51
|
Ullman JC, Arguello A, Getz JA, Bhalla A, Mahon CS, Wang J, Giese T, Bedard C, Kim DJ, Blumenfeld JR, Liang N, Ravi R, Nugent AA, Davis SS, Ha C, Duque J, Tran HL, Wells RC, Lianoglou S, Daryani VM, Kwan W, Solanoy H, Nguyen H, Earr T, Dugas JC, Tuck MD, Harvey JL, Reyzer ML, Caprioli RM, Hall S, Poda S, Sanchez PE, Dennis MS, Gunasekaran K, Srivastava A, Sandmann T, Henne KR, Thorne RG, Di Paolo G, Astarita G, Diaz D, Silverman AP, Watts RJ, Sweeney ZK, Kariolis MS, Henry AG. Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice. Sci Transl Med 2021; 12:12/545/eaay1163. [PMID: 32461331 DOI: 10.1126/scitranslmed.aay1163] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/10/2020] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
Abstract
Most lysosomal storage diseases (LSDs) involve progressive central nervous system (CNS) impairment, resulting from deficiency of a lysosomal enzyme. Treatment of neuronopathic LSDs remains a considerable challenge, as approved intravenously administered enzyme therapies are ineffective in modifying CNS disease because they do not effectively cross the blood-brain barrier (BBB). We describe a therapeutic platform for increasing the brain exposure of enzyme replacement therapies. The enzyme transport vehicle (ETV) is a lysosomal enzyme fused to an Fc domain that has been engineered to bind to the transferrin receptor, which facilitates receptor-mediated transcytosis across the BBB. We demonstrate that ETV fusions containing iduronate 2-sulfatase (ETV:IDS), the lysosomal enzyme deficient in mucopolysaccharidosis type II, exhibited high intrinsic activity and degraded accumulated substrates in both IDS-deficient cell and in vivo models. ETV substantially improved brain delivery of IDS in a preclinical model of disease, enabling enhanced cellular distribution to neurons, astrocytes, and microglia throughout the brain. Improved brain exposure for ETV:IDS translated to a reduction in accumulated substrates in these CNS cell types and peripheral tissues and resulted in a complete correction of downstream disease-relevant pathologies in the brain, including secondary accumulation of lysosomal lipids, perturbed gene expression, neuroinflammation, and neuroaxonal damage. These data highlight the therapeutic potential of the ETV platform for LSDs and provide preclinical proof of concept for TV-enabled therapeutics to treat CNS diseases more broadly.
Collapse
Affiliation(s)
- Julie C Ullman
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Annie Arguello
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Jennifer A Getz
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Akhil Bhalla
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Cathal S Mahon
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Junhua Wang
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Tina Giese
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Catherine Bedard
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Do Jin Kim
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Jessica R Blumenfeld
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Nicholas Liang
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Ritesh Ravi
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Alicia A Nugent
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Sonnet S Davis
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Connie Ha
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Joseph Duque
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Hai L Tran
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Robert C Wells
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Steve Lianoglou
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Vinay M Daryani
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Wanda Kwan
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Hilda Solanoy
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Hoang Nguyen
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Timothy Earr
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Jason C Dugas
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Michael D Tuck
- Mass Spectrometry Research Center, Vanderbilt University, 9160 MRB III, 465 21 Avenue South, Nashville, TN 37240, USA
| | - Jennifer L Harvey
- Mass Spectrometry Research Center, Vanderbilt University, 9160 MRB III, 465 21 Avenue South, Nashville, TN 37240, USA
| | - Michelle L Reyzer
- Mass Spectrometry Research Center, Vanderbilt University, 9160 MRB III, 465 21 Avenue South, Nashville, TN 37240, USA
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, 9160 MRB III, 465 21 Avenue South, Nashville, TN 37240, USA
| | - Sejal Hall
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Suresh Poda
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Pascal E Sanchez
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Mark S Dennis
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Kannan Gunasekaran
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Ankita Srivastava
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Thomas Sandmann
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Kirk R Henne
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Robert G Thorne
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Gilbert Di Paolo
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Giuseppe Astarita
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Dolores Diaz
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Adam P Silverman
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Ryan J Watts
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Zachary K Sweeney
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Mihalis S Kariolis
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA.
| | - Anastasia G Henry
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA.
| |
Collapse
|
52
|
In Situ Localization of Plant Lipid Metabolites by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI). Methods Mol Biol 2021. [PMID: 34047991 DOI: 10.1007/978-1-0716-1362-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has emerged as a major analytical platform for the determination and localization of lipid metabolites directly from tissue sections. Unlike analysis of lipid extracts, where lipid localizations are lost due to homogenization and/ or solvent extraction, MALDI-MSI analysis is capable of revealing spatial localization of metabolites while simultaneously collecting high chemical resolution mass spectra. Important considerations for obtaining high quality MALDI-MS images include tissue preservation, section preparation, MS data collection and data processing. Errors in any of these steps can lead to poor quality metabolite images and increases the chance for metabolite misidentification and/ or incorrect localization. Here, we present detailed methods and recommendations for specimen preparation, MALDI-MS instrument parameters, software analysis platforms for data processing, and practical considerations for each of these steps to ensure acquisition of high-quality chemical and spatial resolution data for reconstructing MALDI-MS images of plant tissues.
Collapse
|
53
|
O'Rourke MB, Viengkhou B, Smith CC, Sonderegger L, Padula MP, Sutherland GT, Hofer MJ, Crossett B. Matrix phase fractionation: Investigating the compromise between dynamic range of analyte extraction and spatial resolution in mass spectrometry imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9106. [PMID: 33860568 DOI: 10.1002/rcm.9106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/26/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Matrix-assisted laser desorption ionisation with mass spectrometry imaging (MSI) has seen rapid development in recent years and as such is becoming an important technique for the mapping of biomolecules from the surface of tissues. One key area of development is the optimisation of analyte extraction by using modified matrices or mixes of common ones. METHODS A series of serial sections were prepared for lipid MSI by either dry coating (sublimation) or by wet spray application of several matrices. These samples were then evaluated for analyte extraction, delocalisation and dynamic range. RESULTS We have shown that the spraying and sublimation methods of matrix application can be used complementarily. This creates large datasets, with each preparation method applied narrowly and then interpreted as a 'fraction' of the whole. Once combined, the dynamic range is significantly increased. We have dubbed this technique 'matrix phase fractionation'. CONCLUSIONS We have found that, by utilising matrix phase fractionation for the detection of lipids in brain tissue, it is possible to create a significantly more comprehensive dataset than would otherwise be possible with traditional 'single-run' workflows.
Collapse
Affiliation(s)
- Matthew B O'Rourke
- Northern Clinical School, Bowel Cancer & Biomarker Lab, Faculty of Medicine and Health, The University of Sydney Level 8, Kolling Institute, Royal North Shore Hospital, NSW, 2065, Australia
| | - Barney Viengkhou
- School of Life and Environmental Sciences, Charles Perkins Centre and The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, NSW, 2006, Australia
| | - Caine C Smith
- Neuropathology Group, Discipline of Pathology, School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Lorenz Sonderegger
- Shimadzu Australasia, Unit F, 10-16 South Street, Rydalmere, NSW, 2116, Australia
| | - Matthew P Padula
- School of Life Science and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo, 2007, Australia
| | - Greg T Sutherland
- Neuropathology Group, Discipline of Pathology, School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre and The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, NSW, 2006, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
54
|
Zhang YX, Zhao XB, Ha W, Zhang YD, Shi YP. Spatial distribution analysis of phospholipids in rice by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging. J Chromatogr A 2021; 1651:462302. [PMID: 34119720 DOI: 10.1016/j.chroma.2021.462302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 01/15/2023]
Abstract
Phospholipids are one of the main nutrients in rice, which have a positive effect on cancer, coronary heart disease and inflammation. However, phospholipids will become small molecular volatile substances during the aging process of rice, resulting in change the flavor of rice. Therefore, mapping the concentration and the spatial distribution of phospholipids in rice are of tremendous significance in its function research. In this work, we established a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) imaging method for the spatial distribution analysis of phospholipids in rice. A total of 12 phospholipid compounds were found in the range of m/z 500-1000 through a series of conditions optimization. According to the results, lysophosphatidylcholine (LPC) species spread throughout the rice tissue sections and phosphatidylcholine (PC) species distributed in the bran and embryo (particularly in the scutellum). We also compared the signal intensities of phospholipids in different parts of white rice and brown rice by region of interest (ROI) analysis, which showed the relative content of PC species was higher in the embryo and gradually decreased until disappeared with the increase of processing degree during the processing of brown rice to white rice. The PC species on the surface of rice could be used as an important indicator to identify the processing degree of rice. Our work not only establish a MALDI-TOF-MS imaging method for spatial distribution analysis of rice, but also provide the necessary reference for ensuring food security, improving the eating quality of rice and the health benefits of consumers.
Collapse
Affiliation(s)
- Yan-Xia Zhang
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Bo Zhao
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Ha
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yi-Da Zhang
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yan-Ping Shi
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
55
|
Xie H, Wu R, Hung YLW, Chen X, Chan TWD. Development of a Matrix Sublimation Device with Controllable Crystallization Temperature for MALDI Mass Spectrometry Imaging. Anal Chem 2021; 93:6342-6347. [PMID: 33852267 DOI: 10.1021/acs.analchem.1c00260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The size and distribution of matrix crystals deposited on the surface of a tissue section play a key role in the performance of MALDI mass spectrometry imaging (MALDI-MSI). In this study, uniform distribution and a restricted size of matrix crystals were achieved via a homemade matrix sublimation device with controllable crystallization temperature. The crystallization temperature was stably controlled at a subzero temperature, and homogeneous matrix crystals with diameters <0.2 μm were generated on the sample surface. Typical MALDI-MSI experiments of endogenous and exogenous components in the tissues of strawberries, kidneys, and mussels were conducted to examine the performance of the sublimator. Good reproducibility of MALDI-MSI was achieved, and the quality of ion images was significantly improved. These results demonstrate that the developed sublimator should have potential in matrix deposition for further high resolution MALDI-MSI application.
Collapse
Affiliation(s)
- Hanyi Xie
- School of Pharmaceutical sciences, Qilu University of Technology (Shandong Academy of Sciences), 19th Keyuan Road, Jinan, Shandong 250014, People's Republic of China
| | - Ri Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, People's Republic of China
| | - Y L Winnie Hung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, People's Republic of China
| | - Xiangfeng Chen
- School of Pharmaceutical sciences, Qilu University of Technology (Shandong Academy of Sciences), 19th Keyuan Road, Jinan, Shandong 250014, People's Republic of China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
56
|
Qiao Z, Lissel F. MALDI Matrices for the Analysis of Low Molecular Weight Compounds: Rational Design, Challenges and Perspectives. Chem Asian J 2021; 16:868-878. [PMID: 33657276 PMCID: PMC8251880 DOI: 10.1002/asia.202100044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Indexed: 02/03/2023]
Abstract
The analysis of low molecular weight (LMW) compounds is of great interest to detect small pharmaceutical drugs rapidly and sensitively, or to trace and understand metabolic pathways. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) plays a central role in the analysis of high molecular weight (bio)molecules. However, its application for LMW compounds is restricted by spectral interferences in the low m/z region, which are produced by conventional organic matrices. Several strategies regarding sample preparation have been investigated to overcome this problem. A different rationale is centred on developing new matrices which not only meet the fundamental requirements of good absorption and high ionization efficiency, but are also vacuum stable and "MALDI silent", i. e., do not give matrix-related signals in the LMW area. This review gives an overview on the rational design strategies used to develop matrix systems for the analysis of LMW compounds, focusing on (i) the modification of well-known matrices, (ii) the search for high molecular weight matrices, (iii) the development of binary, hybrid and nanomaterial-based matrices, (iv) the advance of reactive matrices and (v) the progress made regarding matrices for negative or dual polarity mode.
