51
|
Rocha M, Abreu B, Nunes MS, Freire C, Marques EF. Ternary (molybdenum disulfide/graphene)/carbon nanotube nanocomposites assembled via a facile colloidal electrostatic path as electrocatalysts for the oxygen reduction reaction: Composition and nitrogen-doping play a key role in their performance. J Colloid Interface Sci 2024; 664:1056-1068. [PMID: 38531183 DOI: 10.1016/j.jcis.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/13/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024]
Abstract
Nanocomposites have garnered attention for their potential as catalysts in electrochemical reactions vital for technologies like fuel cells, water splitting, and metal-air batteries. This work focuses on developing three-dimensional (3D) nanocomposites through aqueous phase exfoliation, non-covalent functionalization of building blocks with surfactants and polymers, and electrostatic interactions in solution leading to the nanocomposites assembly and organization. By combining molybdenum disulfide (MoS2) layers with graphene nanoplatelets (GnPs) to form a binary 2D composite (MoS2/GnP), and subsequently incorporating multiwalled carbon nanotubes (MWNTs) to create ternary 3D composites, we explore their potential as catalysts for the oxygen reduction reaction (ORR) critical in fuel cells. Characterization techniques such as X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffraction elucidate material composition and structure. Our electrochemical studies reveal insights into the kinetics of the reactions and structure-activity relationships. Both the (MoS2/GnP)-to-MWNT mass ratio and nitrogen-doping of GnPs (N-GnPs) play a key role on the electrocatalytic ORR performance. Notably, the (MoS2/N-GnP)/MWNT material, with a 3:1 mass ratio, exhibits the most effective ORR activity. All catalysts demonstrate good long-term stability and methanol crossover tolerance. This facile fabrication method and observed trends offer avenues for optimizing composite electrocatalysts further.
Collapse
Affiliation(s)
- Marcos Rocha
- CIQUP - Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal; REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Bárbara Abreu
- CIQUP - Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal; REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Marta S Nunes
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal.
| | - Cristina Freire
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Eduardo F Marques
- CIQUP - Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal.
| |
Collapse
|
52
|
Babar M, Zhu Z, Kurchin R, Kaxiras E, Viswanathan V. Twisto-Electrochemical Activity Volcanoes in Trilayer Graphene. J Am Chem Soc 2024; 146:16105-16111. [PMID: 38829312 PMCID: PMC11177310 DOI: 10.1021/jacs.4c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
In this work, we develop a twist-dependent electrochemical activity map, combining a low-energy continuum electronic structure model with modified Marcus-Hush-Chidsey kinetics in trilayer graphene. We identify a counterintuitive rate enhancement region spanning the magic angle curve and incommensurate twists in the system geometry. We find a broad activity peak with a ruthenium hexamine redox couple in regions corresponding to both magic angles and incommensurate angles, a result qualitatively distinct from the twisted bilayer case. Flat bands and incommensurability offer new avenues for reaction rate enhancements in electrochemical transformations.
Collapse
Affiliation(s)
- Mohammad Babar
- Department
of Mechanical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Ziyan Zhu
- Stanford
Institute of Materials and Energy Science, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Rachel Kurchin
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Efthimios Kaxiras
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
53
|
Wright S, Brea C, Baxter JS, Saini S, Alsaç EP, Yoon SG, Boebinger MG, Hu G, McDowell MT. Epitaxial Metal Electrodeposition Controlled by Graphene Layer Thickness. ACS NANO 2024; 18:13866-13875. [PMID: 38751199 PMCID: PMC11140832 DOI: 10.1021/acsnano.4c02981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Control over material structure and morphology during electrodeposition is necessary for material synthesis and energy applications. One approach to guide crystallite formation is to take advantage of epitaxy on a current collector to facilitate crystallographic control. Single-layer graphene on metal foils can promote "remote epitaxy" during Cu and Zn electrodeposition, resulting in growth of metal that is crystallographically aligned to the substrate beneath graphene. However, the substrate-graphene-deposit interactions that allow for epitaxial electrodeposition are not well understood. Here, we investigate how different graphene layer thicknesses (monolayer, bilayer, trilayer, and graphite) influence the electrodeposition of Zn and Cu. Scanning transmission electron microscopy and electron backscatter diffraction are leveraged to understand metal morphology and structure, demonstrating that remote epitaxy occurs on mono- and bilayer graphene but not trilayer or thicker. Density functional theory (DFT) simulations reveal the spatial electronic interactions through thin graphene that promote remote epitaxy. This work advances our understanding of electrochemical remote epitaxy and provides strategies for improving control over electrodeposition.
Collapse
Affiliation(s)
- Salem
C. Wright
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Courtney Brea
- Department
of Chemistry and Biochemistry, Queens College
of the City University of New York, New York, New York 11367, United States
| | - Jefferey S. Baxter
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Sonakshi Saini
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Elif Pınar Alsaç
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sun Geun Yoon
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew G. Boebinger
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Guoxiang Hu
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew T. McDowell
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
54
|
Wang Z, Li M, Fu B, Cao W, Bo X. Recycling cobalt from spent lithium-ion batteries for designing the novel cobalt nitride followers: Towards efficient overall water splitting and advanced zinc-air batteries. J Colloid Interface Sci 2024; 662:218-230. [PMID: 38350345 DOI: 10.1016/j.jcis.2024.02.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Although cobalt nitride (CoN)-based nanomaterials have been widely designed as advanced oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and oxygen reduction reaction (ORR) catalysts, the continuous consumption of lithium-ion batteries (LIBs) has led to a high price of cobalt metal. Therefore, in the future, recycling valuable Co elements from spent devices and boosting their service efficiency will inevitably promote the utilization of Co-based materials in water splitting and zinc-air batteries (ZABs). Herein, we realize the Co recycling from spent LIBs by a simple hydrometallurgy method. Under the assistance of hexamethylenetetramine and polystyrene spheres, after the hydrothermal and pyrolysis treatment in the NH3 atmosphere, the as-reclaimed cobalt oxalates were successfully transformed into novel three-dimensional (3D) CoN nanoflowers (denoted as CoN NFs). Benefiting from the unique 3D flower-like architectures, intrinsic high conductivity, large surface area, uniformly dispersed CoN nanoparticles, and the synergistic effect between Co3N and CoO phases, the 3D flower-like CoN NFs exhibited excellent OER catalytic activity. The performance was much better than commercial RuO2 in the 1.0 M KOH solution. Furthermore, the CoN NFs-based water splitting cell needed a voltage of 1.608 V to achieve the current density of 10 mA cm-2, which is even 16 mV smaller than that of Pt/C||RuO2 benchmark (1.624 V). Meanwhile, the CoN NFs-derived ZAB exhibited a high peak power density of 107.3 mW cm-2 (vs. 103.2 mW cm-2 of Pt/C-RuO2-based ZAB) and a low charge-discharge voltage gap (0.93 V vs. 1.43 V of Pt/C-RuO2-based ZAB). Due to the excellent structural and elemental stabilities, the corresponding water splitting cell and ZAB had outstanding durability. This work successfully explored an advanced industrial chain from recycling Co metal in spent devices to designing the high-efficiency HER/OER/ORR electrocatalysts for advanced water splitting devices and ZABs. This will further promote the value-added utilization of valuable Co metal in various energy storage or conversion devices.
Collapse
Affiliation(s)
- Zhuang Wang
- School of Light Industry, Harbin University of Commerce, Harbin, China.
| | - Mian Li
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Bin Fu
- School of Light Industry, Harbin University of Commerce, Harbin, China
| | - Wenping Cao
- School of Light Industry, Harbin University of Commerce, Harbin, China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
55
|
Zhang W, Dai L. Mesoporous Metal Nanomaterials: Developments and Electrocatalytic Applications. Chemistry 2024; 30:e202400402. [PMID: 38362815 DOI: 10.1002/chem.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Mesoporous metal nanomaterials (MPMNs) are pivotal in nanotechnology, especially in electrochemical applications, due to their unique structure. Unlike traditional nanomaterials, MPMNs possess hierarchical and mesoporous characteristics, providing more active sites for improved mass and electron transfer. This distinctive composition offers dual benefits, enhancing activity, stability, and selectivity for specific reactions. The intricate architecture, featuring interconnected pores, amplifies surface area, ensuring efficient use of active sites and boosting reactivity in electrocatalytic processes. Additionally, the mesoporous nature promotes superior diffusion kinetics, facilitating better transport of reactants and products. This intricate interplay of structural elements contributes not only to the increased efficiency of electrochemical reactions but also to the extended durability of MPMNs during prolonged usage. This concept focus on the synthesis and design strategies of MPMNs, aligning with the dynamic requirements of diverse electrocatalytic applications. The synergy resulting from these advancements not only accentuates the intrinsic properties of MPMNs but also broadens their scope for practical implementation in emerging fields of electrochemistry.
Collapse
Affiliation(s)
- Wuyong Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, Zhejiang, China
| | - Lei Dai
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Academy for Advanced Interdisciplinary Studies, Henan University, 475004, Kaifeng, Henan, China
| |
Collapse
|
56
|
Yu S, He J, Zhang Z, Sun Z, Xie M, Xu Y, Bie X, Li Q, Zhang Y, Sevilla M, Titirici MM, Zhou H. Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307412. [PMID: 38251820 DOI: 10.1002/adma.202307412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/02/2024] [Indexed: 01/23/2024]
Abstract
The contemporary production of carbon materials heavily relies on fossil fuels, contributing significantly to the greenhouse effect. Biomass is a carbon-neutral resource whose organic carbon is formed from atmospheric CO2. Employing biomass as a precursor for synthetic carbon materials can fix atmospheric CO2 into solid materials, achieving negative carbon emissions. Hydrothermal carbonization (HTC) presents an attractive method for converting biomass into carbon materials, by which biomass can be transformed into materials with favorable properties in a distinct hydrothermal environment, and these carbon materials have made extensive progress in many fields. However, the HTC of biomass is a complex and interdisciplinary problem, involving simultaneously the physical properties of the underlying biomass and sub/supercritical water, the chemical mechanisms of hydrothermal synthesis, diverse applications of resulting carbon materials, and the sustainability of the entire technological routes. This review starts with the analysis of biomass composition and distinctive characteristics of the hydrothermal environment. Then, the factors influencing the HTC of biomass, the reaction mechanism, and the properties of resulting carbon materials are discussed in depth, especially the different formation mechanisms of primary and secondary hydrochars. Furthermore, the application and sustainability of biomass-derived carbon materials are summarized, and some insights into future directions are provided.
