilatation-volvulus (GDV) in Great Danes. ANIMALS 42 healthy Great Danes (control group) and 39 Great Danes with ≥ 1 GDV episode. PROCEDURES Variable regions of the 2 most polymorphic MHC genes (DLA88 and DRB1) were amplified and sequenced from the dogs in each group. Similarly, regions of 3 genes associated with the innate immune system (TLR5, NOD2, and ATG16L1), which have been linked to inflammatory bowel disease, were amplified and sequenced. Alleles were evaluated for associations with GDV, controlling for age and dog family. RESULTS Specific alleles of genes DLA88, DRB1, and TLR5 were significantly associated with GDV. One allele of each gene had an OR > 2 in the unadjusted univariate analyses and retained a hazard ratio > 2 after controlling for temperament, age, and familial association in the multivariate analysis. CONCLUSIONS AND CLINICAL RELEVANCE The 3 GDV-associated alleles identified in this study may serve as diagnostic markers for identification of Great Danes at risk for GDV. Additional research is needed to determine whether other dog breeds have the same genetic associations. These findings also provided a new target for research into the etiology of, and potential treatments for, GDV in dogs.
Collapse
|
82
|
Herstad KMV, Gajardo K, Bakke AM, Moe L, Ludvigsen J, Rudi K, Rud I, Sekelja M, Skancke E. A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Vet Res 2017; 13:147. [PMID: 28558792 PMCID: PMC5450340 DOI: 10.1186/s12917-017-1073-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diet has a major influence on the composition of the gut microbiota, whose importance for gut health and overall well-being is increasingly recognized. Knowledge is limited regarding health implications, including effects on the faecal microbiota, of feeding a diet with high content of red meat to dogs, despite some owners' apparent preference to do so. The aim of this study was to evaluate how a diet change from commercial dry food to one with a high content of boiled minced beef and vice versa influenced the faecal microbiota, and short chain fatty acid profile in healthy, adult, client-owned dogs. RESULTS The diet change influenced the faecal microbiota composition and diversity (Shannon diversity index). The most abundant OTUs in samples of dogs fed the dry food and high minced beef were affiliated with the species Faecalibacterium prausnitzii and Clostridia hiranonis respectively. The high minced beef diet apparently also influenced the short chain fatty acid profile, with increased isovaleric acid, as well as an increase in faecal pH. These effects were reversed when the commercial dry food was reintroduced in weeks 6 and 7. CONCLUSIONS Results of this study can aid in the understanding of how diet changes influence the faecal microbiota and metabolite content on a short-term basis. Long-term studies are required to investigate potential implications for canine gut and general health.
Collapse
Affiliation(s)
- Kristin M V Herstad
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway.
| | - Karina Gajardo
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NBMU), Oslo, Norway
| | - Anne Marie Bakke
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NBMU), Oslo, Norway
| | - Lars Moe
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Jane Ludvigsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ida Rud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Monika Sekelja
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ellen Skancke
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| |
Collapse
|
83
|
Garcia-Mazcorro JF, Barcenas-Walls JR, Suchodolski JS, Steiner JM. Molecular assessment of the fecal microbiota in healthy cats and dogs before and during supplementation with fructo-oligosaccharides (FOS) and inulin using high-throughput 454-pyrosequencing. PeerJ 2017; 5:e3184. [PMID: 28439463 PMCID: PMC5398277 DOI: 10.7717/peerj.3184] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/14/2017] [Indexed: 01/18/2023] Open
Abstract
Prebiotics are selectively fermentable dietary compounds that result in changes in the composition and/or activity of the intestinal microbiota, thus conferring benefits upon host health. In veterinary medicine, commercially available products containing prebiotics have not been well studied with regard to the changes they trigger on the composition of the gut microbiota. This study evaluated the effect of a commercially available nutraceutical containing fructo-oligosaccharides (FOS) and inulin on the fecal microbiota of healthy cats and dogs when administered for 16 days. Fecal samples were collected at two time points before and at two time points during prebiotic administration. Total genomic DNA was obtained from fecal samples and 454-pyrosequencing was used for 16S rRNA gene bacterial profiling. The