Collapse
Affiliation(s)
- Zhi Qiao
- Institute of Macromolecular Chemistry, Leibniz Institute for Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany) Faculty of Chemistry and Food ChemistryDresden University of Technology, Mommsenstr. 401062DresdenGermany
| | - Franziska Lissel
- Institute of Macromolecular Chemistry, Leibniz Institute for Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany) Faculty of Chemistry and Food ChemistryDresden University of Technology, Mommsenstr. 401062DresdenGermany
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
| |
Collapse
|
57
|
Dos Santos NA, de Almeida CM, Gonçalves FF, Ortiz RS, Kuster RM, Saquetto D, Romão W. Analysis of Erythroxylum coca Leaves by Imaging Mass Spectrometry (MALDI-FT-ICR IMS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:946-955. [PMID: 33715356 DOI: 10.1021/jasms.0c00449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) can determine the chemical identity and spatial distribution of several molecules in a single analysis, conserving its natural histology. However, there are no specific studies on the spatial distribution of alkaloids in Erythroxylum coca leaves by MALDI IMS, preserving the histology of the monitored compounds. Therefore, in this work, positive-ion mode MALDI Fourier-transform ion cyclotron resonance imaging mass spectrometry (MALDI(+)FT-ICR IMS) was applied to identify and analyze the distribution of alkaloids on the surface of coca leaves, evaluating the ionization efficiency of three matrices (α-cyano-4-hydroxycinnamic acid (CHCA), 2-mercaptobenzothiazole (MBT), and 2,5-dihydroxybenzoic acid (DHB)). The last was chosen as the best matrix in this study, and it was studied in five concentrations (0.5, 1.0, 2.0, 4.0, and 8.0 mg·mL-1), where 2 mg·mL-1 was the most efficient. The washing of coca leaves with the organic solvents (acetonitrile, methanol, toluene, and dichloromethane) tested did not improve the performance of the ionization process. Finally, a tissue section, 50 μm thick, was used to study the inner part of the leaf tissue, where alkaloids and flavonoid molecules were detected.
Collapse
Affiliation(s)
- Nayara Araujo Dos Santos
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES 29075-910, Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Av. Ministro Salgado Filho, Soteco, Vila Velha, Espírito Santo 29106-010, Brazil
| | - Camila Medeiros de Almeida
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES 29075-910, Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Av. Ministro Salgado Filho, Soteco, Vila Velha, Espírito Santo 29106-010, Brazil
| | - Fernanda Fachim Gonçalves
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES 29075-910, Brazil
| | - Rafael Scorsatto Ortiz
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Av. Ministro Salgado Filho, Soteco, Vila Velha, Espírito Santo 29106-010, Brazil
- Superintendência da Polícia Federal no Rio Grande Sul, Porto Alegre, RS 90040-410, Brazil
| | - Ricardo Machado Kuster
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES 29075-910, Brazil
| | - Diemerson Saquetto
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES), Av. Ministro Salgado Filho, Soteco, Vila Velha, Espírito Santo 29106-010, Brazil
| | - Wanderson Romão
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES 29075-910, Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Av. Ministro Salgado Filho, Soteco, Vila Velha, Espírito Santo 29106-010, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES), Av. Ministro Salgado Filho, Soteco, Vila Velha, Espírito Santo 29106-010, Brazil
| |
Collapse
|
58
|
Chen C, Laviolette SR, Whitehead SN, Renaud JB, Yeung KKC. Imaging of Neurotransmitters and Small Molecules in Brain Tissues Using Laser Desorption/Ionization Mass Spectrometry Assisted with Zinc Oxide Nanoparticles. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1065-1079. [PMID: 33783203 DOI: 10.1021/jasms.1c00021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inorganic nanostructured materials such as silicon, carbon, metals, and metal oxides have been explored as matrices of low-background signals to assist the laser desorption/ionization (LDI) mass spectrometric (MS) analysis of small molecules, but their applications for imaging of small molecules in biological tissues remain limited in the literature. Titanium dioxide is one of the known nanoparticles (NP) that can effectively assist LDI MS imaging of low molecular weight molecules (LMWM). TiO2 NP is commercially available as dispersions, which can be applied using a chemical solution sprayer. However, aggregation of NP can occur in the dispersions, and the aggregated NP can slowly clog the sprayer nozzle. In this work, the use of zinc oxide (ZnO) NP for LDI MS imaging is investigated as a superior alternative due to its dissolution in acidic pH. ZnO NP was found to deliver similar or better results in the imaging of LMWM in comparison to TiO2 NP. The regular acid washes were effective in minimizing clogging and maintaining high reproducibility. High-quality images of mouse sagittal and rat coronal tissue sections were obtained. Ions were detected predominately as Na+ or K+ adducts in the positive ion mode. The number of LMWM detected with ZnO NP was similar to that obtained with TiO2 NP, and only a small degree of specificity was observed.
Collapse
Affiliation(s)
| | | | | | - Justin B Renaud
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5 V 4T3, Canada
| | | |
Collapse
|
59
|
Bien T, Bessler S, Dreisewerd K, Soltwisch J. Transmission-Mode MALDI Mass Spectrometry Imaging of Single Cells: Optimizing Sample Preparation Protocols. Anal Chem 2021; 93:4513-4520. [PMID: 33646746 DOI: 10.1021/acs.analchem.0c04905] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) makes it possible to simultaneously visualize the spatial distribution of dozens to hundreds of different biomolecules (e.g., phospho- and glycolipids) in tissue sections and in cell cultures. The implementation of novel desorption and (post-)ionization techniques has recently pushed the pixel size of this imaging technique to the low micrometer scale and below and thus to a cellular and potentially sub-cellular level. However, to fully exploit this potential for cell biology and biomedicine, sample preparation becomes highly demanding. Here, we investigated the effect of several key parameters on the quality of the sample preparation and achievable spatial resolution, that include the washing, drying, chemical fixation, and matrix coating steps. The incubation of cells with formalin for about 5 min in combination with isotonic washing and mild drying produced a robust protocol that largely preserved not only cell morphologies, but also the molecular integrities of amine group-containing cell membrane phospholipids (phosphatidylethanolamines and -serines). A disadvantage of the chemical fixation is an increased permeabilization of cell membranes, resulting in leakage of cytosolic compounds. We demonstrate the pros and cons of the protocols with four model cell lines, cultured directly on indium tin oxide (ITO)-coated glass slides. Transmission (t-)mode MALDI-2-MSI enabled on a Q Exactive plus Orbitrap mass spectrometer was used to analyze the cultures at a pixel size of 2 μm. Phase contrast light microscopy and scanning electron microscopy were used as complementary methods. The protocols described could prove to be an important contribution to the advancement of single-cell MALDI imaging, especially for the characterization of cell-to-cell heterogeneities at a molecular level.
Collapse
Affiliation(s)
- Tanja Bien
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Sebastian Bessler
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
60
|
Hunter M, Demarais NJ, Faull RLM, Grey AC, Curtis MA. An imaging mass spectrometry atlas of lipids in the human neurologically normal and Huntington's disease caudate nucleus. J Neurochem 2021; 157:2158-2172. [PMID: 33606279 DOI: 10.1111/jnc.15325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/25/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022]
Abstract
Huntington's disease (HD) is a fatal disorder associated with germline trinucleotide repeat expansions in the HTT gene and characterised by striatal neurodegeneration. No efficacious interventions are available for HD, highlighting a major unmet medical need. The molecular mechanisms underlying HD are incompletely understood despite its monogenic aetiology. However, direct interactions between HTT and membrane lipids suggest that lipidomic perturbations may be implicated in the neuropathology of HD. In this study, we employed matrix-assisted laser desorption/ionisation imaging mass spectrometry (MALDI-IMS) to generate a comprehensive, unbiased and spatially resolved lipidomic atlas of the caudate nucleus (CN) in human post-mortem tissue from neurologically normal (n = 10) and HD (n = 13) subjects. Fourier transform-ion cyclotron resonance mass spectrometry and liquid chromatography-tandem mass spectrometry were used for lipid assignment. Lipidomic specialisation was observed in the grey and white matter constituents of the CN and these features were highly conserved between subjects. While the majority of lipid species were highly conserved in HD, compared to age-matched controls, CN specimens from HD cases in our cohort spanning a range of neuropathological grades showed a lower focal abundance of the neuroprotective docosahexaenoic and adrenic acids, several cardiolipins, the ganglioside GM1 and glycerophospholipids with long polyunsaturated fatty acyls. HD cases showed a higher focal abundance of several sphingomyelins and glycerophospholipids with shorter monosaturated fatty acyls. Moreover, we demonstrate that MALDI-IMS is tractable as a primary discovery modality comparing heterogeneous human brain tissue, provided that appropriate statistical approaches are adopted. Our findings support further investigation into the potential role of lipidomic aberrations in HD.
Collapse
Affiliation(s)
- Mandana Hunter
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Nicholas J Demarais
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|
61
|
Kaya I, Jennische E, Lange S, Malmberg P. Multimodal chemical imaging of a single brain tissue section using ToF-SIMS, MALDI-ToF and immuno/histochemical staining. Analyst 2021; 146:1169-1177. [PMID: 33393562 DOI: 10.1039/d0an02172e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cluster ion beam ToF-SIMS and/or MALDI-ToF mass spectrometry imaging (using 1,5-DAN matrix via sublimation) of a single coronal rat brain tissue section followed by classical- or immuno- histochemical staining faclilated a new multimodal chemical imaging workflow allowing complementary correlation of the lipid molecular ion images with the immuno/histological features within cerebellum region of the same brain tisue section.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-43180 Mölndal, Sweden. and Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 412 96, Sweden and The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, University of Gothenburg and Chalmers University of Technology, Gothenburg 412 96, Sweden. and Current affiliation: Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, BMC 591, Uppsala 751 24, Sweden
| | - Eva Jennische
- Institute of Biomedicine, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Stefan Lange
- Institute of Biomedicine, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Per Malmberg
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, University of Gothenburg and Chalmers University of Technology, Gothenburg 412 96, Sweden. and Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
62
|
Rivera ES, Djambazova KV, Neumann EK, Caprioli RM, Spraggins JM. Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues: A brief review and perspective. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4614. [PMID: 32955134 PMCID: PMC8211109 DOI: 10.1002/jms.4614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 05/02/2023]
Abstract
Imaging mass spectrometry (IMS) technologies are capable of mapping a wide array of biomolecules in diverse cellular and tissue environments. IMS has emerged as an essential tool for providing spatially targeted molecular information due to its high sensitivity, wide molecular coverage, and chemical specificity. One of the major challenges for mapping the complex cellular milieu is the presence of many isomers and isobars in these samples. This challenge is traditionally addressed using orthogonal liquid chromatography (LC)-based analysis, though, common approaches such as chromatography and electrophoresis are not able to be performed at timescales that are compatible with most imaging applications. Ion mobility offers rapid, gas-phase separations that are readily integrated with IMS workflows in order to provide additional data dimensionality that can improve signal-to-noise, dynamic range, and specificity. Here, we highlight recent examples of ion mobility coupled to IMS and highlight their importance to the field.