Collapse
Affiliation(s)
- Shijie Yu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Jiangkai He
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Mengyin Xie
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yongqing Xu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Xuan Bie
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Qinghai Li
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yanguo Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Marta Sevilla
- Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, Francisco Pintado Fe 26, Oviedo, 33011, Spain
| | | | - Hui Zhou
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
57
|
Sorkin V, Zhou H, Yu ZG, Ang KW, Zhang YW. An Atomically Resolved Schottky Barrier Height Approach for Bridging the Gap between Theory and Experiment at Metal-Semiconductor Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22166-22176. [PMID: 38648115 DOI: 10.1021/acsami.4c02294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We propose an atomically resolved approach to capture the spatial variations of the Schottky barrier height (SBH) at metal-semiconductor heterojunctions. This proposed scheme, based on atom-specific partial density of states (PDOS) calculations, further enables calculation of the effective SBH that aligns with conductance measurements. We apply this approach to study the variations of SBH at MoS2@Au heterojunctions, in which MoS2 contains conducting and semiconducting grain boundaries (GBs). Our results reveal that there are significant variations in SBH at atoms in the defected heterojunctions. Of particular interest is the fact that the SBH in some areas with extended defects approaches zero, indicating Ohmic contact. One important implication of this finding is that the effective SBH should be intrinsically dependent on the defect density and character. Remarkably, the obtained effective SBH values demonstrate good agreement with existing experimental measurements. Thus, the present study addresses two long-standing challenges associated with SBH in MoS2-metal heterojunctions: the wide variation in experimentally measured SBH values at MoS2@metal heterojunctions and the large discrepancy between density-functional-theory-predicted and experimentally measured SBH values. Our proposed approach points out a valuable pathway for understanding and manipulating SBHs at metal-semiconductor heterojunctions.
Collapse
Affiliation(s)
- Viacheslav Sorkin
- Agency for Science, Technology and Research (A*STAR), Institute of High Performance Computing (IHPC), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Hangbo Zhou
- Agency for Science, Technology and Research (A*STAR), Institute of High Performance Computing (IHPC), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Zhi Gen Yu
- Agency for Science, Technology and Research (A*STAR), Institute of High Performance Computing (IHPC), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Republic of Singapore
| | - Yong-Wei Zhang
- Agency for Science, Technology and Research (A*STAR), Institute of High Performance Computing (IHPC), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| |
Collapse
|
58
|
Li Y, Yao Z, Gao W, Shang W, Deng T, Wu J. Nanoscale Design for High Entropy Alloy Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310006. [PMID: 38088529 DOI: 10.1002/smll.202310006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Indexed: 05/25/2024]
Abstract
Due to their distinctive physical and chemical characteristics, high entropy alloys (HEAs), a class of alloys comprising multiple elements, have garnered a lot of attention. It is demonstrated recently that HEA electrocatalysts increase the activity and stability of several processes. In this paper, the most recent developments in HEA electrocatalysts research are reviewed, and the performance of HEAs in catalyzing key reactions in water electrolysis and fuel cells is summarized. In addition, the design strategies for HEA electrocatalysts optimization is introduced, which include component selection, size optimization, morphology control, structural engineering, crystal phase regulation, and theoretical prediction, which can guide component selection and structural design of HEA electrocatalysts.
Collapse
Affiliation(s)
- Yanjie Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenpeng Yao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Wenpei Gao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
59
|
Jeevanandham S, Kochhar D, Agrawal O, Pahari S, Kar C, Goswami T, Sulania I, Mukherjee M. Unravelling the formation of carbyne nanocrystals from graphene nanoconstrictions through the hydrothermal treatment of agro-industrial waste molasses. NANOSCALE ADVANCES 2024; 6:2390-2406. [PMID: 38694474 PMCID: PMC11059479 DOI: 10.1039/d4na00076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 05/04/2024]
Abstract
The delicate synthesis of one-dimensional (1D) carbon nanostructures from two-dimensional (2D) graphene moiré layers holds tremendous interest in materials science owing to its unique physiochemical properties exhibited during the formation of hybrid configurations with sp-sp2 hybridization. However, the controlled synthesis of such hybrid sp-sp2 configurations remains highly challenging. Therefore, we employed a simple hydrothermal technique using agro-industrial waste as the carbon source to synthesize 1D carbyne nanocrystals from the nanoconstricted zones of 2D graphene moiré layers. By employing suite of characterization techniques, we delineated the mechanism of carbyne nanocrystal formation, wherein the origin of carbyne nanochains was deciphered from graphene intermediates due to the presence of a hydrothermally cut nanoconstriction regime engendered over well-oriented graphene moiré patterns. The autogenous hydrothermal pressurization of agro-industrial waste under controlled conditions led to the generation of epoxy-rich graphene intermediates, which concomitantly gave rise to carbyne nanocrystal formation in oriented moiré layers with nanogaps. The unique growth of carbyne nanocrystals over a few layers of holey graphene exhibits excellent paramagnetic properties, the predominant localization of electrons and interfacial polarization effects. Further, we extended the application of the as-synthesized carbyne product (Cp) for real-time electrochemical-based toxic metal (As3+) sensing in groundwater samples (from riverbanks), which depicted superior sensitivity (0.22 mA μM-1) even at extremely lower concentrations (0.0001 μM), corroborating the impedance spectroscopy analysis.
Collapse
Affiliation(s)
- Sampathkumar Jeevanandham
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh Noida 201301 India
| | - Dakshi Kochhar
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh Noida 201301 India
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh Noida 201301 India
| | - Siddhartha Pahari
- Department of Chemical Engineering & Applied Chemistry 200 College Street Toronto ON M5S 3E5 Canada
| | - Chirantan Kar
- Amity Institute of Applied Science, Amity University Kolkata Kolkata West Bengal 700135 India
| | - Tamal Goswami
- Department of Chemistry, Raiganj University Uttar Dinajpur Raiganj West Bengal 733134 India
| | - Indra Sulania
- Inter University Accelerator Centre Vasant Kunj New Delhi Delhi 110067 India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh Noida 201301 India
| |
Collapse
|
60
|
Lei YJ, Zhao L, Lai WH, Huang Z, Sun B, Jaumaux P, Sun K, Wang YX, Wang G. Electrochemical coupling in subnanometer pores/channels for rechargeable batteries. Chem Soc Rev 2024; 53:3829-3895. [PMID: 38436202 DOI: 10.1039/d3cs01043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Subnanometer pores/channels (SNPCs) play crucial roles in regulating electrochemical redox reactions for rechargeable batteries. The delicately designed and tailored porous structure of SNPCs not only provides ample space for ion storage but also facilitates efficient ion diffusion within the electrodes in batteries, which can greatly improve the electrochemical performance. However, due to current technological limitations, it is challenging to synthesize and control the quality, storage, and transport of nanopores at the subnanometer scale, as well as to understand the relationship between SNPCs and performances. In this review, we systematically classify and summarize materials with SNPCs from a structural perspective, dividing them into one-dimensional (1D) SNPCs, two-dimensional (2D) SNPCs, and three-dimensional (3D) SNPCs. We also unveil the unique physicochemical properties of SNPCs and analyse electrochemical couplings in SNPCs for rechargeable batteries, including cathodes, anodes, electrolytes, and functional materials. Finally, we discuss the challenges that SNPCs may face in electrochemical reactions in batteries and propose future research directions.
Collapse
Affiliation(s)
- Yao-Jie Lei
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Lingfei Zhao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Zefu Huang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Pauline Jaumaux
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Kening Sun
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, P. R. China.
| | - Yun-Xiao Wang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
61
|
Sadique MA, Yadav S, Khan R, Srivastava AK. Engineered two-dimensional nanomaterials based diagnostics integrated with internet of medical things (IoMT) for COVID-19. Chem Soc Rev 2024; 53:3774-3828. [PMID: 38433614 DOI: 10.1039/d3cs00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
More than four years have passed since an inimitable coronavirus disease (COVID-19) pandemic hit the globe in 2019 after an uncontrolled transmission of the severe acute respiratory syndrome (SARS-CoV-2) infection. The occurrence of this highly contagious respiratory infectious disease led to chaos and mortality all over the world. The peak paradigm shift of the researchers was inclined towards the accurate and rapid detection of diseases. Since 2019, there has been a boost in the diagnostics of COVID-19 via numerous conventional diagnostic tools like RT-PCR, ELISA, etc., and advanced biosensing kits like LFIA, etc. For the same reason, the use of nanotechnology and two-dimensional nanomaterials (2DNMs) has aided in the fabrication of efficient diagnostic tools to combat COVID-19. This article discusses the engineering techniques utilized for fabricating chemically active E2DNMs that are exceptionally thin and irregular. The techniques encompass the introduction of heteroatoms, intercalation of ions, and the design of strain and defects. E2DNMs possess unique characteristics, including a substantial surface area and controllable electrical, optical, and bioactive properties. These characteristics enable the development of sophisticated diagnostic platforms for real-time biosensors with exceptional sensitivity in detecting SARS-CoV-2. Integrating the Internet of Medical Things (IoMT) with these E2DNMs-based advanced diagnostics has led to the development of portable, real-time, scalable, more accurate, and cost-effective SARS-CoV-2 diagnostic platforms. These diagnostic platforms have the potential to revolutionize SARS-CoV-2 diagnosis by making it faster, easier, and more accessible to people worldwide, thus making them ideal for resource-limited settings. These advanced IoMT diagnostic platforms may help with combating SARS-CoV-2 as well as tracking and predicting the spread of future pandemics, ultimately saving lives and mitigating their impact on global health systems.
Collapse
Affiliation(s)
- Mohd Abubakar Sadique
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
62
|
Huang H, Guo X, Zhang C, Yang L, Jiang Q, He H, Amin MA, Alshahrani WA, Zhang J, Xu X, Yamauchi Y. Advancements in Noble Metal-Decorated Porous Carbon Nanoarchitectures: Key Catalysts for Direct Liquid Fuel Cells. ACS NANO 2024; 18:10341-10373. [PMID: 38572836 DOI: 10.1021/acsnano.3c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Noble-metal nanocrystals have emerged as essential electrode materials for catalytic oxidation of organic small molecule fuels in direct liquid fuel cells (DLFCs). However, for large-scale commercialization of DLFCs, adopting cost-effective techniques and optimizing their structures using advanced matrices are crucial. Notably, noble metal-decorated porous carbon nanoarchitectures exhibit exceptional electrocatalytic performances owing to their three-dimensional cross-linked porous networks, large accessible surface areas, homogeneous dispersion (of noble metals), reliable structural stability, and outstanding electrical conductivity. Consequently, they can be utilized to develop next-generation anode catalysts for DLFCs. Considering the recent expeditious advancements in this field, this comprehensive review provides an overview of the current progress in noble metal-decorated porous carbon nanoarchitectures. This paper meticulously outlines the associated synthetic strategies, precise microstructure regulation techniques, and their application in electrooxidation of small organic molecules. Furthermore, the review highlights the research challenges and future opportunities in this prospective research field, offering valuable insights for both researchers and industry experts.
