51
|
Shen J, Ma M, Shafiq M, Yu H, Lan Z, Chen H. Microfluidics‐Assisted Engineering of pH/Enzyme Dual‐Activatable ZIF@Polymer Nanosystem for Co‐Delivery of Proteins and Chemotherapeutics with Enhanced Deep‐Tumor Penetration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jie Shen
- Shanghai Institute of Ceramics State Key Laboratory of High Performance Ceramics and Superfine Microstructures CHINA
| | - Ming Ma
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructures CHINA
| | - Muhammad Shafiq
- University of Central Punjab Department of Biotechnology, Faculty of Life Sciences PAKISTAN
| | - Huizhu Yu
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High performance Ceramics and Superfine Microstructures CHINA
| | - Zhengyi Lan
- Shanghai Institute of Ceramics State Key Laboratory of High Performance Ceramics and Superfine Microstructures CHINA
| | - Hangrong Chen
- Shanghai Institute of Ceramics State Key Laboratory of High Performance Ceramics and Superfine Microstructure No. 1295, Dingxi Road 200050 Shanghai CHINA
| |
Collapse
|
52
|
Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M, Chiani M, Shariati FS, Mehrabi MR, Munn LL. Towards principled design of cancer nanomedicine to accelerate clinical translation. Mater Today Bio 2022; 13:100208. [PMID: 35198957 PMCID: PMC8841842 DOI: 10.1016/j.mtbio.2022.100208] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Nanotechnology in medical applications, especially in oncology as drug delivery systems, has recently shown promising results. However, although these advances have been promising in the pre-clinical stages, the clinical translation of this technology is challenging. To create drug delivery systems with increased treatment efficacy for clinical translation, the physicochemical characteristics of nanoparticles such as size, shape, elasticity (flexibility/rigidity), surface chemistry, and surface charge can be specified to optimize efficiency for a given application. Consequently, interdisciplinary researchers have focused on producing biocompatible materials, production technologies, or new formulations for efficient loading, and high stability. The effects of design parameters can be studied in vitro, in vivo, or using computational models, with the goal of understanding how they affect nanoparticle biophysics and their interactions with cells. The present review summarizes the advances and technologies in the production and design of cancer nanomedicines to achieve clinical translation and commercialization. We also highlight existing challenges and opportunities in the field.
Collapse
Key Words
- CFL, Cell-free layer
- CGMD, Coarse-grained molecular dynamic
- Clinical translation
- DPD, Dissipative particle dynamic
- Drug delivery
- Drug loading
- ECM, Extracellular matrix
- EPR, Permeability and retention
- IFP, Interstitial fluid pressure
- MD, Molecular dynamic
- MDR, Multidrug resistance
- MEC, Minimum effective concentration
- MMPs, Matrix metalloproteinases
- MPS, Mononuclear phagocyte system
- MTA, Multi-tadpole assemblies
- MTC, Minimum toxic concentration
- Nanomedicine
- Nanoparticle design
- RBC, Red blood cell
- TAF, Tumor-associated fibroblast
- TAM, Tumor-associated macrophage
- TIMPs, Tissue inhibitor of metalloproteinases
- TME, Tumor microenvironment
- Tumor microenvironment
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
| | | | | | - Mohsen Chiani
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Lance L. Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
53
|
Heshmatnezhad F, Solaimany Nazar AR, Aghaei H, Varshosaz J. Production of doxorubicin-loaded PCL nanoparticles through a flow-focusing microfluidic device: encapsulation efficacy and drug release. SOFT MATTER 2021; 17:10675-10682. [PMID: 34782908 DOI: 10.1039/d1sm01070k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present study shows a facile route for producing doxorubicin (DOX)-loaded polycaprolactone (PCL) nanoparticles using a microfluidic device with a flow-focusing platform in a single step. Indeed, the evaluation of the performance of the flow-focusing microfluidic device for the preparation of DOX-loaded PCL (DOX/PCL) nanoparticles with a uniform size distribution and high encapsulation efficiency (EE) by applying the liquid non-solvent precipitation process is very important. Accordingly, the physicochemical characteristics of the DOX/PCL nanoparticles such as their mean size, polydispersity index (PDI), and EE were investigated by studying different parameters such as the flow rate ratio (FRR) and DOX concentration. Also, the release study was carried out at two pH of 5.5 and 7.4. The mean size of DOX/PCL nanoparticles achieved was in the range of 120-320 nm with a PDI ≤ 0.29 and EE between 48% and 87%. Moreover, the release profile of DOX/PCL nanoparticles was sustained for 10 days (≤66%) at pH 7.4. This means that the production process can result in a high EE and low release of the DOX drug.