Collapse
Key Words
- IMS
- desorption electrospray ionization, DESI
- drift tube ion mobility spectrometry, DTIMS
- high-field asymmetric waveform ion mobility, FAIMS
- imaging mass spectrometry
- infrared matrix-assisted laser desorption electrospray ionization, IR-MALDESI
- ion mobility
- laser ablation electrospray ionization, LAESI
- lipids
- liquid extraction surface analysis, LESA
- liquid microjunction, (LMJ)
- matrix-assisted laser desorption electrospray ionization, MALDI
- metabolites
- proteins
- tissue analysis
- trapped ion mobility spectrometry, TIMS
- travelling wave ion mobility spectrometry, TWIMS
Collapse
Affiliation(s)
- Emilio S. Rivera
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Katerina V. Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
| | - Elizabeth K. Neumann
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Richard M. Caprioli
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Jeffrey M. Spraggins
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
| |
Collapse
|
63
|
Tuck M, Blanc L, Touti R, Patterson NH, Van Nuffel S, Villette S, Taveau JC, Römpp A, Brunelle A, Lecomte S, Desbenoit N. Multimodal Imaging Based on Vibrational Spectroscopies and Mass Spectrometry Imaging Applied to Biological Tissue: A Multiscale and Multiomics Review. Anal Chem 2020; 93:445-477. [PMID: 33253546 DOI: 10.1021/acs.analchem.0c04595] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Tuck
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Landry Blanc
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Rita Touti
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-8575, United States
| | - Sebastiaan Van Nuffel
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sandrine Villette
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Jean-Christophe Taveau
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Alain Brunelle
- Laboratoire d'Archéologie Moléculaire et Structurale, LAMS UMR 8220, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Sophie Lecomte
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Nicolas Desbenoit
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| |
Collapse
|
64
|
Zhou Q, Fülöp A, Hopf C. Recent developments of novel matrices and on-tissue chemical derivatization reagents for MALDI-MSI. Anal Bioanal Chem 2020; 413:2599-2617. [PMID: 33215311 PMCID: PMC8007514 DOI: 10.1007/s00216-020-03023-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a fast-growing technique for visualization of the spatial distribution of the small molecular and macromolecular biomolecules in tissue sections. Challenges in MALDI-MSI, such as poor sensitivity for some classes of molecules or limited specificity, for instance resulting from the presence of isobaric molecules or limited resolving power of the instrument, have encouraged the MSI scientific community to improve MALDI-MSI sample preparation workflows with innovations in chemistry. Recent developments of novel small organic MALDI matrices play a part in the improvement of image quality and the expansion of the application areas of MALDI-MSI. This includes rationally designed/synthesized as well as commercially available small organic molecules whose superior matrix properties in comparison with common matrices have only recently been discovered. Furthermore, on-tissue chemical derivatization (OTCD) processes get more focused attention, because of their advantages for localization of poorly ionizable metabolites and their‚ in several cases‚ more specific imaging of metabolites in tissue sections. This review will provide an overview about the latest developments of novel small organic matrices and on-tissue chemical derivatization reagents for MALDI-MSI. Graphical abstract ![]()
Collapse
Affiliation(s)
- Qiuqin Zhou
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Annabelle Fülöp
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany.
| |
Collapse
|
65
|
Comparative lipidomic analysis of mammalian retinal ganglion cells and Müller glia in situ and in vitro using High-Resolution Imaging Mass Spectrometry. Sci Rep 2020; 10:20053. [PMID: 33208898 PMCID: PMC7674471 DOI: 10.1038/s41598-020-77087-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
In order to better understand retinal physiology, alterations to which underlie some ocular diseases, we set out to establish the lipid signature of two fundamental cell types in the retina, Müller Glia and Retinal Ganglion Cells (RGCs). Moreover, we compared the lipid signature of these cells in sections (in situ), as well as after culturing the cells and isolating their cell membranes (in vitro). The lipidome of Müller glia and RGCs was analyzed in porcine retinal sections using Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS). Isolated membranes, as well as whole cells from primary cell cultures of RGCs and Müller glia, were printed onto glass slides using a non-contact microarrayer (Nano Plotter), and a LTQ-Orbitrap XL analyzer was used to scan the samples in negative ion mode, thereafter identifying the RGCs and Müller cells immunohistochemically. The spectra acquired were aligned and normalized against the total ion current, and a statistical analysis was carried out to select the lipids specific to each cell type in the retinal sections and microarrays. The peaks of interest were identified by MS/MS analysis. A cluster analysis of the MS spectra obtained from the retinal sections identified regions containing RGCs and Müller glia, as confirmed by immunohistochemistry in the same sections. The relative density of certain lipids differed significantly (p-value ≤ 0.05) between the areas containing Müller glia and RGCs. Likewise, different densities of lipids were evident between the RGC and Müller glia cultures in vitro. Finally, a comparative analysis of the lipid profiles in the retinal sections and microarrays identified six peaks that corresponded to a collection of 10 lipids characteristic of retinal cells. These lipids were identified by MS/MS. The analyses performed on the RGC layer of the retina, on RGCs in culture and using cell membrane microarrays of RGCs indicate that the lipid composition of the retina detected in sections is preserved in primary cell cultures. Specific lipid species were found in RGCs and Müller glia, allowing both cell types to be identified by a lipid fingerprint. Further studies into these specific lipids and of their behavior in pathological conditions may well help identify novel therapeutic targets for ocular diseases.
Collapse
|
66
|
Fernández-Vega A, Chicano-Gálvez E, Prentice BM, Anderson D, Priego-Capote F, López-Bascón MA, Calderón-Santiago M, Avendaño MS, Guzmán-Ruiz R, Tena-Sempere M, Fernández JA, Caprioli RM, Malagón MM. Optimization of a MALDI-Imaging protocol for studying adipose tissue-associated disorders. Talanta 2020; 219:121184. [PMID: 32887102 DOI: 10.1016/j.talanta.2020.121184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is increasingly recognized for its potential in the discovery of novel biomarkers directly from tissue sections. However, there are no MALDI IMS studies as yet on the adipose tissue, a lipid-enriched tissue that plays a pivotal role in the development of obesity-associated disorders. Herein, we aimed at developing an optimized method for analyzing adipose tissue lipid composition under both physiological and pathological conditions by MALDI IMS. Our studies showed an exacerbated lipid delocalization from adipose tissue sections when conventional strategies were applied. However, our optimized method using conductive-tape sampling and 2,5-dihydroxybenzoic acid (DHB) as a matrix, preserved the anatomical organization and minimized lipid diffusion from sample sections. This method enabled the identification of a total of 625 down-regulated and 328 up-regulated m/z values in the adipose tissue from a rat model of extreme obesity as compared to lean animals. Combination of MALDI IMS and liquid chromatography (LC)-MS/MS data identified 44 differentially expressed lipid species between lean and obese animals, including phospholipids and sphingomyelins. Among the lipids identified, SM(d18:0_18:2), PE(P-16:0_20:0), and PC(O-16:0_16:1) showed a differential spatial distribution in the adipose tissue of lean vs. obese animals. In sum, our method provides a valuable new tool for research on adipose tissue that may pave the way for the identification of novel biomarkers of obesity and metabolic disease.
Collapse
Affiliation(s)
- A Fernández-Vega
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | | | - B M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - D Anderson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - F Priego-Capote
- Department of Analytical Chemistry, IMIBIC/UCO/HURS, Cordoba, Spain
| | - M A López-Bascón
- Department of Analytical Chemistry, IMIBIC/UCO/HURS, Cordoba, Spain
| | | | - M S Avendaño
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | - R Guzmán-Ruiz
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | - M Tena-Sempere
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | - J A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - R M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Department of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - M M Malagón
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain.
| |
Collapse
|
67
|
Dual-polarity SALDI FT-ICR MS imaging and Kendrick mass defect data filtering for lipid analysis. Anal Bioanal Chem 2020; 413:2821-2830. [PMID: 33125540 DOI: 10.1007/s00216-020-03020-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Lipids are biomolecules of crucial importance involved in critical biological functions. Yet, lipid content determination using mass spectrometry is still challenging due to their rich structural diversity. Preferential ionisation of the different lipid species in the positive or negative polarity is common, especially when using soft ionisation mass spectrometry techniques. Here, we demonstrate the potency of a dual-polarity approach using surface-assisted laser desorption/ionisation coupled to Fourier transform-ion cyclotron resonance (SALDI FT-ICR) mass spectrometry imaging (MSI) combined with Kendrick mass defect data filtering to (i) identify the lipids detected in both polarities from the same tissue section and (ii) show the complementarity of the dual-polarity data, both regarding the lipid coverage and the spatial distributions of the various lipids. For this purpose, we imaged the same mouse brain section in the positive and negative ionisation modes, on alternate pixels, in a SALDI FT-ICR MS imaging approach using gold nanoparticles (AuNPs) as dual-polarity nanosubstrates. Our study demonstrates, for the first time, the feasibility of (i) a dual-polarity SALDI-MSI approach on the same tissue section, (ii) using AuNPs as nanosubstrates combined with a FT-ICR mass analyser and (iii) the Kendrick mass defect data filtering applied to SALDI-MSI data. In particular, we show the complementarity in the lipids detected both in a given ionisation mode and in the two different ionisation modes. Graphical abstract.
Collapse
|
68
|
Blank M, Hopf C. Spatially resolved mass spectrometry analysis of amyloid plaque-associated lipids. J Neurochem 2020; 159:330-342. [PMID: 33048341 DOI: 10.1111/jnc.15216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/06/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022]
Abstract
Over the last 10 years, considerable technical advances in mass spectrometry (MS)-based bioanalysis have enabled the investigation of lipid signatures in neuropathological structures. In Alzheimer´s Disease (AD) research, it is now well accepted that lipid dysregulation plays a key role in AD pathogenesis and progression. This review summarizes current MS-based strategies, notably MALDI and ToF-SIMS imaging as well as laser capture microdissection combined with LC-ESI-MS. It also presents recent advances to assess lipid alterations associated with Amyloid-β plaques, one of the hallmarks of AD. Collectively, these methodologies offer new opportunities for the study of lipids, thus pushing forward our understanding of their role in such a complex and still untreatable disease as AD.