linear discriminant analysis (LDA) effect size (LEfSe) method was used for detecting bacterial taxa that may respond (i.e., increase or decrease in its relative abundance) to prebiotic administration. Prebiotic administration was associated with a good acceptance and no side effects (e.g., diarrhea) were reported by the owners. A low dose of prebiotics (50 mL total regardless of body weight with the end product containing 0.45% of prebiotics) revealed a lower abundance of Gammaproteobacteria and a higher abundance of Veillonellaceae during prebiotic administration in cats, while Staphylococcaceae showed a higher abundance during prebiotic administration in dogs. These differences were not sufficient to separate bacterial communities as shown by analysis of weighted UniFrac distance metrics. A predictive approach of the fecal bacterial metagenome using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) also did not reveal differences between the period before and during prebiotic administration. A second trial using a higher dose of prebiotics (3.2 mL/kg body weight with the end product containing 3.1% of prebiotics) was tested in dogs and revealed a lower abundance of Dorea (family Clostridiaceae) and a higher abundance of Megamonas and other (unknown) members of Veillonellaceae during prebiotic administration. Again, these changes were not sufficient to separate bacterial communities or predicted metabolic profiles according to treatment. A closer analysis of bacterial communities at all time-points revealed highly individualized patterns of variation. This study shows a high interindividual variation of fecal bacterial communities from pet cats and dogs, that these communities are relatively stable over time, and that some of this variation can be attributable to prebiotic administration, a phenomenon that may be affected by the amount of the prebiotic administered in the formulation. This study also provides insights into the response of gut bacterial communities in pet cats and dogs during administration of commercially available products containing prebiotics. More studies are needed to explore potentially beneficial effects on host health beyond changes in bacterial communities.
Collapse
Affiliation(s)
- Jose F Garcia-Mazcorro
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States.,Faculty of Veterinary Medicine, Universidad Autónoma de Nuevo León, General Escobedo, Nuevo Leon, Mexico
| | - Jose R Barcenas-Walls
- Center for Research and Development in Health Sciences (CIDICS), Genomics Unit, Universidad Autónoma de Nuevo León, Monterrey, Nuevo Leon, Mexico
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
84
|
Bermingham EN, Maclean P, Thomas DG, Cave NJ, Young W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ 2017; 5:e3019. [PMID: 28265505 PMCID: PMC5337088 DOI: 10.7717/peerj.3019] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/23/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Much of the recent research in companion animal nutrition has focussed on understanding the role of diet on faecal microbiota composition. To date, diet-induced changes in faecal microbiota observed in humans and rodents have been extrapolated to pets in spite of their very different dietary and metabolic requirements. This lack of direct evidence means that the mechanisms by which microbiota influences health in dogs are poorly understood. We hypothesised that changes in faecal microbiota correlate with physiological parameters including apparent macronutrient digestibility. METHODS Fifteen adult dogs were assigned to two diet groups, exclusively fed either a premium kibbled diet (kibble; K; n = 8) or a raw red meat diet (meat; M; n = 7) for nine weeks. Apparent digestibility of macronutrients (protein, fat, gross energy and dry matter), faecal weight, faecal health scores, faecal VFA concentrations and faecal microbial composition were determined. Datasets were integrated using mixOmics in R. RESULTS Faecal weight and VFA levels were lower and the apparent digestibility of protein and energy were higher in dogs on the meat diet. Diet significantly affected 27 microbial families and 53 genera in the faeces. In particular, the abundances of Bacteriodes, Prevotella, Peptostreptococcus and Faecalibacterium were lower in dogs fed the meat diet, whereas Fusobacterium, Lactobacillus and Clostridium were all more abundant. DISCUSSION Our results show clear associations of specific microbial taxa with diet composition. For example, Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae were highly correlated to parameters such as protein and fat digestibility in the dog. By understanding the relationship between faecal microbiota and physiological parameters we will gain better insights into the effects of diet on the nutrition of our pets.