Collapse
Affiliation(s)
- Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Xiangjie Guo
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Ali Alshahrani
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
63
|
Liu Y, Handa T, Olsen N, Nuckolls C, Zhu X. Spin-Polarized Charge Separation at Two-Dimensional Semiconductor/Molecule Interfaces. J Am Chem Soc 2024; 146:10052-10059. [PMID: 38536668 DOI: 10.1021/jacs.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Spin-polarized electrons can improve the efficiency and selectivity of photo- and electro-catalytic reactions, as demonstrated in the past with magnetic or magnetized catalysts. Here, we present a scheme in which spin-polarized charge separation occurs at the interfaces of nonmagnetic semiconductors and molecular films in the absence of a magnetic field. We take advantage of the spin-valley-locked band structure and valley-dependent optical selection rule in group VI transition metal dichalcogenide (TMDC) monolayers to generate spin-polarized electron-hole pairs. Photoinduced electron transfer from WS2 to fullerene (C60) and hole transfer from MoSe2 to phthalocyanine (H2Pc) are found to result in spin polarization lifetimes that are 1 order of magnitude longer than those in the TMDC monolayers alone. Our findings connect valleytronic properties of TMDC monolayers to spin-polarized interfacial charge transfer and suggest a viable route toward spin-selective photocatalysis.
Collapse
Affiliation(s)
- Yufeng Liu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Taketo Handa
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Nicholas Olsen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
64
|
Svigelj R, Toniolo R, Bertoni C, Fraleoni-Morgera A. Synergistic Applications of Graphene-Based Materials and Deep Eutectic Solvents in Sustainable Sensing: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2403. [PMID: 38676019 PMCID: PMC11054382 DOI: 10.3390/s24082403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The recently explored synergistic combination of graphene-based materials and deep eutectic solvents (DESs) is opening novel and effective avenues for developing sensing devices with optimized features. In more detail, remarkable potential in terms of simplicity, sustainability, and cost-effectiveness of this combination have been demonstrated for sensors, resulting in the creation of hybrid devices with enhanced signal-to-noise ratios, linearities, and selectivity. Therefore, this review aims to provide a comprehensive overview of the currently available scientific literature discussing investigations and applications of sensors that integrate graphene-based materials and deep eutectic solvents, with an outlook for the most promising developments of this approach.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | | | | |
Collapse
|
65
|
Liu X, Yao L, Zhang S, Huang C, Yang W. Theoretical Study of Electrocatalytic CO 2 Reduction Mechanism on Typical MXenes under Realistic Conditions. Inorg Chem 2024; 63:6305-6314. [PMID: 38549559 DOI: 10.1021/acs.inorgchem.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
MXenes are a revolutionary class of two-dimensional materials that have been recently demonstrated to exhibit promising capability of electrocatalytic CO2 reduction reaction (CO2RR) in theory and experiment. In electrocatalytic reactions, the active phases, the mechanism, and the performance can be greatly influenced by electrochemical conditions such as applied electrode potential, pH, and electrolyte. Therefore, in this first-principles study, the stable surface structures of three typical MXenes (V2C, Mo2C, and Ti3C2) with variation of electrocatalytic conditions were determined by the Pourbaix phase diagrams. Additionally, the reaction mechanism for CO2RR toward C1 products was investigated based on the thermal dynamically stable phases. The computation revealed that surfaces of all three MXenes are dominated by H* termination throughout the practical CO2RR electrochemical condition ranges. Meanwhile, the bicarbonate ions, which serve as the major electrolyte in CO2RR, show thermal dynamic unfavorability to adsorb on the surfaces. Among the three types of MXenes, V2CH exhibits higher activity in generating CO and HCOOH through the CO2RR, while Mo2CH exhibits higher activity in producing HCHO, CH3OH, and CH4. This comprehensive study provides crucial insights into the mechanism of electrocatalytic CO2RR on MXenes under realistic electrochemical conditions.
Collapse
Affiliation(s)
- Xueli Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Lanlan Yao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Sijia Zhang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Chuanqi Huang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Wenshao Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| |
Collapse
|
66
|
Xu B, Duan M, Shen K, Guo X, Yang X, Zhang M, Yue B, Zhang M, Zhang J, Jin Z. Hydrothermal Hydrolyzation-Driven Topological Transformation of Ni-Co Bimetallic Compounds with Hollow Nanoflower Structure for Optimizing Hydrogen Evolution Catalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16399-16407. [PMID: 38527861 DOI: 10.1021/acsami.4c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Composition screening and structure optimization are two critical factors in improving the electrocatalytic performance of hybrid materials. Herein, we present a straightforward hydrothermal hydrolyzation-topological transformation strategy for the synthesis of a range of Ni-Co bimetallic compounds with a hollow nanoflower structure. Among these Ni-Co compounds, Ni2P/Co2P hollow nanoflowers (HNFs) exhibit the most impressive electrocatalytic activity for the hydrogen evolution reaction (HER), necessitating only an 153 mV overpotential to achieve a current density of 10 mA cm-2 under alkaline conditions. Importantly, this performance remains stable for over 48 h, indicating exceptional durability. The exceptional catalytic performance of Ni2P/Co2P HNFs arises from the synergy between the hybrid Ni2P/Co2P components and the hollow nanoflower structure. The former provides abundant catalytic sites, while electron rearrangement at the heterointerfaces enhances the adsorption/desorption of active species and facilitates electron transfer. The latter contributes to the exposure of catalytic sites, shortening mass and charge transfer routes, and bolstering structural stability during prolonged electrocatalysis. This research offers valuable insights into the screening and optimization of advanced hybrid electrocatalysts, holding significant promise for applications in the emerging field of new energy technologies.
Collapse
Affiliation(s)
- Bingrong Xu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Mengting Duan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Kuan Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Xingmei Guo
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Xinran Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Mingming Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Bincheng Yue
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Mengjia Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Junhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
67
|
Wu Z, Wang E, Zhang G, Shen Y, Shao G. Recent Progress of Vertical Graphene: Preparation, Structure Engineering, and Emerging Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307923. [PMID: 38009514 DOI: 10.1002/smll.202307923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Vertical graphene (VG) nanosheets have garnered significant attention in the field of electrochemical energy applications, such as supercapacitors, electro-catalysis, and metal-ion batteries. The distinctive structures of VG, including vertically oriented morphology, exposed, and extended edges, and separated few-layer graphene nanosheets, have endowed VG with superior electrode reaction kinetics and mass/electron transportation compared to other graphene-based nanostructures. Therefore, gaining insight into the structure-activity relationship of VG and VG-based materials is crucial for enhancing device performance and expanding their applications in the energy field. In this review, the authors first summarize the fabrication methods of VG structures, including solution-based, and vacuum-based techniques. The study then focuses on structural modulations through plasma-enhanced chemical vapor deposition (PECVD) to tailor defects and morphology, aiming to obtain desirable architectures. Additionally, a comprehensive overview of the applications of VG and VG-based hybrids d in the energy field is provided, considering the arrangement and optimization of their structures. Finally, the challenges and future prospects of VG-based energy-related applications are discussed.
Collapse
Affiliation(s)
- Zhiheng Wu
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Building 2, Zhongyuanzhigu, Xingyang, Zhengzhou, 450100, China
| | - Erhao Wang
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Gongkai Zhang
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yonglong Shen
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Building 2, Zhongyuanzhigu, Xingyang, Zhengzhou, 450100, China
| | - Guosheng Shao
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Building 2, Zhongyuanzhigu, Xingyang, Zhengzhou, 450100, China
| |
Collapse
|
68
|
Kwak IH, Kim JY, Zewdie GM, Yang J, Lee KS, Yoo SJ, Kwon IS, Park J, Kang HS. Electrocatalytic Activation in ReSe 2-VSe 2 Alloy Nanosheets to Boost Water-Splitting Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310769. [PMID: 38239004 DOI: 10.1002/adma.202310769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Indexed: 01/25/2024]
Abstract
It is challenging to control the electronic structure of 2D transition metal dichalcogenides (TMD) for extended applications in renewable energy devices. Here, ReSe2-VSe2 (Re1- xVxSe2) alloy nanosheets over the whole composition range via a colloidal reaction is synthesized. Increasing x makes the nanosheets more metallic and induces a 1T″-to-1T phase transition at x = 0.5-0.6. Compared to the MoSe2-VSe2 and WSe2-VSe2 alloy nanosheets, ReSe2 and VSe2 are mixed more homogeneously at the atomic scale. The alloy nanosheets at x = 0.1-0.7 exhibit an enhanced electrocatalytic activity toward acidic hydrogen evolution reaction (HER). In situ X-ray absorption fine structure measurements reveal that alloying caused the Re and V atoms to be synergically more active in the HER. Gibbs free energy (ΔGH*) and density of state calculations confirm that alloying and Se vacancies effectively activate the metal sites toward HER. The composition dependence of HER performance is explained by homogenous atomic mixing with the increased Se vacancies. The study provides a strategy for designing new TMD alloy nanosheets with enhanced catalytic activity.
Collapse
Affiliation(s)
- In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
- Research Center for Materials Analysis, Division of Analytical Science, Korea Basic Science Institute (KBSI), Daejeon, 34133, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Getasew Mulualem Zewdie
- Institute for Application of Advanced Materials, Jeonju University, Chonbuk, 55069, Republic of Korea
| | - JuHyun Yang
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seung Jo Yoo
- Research Center for Materials Analysis, Division of Analytical Science, Korea Basic Science Institute (KBSI), Daejeon, 34133, Republic of Korea
| | - Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
- Beamline Science Team, 4GSR Project Headquarters, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk, 55069, Republic of Korea
| |
Collapse
|
69
|
Onajah S, Sarkar R, Islam MS, Lalley M, Khan K, Demir M, Abdelhamid HN, Farghaly AA. Silica-Derived Nanostructured Electrode Materials for ORR, OER, HER, CO 2RR Electrocatalysis, and Energy Storage Applications: A Review. CHEM REC 2024; 24:e202300234. [PMID: 38530060 DOI: 10.1002/tcr.202300234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/13/2024] [Indexed: 03/27/2024]
Abstract
Silica-derived nanostructured catalysts (SDNCs) are a class of materials synthesized using nanocasting and templating techniques, which involve the sacrificial removal of a silica template to generate highly porous nanostructured materials. The surface of these nanostructures is functionalized with a variety of electrocatalytically active metal and non-metal atoms. SDNCs have attracted considerable attention due to their unique physicochemical properties, tunable electronic configuration, and microstructure. These properties make them highly efficient catalysts and promising electrode materials for next generation electrocatalysis, energy conversion, and energy storage technologies. The continued development of SDNCs is likely to lead to new and improved electrocatalysts and electrode materials. This review article provides a comprehensive overview of the recent advances in the development of SDNCs for electrocatalysis and energy storage applications. It analyzes 337,061 research articles published in the Web of Science (WoS) database up to December 2022 using the keywords "silica", "electrocatalysts", "ORR", "OER", "HER", "HOR", "CO2RR", "batteries", and "supercapacitors". The review discusses the application of SDNCs for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), supercapacitors, lithium-ion batteries, and thermal energy storage applications. It concludes by discussing the advantages and limitations of SDNCs for energy applications.