Collapse
Affiliation(s)
- Martina Blank
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany.,Center for Structural Molecular Biology (CEBIME/PROPESQ), Federal University of Santa Catarina, Florianópolis, Brazil
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
69
|
Kaya I, Sämfors S, Levin M, Borén J, Fletcher JS. Multimodal MALDI Imaging Mass Spectrometry Reveals Spatially Correlated Lipid and Protein Changes in Mouse Heart with Acute Myocardial Infarction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2133-2142. [PMID: 32897704 PMCID: PMC7587215 DOI: 10.1021/jasms.0c00245] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Acute myocardial infarction (MI) is a cardiovascular disease that remains a major cause of morbidity and mortality worldwide despite advances in its prevention and treatment. During acute myocardial ischemia, the lack of oxygen switches the cell metabolism to anaerobic respiration, with lactate accumulation, ATP depletion, Na+ and Ca2+ overload, and inhibition of myocardial contractile function, which drastically modifies the lipid, protein, and small metabolite profile in the myocardium. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides, and proteins in biological tissue sections. In this work, we demonstrate an application of multimodal chemical imaging using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), which provided comprehensive molecular information in situ within the same mouse heart tissue sections with myocardial infarction. MALDI-IMS (at 30 μm per pixel) revealed infarct-associated spatial alterations of several lipid species of sphingolipids, glycerophospholipids, lysophospholipids, and cardiolipins along with the acyl carnitines. Further, we performed multimodal MALDI-IMS (IMS3) where dual polarity lipid imaging was combined with subsequent protein MALDI-IMS analysis (at 30 μm per pixel) within the same tissue sections, which revealed accumulations of core histone proteins H4, H2A, and H2B along with post-translational modification products, acetylated H4 and H2A, on the borders of the infarcted region. This methodology allowed us to interpret the lipid and protein molecular pathology of the very same infarcted region in a mouse model of myocardial infarction. Therefore, the presented data highlight the potential of multimodal MALDI imaging mass spectrometry of the same tissue sections as a powerful approach for simultaneous investigation of spatial infarct-associated lipid and protein changes of myocardial infarction.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Psychiatry and Neurochemistry,
Sahlgrenska Academy at the University of Gothenburg, 431 80
Mölndal, Sweden
- Department of Chemistry and Molecular Biology,
University of Gothenburg, 405 30 Gothenburg,
Sweden
| | - Sanna Sämfors
- Department of Chemistry and Molecular Biology,
University of Gothenburg, 405 30 Gothenburg,
Sweden
- Department of Molecular and Clinical Medicine,
Institute of Medicine at University of Gothenburg and Sahlgrenska
University Hospital, 405 30 Gothenburg, Sweden
| | - Malin Levin
- Department of Molecular and Clinical Medicine,
Institute of Medicine at University of Gothenburg and Sahlgrenska
University Hospital, 405 30 Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine,
Institute of Medicine at University of Gothenburg and Sahlgrenska
University Hospital, 405 30 Gothenburg, Sweden
| | - John S. Fletcher
- Department of Chemistry and Molecular Biology,
University of Gothenburg, 405 30 Gothenburg,
Sweden
| |
Collapse
|
70
|
Prentice BM, Ryan DJ, Grove KJ, Cornett DS, Caprioli RM, Spraggins JM. Dynamic Range Expansion by Gas-Phase Ion Fractionation and Enrichment for Imaging Mass Spectrometry. Anal Chem 2020; 92:13092-13100. [PMID: 32845133 PMCID: PMC8340028 DOI: 10.1021/acs.analchem.0c02121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the analysis of biological tissue by imaging mass spectrometry (IMS), the limit of detection and dynamic range are of paramount importance in obtaining experimental results that provide insight into underlying biological processes. Many important biomolecules are present in the tissue milieu in low concentrations and in complex mixtures with other compounds of widely ranging abundances, challenging the limits of analytical technologies. In many IMS experiments, the ion signal can be dominated by a few highly abundant ion species. On trap-based instrument platforms that accumulate ions prior to mass analysis, these high abundance ions can diminish the detection and dynamic range of lower abundance ions. Herein, we describe two strategies for combating these challenges during IMS experiments on a hybrid QhFT-ICR MS. In one iteration, the mass resolving capabilities of a quadrupole mass filter are used to selectively enrich ions of interest via a technique previously termed continuous accumulation of selected ions. Second, we have introduced a supplemental dipolar AC waveform to the quadrupole mass filter of a commercial QhFT-ICR mass spectrometer to perform selected ion ejection prior to the ion accumulation region. This setup allows the selective ejection of the most abundant ion species prior to ion accumulation, thereby greatly improving the molecular depth with which IMS can probe tissue samples. The gain in sensitivity of both of these approaches roughly scales with the number of accumulated laser shots up to the charge capacity of the ion accumulation cell. The efficiencies of these two strategies are described here by performing lipid imaging mass spectrometry analyses of a rat brain.
Collapse
Affiliation(s)
- Boone M Prentice
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Daniel J Ryan
- ExxonMobil Research and Engineering Company, Annandale, New Jersey 08801, United States
| | - Kerri J Grove
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | | | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Pharmacology and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jeffrey M Spraggins
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
71
|
Yan X, Zhao X, Zhou Z, McKay A, Brunet A, Zare RN. Cell-Type-Specific Metabolic Profiling Achieved by Combining Desorption Electrospray Ionization Mass Spectrometry Imaging and Immunofluorescence Staining. Anal Chem 2020; 92:13281-13289. [PMID: 32880432 PMCID: PMC8782277 DOI: 10.1021/acs.analchem.0c02519] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell-type-specific metabolic profiling in tissue with heterogeneous composition has been of great interest across all mass spectrometry imaging (MSI) technologies. We report here a powerful new chemical imaging capability in desorption electrospray ionization (DESI) MSI, which enables cell-type-specific and in situ metabolic profiling in complex tissue samples. We accomplish this by combining DESI-MSI with immunofluorescence staining using specific cell-type markers. We take advantage of the variable frequency of each distinct cell type in the lateral septal nucleus (LSN) region of mouse forebrain. This allows computational deconvolution of the cell-type-specific metabolic profile in neurons and astrocytes by convex optimization-a machine learning method. Based on our approach, we observed 107 metabolites that show different distributions and intensities between astrocytes and neurons. We subsequently identified 23 metabolites using high-resolution mass spectrometry (MS) and tandem MS, which include small metabolites such as adenosine and N-acetylaspartate previously associated with astrocytes and neurons, respectively, as well as accumulation of several phospholipid species in neurons which have not been studied before. Overall, this method overcomes the relatively low spatial resolution of DESI-MSI and provides a new platform for in situ metabolic investigation at the cell-type level in complex tissue samples with heterogeneous cell-type composition.
Collapse
Affiliation(s)
- Xin Yan
- Department of Chemistry, Texas A&M University, College Station, TX 77843.; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Xiaoai Zhao
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Zhenpeng Zhou
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Andrew McKay
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
72
|
Walker AA, Robinson SD, Hamilton BF, Undheim EAB, King GF. Deadly Proteomes: A Practical Guide to Proteotranscriptomics of Animal Venoms. Proteomics 2020; 20:e1900324. [PMID: 32820606 DOI: 10.1002/pmic.201900324] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/07/2020] [Indexed: 11/11/2022]
Abstract
Animal venoms are renowned for their toxicity, biochemical complexity, and as a source of compounds with potential applications in medicine, agriculture, and industry. Polypeptides underlie much of the pharmacology of animal venoms, and elucidating these arsenals of polypeptide toxins-known as the venom proteome or venome-is an important step in venom research. Proteomics is used for the identification of venom toxins, determination of their primary structure including post-translational modifications, as well as investigations into the physiology underlying their production and delivery. Advances in proteomics and adjacent technologies has led to a recent upsurge in publications reporting venom proteomes. Improved mass spectrometers, better proteomic workflows, and the integration of next-generation sequencing of venom-gland transcriptomes and venomous animal genomes allow quicker and more accurate profiling of venom proteomes with greatly reduced starting material. Technologies such as imaging mass spectrometry are revealing additional insights into the mechanism, location, and kinetics of venom toxin production. However, these numerous new developments may be overwhelming for researchers designing venom proteome studies. Here, the field of venom proteomics is reviewed and some practical solutions for simplifying mass spectrometry workflows to study animal venoms are offered.
Collapse
Affiliation(s)
- Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Brett F Hamilton
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland, 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland, 4072, Australia.,Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, 7491, Norway.,Department of Bioscience, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindern, Oslo, 0316, Norway
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
73
|
Specker JT, Van Orden SL, Ridgeway ME, Prentice BM. Identification of Phosphatidylcholine Isomers in Imaging Mass Spectrometry Using Gas-Phase Charge Inversion Ion/Ion Reactions. Anal Chem 2020; 92:13192-13201. [PMID: 32845134 DOI: 10.1021/acs.analchem.0c02350] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gas-phase ion/ion reactions have been enabled on a commercial dual source, hybrid QhFT-ICR mass spectrometer for use during imaging mass spectrometry experiments. These reactions allow for the transformation of the ion type most readily generated from the tissue surface to an ion type that gives improved chemical structural information upon tandem mass spectrometry (MS/MS) without manipulating the tissue sample. This process is demonstrated via the charge inversion reaction of phosphatidylcholine (PC) lipid cations generated from rat brain tissue via matrix-assisted laser desorption/ionization (MALDI) with 1,4-phenylenedipropionic acid (PDPA) reagent dianions generated via electrospray ionization (ESI). Collision-induced dissociation (CID) of the resulting demethylated PC product anions allows for the determination of the lipid fatty acyl tail identities and positions, which is not possible via CID of the precursor lipid cations. The abundance of lipid isomers revealed by this workflow is found to vary significantly in different regions of the brain. As each isoform may have a unique cellular function, these results underscore the importance of accurately separating and identifying the many isobaric and isomeric lipids and metabolites that can complicate image interpretation and spectral analysis.
Collapse
Affiliation(s)
- Jonathan T Specker
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | | - Mark E Ridgeway
- Bruker Daltonics, Billerica, Massachusetts 01821, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
74
|
Tobias F, Hummon AB. Considerations for MALDI-Based Quantitative Mass Spectrometry Imaging Studies. J Proteome Res 2020; 19:3620-3630. [PMID: 32786684 DOI: 10.1021/acs.jproteome.0c00443] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significant advances in mass spectrometry imaging (MSI) have pushed the boundaries in obtaining spatial information and quantification in biological samples. Quantitative MSI (qMSI) has typically been challenging to achieve because of matrix and tissue heterogeneity, inefficient analyte extraction, and ion suppression effects, but recent studies have demonstrated approaches to obtain highly robust methods and reproducible results. In this perspective, we share our insights into sample preparation, how the choice of matrix influences sensitivity, construction of calibration curves, signal normalization, and visualization of MSI data. We hope that by articulating these guidelines that qMSI can be routinely conducted while retaining the analytical merits of other mass spectrometry modalities.
Collapse
|
75
|
Van Nuffel S, Quatredeniers M, Pirkl A, Zakel J, Le Caer JP, Elie N, Vanbellingen QP, Dumas SJ, Nakhleh MK, Ghigna MR, Fadel E, Humbert M, Chaurand P, Touboul D, Cohen-Kaminsky S, Brunelle A. Multimodal Imaging Mass Spectrometry to Identify Markers of Pulmonary Arterial Hypertension in Human Lung Tissue Using MALDI-ToF, ToF-SIMS, and Hybrid SIMS. Anal Chem 2020; 92:12079-12087. [PMID: 32786503 DOI: 10.1021/acs.analchem.0c02815] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and deadly disease affecting roughly 15-60 people per million in Europe with a poorly understood pathology. There are currently no diagnostic tools for early detection nor does a curative treatment exist. The lipid composition of arteries in lung tissue samples from human PAH and control patients were investigated using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) combined with time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging. Using random forests as an IMS data analysis technique, it was possible to identify the ion at m/z 885.6 as a marker of PAH in human lung tissue. The m/z 885.6 ion intensity was shown to be significantly higher around diseased arteries and was confirmed to be a diacylglycerophosphoinositol PI(C18:0/C20:4) via MS/MS using a novel hybrid SIMS instrument. The discovery of a potential biomarker opens up new research avenues which may finally lead to a better understanding of the PAH pathology and highlights the vital role IMS can play in modern biomedical research.