Collapse
Affiliation(s)
- Emma N Bermingham
- AgResearch Ltd., Food Nutrition & Health Team , Palmerston North , New Zealand
| | - Paul Maclean
- AgResearch Ltd., Bioinformatics & Statistics Team , Lincoln , New Zealand
| | - David G Thomas
- Massey University, Institute of Veterinary, Animal & Biomedical Sciences , Palmerston North , New Zealand
| | - Nicholas J Cave
- Massey University, Institute of Veterinary, Animal & Biomedical Sciences , Palmerston North , New Zealand
| | - Wayne Young
- AgResearch Ltd., Food Nutrition & Health Team , Palmerston North , New Zealand
| |
Collapse
|
85
|
Sandri M, Dal Monego S, Conte G, Sgorlon S, Stefanon B. Raw meat based diet influences faecal microbiome and end products of fermentation in healthy dogs. BMC Vet Res 2017; 13:65. [PMID: 28245817 PMCID: PMC5331737 DOI: 10.1186/s12917-017-0981-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/17/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Dietary intervention studies are required to deeper understand the variability of gut microbial ecosystem in healthy dogs under different feeding conditions and to improve diet formulations. The aim of the study was to investigate in dogs the influence of a raw based diet supplemented with vegetable foods on faecal microbiome in comparison with extruded food. METHODS Eight healthy adult Boxer dogs were recruited and randomly divided in two experimental blocks of 4 individuals. Dogs were regularly fed a commercial extruded diet (RD) and starting from the beginning of the trial, one group received the raw based diet (MD) and the other group continued to be fed with the RD diet (CD) for a fortnight. After 14 days, the two groups were inverted, the CD group shifted to the MD and the MD shifted to the CD, for the next 14 days. Faeces were collected at the beginning of the study (T0), after 14 days (T14) before the change of diet and at the end of experimental period (T28) for DNA extraction and analysis of metagenome by sequencing 16SrRNA V3 and V4 regions, short chain fatty acids (SCFA), lactate and faecal score. RESULTS A decreased proportion of Lactobacillus, Paralactobacillus (P < 0.01) and Prevotella (P < 0.05) genera was observed in the MD group while Shannon biodiversity Index significantly increased (3.31 ± 0.15) in comparison to the RD group (2.92 ± 0.31; P < 0.05). The MD diet significantly (P < 0.05) decreased the Faecal Score and increased the lactic acid concentration in the feces in comparison to the RD treatment (P < 0.01). Faecal acetate was negatively correlated with Escherichia/Shigella and Megamonas (P < 0.01), whilst butyrate was positively correlated with Blautia and Peptococcus (P < 0.05). Positive correlations were found between lactate and Megamonas (P < 0.05), Escherichia/Shigella (P < 0.01) and Lactococcus (P < 0.01). CONCLUSION These results suggest that the diet composition modifies faecal microbial composition and end products of fermentation. The administration of MD diet promoted a more balanced growth of bacterial communities and a positive change in the readouts of healthy gut functions in comparison to RD diet.
Collapse
Affiliation(s)
- Misa Sandri
- Department of AgroFood, Environmental and Animal Sciences, University of Udine, Via delle Scienze 2908, 33100 Udine, Italy
| | - Simeone Dal Monego
- Cluster in Biomedicine, CBM S.c.r.l., Bioinformatic Services, Area Science Park, I‑34149 Basovizza, Italy
| | - Giuseppe Conte
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Sandy Sgorlon
- Department of AgroFood, Environmental and Animal Sciences, University of Udine, Via delle Scienze 2908, 33100 Udine, Italy
| | - Bruno Stefanon
- Department of AgroFood, Environmental and Animal Sciences, University of Udine, Via delle Scienze 2908, 33100 Udine, Italy
| |
Collapse
|
86
|
Schmitz S, Suchodolski J. Understanding the canine intestinal microbiota and its modification by pro-, pre- and synbiotics - what is the evidence? Vet Med Sci 2016; 2:71-94. [PMID: 29067182 PMCID: PMC5645859 DOI: 10.1002/vms3.17] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/02/2015] [Accepted: 12/13/2015] [Indexed: 12/12/2022] Open
Abstract
Interest in the composition of the intestinal microbiota and possibilities of its therapeutic modifications has soared over the last decade and more detailed knowledge specific to the canine microbiota at different mucosal sites including the gut is available. Probiotics, prebiotics or their combination (synbiotics) are a way of modifying the intestinal microbiota and exert effects on the host immune response. Probiotics are proposed to exert their beneficial effects through various pathways, for example production of antimicrobial peptides, enhancing growth of favourable endogenous microorganisms, competition for epithelial colonisation sites and immune‐modulatory functions. Despite widespread use of pro‐, pre‐ and synbiotics, scientific evidence of their beneficial effects in different conditions of the dog is scarce. Specific effects of different strains, their combination or their potential side‐effects have not been evaluated sufficiently. In some instances, in vitro results have been promising, but could not be transferred consistently into in vivo situations. Specific canine gastrointestinal (GI) diseases or conditions where probiotics would be beneficial, their most appropriate dosage and application have not been assessed extensively. This review summarises the current knowledge of the intestinal microbiome composition in the dog and evaluates the evidence for probiotic use in canine GI diseases to date. It wishes to provide veterinarians with evidence‐based information on when and why these products could be useful in preventing or treating canine GI conditions. It also outlines knowledge about safety and approval of commercial probiotic products, and the potential use of faecal microbial transplantation, as they are related to the topic of probiotic usage.