Collapse
Affiliation(s)
- Sammy Onajah
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Rajib Sarkar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, 23284-2006, United States
| | - Md Shafiul Islam
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, United States
| | - Marja Lalley
- Department of Chemistry, University of Chicago, Chicago, Illinois, 60637, United States
| | - Kishwar Khan
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Muslum Demir
- Department of Chemical Engineering, Bogazici University, 34342, Istanbul, Turkey
- TUBITAK Marmara Research Center, Material Institute, Gebze, 41470, Turkey
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assiut University, Assiut, 71516, Egypt
- Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Ahmed A Farghaly
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
70
|
Cao Y, Li Z, Yin X, Gan Y, Ye Y, Cai R, Wang Q, Feng B, Dai X, Song W. Electronic modulation and reaction-pathway optimization on three-dimensional seaweed-like NiSe@NiMn LDH heterostructure to trigger effective oxygen evolution reaction. J Colloid Interface Sci 2024; 658:528-539. [PMID: 38128196 DOI: 10.1016/j.jcis.2023.12.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
The development of low-cost and high-efficiency electrocatalysts for the oxygen evolution reaction (OER) is essential to produce high-purity hydrogen in large scale. Herein, a three-dimensional (3D) seaweed-like hierarchical structure was fabricated using two-dimensional (2D) NiMn LDH nanosheets wrapped on one-dimensional (1D) NiSe nanowires with nickel foam (NF) as a substrate (NiSe@NiMn LDH/NF) via hydrothermal and electrodeposition processes. Owing to the strong interfacial synergy, 3D seaweed-like hierarchical structure, higher conductivity, and strong structural stability, the NiSe@NiMn LDH/NF exhibited superior OER performance with an overpotential of 287 mV at 100 mA cm-2, and stably operated for 160 h at large current. Moreover, the overall water splitting system with NiSe@NiMn LDH/NF as the anode and Pt/C/NF as the cathode exhibited a low cell voltage of 1.59/1.64 V to reach 50/100 mA cm-2, and excellent stability for 110 h at 300 mA cm-2. The density function theory (DFT) calculations unveiled that NiSe@NiMn LDH enabled the interfacial synergy, reallocating the electron density at the interface, and further weakening the energy barrier of OH* by strengthening chemical bonds with OH* intermediates to improve the intrinsic OER activity.
Collapse
Affiliation(s)
- Yihua Cao
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Zhi Li
- College of Science, China University of Petroleum, Beijing 102249, China
| | - Xueli Yin
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Yonghao Gan
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Ying Ye
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Run Cai
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Qi Wang
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Bo Feng
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Xiaoping Dai
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Weiyu Song
- College of Science, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
71
|
Jiang Q, Chen C, Chai N, Guo Q, Chen T, Ma X, Yi FY. In Situ Exfoliation Growth Strategy Realizing Controlled Synthesis of 3D to 2D MOF Materials as High-Performance Electrochemical Biosensors. Inorg Chem 2024; 63:4636-4645. [PMID: 38394612 DOI: 10.1021/acs.inorgchem.3c04218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Two-dimensional (2D) metal-organic framework (MOF) nanosheets with large surface area, ultrathin thickness, and highly accessible active sites have attracted great research attention. Developing efficient approaches to realize the controllable synthesis of well-defined 2D MOFs with a specific composition and morphology is critical. However, it is still a significant challenge to construct thin and uniform 2D MOF nanosheets and resolve the reagglomeration as well as poor stability of target 2D MOF products. Here, an "in situ exfoliation growth" strategy is proposed, where a one-step synthetic process can realize the successful fabrication of PBA/MIL-53(NiFe)/NF nanosheets on the surface of nickel foam (NF) via in situ conversion and exfoliation growth strategies. The PBA/MIL-53(NiFe)/NF nanosheets combine the individual advantages of MOFs, Prussian blue analogues (PBAs), and 2D materials. As expected, the resulting PBA/MIL-53(NiFe)/NF as a glucose electrode exhibits an extremely high sensitivity of 25.74 mA mM-1 cm-2 in a very wide concentration range of 180 nM to 4.8 μM. The present exciting work provides a simple and effective strategy for the construction of high-performance nonenzymatic glucose electrochemical biosensors.
Collapse
Affiliation(s)
- Qiao Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Chen Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Ning Chai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Qingqing Guo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Tianyu Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Xinghua Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| |
Collapse
|
72
|
Song Y, Bao Z, Gu Y. Photocatalytic Enhancement Strategy with the Introduction of Metallic Bi: A Review on Bi/Semiconductor Photocatalysts. CHEM REC 2024; 24:e202300307. [PMID: 38084448 DOI: 10.1002/tcr.202300307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/17/2023] [Indexed: 03/10/2024]
Abstract
Semiconductor photocatalysis has great potential in the fields of solar fuel production and environmental remediation. Nevertheless, the photocatalytic efficiency still constrains its practical production applications. The development of new semiconductor materials is essential to enhance the solar energy conversion efficiency of photocatalytic systems. Recently, the research on enhancing the photocatalytic performance of semiconductors by introducing bismuth (Bi) has attracted widespread attention. In this review, we briefly overview the main synthesis methods of Bi/semiconductor photocatalysts and summarize the control of the micromorphology of Bi in Bi/semiconductors and the key role of Bi in the catalytic system. In addition, the promising applications of Bi/semiconductors in photocatalysis, such as pollutant degradation, sterilization, water separation, CO2 reduction, and N2 fixation, are outlined. Finally, an outlook on the challenges and future research directions of Bi/semiconductor photocatalysts is given. We aim to offer guidance for the rational design and synthesis of high-efficiency Bi/semiconductor photocatalysts for energy and environmental applications.
Collapse
Affiliation(s)
- Yankai Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zongqi Bao
- Foreign Language Department, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yingying Gu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
73
|
Barekati NS, Farsi H, Farrokhi A, Moghiminia S. A comparison between 2D and 3D cobalt-organic framework as catalysts for electrochemical CO 2 reduction. Heliyon 2024; 10:e26281. [PMID: 38375310 PMCID: PMC10875588 DOI: 10.1016/j.heliyon.2024.e26281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Electrocatalytic CO2 reduction, as an effective way to reduce the CO2 concentration, has gained attention. In this study, we prepared ZIF-67 nanoparticles and nanosheets and investigated them as electrocatalysts for CO2 reduction. It was found that ZIF-67 nanosheets, because of their two-dimensional morphologies, provide more under-coordinated cobalt nodes and have lower overpotentials for both hydrogen evolution and CO2 reduction reactions. Also, the rate-determining step for hydrogen evolution changes from Volmer for ZIF-67 nanoparticles to Hyrovsky for ZIF-67 nanosheets. Also, the presence of Mg2+ ions in solution causes more facile CO2 reduction, especially for ZIF-67 nanosheets.
Collapse
Affiliation(s)
| | - Hossein Farsi
- Department of Chemistry, University of Birjand, Birjand, Iran
- DNEP Research Lab, University of Birjand, Birjand, Iran
| | | | | |
Collapse
|
74
|
Liu Q, Liu K, Huang J, Hui C, Li X, Feng L. A review of modulation strategies for improving the catalytic performance of transition metal sulfide self-supported electrodes for the hydrogen evolution reaction. Dalton Trans 2024; 53:3959-3969. [PMID: 38294259 DOI: 10.1039/d3dt04244h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Electrocatalytic water splitting is considered to be one of the most promising technologies for large-scale sustained production of H2. Developing non-noble metal-based electrocatalytic materials with low cost, high activity and long life is the key to electrolysis of water. Transition metal sulfides (TMSs) with good electrical conductivity and a tunable electronic structure are potential candidates that are expected to replace noble metal electrocatalysts. In addition, self-supported electrodes have fast electron transfer and mass transport, resulting in enhanced kinetics and stability. In this paper, TMS self-supported electrocatalysts are taken as examples and their recent progress as hydrogen evolution reaction (HER) electrocatalysts is reviewed. The HER mechanism is first introduced. Then, based on optimizing the active sites, electrical conductivity, electronic structure and adsorption/dissociation energies of water and intermediates of the electrocatalysts, the article focuses on summarizing five modulation strategies to improve the activity and stability of TMS self-supported electrode electrocatalysts in recent years. Finally, the challenges and opportunities for the future development of TMS self-supported electrodes in the field of electrocatalytic water splitting are presented.
Collapse
Affiliation(s)
- Qianqian Liu
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Kehan Liu
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jianfeng Huang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P.R. China.
| | - Chiyuan Hui
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiaoyi Li
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P.R. China.
| | - Liangliang Feng
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P.R. China.
| |
Collapse
|
75
|
Tian Z, Zhang Q, Liu T, Chen Y, Antonietti M. Emerging Two-Dimensional Carbonaceous Materials for Electrocatalytic Energy Conversions: Rational Design of Active Structures through High-Temperature Chemistry. ACS NANO 2024; 18:6111-6129. [PMID: 38368617 DOI: 10.1021/acsnano.3c12198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Electrochemical energy conversion and storage technologies involving controlled catalysis provide a sustainable way to handle the intermittency of renewable energy sources, as well as to produce green chemicals/fuels in an ecofriendly manner. Core to such technology is the development of efficient electrocatalysts with high activity, selectivity, long-term stability, and low costs. Here, two-dimensional (2D) carbonaceous materials have emerged as promising contenders for advancing the chemistry in electrocatalysis. We review the emerging 2D carbonaceous materials for electrocatalysis, focusing primarily on the fine engineering of active structures through thermal condensation, where the design, fabrication, and mechanism investigations over different types of active moieties are summarized. Interestingly, all the recipes creating two-dimensionality on the carbon products also give specific electrocatalytic functionality, where the special mechanisms favoring 2D growth and their consequences on materials functionality are analyzed. Particularly, the structure-activity relationship between specific heteroatoms/defects and catalytic performance within 2D metal-free electrocatalysts is highlighted. Further, major challenges and opportunities for the practical implementation of 2D carbonaceous materials in electrocatalysis are summarized with the purpose to give future material design guidelines for attaining desirable catalytic structures.