Collapse
Affiliation(s)
- Sebastiaan Van Nuffel
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Marceau Quatredeniers
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | | | - Julia Zakel
- IONTOF GmbH, Heisenbergstraße 15, 48149 Münster, Germany
| | - Jean-Pierre Le Caer
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Nicolas Elie
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Quentin P Vanbellingen
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Sébastien Joël Dumas
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Morad Kamel Nakhleh
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Maria-Rosa Ghigna
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Elie Fadel
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Sylvia Cohen-Kaminsky
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Alain Brunelle
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.,Laboratoire d'Archéologie Moléculaire et Structurale, LAMS UMR8220, CNRS, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
76
|
Lim J, Aguilan JT, Sellers RS, Nagajyothi F, Weiss LM, Angeletti RH, Bortnick AE. Lipid mass spectrometry imaging and proteomic analysis of severe aortic stenosis. J Mol Histol 2020; 51:559-571. [PMID: 32794037 DOI: 10.1007/s10735-020-09905-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022]
Abstract
Severe aortic stenosis (AS) is prevalent in adults ≥ 65 years, a significant cause of morbidity and mortality, with no medical therapy. Lipid and proteomic alterations of human AS tissue were determined using mass spectrometry imaging (MSI) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to understand histopathology, potential biomarkers of disease, and progression from non-calcified to calcified phenotype. A reproducible MSI method was developed using healthy murine aortic valves (n = 3) and subsequently applied to human AS (n = 2). Relative lipid levels were spatially mapped and associated with different microdomains. Proteomics for non-calcified and calcified microdomains were performed to ascertain differences in expression. Increased pro-osteogenic and inflammatory lysophosphatidylcholine (LPC) 16:0 and 18:0 were co-localized with calcified microdomains. Proteomics analysis identified differential patterns in calcified microdomains with high LPC and low cholesterol as compared to non-calcified microdomains with low LPC and high cholesterol. Calcified microdomains had higher levels of: apolipoproteins (Apo) B-100 (p < 0.001) and Apo A-IV (p < 0.001), complement C3 and C4-B (p < 0.001), C5 (p = 0.007), C8 beta chain (p = 0.013) and C9 (p = 0.010), antithrombotic proteins alpha-2-macroglobulin (p < 0.0001) and antithrombin III (p = 0.002), and higher anti-calcific fetuin-A (p = 0.02), while the osteoblast differentiating factor transgelin (p < 0.0001), extracellular matrix proteins versican, prolargin, and lumican ( p < 0.001) and regulator protein complement factor H (p < 0.001) were higher in non-calcified microdomains. A combined lipidomic and proteomic approach provided insight into factors potentially contributing to progression from non-calcified to calcific disease in severe AS. Additional studies of these candidates and protein networks could yield new targets for slowing progression of AS.
Collapse
Affiliation(s)
- Jihyeon Lim
- Janssen Research and Development, Malvern, PA, USA
| | - Jennifer T Aguilan
- Laboratory for Macromolecular Analysis & Proteomics, Bronx, NY, USA.,Department of Pathology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Fnu Nagajyothi
- Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Louis M Weiss
- Laboratory for Macromolecular Analysis & Proteomics, Bronx, NY, USA
| | - Ruth Hogue Angeletti
- Laboratory for Macromolecular Analysis & Proteomics, Bronx, NY, USA.,Department of Biochemistry, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Developmental and Molecular Biology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna E Bortnick
- Department of Medicine, Division of Cardiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Division of Geriatrics, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA. .,Jack D. Weiler Hospital, 1825 Eastchester Road, Suite 2S-46, Bronx, NY, 10461, USA.
| |
Collapse
|
77
|
Montero R, Abad-García B, Garate J, Martín-Saiz L, Barceló-Coblijn G, Fernandez JA. Improving spatial resolution of a LTQ Orbitrap MALDI source. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1755-1758. [PMID: 32662650 DOI: 10.1021/jasms.0c00133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here we present a simple and cost effective procedure to improve the spatial resolution of the commercial MALDI source of a LTQ Orbitrap. Based in spatial filtering techniques, we demonstrate that, with minimal modifications of the original set up, the system resolution can be pushed forward to <10 μm. The improved system performance is demonstrated by means of MALDI imaging of human colon biopsies.
Collapse
|
78
|
Mikhael A, Jurcic K, Schneider C, Karr D, Fisher GL, Fridgen TD, Diego-Taboada A, Georghiou PE, Mackenzie G, Banoub J. Demystifying and unravelling the molecular structure of the biopolymer sporopollenin. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8740. [PMID: 32003875 DOI: 10.1002/rcm.8740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 05/28/2023]
Abstract
RATIONALE We report the unsolved molecular structure of the complex biopolymer sporopollenin exine extracted from Lycopodium clavatum pollen grains. METHODS TOF-SIMS and CID-MS/MS, MALDI-TOF-MS and CID-TOF/TOF-MS/MS were used for the analysis of this complex biopolymer sporopollenin exine extracted from Lycopodium clavatum pollen grains. Solid-state 1 H- and 13 C-NMR, 2D 1 H-1 H NOESY, Rotor-synchronized 13 C{1 H} HSQC, and 13 C{1 H} multi CP-MAS NMR experiments were used to confirm the structural assigments revealed by MS and MS/MS studies. Finally, high-resolution XPS was used to check for the presence of aromatic components in sporopollenin. RESULTS The combined MS and NMR analyses showed that sporopollenin contained poly(hydroxy acid) dendrimer-like networks with glycerol as a core unit, which accounted for the sporopollenin empirical formula. In addition, these analyses showed that the hydroxy acid monomers forming this network contained a β-diketone moiety. Moreover, MALDI-TOF-MS and MS/MS allowed us to identify a unique macrocyclic oligomeric unit composed of polyhydroxylated tetraketide-like monomers. Lastly, high-resolution X-ray photoelectron spectroscopy (HR-XPS) showed the absence of aromaticity in sporopollenin. CONCLUSIONS We report for the first time the two main building units that form the Lycopodium clavatum sporopollenin exine. The first building unit is a macrocyclic oligomer and/or polymer composed of polyhydroxylated tetraketide-like monomeric units, which represents the main rigid backbone of the sporopollenin biopolymer. The second building unit is the poly(hydroxy acid) network in which the hydroxyl end groups can be covalently attached by ether links to the hydroxylated macrocyclic backbone to form the sporopollenin biopolymer, a spherical dendrimer. Such spherical dendrimers are a typical type of microcapsule that have been used for drug delivery applications. Finally, HR-XPS indicated the total absence of aromaticity in the sporopollenin exine.
Collapse
Affiliation(s)
- Abanoub Mikhael
- Department of Chemistry, Memorial University, 283 Prince Philip Dr., St John's, NL, A1B 3X7, Canada
| | - Kristina Jurcic
- Department of Biochemistry, MALDI Mass Spectrometry Facility, Western University, Medical Sciences Building 392, London, ON, N6A 5C1, Canada
| | - Celine Schneider
- NMR Facility, C-CART/CREAIT Network, Memorial University, St John's, 283 Prince Philip Dr., St John's, NL, A1B 3X7, Canada
| | - David Karr
- Physical Electronics, Inc. (PHI),, 18725 Lake Drive East, Chanhassen, MN, 55317, USA
| | - Gregory L Fisher
- Physical Electronics, Inc. (PHI),, 18725 Lake Drive East, Chanhassen, MN, 55317, USA
| | - Travis D Fridgen
- Department of Chemistry, Memorial University, 283 Prince Philip Dr., St John's, NL, A1B 3X7, Canada
| | | | - Paris E Georghiou
- Department of Chemistry, Memorial University, 283 Prince Philip Dr., St John's, NL, A1B 3X7, Canada
| | - Grahame Mackenzie
- Department of Chemistry, University of Hull, Kingston upon Hull, HU6 7RX, UK
| | - Joseph Banoub
- Department of Chemistry, Memorial University, 283 Prince Philip Dr., St John's, NL, A1B 3X7, Canada
- Fisheries and Oceans Canada, Science Branch, Special Projects, 80 East White Hills Road, St John's, NL, A1C 5X1, Canada
| |
Collapse
|
79
|
Holmes DT, Romney MG, Angel P, DeMarco ML. Proteomic applications in pathology and laboratory medicine: Present state and future prospects. Clin Biochem 2020; 82:12-20. [PMID: 32442429 DOI: 10.1016/j.clinbiochem.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Clinical mass spectrometry applications have traditionally focused on small molecules, particularly in the areas of therapeutic drug monitoring, toxicology, and measurement of endogenous and exogenous steroids. More recently, the use of matrix assisted laser desorption/ionization time of flight mass spectrometry for the identification of microbial pathogens has been widely implemented. Following this evolution, there has been an expanding role for the measurement of peptides and proteins in pathology and laboratory medicine. This review explores the current state of protein measurement by clinical mass spectrometry and the analytical strategies employed, as well as emerging applications in clinical chemistry, clinical microbiology and anatomical pathology.
Collapse
Affiliation(s)
- Daniel T Holmes
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada; University of British Columbia Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 2B5 Canada.
| | - Marc G Romney
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada; University of British Columbia Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 2B5 Canada.
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charelston, SC 29425 Canada.
| | - Mari L DeMarco
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada; University of British Columbia Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 2B5 Canada.
| |
Collapse
|
80
|
Huang P, Huang CY, Lin TC, Lin LE, Yang E, Lee C, Hsu CC, Chou PT. Toward the Rational Design of Universal Dual Polarity Matrix for MALDI Mass Spectrometry. Anal Chem 2020; 92:7139-7145. [PMID: 32314914 DOI: 10.1021/acs.analchem.0c00570] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of novel anthranilic acid derivatives I-IV, of which COOH-NH2 (I) and COOH-NHMe (IV) are endowed with acid and base bifunctionality, were designed and synthesized for matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applications in dual polarity molecular imaging of biological samples, particularly for lipids. The heat of protonation, deprotonation, and proton transfer reaction as well as the capability of analyzing biomolecules in both positive and negative ion modes for I-IV were systematically investigated under standard 355 nm laser excitation. The results indicate correlation between dual polarity and acid-base property. Further, COOH-NHMe (IV) showed a unique performance and was successfully applied as the matrix for MALDI-TOF mass spectrometry imaging (MSI) for studying the mouse brain. Our results demonstrate the superiority of COOH-NHMe (IV) in detecting more lipid and protein species compared to commercially available matrices. Moreover, MALDI-TOF MSI results were obtained for lipid distributions, making COOH-NHMe (IV) a potential next generation universal matrix.
Collapse
Affiliation(s)
- Penghsuan Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Chun-Ying Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Ta-Chun Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Li-En Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Ethan Yang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.).,Department of Chemistry, Université de Montréal, Montreal, Quebec Canada H3T 1J4
| | - Chuping Lee
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.).,Department of Applied Chemistry, National Chiayi University, Chiayi City 60004, Taiwan (R.O.C.)