Collapse
Affiliation(s)
| | | | - Halimeh Aghaei
- Department of Chemical Engineering, University of Isfahan, Isfahan, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
54
|
Truong N, Black SK, Shaw J, Scotland BL, Pearson RM. Microfluidic-Generated Immunomodulatory Nanoparticles and Formulation-Dependent Effects on Lipopolysaccharide-Induced Macrophage Inflammation. AAPS J 2021; 24:6. [PMID: 34859324 PMCID: PMC8728808 DOI: 10.1208/s12248-021-00645-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) have emerged as a highly useful and clinically translatable drug delivery platform for vast therapeutic payloads. Through the precise tuning of their physicochemical properties, NPs can be engineered to exhibit controlled drug release properties, enhanced circulation times, improved cellular uptake and targeting, and reduced toxicity profiles. Conventional bulk methods for the production of polymeric NPs suffer from the ability to control their size and polydispersity, batch-to-batch variability, significant preparation times, and low recovery. Here, we describe the development and optimization of a high-throughput microfluidic method to produce cargo-less immunomodulatory nanoparticles (iNPs) and their formulation-dependent anti-inflammatory properties for the modulation of lipopolysaccharide (LPS)-induced macrophage responses. Using poly(lactic acid) (PLA) as the core-forming polymer, a rapid and tunable microfluidic hydrodynamic flow-focusing method was developed and optimized to systematically evaluate the role of polymer and surfactant concentration, surfactant chemistry, and flow rate ratio (FRR) on the formation of iNPs. A set of iNPs with 6 different surface chemistries and 2 FRRs was then prepared to evaluate their inherent anti-inflammatory effects using bone marrow-derived macrophages stimulated with the Toll-like receptor 4 agonist, LPS. Finally, a lyophilization study was performed using various cryoprotectants and combinations to identify preferable conditions for iNP storage. Overall, we demonstrate a highly controlled and reproducible method for the formulation of iNPs using microfluidics and their formulation-dependent inherent anti-inflammatory immunomodulatory properties, which represents a potentially promising strategy for the management of inflammation.
Collapse
Affiliation(s)
- Nhu Truong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, MD, 21201, Baltimore, USA
| | - Sheneil K Black
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, MD, 21201, Baltimore, USA
| | - Jacob Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, MD, 21201, Baltimore, USA
| | - Brianna L Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, MD, 21201, Baltimore, USA
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, MD, 21201, Baltimore, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, MD, 21201, Baltimore, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, MD, 21201, Baltimore, USA.
| |
Collapse
|
55
|
Illath K, Kar S, Gupta P, Shinde A, Wankhar S, Tseng FG, Lim KT, Nagai M, Santra TS. Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials 2021; 280:121247. [PMID: 34801251 DOI: 10.1016/j.biomaterials.2021.121247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Microfluidic platforms gain popularity in biomedical research due to their attractive inherent features, especially in nanomaterials synthesis. This review critically evaluates the current state of the controlled synthesis of nanomaterials using microfluidic devices. We describe nanomaterials' screening in microfluidics, which is very relevant for automating the synthesis process for biomedical applications. We discuss the latest microfluidics trends to achieve noble metal, silica, biopolymer, quantum dots, iron oxide, carbon-based, rare-earth-based, and other nanomaterials with a specific size, composition, surface modification, and morphology required for particular biomedical application. Screening nanomaterials has become an essential tool to synthesize desired nanomaterials using more automated processes with high speed and repeatability, which can't be neglected in today's microfluidic technology. Moreover, we emphasize biomedical applications of nanomaterials, including imaging, targeting, therapy, and sensing. Before clinical use, nanomaterials have to be evaluated under physiological conditions, which is possible in the microfluidic system as it stimulates chemical gradients, fluid flows, and the ability to control microenvironment and partitioning multi-organs. In this review, we emphasize the clinical evaluation of nanomaterials using microfluidics which was not covered by any other reviews. In the future, the growth of new materials or modification in existing materials using microfluidics platforms and applications in a diversity of biomedical fields by utilizing all the features of microfluidic technology is expected.