Collapse
Affiliation(s)
- Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
76
|
Wang J, Yang G, Jiao Y, Yan H, Fu H. Subtle 2D/2D MXene-Based Heterostructures for High-Performance Electrocatalytic Water Splitting. SMALL METHODS 2024:e2301602. [PMID: 38385824 DOI: 10.1002/smtd.202301602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/11/2024] [Indexed: 02/23/2024]
Abstract
Developing efficient electrocatalysts is significant for the commercial application of electrocatalytic water splitting. 2D materials have presented great prospects in electrocatalysis for their high surface-to-volume ratio and tunable electronic properties. Particularly, MXene emerges as one of the most promising candidates for electrocatalysts, exhibiting unique advantages of hydrophilicity, outstanding conductivity, and exceptional stability. However, it suffers from lacking catalytic active sites, poor oxidation resistance, and easy stacking, leading to a significant suppression of the catalytic performance. Combining MXene with other 2D materials is an effective way to tackle the aforementioned drawbacks. In this review, the focus is on the accurate synthesis of 2D/2D MXene-based catalysts toward electrocatalytic water splitting. First, the mechanisms of electrocatalytic water splitting and the relative properties and preparation methods of MXenes are introduced to offer the basis for accurate synthesis of 2D/2D MXene-based catalysts. Then, the accurate synthesis methods for various categories of 2D/2D MXene-based catalysts, such as wet-chemical, phase-transformation, electrodeposition, etc., are systematically elaborated. Furthermore, in-depth investigations are conducted into the internal interactions and structure-performance relationship of 2D/2D MXene-based catalysts. Finally, the current challenges and future opportunities are proposed for the development of 2D/2D MXene-based catalysts, aiming to enlighten these promising nanomaterials for electrocatalytic water splitting.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Ganceng Yang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Yanqing Jiao
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Haijing Yan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
77
|
Maibam A, Orhan IB, Krishnamurty S, Russo SP, Babarao R. Surface Electronic Properties-Driven Electrocatalytic Nitrogen Reduction on Metal-Conjugated Porphyrin 2D-MOFs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8707-8716. [PMID: 38346080 DOI: 10.1021/acsami.3c16406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Two-dimensional (2D) metal organic framework (MOF) or metalloporphyrin nanosheets with a stable metal-N4 complex unit present the metal as a single-atom catalyst dispersed in the 2D porphyrin framework. First-principles calculations on the 3d-transition metals in M-TCPP are investigated in this study for their surface-dependent electronic properties including work function and d-band center. Crystal orbital Hamiltonian population (-pCOHP) analysis highlights a higher contribution of the bonding state in the M-N bond and antibonding state in the N-N bond to be essential for N-N bond activation. A linear relationship between ΔGmax and surface electronic properties, N-N bond strength, and Bader charge has been found to influence the rate-determining potential for nitrogen reduction reaction (NRR) in M-TCPP MOFs. 2D Ti-TCPP MOF, with a kinetic energy barrier of 1.43 eV in the final protonation step of enzymatic NRR, shows exclusive NRR selectivity over competing hydrogen reduction (HER) and nitrogenous compounds (NO and NO2). Thus, Ti-TCPP MOF with an NRR limiting potential of -0.35 V in water solvent is proposed as an attractive candidate for electrocatalytic NRR.
Collapse
Affiliation(s)
- Ashakiran Maibam
- Physical and Materials Division, CSIR-National Chemical Laboratory, Pune 411 008, India
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne 3001, Victoria, Australia
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ibrahim B Orhan
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne 3001, Victoria, Australia
- CSIRO, Normanby Road, Clayton 3168, Victoria, Australia
| | - Sailaja Krishnamurty
- Physical and Materials Division, CSIR-National Chemical Laboratory, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Salvy P Russo
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, School of Science, RMIT University, Melbourne 3000, Australia
| | - Ravichandar Babarao
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne 3001, Victoria, Australia
- CSIRO, Normanby Road, Clayton 3168, Victoria, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, School of Science, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
78
|
Wang W, He J, Deng J, Chen X, Yu C. Electro-, thermo-, and photocatalysis of versatile nanocomposites toward tandem process. iScience 2024; 27:108781. [PMID: 38313053 PMCID: PMC10837634 DOI: 10.1016/j.isci.2024.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Tandem reactions involve multi-step processes conducted in one pot, offering a cost-effective, environmentally friendly, and efficient approach to chemical transformations with high atom economy. The catalytic systems employed in tandem reactions are crucial for achieving desirable activity, selectivity, and stability. Researchers worldwide have extensively explored catalytic processes driven by various energy fields, such as electrocatalysis, thermocatalysis, and photocatalysis, aiming to facilitate multiple reactions and bond transformations. Continuous advancements have been made in reaction conditions, catalyst design, and preparation methods. This review provides a comprehensive overview of recent progress in tandem reactions, specifically focusing on electro-, thermo-, and photocatalysis, and categorizes them into catalysts, reactors, and fields based on their applications. Furthermore, the review highlights the significance of rational design in nanomaterial catalysts and the integration of multiple energy sources, emphasizing their potential to enhance selectivity, performance, and the development of combined catalysis.
Collapse
Affiliation(s)
- Weikang Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jialun He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P.R. China
| | - Juan Deng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P.R. China
| | - Xiao Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P.R. China
| | - Chao Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P.R. China
| |
Collapse
|
79
|
Wei Y, Liu Z, Han Z, Liu T, Ding X, Gao Y. In situ assembly of Ni 3S 2 nanosheets encapsulated with NiFe(oxy)hydroxides for efficient water oxidation. Chem Commun (Camb) 2024; 60:2086-2089. [PMID: 38293904 DOI: 10.1039/d3cc06032b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Morphology control plays a pivotal role in achieving an exceptionally efficient electrocatalyst with abundant active sites and outstanding electrical conductivity. In this study, we employed a sophisticated chemical nanoengineering technique to fabricate an exquisitely thin NiFe(OH)x electrocatalyst on Ni3S2 nanosheets. Firstly, the Ni3S2 nanosheets were synthesized through an innovative in situ one-step sulfurization reaction of the Ni(OH)2 nanosheets grown on Ni foam. Subsequently, a remarkable ultrathin layer of NiFe(OH)x was precisely deposited onto the surface of the Ni3S2 to form a captivating core-shell structure using a chemical dipping method. The resulting electrode, denoted as NiFe(OH)x/Ni3S2/NF, exhibited exceptional electrocatalytic activity and durability towards the oxygen evolution reaction (OER), owing to its expansive specific surface area, rapid electron transport, and robust interlayer bonding. Notably, this electrode achieved an impressive current density of 100 mA cm-2 at an astonishingly low overpotential of 218 mV while maintaining a low Tafel slope of 37.9 mV dec-1 and remarkable stability for up to 12 days in 1 M KOH aqueous solution. This work presents an alluring novel approach for constructing highly efficient ultrathin catalysts for water splitting.
Collapse
Affiliation(s)
- Yu Wei
- State Key Laboratory of Fine Chemicals, Frontier Science Centre for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Zhao Liu
- National Marine Environmental Monitoring Centre, Ministry of Ecological Environment, Dalian 116023, China
| | - Zhenze Han
- State Key Laboratory of Fine Chemicals, Frontier Science Centre for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Taolue Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Centre for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xin Ding
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Yan Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Centre for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
80
|
Pavlak I, Matasović L, Buchanan EA, Michl J, Rončević I. Electronic Structure of Metalloporphenes, Antiaromatic Analogues of Graphene. J Am Chem Soc 2024; 146:3992-4000. [PMID: 38294407 PMCID: PMC10870706 DOI: 10.1021/jacs.3c12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Zinc porphene is a two-dimensional material made of fully fused zinc porphyrins in a tetragonal lattice. It has a fully conjugated π-system, making it similar to graphene. Zinc porphene has recently been synthesized, and a combination of rough conductivity measurements and infrared and Raman spectroscopies all suggested that it is a semiconductor (Magnera, T.F. et al. Porphene and Porphite as Porphyrin Analogs of Graphene and Graphite, Nat. Commun.2023, 14, 6308). This is in contrast with all previous predictions of its electronic structure, which indicated metallic conductivity. We show that the gap-opening in zinc porphene is caused by a Peierls distortion of its unit cell from square to rectangular, thus giving the first account of its electronic structure in agreement with the experiment. Accounting for this distortion requires proper treatment of electron delocalization, which can be done using hybrid functionals with a substantial amount of exact exchange. Such a functional, PBE38, is then applied to predict the properties of many first transition row metalloporphenes, some of which have already been prepared. We find that changing the metal strongly affects the electronic structure of metalloporphenes, resulting in a rich variety of both metallic conductors and semiconductors, which may be of great interest to molecular electronics and spintronics. Properties of these materials are mostly governed by the extent of the Peierls distortion and the number of electrons in their π-system, analogous to changes in aromaticity observed in cyclic conjugated molecules upon oxidation or reduction. These results give an account of how the concept of antiaromaticity can be extended to periodic systems.
Collapse
Affiliation(s)
- Ivan Pavlak
- Department
of Chemistry, Faculty of Science, University
of Zagreb, Horvatovac 102A, Zagreb 10000, Croatia
| | - Lujo Matasović
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Eric A. Buchanan
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309-0215, United States
| | - Josef Michl
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309-0215, United States
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, Prague 6 16610, Czech Republic
| | - Igor Rončević
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, Prague 6 16610, Czech Republic
- Department
of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, U.K.
| |
Collapse
|
81
|
Gao X, Dai S, Teng Y, Wang Q, Zhang Z, Yang Z, Park M, Wang H, Jia Z, Wang Y, Yang Y. Ultra-Efficient and Cost-Effective Platinum Nanomembrane Electrocatalyst for Sustainable Hydrogen Production. NANO-MICRO LETTERS 2024; 16:108. [PMID: 38315294 PMCID: PMC10844191 DOI: 10.1007/s40820-024-01324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024]
Abstract
Hydrogen production through hydrogen evolution reaction (HER) offers a promising solution to combat climate change by replacing fossil fuels with clean energy sources. However, the widespread adoption of efficient electrocatalysts, such as platinum (Pt), has been hindered by their high cost. In this study, we developed an easy-to-implement method to create ultrathin Pt nanomembranes, which catalyze HER at a cost significantly lower than commercial Pt/C and comparable to non-noble metal electrocatalysts. These Pt nanomembranes consist of highly distorted Pt nanocrystals and exhibit a heterogeneous elastic strain field, a characteristic rarely seen in conventional crystals. This unique feature results in significantly higher electrocatalytic efficiency than various forms of Pt electrocatalysts, including Pt/C, Pt foils, and numerous Pt single-atom or single-cluster catalysts. Our research offers a promising approach to develop highly efficient and cost-effective low-dimensional electrocatalysts for sustainable hydrogen production, potentially addressing the challenges posed by the climate crisis.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China
| | - Shicheng Dai
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yun Teng
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China
| | - Qing Wang
- Laboratory for Microstructures, Institute of Materials, Shanghai University, Shanghai, People's Republic of China
| | - Zhibo Zhang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China
| | - Ziyin Yang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China
| | - Minhyuk Park
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China
| | - Hang Wang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China
| | - Zhe Jia
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, People's Republic of China
| | - Yunjiang Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yong Yang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China.
- Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
82
|
Kwon IS, Kwak IH, Kim JY, Lee SJ, Sial QA, Ihsan J, Lee KS, Yoo SJ, Park J, Kang HS. 2H-2M Phase Control of WSe 2 Nanosheets by Se Enrichment Toward Enhanced Electrocatalytic Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307867. [PMID: 38009401 DOI: 10.1002/adma.202307867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/23/2023] [Indexed: 11/28/2023]
Abstract
The phase control of transition metal dichalcogenides (TMDs) is an intriguing approach for tuning the electronic structure toward extensive applications. In this study, WSe2 nanosheets synthesized via a colloidal reaction exhibit a phase conversion from semiconducting 2H to metallic 2M under Se-rich growth conditions (i.e., increasing the concentration of Se precursor or lowering the growth temperature). High-resolution scanning transmission electron microscopy images are used to identify the stacking sequence of the 2M phase, which is distinctive from that of the 1T' phase. First-principles calculations employing various Se-rich models (intercalation and substitution) indicated that Se enrichment induces conversion to the 2M phase. The 2M phase WSe2 nanosheets with the Se excess exhibited enhanced electrocatalytic performance in the hydrogen evolution reaction (HER). In situ X-ray absorption fine structure studies suggested that the excess Se atoms in the 2M phase WSe2 enhanced the HER catalytic activity, which is supported by the Gibbs free energy (ΔGH* ) of H adsorption and the Fermi abundance function. These results provide an appealing strategy for phase control of TMD catalysts.
Collapse
Affiliation(s)
- Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
- Beamline Science Team, 4GSR Project Headquarters, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Seung Jae Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Qadeer Akbar Sial
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Junaid Ihsan
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seung Jo Yoo
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon, 305-806, Republic of Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk, 55069, Republic of Korea
| |
Collapse
|
83
|
Xie H, Yang M, He X, Zhan Z, Jiang H, Ma Y, Hu C. Polydopamine-Modified 2D Iron (II) Immobilized MnPS 3 Nanosheets for Multimodal Imaging-Guided Cancer Synergistic Photothermal-Chemodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306494. [PMID: 38083977 PMCID: PMC10870060 DOI: 10.1002/advs.202306494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Indexed: 02/17/2024]
Abstract
Manganese phosphosulphide (MnPS3 ), a newly emerged and promising member of the 2D metal phosphorus trichalcogenides (MPX3 ) family, has aroused abundant interest due to its unique physicochemical properties and applications in energy storage and conversion. However, its potential in the field of biomedicine, particularly as a nanotherapeutic platform for cancer therapy, has remained largely unexplored. Herein, a 2D "all-in-one" theranostic nanoplatform based on MnPS3 is designed and applied for imaging-guided synergistic photothermal-chemodynamic therapy. (Iron) Fe (II) ions are immobilized on the surface of MnPS3 nanosheets to facilitate effective chemodynamic therapy (CDT). Upon surface modification with polydopamine (PDA) and polyethylene glycol (PEG), the obtained Fe-MnPS3 /PDA-PEG nanosheets exhibit exceptional photothermal conversion efficiency (η = 40.7%) and proficient pH/NIR-responsive Fenton catalytic activity, enabling efficient photothermal therapy (PTT) and CDT. Importantly, such nanoplatform can also serve as an efficient theranostic agent for multimodal imaging, facilitating real-time monitoring and guidance of the therapeutic process. After fulfilling the therapeutic functions, the Fe-MnPS3 /PDA-PEG nanosheets can be efficiently excreted from the body, alleviating the concerns of long-term retention and potential toxicity. This work presents an effective, precise, and safe 2D "all-in-one" theranostic nanoplatform based on MnPS3 for high-efficiency tumor-specific theranostics.
Collapse
Affiliation(s)
- Hanhan Xie
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Ming Yang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Zhen Zhan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Yanmei Ma
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
84
|
Fan Z, Sun Q, Yang H, Zhu W, Liao F, Shao Q, Zhang T, Huang H, Cheng T, Liu Y, Shao M, Shao M, Kang Z. Layered Quasi-Nevskite Metastable-Phase Cobalt Oxide Accelerates Alkaline Oxygen Evolution Reaction Kinetics. ACS NANO 2024. [PMID: 38286031 DOI: 10.1021/acsnano.3c11199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Clarifying the structure-reactivity relationship of non-noble-metal electrocatalysts is one of the decisive factors for the practical application of water electrolysis. In this field, the anodic oxygen evolution reaction (OER) with a sluggish kinetic process has become a huge challenge for large-scale production of high-purity hydrogen. Here we synthesize a layered quasi-nevskite metastable-phase cobalt oxide (LQNMP-Co2O3) nanosheet via a simple molten alkali synthesis strategy. The unit-cell parameters of LQNMP-Co2O3 are determined to be a = b = 2.81 Å and c = 6.89 Å with a space group of P3̅m1 (No. 164). The electrochemical results show that the LQNMP-Co2O3 electrocatalyst enables delivering an ultralow overpotential of 266 mV at a current density of 10 mA cmgeo-2 with excellent durability. The operando XANES and EXAFS analyses clearly reveal the origin of the OER activity and the electrochemical stability of the LQNMP-Co2O3 electrocatalyst. Density functional theory (DFT) simulations show that the energy barrier of the rate-determining step (RDS) (from *O to *OOH) is significantly reduced on the LQNMP-Co2O3 electrocatalyst by comparing with simulated monolayered CoO2 (M-CoO2).
Collapse
Affiliation(s)
- Zhenglong Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, People's Republic of China
- Energy Institute, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, People's Republic of China
| | - Qintao Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Tianyang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, People's Republic of China
- Energy Institute, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, People's Republic of China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, People's Republic of China
| |
Collapse
|
85
|
Singh A, Pakhira S. Synergistic Niobium Doped Two-Dimensional Zirconium Diselenide: An Efficient Electrocatalyst for O 2 Reduction Reaction. ACS PHYSICAL CHEMISTRY AU 2024; 4:40-56. [PMID: 38283785 PMCID: PMC10811770 DOI: 10.1021/acsphyschemau.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 01/30/2024]
Abstract
The development of high-activity and low-price cathodic catalysts to facilitate the electrochemically sluggish O2 reduction reaction (ORR) is very important to achieve the commercial application of fuel cells. Here, we have investigated the electrocatalytic activity of the two-dimensional single-layer Nb-doped zirconium diselenide (2D Nb-ZrSe2) toward ORR by employing the dispersion corrected density functional theory (DFT-D) method. Through our study, we computed structural properties, electronic properties, and energetics of the 2D Nb-ZrSe2 and ORR intermediates to analyze the electrocatalytic performance of 2D Nb-ZrSe2. The electronic property calculations depict that the 2D monolayer ZrSe2 has a large band gap of 1.48 eV, which is not favorable for the ORR mechanism. After the doping of Nb, the electronic band gap vanishes, and 2D Nb-ZrSe2 acts as a conductor. We studied both the dissociative and the associative pathways through which the ORR can proceed to reduce the oxygen molecule (O2). Our results show that the more favorable path for O2 reduction on the surface of the 2D Nb-ZrSe2 is the 4e- associative path. The detailed ORR mechanisms (both associated and dissociative) have been explored by computing the changes in Gibbs free energy (ΔG). All of the ORR reaction intermediate steps are thermodynamically stable and energetically favorable. The free energy profile for the associative path shows the downhill behavior of the free energy vs the reaction steps, suggesting that all ORR intermediate structures are catalytically active for the 4e- associative path and a high 4e- reduction pathway selectivity. Therefore, 2D Nb-ZrSe2 is a promising catalyst for the ORR, which can be used as an alternative ORR catalyst compared to expensive platinum (Pt).
Collapse
Affiliation(s)
- Ashok Singh
- Theoretical
Condensed Matter Physics and Advanced Computational Materials Science
Laboratory, Department of Physics, Indian
Institute of Technology Indore (IIT Indore), Simrol, Khandwa Road, Indore-453552, Madhya Pradesh India
| | - Srimanta Pakhira
- Theoretical
Condensed Matter Physics and Advanced Computational Materials Science
Laboratory, Department of Physics, Indian
Institute of Technology Indore (IIT Indore), Simrol, Khandwa Road, Indore-453552, Madhya Pradesh India
- Theoretical
Condensed Matter Physics and Advanced Computational Materials Science
Laboratory, Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore (IIT Indore), Simrol, Khandwa Road, Indore-453552, Madhya Pradesh India
| |
Collapse
|
86
|
Lyu X, Wu G, Zheng Z, Xia S, Xie J, Xia Y, Fan P, Zhu R, Wang Y, Yang D, Li T, Dong A. Molecularly Confined Topochemical Transformation of MXene Enables Ultrathin Amorphous Metal-Oxide Nanosheets. ACS NANO 2024; 18:2219-2230. [PMID: 38190507 DOI: 10.1021/acsnano.3c09741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Two-dimensional (2D) amorphous nanosheets with ultrathin thicknesses have properties that differ from their crystalline counterparts. However, conventional methods for growing 2D materials often produce either crystalline flakes or amorphous nanosheets with an uncontrollable thickness. Here, we report that ultrathin amorphous metal-oxide nanosheets featuring superior flatness can be realized through the molecularly confined topochemical transformation of MXene. Using MXene Ti2CTx as an example, we show that surface modification of Ti2CTx nanosheets with molecular ligands, such as oleylamine (OAm) and oleic acid (OA), not only imparts notable colloidal dispersity to Ti2CTx nanosheets in nonpolar organic solvents but also confines their subsequent oxidation to in-plane configurations. We demonstrate that unlike the drastic oxidation conventionally observed for pristine MXene, hydrophobizing MXene with OAm and OA ligands enables individual Ti2CTx nanosheets to undergo independent oxidation in a nondestructive manner, resulting in amorphous titanium oxide (am-TiO2) nanosheets that faithfully retain the dimension and flatness of pristine MXene. These am-TiO2 nanosheets exhibit exceptional activity as substrates for surface-enhanced Raman scattering. Importantly, this molecular confinement strategy can be extended to other MXene materials, providing a versatile approach for synthesizing ultrathin amorphous metal-oxide nanosheets with tailored compositions and functionalities.
Collapse
Affiliation(s)
- Xuanyu Lyu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Guanhong Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Ziyue Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Shenxin Xia
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Jiaoying Xie
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Yan Xia
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Pengshuo Fan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Run Zhu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Yajun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, People's Republic of China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Tongtao Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Angang Dong
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
87
|
Bari GAKMR, Jeong JH. Comprehensive Insights and Advancements in Gel Catalysts for Electrochemical Energy Conversion. Gels 2024; 10:63. [PMID: 38247786 PMCID: PMC10815738 DOI: 10.3390/gels10010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Continuous worldwide demands for more clean energy urge researchers and engineers to seek various energy applications, including electrocatalytic processes. Traditional energy-active materials, when combined with conducting materials and non-active polymeric materials, inadvertently leading to reduced interaction between their active and conducting components. This results in a drop in active catalytic sites, sluggish kinetics, and compromised mass and electronic transport properties. Furthermore, interaction between these materials could increase degradation products, impeding the efficiency of the catalytic process. Gels appears to be promising candidates to solve these challenges due to their larger specific surface area, three-dimensional hierarchical accommodative porous frameworks for active particles, self-catalytic properties, tunable electronic and electrochemical properties, as well as their inherent stability and cost-effectiveness. This review delves into the strategic design of catalytic gel materials, focusing on their potential in advanced energy conversion and storage technologies. Specific attention is given to catalytic gel material design strategies, exploring fundamental catalytic approaches for energy conversion processes such as the CO2 reduction reaction (CO2RR), oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and more. This comprehensive review not only addresses current developments but also outlines future research strategies and challenges in the field. Moreover, it provides guidance on overcoming these challenges, ensuring a holistic understanding of catalytic gel materials and their role in advancing energy conversion and storage technologies.