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| |
Collapse
|
81
|
Perry WJ, Patterson NH, Prentice BM, Neumann EK, Caprioli RM, Spraggins JM. Uncovering matrix effects on lipid analyses in MALDI imaging mass spectrometry experiments. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4491. [PMID: 31860760 PMCID: PMC7383219 DOI: 10.1002/jms.4491] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 05/04/2023]
Abstract
The specific matrix used in matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) can have an effect on the molecules ionized from a tissue sample. The sensitivity for distinct classes of biomolecules can vary when employing different MALDI matrices. Here, we compare the intensities of various lipid subclasses measured by Fourier transform ion cyclotron resonance (FT-ICR) IMS of murine liver tissue when using 9-aminoacridine (9AA), 5-chloro-2-mercaptobenzothiazole (CMBT), 1,5-diaminonaphthalene (DAN), 2,5-Dihydroxyacetophenone (DHA), and 2,5-dihydroxybenzoic acid (DHB). Principal component analysis and receiver operating characteristic curve analysis revealed significant matrix effects on the relative signal intensities observed for different lipid subclasses and adducts. Comparison of spectral profiles and quantitative assessment of the number and intensity of species from each lipid subclass showed that each matrix produces unique lipid signals. In positive ion mode, matrix application methods played a role in the MALDI analysis for different cationic species. Comparisons of different methods for the application of DHA showed a significant increase in the intensity of sodiated and potassiated analytes when using an aerosol sprayer. In negative ion mode, lipid profiles generated using DAN were significantly different than all other matrices tested. This difference was found to be driven by modification of phosphatidylcholines during ionization that enables them to be detected in negative ion mode. These modified phosphatidylcholines are isomeric with common phosphatidylethanolamines confounding MALDI IMS analysis when using DAN. These results show an experimental basis of MALDI analyses when analyzing lipids from tissue and allow for more informed selection of MALDI matrices when performing lipid IMS experiments.
Collapse
Affiliation(s)
- William J. Perry
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN
- Department of Chemistry, Vanderbilt University, Nashville, TN
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN
- Department of Biochemistry, Vanderbilt University, Nashville, TN
| | - Boone M. Prentice
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN
- Department of Biochemistry, Vanderbilt University, Nashville, TN
| | - Elizabeth K. Neumann
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN
- Department of Biochemistry, Vanderbilt University, Nashville, TN
| | - Richard M. Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN
- Department of Chemistry, Vanderbilt University, Nashville, TN
- Department of Biochemistry, Vanderbilt University, Nashville, TN
- Department of Pharmacology, Vanderbilt University, Nashville, TN
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Jeffrey M. Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN
- Department of Chemistry, Vanderbilt University, Nashville, TN
- Department of Biochemistry, Vanderbilt University, Nashville, TN
- Corresponding Author Address reprint requests to Jeffrey M. Spraggins, V9140 MRBIII, 465 21 Ave South, Nashville, TN 37232, (615) 343-7333,
| |
Collapse
|
82
|
Yang E, Fournelle F, Chaurand P. Silver spray deposition for AgLDI imaging MS of cholesterol and other olefins on thin tissue sections. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4428. [PMID: 31410898 DOI: 10.1002/jms.4428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Olefins such as cholesterol and unsaturated fatty acids play important biological roles. Silver-assisted laser desorption ionization (AgLDI) takes advantage of the strong affinity of silver to conjugate with double bonds to selectively ionize these molecules for imaging mass spectrometry (IMS) experiments. For IMS studies, two main approaches for silver deposition have been described in the literature: fine coating by silver sputtering and spray deposition of silver nanoparticles. While these approaches allow for extremely high resolution IMS experiments to be conducted, they are not readily available to all laboratories. Herein, we present a silver nitrate spray deposition approach as an alternative to silver sputtering and nanoparticle deposition for routine IMS analysis. The silver nitrate spray has the same level of specificity and sensitivity for olefins, particularly cholesterol, and has shown to be capable of IMS experiments down to 10-μm spatial resolution. Minimal sample preparation and the affordability of silver nitrate make this a convenient and accessible technique worth considering.
Collapse
Affiliation(s)
- Ethan Yang
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada, H3C 3J7
| | - Frédéric Fournelle
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada, H3C 3J7
| | - Pierre Chaurand
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada, H3C 3J7
| |
Collapse
|
83
|
Fincher JA, Korte AR, Dyer JE, Yadavilli S, Morris NJ, Jones DR, Shanmugam VK, Pirlo RK, Vertes A. Mass spectrometry imaging of triglycerides in biological tissues by laser desorption ionization from silicon nanopost arrays. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4443. [PMID: 31524963 DOI: 10.1002/jms.4443] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Mass spectrometry imaging (MSI) is used increasingly to simultaneously detect a broad range of biomolecules while mapping their spatial distributions within biological tissue sections. Matrix-assisted laser desorption ionization (MALDI) is recognized as the method-of-choice for MSI applications due in part to its broad molecular coverage. In spite of the remarkable advantages offered by MALDI, imaging of neutral lipids, such as triglycerides (TGs), from tissue has remained a significant challenge due to ion suppression of TGs by phospholipids, e.g. phosphatidylcholines (PCs). To help overcome this limitation, silicon nanopost array (NAPA) substrates were introduced to selectively ionize TGs from biological tissue sections. This matrix-free laser desorption ionization (LDI) platform was previously shown to provide enhanced ionization of certain lipid classes, such as hexosylceramides (HexCers) and phosphatidylethanolamines (PEs) from mouse brain tissue. In this work, we present NAPA as an MSI platform offering enhanced ionization efficiency for TGs from biological tissues relative to MALDI, allowing it to serve as a complement to MALDI-MSI. Analysis of a standard lipid mixture containing PC(18:1/18:1) and TG(16:0/16:0/16:0) by LDI from NAPA provided an ~49 and ~227-fold higher signal for TG(16:0/16:0/16:0) relative to MALDI, when analyzed without and with the addition of a sodium acetate, respectively. In contrast, MALDI provided an ~757 and ~295-fold higher signal for PC(18:1/18:1) compared with NAPA, without and with additional Na+ . Averaged signal intensities for TGs from MSI of mouse lung and human skin tissues exhibited an ~105 and ~49-fold increase, respectively, with LDI from NAPA compared with MALDI. With respect to PCs, MALDI provided an ~2 and ~19-fold increase in signal intensity for mouse lung and human skin tissues, respectively, when compared with NAPA. The complementary coverage obtained by the two platforms demonstrates the utility of using both techniques to maximize the information obtained from lipid MS or MSI experiments.
Collapse
Affiliation(s)
- Jarod A Fincher
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Andrew R Korte
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Jacqueline E Dyer
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, 20010, USA
| | | | - Derek R Jones
- Division of Rheumatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Victoria K Shanmugam
- Division of Rheumatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Russel K Pirlo
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
84
|
Kaya I, Jennische E, Lange S, Tarik Baykal A, Malmberg P, Fletcher JS. Brain region-specific amyloid plaque-associated myelin lipid loss, APOE deposition and disruption of the myelin sheath in familial Alzheimer's disease mice. J Neurochem 2020; 154:84-98. [PMID: 32141089 DOI: 10.1111/jnc.14999] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022]
Abstract
There is emerging evidence that amyloid beta (Aβ) aggregates forming neuritic plaques lead to impairment of the lipid-rich myelin sheath and glia. In this study, we examined focal myelin lipid alterations and the disruption of the myelin sheath associated with amyloid plaques in a widely used familial Alzheimer's disease (AD) mouse model; 5xFAD. This AD mouse model has Aβ42 peptide-rich plaque deposition in the brain parenchyma. Matrix-assisted laser desorption/ionization imaging mass spectrometry of coronal brain tissue sections revealed focal Aβ plaque-associated depletion of multiple myelin-associated lipid species including sulfatides, galactosylceramides, and specific plasmalogen phopshatidylethanolamines in the hippocampus, cortex, and on the edges of corpus callosum. Certain phosphatidylcholines abundant in myelin were also depleted in amyloid plaques on the edges of corpus callosum. Further, lysophosphatidylethanolamines and lysophosphatidylcholines, implicated in neuroinflammation, were found to accumulate in amyloid plaques. Double staining of the consecutive sections with fluoromyelin and amyloid-specific antibody revealed amyloid plaque-associated myelin sheath disruption on the edges of the corpus callosum which is specifically correlated with plaque-associated myelin lipid loss only in this region. Further, apolipoprotein E, which is implicated in depletion of sulfatides in AD brain, is deposited in all the Aβ plaques which suggest apolipoprotein E might mediate sulfatide depletion as a consequence of an immune response to Aβ deposition. This high-spatial resolution matrix-assisted laser desorption/ionization imaging mass spectrometry study in combination with (immuno) fluorescence staining of 5xFAD mouse brain provides new understanding of morphological, molecular and immune signatures of Aβ plaque pathology-associated myelin lipid loss and myelin degeneration in a brain region-specific manner. Read the Editorial Highlight for this article on page 7.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eva Jennische
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Lange
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - John S Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
85
|
Fournelle F, Yang E, Dufresne M, Chaurand P. Minimizing Visceral Fat Delocalization on Tissue Sections with Porous Aluminum Oxide Slides for Imaging Mass Spectrometry. Anal Chem 2020; 92:5158-5167. [DOI: 10.1021/acs.analchem.9b05665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frédéric Fournelle
- Department of Chemistry, Université de Montréal, Montreal, Quebec, Canada H2V 0B3
| | - Ethan Yang
- Department of Chemistry, Université de Montréal, Montreal, Quebec, Canada H2V 0B3
| | - Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal, Quebec, Canada H2V 0B3
| |
Collapse
|
86
|
Garate J, Lage S, Martín-Saiz L, Perez-Valle A, Ochoa B, Boyano MD, Fernández R, Fernández JA. Influence of Lipid Fragmentation in the Data Analysis of Imaging Mass Spectrometry Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:517-526. [PMID: 32126773 DOI: 10.1021/jasms.9b00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Imaging mass spectrometry (IMS) is becoming an essential technique in lipidomics. Still, many questions remain open, precluding it from achieving its full potential. Among them, identification of species directly from the tissue is of paramount importance. However, it is not an easy task, due to the abundance and variety of lipid species, their numerous fragmentation pathways, and the formation of a significant number of adducts, both with the matrix and with the cations present in the tissue. Here, we explore the fragmentation pathways of 17 lipid classes, demonstrating that in-source fragmentation hampers identification of some lipid species. Then, we analyze what type of adducts each class is more prone to form. Finally, we use that information together with data from on-tissue MS/MS and MS3 to refine the peak assignment in a real experiment over sections of human nevi, to demonstrate that statistical analysis of the data is significantly more robust if unwanted peaks due to fragmentation, matrix, and other species that only introduce noise in the analysis are excluded.
Collapse
Affiliation(s)
| | | | | | | | | | - M Dolores Boyano
- Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | | | | |
Collapse
|
87
|
Liu W, Nie H, Liang D, Bai Y, Liu H. Phospholipid imaging of zebrafish exposed to fipronil using atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry. Talanta 2020; 209:120357. [DOI: 10.1016/j.talanta.2019.120357] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
|
88
|
Schäfermann J, Kliewer G, Lösch J, Bednarz H, Giampà M, Niehaus K. Immersion by rotation-based application of the matrix for fast and reproducible sample preparations and robust results in mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4488. [PMID: 31826308 DOI: 10.1002/jms.4488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/22/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Automated matrix deposition for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is crucial for producing reproducible analyte ion signals. Here we report an innovative method employing an automated immersion apparatus, which enables a robust matrix deposition within 5 minutes and with scalable throughput by using MAPS matrix and non-polar solvents. MSI results received from mouse heart and rat brain tissues were qualitatively similar to those from nozzle sprayed samples with respect to peak number and quality of the ion images. Overall, the immersion-method enables a fast and careful matrix deposition and has the future potential for implementation in clinical tissue diagnostics.