Collapse
Affiliation(s)
- Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Srabani Kar
- Department of Electrical Engineering, University of Cambridge, UK
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Syrpailyne Wankhar
- Department of Bioengineering, Christian Medical College Vellore, Vellore, India
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, South Korea
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| |
Collapse
|
56
|
Du X, Gao Y, Kang Q, Xing J. Design and Applications of Tumor Microenvironment-Responsive Nanogels as Drug Carriers. Front Bioeng Biotechnol 2021; 9:771851. [PMID: 34746113 PMCID: PMC8569621 DOI: 10.3389/fbioe.2021.771851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 12/03/2022] Open
Abstract
In recent years, the exploration of tumor microenvironment has provided a new approach for tumor treatment. More and more researches are devoted to designing tumor microenvironment-responsive nanogels loaded with therapeutic drugs. Compared with other drug carriers, nanogel has shown great potential in improving the effect of chemotherapy, which is attributed to its stable size, superior hydrophilicity, excellent biocompatibility, and responsiveness to specific environment. This review primarily summarizes the common preparation techniques of nanogels (such as free radical polymerization, covalent cross-linking, and physical self-assembly) and loading ways of drug in nanogels (including physical encapsulation and chemical coupling) as well as the controlled drug release behaviors. Furthermore, the difficulties and prospects of nanogels as drug carriers are also briefly described.
Collapse
Affiliation(s)
- Xinjing Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuting Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qi Kang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
57
|
Baki A, Wiekhorst F, Bleul R. Advances in Magnetic Nanoparticles Engineering for Biomedical Applications-A Review. Bioengineering (Basel) 2021; 8:134. [PMID: 34677207 PMCID: PMC8533261 DOI: 10.3390/bioengineering8100134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been developed and applied for a broad range of biomedical applications, such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery, gene therapy and tissue repair. As one key element, reproducible synthesis routes of MNPs are capable of controlling and adjusting structure, size, shape and magnetic properties are mandatory. In this review, we discuss advanced methods for engineering and utilizing MNPs, such as continuous synthesis approaches using microtechnologies and the biosynthesis of magnetosomes, biotechnological synthesized iron oxide nanoparticles from bacteria. We compare the technologies and resulting MNPs with conventional synthetic routes. Prominent biomedical applications of the MNPs such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery and magnetic actuation in micro/nanorobots will be presented.
Collapse
Affiliation(s)
- Abdulkader Baki
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany;
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| |
Collapse
|
58
|
Khramtsov P, Burdina O, Lazarev S, Novokshonova A, Bochkova M, Timganova V, Kiselkov D, Minin A, Zamorina S, Rayev M. Modified Desolvation Method Enables Simple One-Step Synthesis of Gelatin Nanoparticles from Different Gelatin Types with Any Bloom Values. Pharmaceutics 2021; 13:1537. [PMID: 34683829 PMCID: PMC8541285 DOI: 10.3390/pharmaceutics13101537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Gelatin nanoparticles found numerous applications in drug delivery, bioimaging, immunotherapy, and vaccine development as well as in biotechnology and food science. Synthesis of gelatin nanoparticles is usually made by a two-step desolvation method, which, despite providing stable and homogeneous nanoparticles, has many limitations, namely complex procedure, low yields, and poor reproducibility of the first desolvation step. Herein, we present a modified one-step desolvation method, which enables the quick, simple, and reproducible synthesis of gelatin nanoparticles. Using the proposed method one can prepare gelatin nanoparticles from any type of gelatin with any bloom number, even with the lowest ones, which remains unattainable for the traditional two-step technique. The method relies on quick one-time addition of poor solvent (preferably isopropyl alcohol) to gelatin solution in the absence of stirring. We applied the modified desolvation method to synthesize nanoparticles from porcine, bovine, and fish gelatin with bloom values from 62 to 225 on the hundreds-of-milligram scale. Synthesized nanoparticles had average diameters between 130 and 190 nm and narrow size distribution. Yields of synthesis were 62-82% and can be further increased. Gelatin nanoparticles have good colloidal stability and withstand autoclaving. Moreover, they were non-toxic to human immune cells.