Collapse
Affiliation(s)
- Gazi A. K. M. Rafiqul Bari
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Jae-Ho Jeong
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
88
|
Sobhani Bazghale F, Gilak MR, Zamani Pedram M, Torabi F, Naikoo GA. 2D nanocomposite materials for HER electrocatalysts - a review. Heliyon 2024; 10:e23450. [PMID: 38192770 PMCID: PMC10772112 DOI: 10.1016/j.heliyon.2023.e23450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Hydrogen energy has the potential to be a cost-effective and strong technology for brighter development. Hydrogen fuel production by water electrolyzers has attracted attention. 2D nanocomposites with distinctive properties have been extensively explored for various applications from hydrogen evolution reactions to improving the efficiency of water electrolyzer, which is the most eco-friendly, and high-performance for hydrogen production. Recently, typical 2D nanocomposites such as Metal-Free 2D, TMDs, Mxene, LDH, organic composites, and Heterostructure have recently been thoroughly researched for use in the HER. We discuss effective ways for increasing the HER efficiency of 2D catalysts in this paper, And the unique advantages and mechanisms for specific applications are highlighted. Several essential regulating strategies for developing 2D nanocomposite-based HER electrocatalysts are included such as interface engineering, defect engineering, heteroatom doping, strain & phase engineering, and hybridizing which improve HER kinetics, the electrical conductivity, accessibility to catalytic active sites, and reaction energy barrier can be optimized. Finally, the future prospects for 2D nanocomposites in HER are discussed, as well as a thorough overview of a variety of methodologies for designing 2D nanocomposites as HER electrocatalysts with excellent catalytic performance. We expect that this review will provide a thorough overview of 2D nanocatalysts for hydrogen production.
Collapse
Affiliation(s)
| | - Mohammad Reza Gilak
- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Mona Zamani Pedram
- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Farschad Torabi
- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Gowhar A. Naikoo
- Department of Mathematics & Sciences, College of Arts & Applied Sciences, Dhofar University, Salalah, PC 211, Oman
| |
Collapse
|
89
|
Hanslin SØ, Jónsson H, Akola J. Sulfur-deficient edges as active sites for hydrogen evolution on MoS 2. Phys Chem Chem Phys 2023; 25:32541-32548. [PMID: 37997768 DOI: 10.1039/d3cp04198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A grand-canonical approach is employed to calculate the voltage-dependent activation energy and estimate the kinetics of the hydrogen evolution reaction (HER) on intrinsic sites of MoS2, including edges of varying S-coverage as well as S-vacancies on the basal plane. Certain edge configurations are found to be vastly more active than others, namely S-deficient edges on the Mo-termination where, in the fully S-depleted case, HER can proceed with activation energy below 0.5 eV at an electrode potential of 0 V vs. SHE. There is a clear distinction between the performance of Mo-rich and S-rich adsorption sites, as HER at the latter sites is characterized by large (generally above 1.5 eV) Heyrovsky and Tafel energy barriers despite near-thermoneutral hydrogen adsorption energy. Thus, exposing Mo-atoms on the edges to which hydrogen can directly bind is crucial for efficient hydrogen evolution. While S-vacancies on the basal plane do expose Mo-rich sites, the energy barriers are still significant due to high coordination of the Mo atoms. Kinetic modelling based on the voltage-dependent reaction energetics gives a theoretical overpotential of 0.25 V and 1.09 V for the Mo-edge with no S atoms and the weakly sulfur-deficient (2% S-vacancies) basal plane, respectively, with Volmer-Heyrovsky being the dominant pathway. These values coincide well with reported experimentally measured values of the overpotential for the edges and basal plane. For the partly Mo-exposed edges, the calculated overpotential is 0.6-0.7 V while edges with only S-sites give overpotential exceeding that of the basal plane. These results show that the overpotential systematically decreases with increased sulfur-deficiency and reduced Mo-coordination. The fundamental difference between Mo- and S-rich sites suggests that catalyst design of transition metal dichalcogenides should be focused on facilitating and modifying the metal sites, rather than activating the chalcogen sites.
Collapse
Affiliation(s)
- Sander Ø Hanslin
- Department of Physics, Norwegian University of Science and Technology, No-7491, Trondheim, Norway.
- Science Institute and Faculty of Physical Sciences, University of Iceland, IS-107 Reykjavík, Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, IS-107 Reykjavík, Iceland
| | - Jaakko Akola
- Department of Physics, Norwegian University of Science and Technology, No-7491, Trondheim, Norway.
- Computational Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| |
Collapse
|
90
|
Yang C, Gao Y, Ma T, Bai M, He C, Ren X, Luo X, Wu C, Li S, Cheng C. Metal Alloys-Structured Electrocatalysts: Metal-Metal Interactions, Coordination Microenvironments, and Structural Property-Reactivity Relationships. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301836. [PMID: 37089082 DOI: 10.1002/adma.202301836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Metal alloys-structured electrocatalysts (MAECs) have made essential contributions to accelerating the practical applications of electrocatalytic devices in renewable energy systems. However, due to the complex atomic structures, varied electronic states, and abundant supports, precisely decoding the metal-metal interactions and structure-activity relationships of MAECs still confronts great challenges, which is critical to direct the future engineering and optimization of MAECs. Here, this timely review comprehensively summarizes the latest advances in creating the MAECs, including the metal-metal interactions, coordination microenvironments, and structure-activity relationships. First, the fundamental classification, design, characterization, and structural reconstruction of MAECs are outlined. Then, the electrocatalytic merits and modulation strategies of recent breakthroughs for noble and non-noble metal-structured MAECs are thoroughly discussed, such as solid solution alloys, intermetallic alloys, and single-atom alloys. Particularly, unique insights into the bond interactions, theoretical understanding, and operando techniques for mechanism disclosure are given. Thereafter, the current states of diverse MAECs with a unique focus on structural property-reactivity relationships, reaction pathways, and performance comparisons are discussed. Finally, the future challenges and perspectives for MAECs are systematically discussed. It is believed that this comprehensive review can offer a substantial impact on stimulating the widespread utilization of metal alloys-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingru Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technical University of Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
91
|
Wang X, Zhang Q, Zhang S, Wen M, Jin S. CO 2 electro-reduction reaction via a two-dimensional TM@TAP single-atom catalyst. RSC Adv 2023; 13:35231-35239. [PMID: 38053685 PMCID: PMC10694826 DOI: 10.1039/d3ra06989c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
In this study, the possibility of using TM atom anchored monolayer TAP as a class of electrocatalysts (TM@TAP, TM = 3d and 4d transition metal) toward carbon dioxide reduction reaction (CO2RR) was systematically investigated using first-principles calculations. During screening potential catalysts, the possibility that H and OH block the active site was considered. Then, the reaction mechanisms of screened catalysts were explored in detail. Interestingly, the different catalysts demonstrated different selectivities. Our results demonstrate that Cr@TAP, Zn@TAP, Mo@TAP, and Cd@TAP are selective toward the HCOOH product with a limiting potential in the range of -0.33 to -0.71 V. Mn@TAP and Rh@TAP promote CO production. The reduction products of Fe@TAP and Co@TAP were CH3OH and HCHO, respectively. Tc@TAP and Ru@TAP can catalyze CO2 to yield the deep reduction product, i.e. CH4. Among these catalysts, Cr@TAP and Rh@TAP are highly active due to their lower limiting potentials of -0.33 V and -0.28 V, respectively, and Fe@TAP can promote the production of the desired CH3OH with a limiting potential of -0.51 V, which allow them to be promising electrocatalysts for the CO2RR. We hope that our study will provide some insights into the rational design of electrocatalysts and useful guidance for experimental researchers.
Collapse
Affiliation(s)
- Xiaolin Wang
- School of Chemistry and Chemical Engineering, Ankang Research Centre of New Nano-materials Science and Technology, Qinba Chinese Medicine Resources R&D Center, Ankang University Ankang 725000 China
| | - Qing Zhang
- Department of Materials Chemistry, Huzhou University Huzhou 313000 China
| | - Shenghai Zhang
- School of Chemistry and Chemical Engineering, Ankang Research Centre of New Nano-materials Science and Technology, Qinba Chinese Medicine Resources R&D Center, Ankang University Ankang 725000 China
| | - Mengyu Wen
- School of Chemistry and Chemical Engineering, Ankang Research Centre of New Nano-materials Science and Technology, Qinba Chinese Medicine Resources R&D Center, Ankang University Ankang 725000 China
| | - Shaowei Jin
- National Supercomputing Center of China in ShenZhen Shenzhen 518000 China
| |
Collapse
|
92
|
Xia T, Tong Z, Xie Y, Arno MC, Lei S, Xiao L, Rho JY, Ferguson CTJ, Manners I, Dove AP, O’Reilly RK. Tuning the Functionality of Self-Assembled 2D Platelets in the Third Dimension. J Am Chem Soc 2023; 145:25274-25282. [PMID: 37938914 PMCID: PMC10682995 DOI: 10.1021/jacs.3c08770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
The decoration of 2D nanostructures using heteroepitaxial growth is of great importance to achieve functional assemblies employed in biomedical, electrical, and mechanical applications. Although the functionalization of polymers before self-assembly has been investigated, the exploration of direct surface modification in the third dimension from 2D nanostructures has, to date, been unexplored. Here, we used living crystallization-driven self-assembly to fabricate poly(ε-caprolactone)-based 2D platelets with controlled size. Importantly, surface modification of the platelets in the third dimension was achieved by using functional monomers and light-induced polymerization. This method allows us to selectively regulate the height and fluorescence properties of the nanostructures. Using this approach, we gained unprecedented spatial control over the surface functionality in the specific region of complex 2D platelets.