Collapse
Affiliation(s)
- Johanna Schäfermann
- MSI Diagnostics GmbH, Bielefeld, Germany
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Georg Kliewer
- MSI Diagnostics GmbH, Bielefeld, Germany
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | | | - Hanna Bednarz
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Marco Giampà
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karsten Niehaus
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
89
|
Wang WX, Whitehead SN. Imaging mass spectrometry allows for neuroanatomic-specific detection of gangliosides in the healthy and diseased brain. Analyst 2020; 145:2473-2481. [PMID: 32065183 DOI: 10.1039/c9an02270h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gangliosides have a wide variety of biological functions due to their location on the outer leaflet of plasma membranes. They form a critical component of membrane rafts, or ganglioside-enriched microdomains, where they influence the physical properties of the membrane as well as its function. Gangliosides can change their structure to meet their external and internal environmental demands. This ability to change structure makes gangliosides both fascinating and technologically challenging targets to identify and understand. A full understanding on how gangliosides are regulated within the central nervous system (CNS) is critical, as ganglioside dysregulation is observed in the aging brain as well as in several neurodegenerative injuries and diseases such as stroke, Alzheimer's disease, Parkinson's disease, Huntington's disease and several lysosomal storage disorders diseases, including Tay Sach's disease. Mass spectrometry (MS) has become a useful means to better understand ganglioside composition and function. Imaging mass spectrometry (IMS) provides the added benefit of placing analytical information within an anatomical context. This review article will discuss recent advances in MS-based detection methods, with a focus on IMS-based approaches to help understand the spatial-specific role gangliosides in the healthy brain as in CNS injuries and disease.
Collapse
Affiliation(s)
- W X Wang
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, CanadaN6A 5C1.
| | | |
Collapse
|
90
|
van Geenen FAMG, Claassen FW, Franssen MCR, Zuilhof H, Nielen MWF. Laser Ablation Electrospray Ionization Hydrogen/Deuterium Exchange Ambient Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:249-256. [PMID: 32031404 PMCID: PMC7053432 DOI: 10.1021/jasms.9b00082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Identification and confirmation of known as well as unknown (bio)chemical entities in ambient mass spectrometry (MS) and MS imaging (MSI) mostly involve accurate mass determination, often in combination with MS/MS or MSn work flows. To further improve structural assignment, additional molecular information is required. Here we present an ambient hydrogen/deuterium exchange (HDX) laser ablation electrospray ionization (LAESI) MS method in which, apart from the accurate mass and MS/MS data, the number of exchangeable protons in (un)known molecules is obtained. While eventually presenting ambient HDX-LAESI-MSI, samples were not preincubated with deuterated solvents, but instead HDX occurred following fusion of ablated sample material with microdroplets generated by ESI of deuterated solvents. Therefore, the degree of HDX was first studied following ablation of nondeuterated sample solutions of melamine and monosaccharides. From these experiments, it was concluded that the set-up used could provide meaningful HDX data in support of molecular structure elucidation by significantly reducing the number of structure options from a measured elemental composition. This reduction was demonstrated with an unknown accurate m/z value obtained in the analysis of an orange slice, reducing the possible number of molecular structures having the same elemental composition by 87% due to the number of H/D exchanges observed. Next, deuterated and nondeuterated MS/MS experiments showed the number of exchangeable protons in the substructures from deuterated neutral losses in the product ion spectra, confirming the compound to be arginine. Finally, the potential of ambient HDX-LAESI-MSI was demonstrated by the imaging of (secondary) plant metabolites in a Phalaenopsis petal.
Collapse
Affiliation(s)
- Fred A. M. G. van Geenen
- Laboratory of Organic Chemistry,
Wageningen University, Stippeneng 4, 6708 WE Wageningen,
The Netherlands
- TI-COAST, Science Park 904,
1098 XH Amsterdam, The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory,
Radboud University, Toernooiveld 7c, 6525 ED Nijmegen,
The Netherlands
| | - Frank W. Claassen
- Laboratory of Organic Chemistry,
Wageningen University, Stippeneng 4, 6708 WE Wageningen,
The Netherlands
| | - Maurice C. R. Franssen
- Laboratory of Organic Chemistry,
Wageningen University, Stippeneng 4, 6708 WE Wageningen,
The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry,
Wageningen University, Stippeneng 4, 6708 WE Wageningen,
The Netherlands
- School of Pharmaceutical Sciences and Technology,
Tianjin University, 92 Weijin Road, Tianjin 300072,
P.R. China
| | - Michel W. F. Nielen
- Laboratory of Organic Chemistry,
Wageningen University, Stippeneng 4, 6708 WE Wageningen,
The Netherlands
- Wageningen Food Safety Research (WFSR),
Wageningen University & Research, P.O. Box 230, 6700 AE
Wageningen, The Netherlands
- E-mail:
| |
Collapse
|
91
|
Kaya I, Jennische E, Dunevall J, Lange S, Ewing AG, Malmberg P, Baykal AT, Fletcher JS. Spatial Lipidomics Reveals Region and Long Chain Base Specific Accumulations of Monosialogangliosides in Amyloid Plaques in Familial Alzheimer's Disease Mice (5xFAD) Brain. ACS Chem Neurosci 2020; 11:14-24. [PMID: 31774647 DOI: 10.1021/acschemneuro.9b00532] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ganglioside metabolism is significantly altered in Alzheimer's disease (AD), which is a progressive neurodegenerative disease prominently characterized by one of its pathological hallmarks, amyloid deposits or "senile plaques". While the plaques mainly consist of aggregated variants of amyloid-β protein (Aβ), recent studies have revealed a number of lipid species including gangliosides in amyloid plaques along with Aβ peptides. It has been widely suggested that long chain (sphingosine) base (LCBs), C18:1-LCB and C20:1-LCB, containing gangliosides might play different roles in neuronal function in vivo. In order to elucidate region-specific aspects of amyloid-plaque associated C18:1-LCB and C20:1-LCB ganglioside accumulations, high spatial resolution (10 μm per pixel) matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) of gangliosides in amyloid plaques was performed in hippocampal and adjacent cortical regions of 12 month old 5xFAD mouse coronal brain sections from two different stereotaxic coordinates (bregma points, -2.2 and -2.7 mm). MALDI-IMS uncovered brain-region (2 and 3D) and/or LCB specific accumulations of monosialogangliosides (GMs): GM1, GM2, and GM3 in the hippocampal and cortical amyloid plaques. The results reveal monosialogangliosides to be an important component of amyloid plaques and the accumulation of different gangliosides is region and LCB specific in 12 month old 5xFAD mouse brain. This is discussed in relation to amyloid-associated AD pathogenesis such as lipid related immune changes in amyloid plaques, AD specific ganglioside metabolism, and, notably, AD-associated impaired neurogenesis in the subgranular zone.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal 43180, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, University of Gothenburg and Chalmers University of Technology, Gothenburg, Sweden
| | - Eva Jennische
- Institute of Biomedicine, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Stefan Lange
- Institute of Biomedicine, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, University of Gothenburg and Chalmers University of Technology, Gothenburg, Sweden
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - John S. Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, University of Gothenburg and Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
92
|
Fincher JA, Korte AR, Yadavilli S, Morris NJ, Vertes A. Multimodal imaging of biological tissues using combined MALDI and NAPA-LDI mass spectrometry for enhanced molecular coverage. Analyst 2020; 145:6910-6918. [DOI: 10.1039/d0an00836b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sequential imaging of a tissue section by MALDI and NAPA-LDI mass spectrometry provides enhanced molecular coverage.
Collapse
Affiliation(s)
- Jarod A. Fincher
- Department of Chemistry
- The George Washington University
- Washington
- USA
| | - Andrew R. Korte
- Department of Chemistry
- The George Washington University
- Washington
- USA
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine
- Children's National Medical Center
- Washington
- USA
| | | | - Akos Vertes
- Department of Chemistry
- The George Washington University
- Washington
- USA
| |
Collapse
|
93
|
Fernández R, Garate J, Tolentino-Cortez T, Herraiz A, Lombardero L, Ducrocq F, Rodríguez-Puertas R, Trifilieff P, Astigarraga E, Barreda-Gómez G, Fernández JA. Microarray and Mass Spectrometry-Based Methodology for Lipid Profiling of Tissues and Cell Cultures. Anal Chem 2019; 91:15967-15973. [PMID: 31751120 DOI: 10.1021/acs.analchem.9b04529] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent developments in mass spectrometry have revealed the importance of lipids as biomarkers in the context of different diseases and as indicators of the cell's homeostasis. However, further advances are required to unveil the complex relationships between lipid classes and lipid species with proteins. Here, we present a new methodology that combines microarrays with mass spectrometry to obtain the lipid fingerprint of samples of a different nature in a standardized and fast way, with minimal sample consumption. As a proof of concept, we use the methodology to obtain the lipid fingerprint of 20 rat tissues and to create a lipid library for tissue classification. Then, we combine those results with immunohistochemistry and enzymatic assays to unveil the relationship between some lipid species and two enzymes. Finally, we demonstrate the performance of the methodology to explore changes in lipid composition of the nucleus accumbens from mice subjected to two lipid diets.
Collapse
Affiliation(s)
- Roberto Fernández
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | | | | | - Ainara Herraiz
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | | | - Fabien Ducrocq
- University of Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286 , F-33000 , Bordeaux , France
| | - Rafael Rodríguez-Puertas
- Neurodegenerative Diseases , Biocruces Bizkaia Health Research Institute , 48903 Barakaldo , Spain
| | - Pierre Trifilieff
- University of Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286 , F-33000 , Bordeaux , France
| | - Egoitz Astigarraga
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | - Gabriel Barreda-Gómez
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | | |
Collapse
|
94
|
Holzlechner M, Eugenin E, Prideaux B. Mass spectrometry imaging to detect lipid biomarkers and disease signatures in cancer. Cancer Rep (Hoboken) 2019; 2:e1229. [PMID: 32729258 PMCID: PMC7941519 DOI: 10.1002/cnr2.1229] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current methods to identify, classify, and predict tumor behavior mostly rely on histology, immunohistochemistry, and molecular determinants. However, better predictive markers are required for tumor diagnosis and evaluation. Due, in part, to recent technological advancements, metabolomics and lipid biomarkers have become a promising area in cancer research. Therefore, there is a necessity for novel and complementary techniques to identify and visualize these molecular markers within tumors and surrounding tissue. RECENT FINDINGS Since its introduction, mass spectrometry imaging (MSI) has proven to be a powerful tool for mapping analytes in biological tissues. By adding the label-free specificity of mass spectrometry to the detailed spatial information of traditional histology, hundreds of lipids can be imaged simultaneously within a tumor. MSI provides highly detailed lipid maps for comparing intra-tumor, tumor margin, and healthy regions to identify biomarkers, patterns of disease, and potential therapeutic targets. In this manuscript, recent advancement in sample preparation and MSI technologies are discussed with special emphasis on cancer lipid research to identify tumor biomarkers. CONCLUSION MSI offers a unique approach for biomolecular characterization of tumor tissues and provides valuable complementary information to histology for lipid biomarker discovery and tumor classification in clinical and research cancer applications.