Collapse
Affiliation(s)
- Silke Schmitz
- Department of Internal MedicineSmall Animal HospitalJustus-Liebig UniversityGiessenGermany
| | - Jan Suchodolski
- Gastrointestinal LaboratoryDepartment of Small Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
87
|
Panasevich MR, Allen JM, Wallig MA, Woods JA, Dilger RN. Moderately Fermentable Potato Fiber Attenuates Signs and Inflammation Associated with Experimental Colitis in Mice. J Nutr 2015; 145:2781-8. [PMID: 26491118 DOI: 10.3945/jn.115.218578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/29/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Dietary fiber intake leading to short-chain fatty acid (SCFA) production could be a strategy to combat intermittent bouts of inflammation during ulcerative colitis. OBJECTIVE Our objective was to evaluate dietary potato fiber (PF) in attenuating inflammation using a dextran sodium sulfate (DSS)-induced colitis mouse model. We hypothesized that PF would show anti-inflammatory effects compared with cellulose due in part to SCFA production. METHODS Male C57Bl/6J mice were fed diets containing either 8% cellulose or 14.5% PF for a 22-d feeding study. Starting on study day 14, mice were provided either distilled water (control) or 2% (wt:vol) DSS in drinking water for 5 d (cellulose+control, n = 17; PF+control, n = 16; cellulose+DSS, n = 17; and PF+DSS, n = 16). Body weights and food and water intakes were collected daily from day 14 through day 22. Distal colon tissue was analyzed for histologic outcomes and changes in gene expression, and cecal contents were analyzed for SCFA concentrations. Data were analyzed by ANOVA, with repeated measures applied where necessary. RESULTS At day 5 post-DSS induction, cellulose+DSS mice exhibited a 2% reduction (P < 0.05) in body weight compared with PF+DSS and PF+ and cellulose+control mice. PF+DSS mice had greater (P < 0.05) cecal butyrate concentrations [24.5 μmol/g dry matter (DM)] than did cellulose+DSS mice (4.93 μmol/g DM). Mice fed PF+DSS had lower (P < 0.05) infiltration of leukocytes in the distal colon than did mice fed cellulose+DSS (mean histology scores of 1.22 and 2.30, respectively). Furthermore, mice fed cellulose+DSS exhibited 1.42, 11.5, 8.48, and 35.5 times greater (P < 0.05) colon mRNA expression of tumor necrosis factor α (Tnfa) and interleukin (Il) 1b, Il6, and Il17a, respectively, and 7.10 times greater (P < 0.05) expression of C-X-C motif ligand 1 (Cxc1) compared with mice fed PF+DSS. CONCLUSIONS These results suggest that PF fed to mice before and during DSS colitis attenuates inflammation, potentially through SCFA production; however, future studies are needed to understand the role of dietary fiber intake and immune activation.
Collapse
Affiliation(s)
| | | | - Matthew A Wallig
- Division of Nutritional Sciences, College of Veterinary Medicine, and
| | | | - Ryan N Dilger
- Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
88
|
Abstract
Type 2 diabetes (T2D) has become an increasingly challenging health burden due to its high morbidity, mortality, and heightened prevalence worldwide. Although dietary and nutritional imbalances have long been recognized as key risk factors for T2D, the underlying mechanisms remain unclear. The advent of nutritional systems biology, a field that aims to elucidate the interactions between dietary nutrients and endogenous molecular entities in disease-related tissues, offers unique opportunities to unravel the complex mechanisms underlying the health-modifying capacities of nutritional molecules. The recent revolutionary advances in omics technologies have particularly empowered this incipient field. In this review, we discuss the applications of multi-omics approaches toward a systems-level understanding of how dietary patterns and particular nutrients modulate the risk of T2D. We focus on nutritional studies utilizing transcriptomics, epigenomomics, proteomics, metabolomics, and microbiomics, and integration of diverse omics technologies. We also summarize the potential molecular mechanisms through which nutritional imbalances contribute to T2D pathogenesis based on these studies. Finally, we discuss the remaining challenges of nutritional systems biology and how the field can be optimized to further our understanding of T2D and guide disease management via nutritional interventions.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Rio Elizabeth Barrere-Cain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|