Collapse
Affiliation(s)
- Tianlai Xia
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Zaizai Tong
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, People’s
Republic of China
| | - Yujie Xie
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Maria C. Arno
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Shixing Lei
- Department
of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Laihui Xiao
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Julia Y. Rho
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Calum T. J. Ferguson
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Ian Manners
- Department
of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Andrew P. Dove
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| |
Collapse
|
93
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
94
|
Kong Q, Wang J, Liu Z, Wu S, Tong X, Zong N, Huang B, Xu R, Yang L. One-step electrodeposition of V-doped NiFe nanosheets for low-overpotential alkaline oxygen evolution. Dalton Trans 2023; 52:16963-16973. [PMID: 37930358 DOI: 10.1039/d3dt03066k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
As a non-noble metal electrocatalyst for the oxygen evolution reaction (OER), the binary NiFe layer double hydroxide (LDH) is expected to replace Ru-based and Ir-based anode materials for water decomposition. To attain threshold current density, nevertheless, a somewhat significant overpotential is still needed. In this work, layered double hydroxides of NiFe LDH are doped with V to form the terpolymer NiFeV LDH, which greatly increases the intrinsic activity of NiFe LDH and improves OER performance. This process is a straightforward and quick one-step electrodeposition process. Notably, NiFeV/NF has a low overpotential (218 mV at 10 mA cm-2) and faster kinetics (Tafel slope of 31 mV dec-1) as well as excellent durability and stability in 1 M KOH solution. In addition, the OER performance of the catalyst prepared in this work is better than that of a non-valuable metal catalyst that was recently reported. The V-doped NiFe LDH layered double hydroxides and the investigation of electrodeposition electrocatalytic methods in this work offer a fresh opportunity for the advancement of electrochemical technology.
Collapse
Affiliation(s)
- Qingxiang Kong
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Junli Wang
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China
| | - Zhenwei Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Song Wu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiaoning Tong
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Naixuan Zong
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Bangfu Huang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Ruidong Xu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Linjing Yang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
95
|
Chen H, Li J, Chen L, Li G, Zhao W, Tao K, Han L. Electron-Redistributed NiCo@NiFe-LDH Core-Shell Heterostructure for Significantly Enhancing Electrochemical Water Splitting. Inorg Chem 2023. [PMID: 37988673 DOI: 10.1021/acs.inorgchem.3c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Layered double hydroxides (LDHs) are some of the most promising precursors for the development of economically stable and efficient electrocatalysts for water splitting. An effective strategy for designing excellent performance electrocatalysts is to assemble core-shell heterostructures with a tunable electronic structure. In this work, three core-shell heterostructure electrocatalysts (NiCo@NiFe-LDH100/150/200) are developed by a simple hydrothermal and subsequent electrodeposition method on Ni foam. Among them, NiCo@NiFe-LDH150/NF exhibits the best oxygen evolution reaction electrocatalytic activity and long-term stability with a low overpotential of 197 mV to deliver a current density of 10 mA cm-2. In addition, an efficient and stable alkaline electrolytic cell with NiCo@NiFe-LDH150/NF both as the cathode and anode achieves a voltage of 1.66 V at a current density of 10 mA cm-2 and realization of ultralong stability at current densities of 20 and 200 mA cm-2 for 200 h. Density functional theory calculations reveal the strong electron interaction at the heterogeneous interface of the NiCo@NiFe-LDH150/NF core-shell structure, which effectively improves the intrinsic electron conductivity and ion diffusion kinetics and makes an important contribution to the electrocatalytic performance of the material. This work provides a new idea for the selection of materials for electrochemical water splitting by the construction of heterojunction interfaces.
Collapse
Affiliation(s)
- Hao Chen
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiangning Li
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Linli Chen
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Guochang Li
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wenna Zhao
- School of Biological and Chemical Engineering, Ningbotech University, Ningbo, Zhejiang 315100, China
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lei Han
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
96
|
Zhang X, Wang X, He T, Wang L, Yu WW, Liu Y, Liu G, Cheng Z. Magnetic topological materials in two-dimensional: theory, material realization and application prospects. Sci Bull (Beijing) 2023; 68:2639-2657. [PMID: 37734982 DOI: 10.1016/j.scib.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Two-dimensional (2D) magnetism and nontrivial band topology are both areas of research that are currently receiving significant attention in the study of 2D materials. Recently, a novel class of materials has emerged, known as 2D magnetic topological materials, which elegantly combine 2D magnetism and nontrivial topology. This field has garnered increasing interest, especially due to the emergence of several novel magnetic topological states that have been generalized into the 2D scale. These states include antiferromagnetic topological insulators/semimetals, second-order topological insulators, and topological half-metals. Despite the rapid advancements in this emerging research field in recent years, there have been few comprehensive summaries of the state-of-the-art progress. Therefore, this review aims to provide a thorough analysis of current progress on 2D magnetic topological materials. We cover various 2D magnetic topological insulators, a range of 2D magnetic topological semimetals, and the novel 2D topological half-metals, systematically analyzing the basic topological theory, the course of development, the material realization, and potential applications. Finally, we discuss the challenges and prospects for 2D magnetic topological materials, highlighting the potential for future breakthroughs in this exciting field.
Collapse
Affiliation(s)
- Xiaoming Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaotian Wang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Tingli He
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lirong Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Wei-Wang Yu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ying Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Guodong Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500, Australia.
| |
Collapse
|
97
|
Zhang N, Zhang K, Li J, Ye C, Du Y. One-pot synthesis of 3D surface-wrinkled PdAu nanospheres for robust alcohols electrocatalysis. J Colloid Interface Sci 2023; 650:1509-1517. [PMID: 37487281 DOI: 10.1016/j.jcis.2023.07.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Three dimensional (3D) noble-metal nanomaterials with special surface structures have been regarded as high-performance catalysts for alcohol oxidation on account of their superior thermal stability, electrical conductivity and large specific surface area. Although extensive efforts have been devoted to the preparation of 3D Pd-based catalysts with superior activity and stability, designing a simple, effective and eco-friendly method remains a challenge. Herein, we developed a facile one-step coreduction strategy to synthesize a series of 3D surface-wrinkled PdAu nanospheres (NSs) with tunable Pd/Au atomic ratios and found a universal method to prepare surface-wrinkled PdM (M = Au, Pt, Cu and Pb) NSs. Benefiting from the function of the surfactant cetyltrimethylammonium chloride (CTAC), the synthesized PdAu NSs with different composition possess abundant surface wrinkles, which is beneficial for exposing more electroactive centers. Attributed to the unique geometric morphology and optimized atomic ratio, the PdAu-2 NSs exhibited an optimal mass activity (MA) of 8103 mA mg-1 and 5113 mA mg-1 for the ethylene glycol oxidation reaction (EGOR) and ethanol oxidation reaction (EOR), which was 6.1 and 4.1 times that of commercial Pd/C, respectively. Moreover, the PdAu-2 NSs exhibited superb stability after long-term current-time (i-t) and cyclic voltammetry (CV) tests of the EGOR and EOR. This work not only provides new avenues to engineer PdAu NSs with enhanced electrocatalytic performance but also offers guidance for extending to more 3D PdM (M = other metals) NSs with novel morphology applied to fuel cell fields.
Collapse
Affiliation(s)
- Nannan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Kewang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Changqing Ye
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China.
| |
Collapse
|
98
|
Wang P, Yan Y, Qin B, Ye Z, Cai W, Zheng X. Carbon nanotubes encapsulating Pt/MoN heterostructures for superior hydrogen evolution. J Colloid Interface Sci 2023; 650:1174-1181. [PMID: 37473477 DOI: 10.1016/j.jcis.2023.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Achieving efficient hydrogen evolution reaction (HER) catalysts to scale up electrochemical water splitting is desirable but remains a major challenge. Here, nitrogen-doped carbon nanotubes (NCNTs) loaded with PtNi/MoN electrocatalyst (PtNi/MoN@C) is synthesized by a simple strategy to obtain stronger interphase effects and significantly improve HER activity. The surface morphology of the materials is altered by Pt doping and the electronic structure of MoN is changed, which optimizing the electronic environment of the materials, shifting the binding energy and giving the materials a higher electrical conductivity, this ultimately leads to faster proton and electron transfer processes. The synergistic effect of Pt nanoparticles, MoN and the good combination with carbon leads to a high HER activity of 18 mV to reach 10 mA cm-2 in alkaline solution, outperforming that of the commercial Pt/C. Theoretical studies show that the heterostructures can efficiently enhance the electron transport and reduce the △GH*.
Collapse
Affiliation(s)
- Peijia Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yaotian Yan
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bin Qin
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhenyu Ye
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wei Cai
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaohang Zheng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
99
|
Chen B, Sui S, He F, He C, Cheng HM, Qiao SZ, Hu W, Zhao N. Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications. Chem Soc Rev 2023; 52:7802-7847. [PMID: 37869994 DOI: 10.1039/d3cs00445g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
To support the global goal of carbon neutrality, numerous efforts have been devoted to the advancement of electrochemical energy conversion (EEC) and electrochemical energy storage (EES) technologies. For these technologies, transition metal dichalcogenide/carbon (TMDC/C) heterostructures have emerged as promising candidates for both electrode materials and electrocatalysts over the past decade, due to their complementary advantages. It is worth noting that interfacial properties play a crucial role in establishing the overall electrochemical characteristics of TMDC/C heterostructures. However, despite the significant scientific contribution in this area, a systematic understanding of TMDC/C heterostructures' interfacial engineering is currently lacking. This literature review aims to focus on three types of interfacial engineering, namely interfacial orientation engineering, interfacial stacking engineering, and interfacial doping engineering, of TMDC/C heterostructures for their potential applications in EES and EEC devices. To accomplish this goal, a combination of experimental and theoretical approaches was used to allow the analysis and summary of the fundamental electrochemical properties and preparation strategies of TMDC/C heterostructures. Moreover, this review highlights the design and utilization of the interfacial engineering of TMDC/C heterostructures for specific EES and EEC devices. Finally, the challenges and opportunities of using interfacial engineering of TMDC/C heterostructures in practical EES and EEC devices are outlined. We expect that this review will effectively guide readers in their understanding, design, and application of interfacial engineering of TMDC/C heterostructures.
Collapse
Affiliation(s)
- Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| | - Simi Sui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| |
Collapse
|
100
|
Zhang X, Yan L, Su Z. A single transition metal atom anchored on Nb 2C as an electrocatalyst for the nitrogen reduction reaction. NANOSCALE 2023; 15:17508-17515. [PMID: 37869771 DOI: 10.1039/d3nr02491a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Nitrogen (N2) reduction to produce ammonia (NH3) under milder conditions is attractive as NH3 has been widely used in various fields. The electrocatalytic nitrogen reduction reaction (NRR) is considered to be a more moderate and green method for ammonia synthesis. Herein, using density functional theory (DFT) computations, we investigated the potential application of single-atom catalysts (SACs) toward the NRR, in which transition metal (TM, TM = Ti, V, Mn, Fe, Co, Y, Zr, Mo) atoms are supported on Nb2C (TM-Nb2C). Through our screening, Fe-Nb2C is highlighted from 8 candidate systems as the superior SAC for the NRR with a low limiting potential of -0.47 V. Meanwhile, a volcano plot between UL (NRR) and the ICOHP values of the N-H bond in *NH2 is established to determine the optimal ICOHP values that can be used as a simple descriptor of the NRR performance of Fe-Nb2C.
Collapse
Affiliation(s)
- Xuanyue Zhang
- Institute of Functional Material Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Likai Yan
- Institute of Functional Material Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Zhongmin Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|