Collapse
Affiliation(s)
- Matthias Holzlechner
- Department of Neuroscience, Cell Biology, and AnatomyThe University of Texas Medical Branch at Galveston (UTMB)GalvestonTexas
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and AnatomyThe University of Texas Medical Branch at Galveston (UTMB)GalvestonTexas
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and AnatomyThe University of Texas Medical Branch at Galveston (UTMB)GalvestonTexas
| |
Collapse
|
95
|
Dexter A, Steven RT, Patel A, Dailey LA, Taylor AJ, Ball D, Klapwijk J, Forbes B, Page CP, Bunch J. Imaging drugs, metabolites and biomarkers in rodent lung: a DESI MS strategy for the evaluation of drug-induced lipidosis. Anal Bioanal Chem 2019; 411:8023-8032. [PMID: 31776643 PMCID: PMC6920235 DOI: 10.1007/s00216-019-02151-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Abstract
Within drug development and pre-clinical trials, a common, significant and poorly understood event is the development of drug-induced lipidosis in tissues and cells. In this manuscript, we describe a mass spectrometry imaging strategy, involving repeated analysis of tissue sections by DESI MS, in positive and negative polarities, using MS and MS/MS modes. We present results of the detected distributions of the administered drug, drug metabolites, lipid molecules and a putative marker of lipidosis, di-docosahexaenoyl (22:6)-bis(monoacylglycerol) phosphate (di-22:6-BMP). A range of strategies have previously been reported for detection, isolation and identification of this compound, which is an isomer of di-docosahexaenoic (22:6 n-3) phosphatidylglycerol (di-22:6 PG), a commonly found lipid that acts as a surfactant in lung tissues. We show that MS imaging using MS/MS can be used to differentiate these compounds of identical mass, based upon the different distributions of abundant fragment ions. Registration of images of these fragments, and detected drugs and metabolites, is presented as a new method for studying drug-induced lipidosis in tissues. Graphical abstract.
Collapse
Affiliation(s)
- Alex Dexter
- National Physical Laboratory, Teddington, London, TW11 0LW, UK
| | - Rory T Steven
- National Physical Laboratory, Teddington, London, TW11 0LW, UK
| | - Aateka Patel
- Institute of Pharmaceutical Science, King's College London, London, WC2R 2LS, UK
| | - Lea Ann Dailey
- Institute of Pharmaceutical Science, King's College London, London, WC2R 2LS, UK
- Martin-Luther-Universität Halle-Wittenberg, 06108, Halle, Saxony-Anhalt, Germany
| | - Adam J Taylor
- National Physical Laboratory, Teddington, London, TW11 0LW, UK
| | - Doug Ball
- Immunoinflammation TAU, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Jan Klapwijk
- Immunoinflammation TAU, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Ben Forbes
- Institute of Pharmaceutical Science, King's College London, London, WC2R 2LS, UK
| | - Clive P Page
- Institute of Pharmaceutical Science, King's College London, London, WC2R 2LS, UK
| | - Josephine Bunch
- National Physical Laboratory, Teddington, London, TW11 0LW, UK.
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, SW7 1LY, UK.
| |
Collapse
|
96
|
Mass Spectrometry Imaging of Lipids in Human Skin Disease Model Hidradenitis Suppurativa by Laser Desorption Ionization from Silicon Nanopost Arrays. Sci Rep 2019; 9:17508. [PMID: 31767918 PMCID: PMC6877612 DOI: 10.1038/s41598-019-53938-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Neutral lipids have been implicated in a host of potentially debilitating human diseases, such as heart disease, type-2 diabetes, and metabolic syndrome. Matrix-assisted laser desorption ionization (MALDI), the method-of-choice for mass spectrometry imaging (MSI), has led to remarkable success in imaging several lipid classes from biological tissue sections. However, due to ion suppression by phospholipids, MALDI has limited ability to efficiently ionize and image neutral lipids, such as triglycerides (TGs). To help overcome this obstacle, we have utilized silicon nanopost arrays (NAPA), a matrix-free laser desorption ionization (LDI) platform. Hidradenitis suppurativa (HS) is a chronic, recurrent inflammatory skin disease of the apocrine sweat glands. The ability of NAPA to efficiently ionize lipids is exploited in the analysis of human skin samples from sufferers of HS. Ionization by LDI from NAPA allows for the detection and imaging of a number of neutral lipid species, including TGs comprised of shorter, odd-chain fatty acids, which strongly suggests an increased bacterial load within the host tissue, as well as hexosylceramides (HexCers) and galabiosyl-/lactosylceramides that appear to be correlated with the presence of HS. Our results demonstrate that NAPA-LDI-MSI is capable of imaging and potentially differentiating healthy and diseased human skin tissues based on changes in detected neutral lipid composition.
Collapse
|
97
|
Ventura G, Calvano CD, Abbattista R, Bianco M, De Ceglie C, Losito I, Palmisano F, Cataldi TRI. Characterization of bioactive and nutraceutical compounds occurring in olive oil processing wastes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1670-1681. [PMID: 31268208 DOI: 10.1002/rcm.8514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Several bioactive compounds, including phenolic acids and secoiridoids, are transferred from olive drupes to olive oil during the first stage of production. Here, the characterization of these low molecular weight (LMW) compounds in olive oil and in closely related processing materials, like olive leaves (OL) and olive mill wastewaters (OMW), was faced up, for the first time, by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS). METHODS A novel binary matrix composed of 1,8-bis(tetramethylguanidino)naphthalene (TMGN) and 9-aminoacridine (9AA) (1:1 molar ratio), displaying excellent ionization properties at low levels of laser energy, was employed in reflectron negative ion mode by a MALDI TOF/TOF system equipped with a neodymium-doped yttrium lithium fluoride (Nd:YLF) laser (345 nm). MS/MS experiments were performed by using ambient air as the collision gas. RESULTS Four major secoiridoids typically present in olive oil, i.e., the aglycones of oleuropein and ligstroside, and oleacein and olecanthal at m/z 377.1, 361.1, 319.1 and 303.1, respectively, were detected in virgin olive oil (VOO) extracts, along with some of their chemical/enzymatic hydrolysis by-products, such as elenolic (m/z 241.1), decarboxymethyl-elenolic acids (m/z 183.1) and hydroxytyrosol (m/z 153.1). Besides oleuropein aglycone and oleacein, hydroxylated derivatives of decarboxymethyl-elenolic acid and hydroxytyrosol were evidenced in OMW. CONCLUSIONS While oleuropein was confirmed in OL extracts, several interesting phenolic compounds, including hydroxytyrosol, were recognized in OMW. The proposed approach based on the use of a novel binary matrix for MALDI MS/MS analyses of LMW bioactive compounds can be considered a promising analytical tool for a rapid screening of the phenolic fraction in olive oils and related processing wastes.
Collapse
Affiliation(s)
- Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Cosima D Calvano
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Ramona Abbattista
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Cristina De Ceglie
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Ilario Losito
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| |
Collapse
|
98
|
Sun C, Liu W, Mu Y, Wang X. 1,1'-binaphthyl-2,2'-diamine as a novel MALDI matrix to enhance the in situ imaging of metabolic heterogeneity in lung cancer. Talanta 2019; 209:120557. [PMID: 31892065 DOI: 10.1016/j.talanta.2019.120557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 12/21/2022]
Abstract
Profile the spatial distributions of endogenous metabolites in heterogeneous tissues is critical to elucidate the complex metabolic mechanisms during pathological progression. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a label-free technique for tissue imaging that allows simultaneous localisation and quantification of metabolites in different histological regions of interest. In the present study, 1,1'-binaphthyl-2,2'-diamine (BNDM) was developed as a novel MALDI matrix for the detection and imaging of metabolites because of its low background interference, high sensitivity, and applicability in both positive and negative ion modes. 301 negative metabolite ions and 175 positive metabolite ions, including amino acids, organic acids, nucleosides, nucleotides, nitrogenous bases, cholesterols, peptides, fatty acids, cholines, carnitines, polyamines, creatine, phospholipids, etc., were imaged in rat brain when BDMN was used as matrix. Furthermore, BNDM-assisted MALDI-MSI of mouse lung cancer tissue successfully characterized the spatial features of numerous metabolites in viable, necrotic, and connective tissue areas. Importantly, our results demonstrate that the viable area of lung cancer tissue contained a higher abundance of K+ adducts, while the necrotic area showed a stronger Na+ adducts intensity. Data-driven segmentation analysis based on the in situ tissue metabolic fingerprints clearly visualized the underlying metabolic heterogeneity of lung cancer, which may provide new insights into the profiling of tumor microenvironment. All these results suggest that the newly developed matrix has great potential application in the field of biomedical research.
Collapse
Affiliation(s)
- Chenglong Sun
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Wei Liu
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yan Mu
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiao Wang
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
99
|
Wehrli PM, Michno W, Blennow K, Zetterberg H, Hanrieder J. Chemometric Strategies for Sensitive Annotation and Validation of Anatomical Regions of Interest in Complex Imaging Mass Spectrometry Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2278-2288. [PMID: 31529404 PMCID: PMC6828630 DOI: 10.1007/s13361-019-02327-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/12/2019] [Accepted: 08/10/2019] [Indexed: 05/04/2023]
Abstract
Imaging mass spectrometry (IMS) is a promising new chemical imaging modality that generates a large body of complex imaging data, which in turn can be approached using multivariate analysis approaches for image analysis and segmentation. Processing IMS raw data is critically important for proper data interpretation and has significant effects on the outcome of data analysis, in particular statistical modeling. Commonly, data processing methods are chosen based on rational motivations rather than comparative metrics, though no quantitative measures to assess and compare processing options have been suggested. We here present a data processing and analysis pipeline for IMS data interrogation, processing and ROI annotation, segmentation, and validation. This workflow includes (1) objective evaluation of processing methods for IMS datasets based on multivariate analysis using PCA. This was then followed by (2) ROI annotation and classification through region-based active contours (AC) segmentation based on the PCA component scores matrix. This provided class information for subsequent (3) OPLS-DA modeling to evaluate IMS data processing based on the quality metrics of their respective multivariate models and for robust quantification of ROI-specific signal localization. This workflow provides an unbiased strategy for sensitive annotation of anatomical regions of interest combined with quantitative comparison of processing procedures for multivariate analysis allowing robust ROI annotation and quantification of the associated molecular histology.
Collapse
Affiliation(s)
- Patrick M Wehrli
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, Queen Square Instritute of Neurology, University College London, London, UK
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden.
- Department of Neurodegenerative Disease, Queen Square Instritute of Neurology, University College London, London, UK.
| |
Collapse
|
100
|
Dufresne M, Patterson NH, Norris JL, Caprioli RM. Combining Salt Doping and Matrix Sublimation for High Spatial Resolution MALDI Imaging Mass Spectrometry of Neutral Lipids. Anal Chem 2019; 91:12928-12934. [DOI: 10.1021/acs.analchem.9b02974] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Jeremy Lynn Norris
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| | - Richard Micheal Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, 442 Robinson Research Building, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
| |
Collapse
|