Collapse
Affiliation(s)
- Pavel Khramtsov
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Oksana Burdina
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Sergey Lazarev
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Anastasia Novokshonova
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Maria Bochkova
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Valeria Timganova
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
| | - Dmitriy Kiselkov
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Institute of Technical Chemistry, 614013 Perm, Russia;
| | - Artem Minin
- Lab of Applied Magnetism, M.N. Mikheev Institute of Metal Physics of the UB RAS, 620108 Yekaterinburg, Russia;
- Faculty of Biology and Fundamental Medicine, Ural Federal University Named after The First President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia
| | - Svetlana Zamorina
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Mikhail Rayev
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| |
Collapse
|
59
|
Han FY, Xu W, Kumar V, Cui CS, Li X, Jiang X, Woodruff TM, Whittaker AK, Smith MT. Optimisation of a Microfluidic Method for the Delivery of a Small Peptide. Pharmaceutics 2021; 13:1505. [PMID: 34575581 PMCID: PMC8468767 DOI: 10.3390/pharmaceutics13091505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/28/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Peptides hold promise as therapeutics, as they have high bioactivity and specificity, good aqueous solubility, and low toxicity. However, they typically suffer from short circulation half-lives in the body. To address this issue, here, we have developed a method for encapsulation of an innate-immune targeted hexapeptide into nanoparticles using safe non-toxic FDA-approved materials. Peptide-loaded nanoparticles were formulated using a two-stage microfluidic chip. Microfluidic-related factors (i.e., flow rate, organic solvent, theoretical drug loading, PLGA type, and concentration) that may potentially influence the nanoparticle properties were systematically investigated using dynamic light scattering and transmission electron microscopy. The pharmacokinetic (PK) profile and biodistribution of the optimised nanoparticles were assessed in mice. Peptide-loaded lipid shell-PLGA core nanoparticles with designated size (~400 nm) and a sustained in vitro release profile were further characterized in vivo. In the form of nanoparticles, the elimination half-life of the encapsulated peptide was extended significantly compared with the peptide alone and resulted in a much higher distribution into the lung. These novel nanoparticles with lipid shells have considerable potential for increasing the circulation half-life and improving the biodistribution of therapeutic peptides to improve their clinical utility, including peptides aimed at treating lung-related diseases.
Collapse
Affiliation(s)
- Felicity Y. Han
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (W.X.); (V.K.); (C.S.C.); (X.L.); (T.M.W.); (M.T.S.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Weizhi Xu
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (W.X.); (V.K.); (C.S.C.); (X.L.); (T.M.W.); (M.T.S.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Vinod Kumar
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (W.X.); (V.K.); (C.S.C.); (X.L.); (T.M.W.); (M.T.S.)
| | - Cedric S. Cui
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (W.X.); (V.K.); (C.S.C.); (X.L.); (T.M.W.); (M.T.S.)
| | - Xaria Li
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (W.X.); (V.K.); (C.S.C.); (X.L.); (T.M.W.); (M.T.S.)
| | - Xingyu Jiang
- National Center for Nanoscience and Technology, Beijing 100190, China;
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Trent M. Woodruff
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (W.X.); (V.K.); (C.S.C.); (X.L.); (T.M.W.); (M.T.S.)
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia;
- ARC Centre of Excellence in Convergent Bio Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maree T. Smith
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (W.X.); (V.K.); (C.S.C.); (X.L.); (T.M.W.); (M.T.S.)
| |
Collapse
|
60
|
Rezvantalab S, Maleki R, Drude NI, Khedri M, Jans A, Keshavarz Moraveji M, Darguzyte M, Ghasemy E, Tayebi L, Kiessling F. Experimental and Computational Study on the Microfluidic Control of Micellar Nanocarrier Properties. ACS OMEGA 2021; 6:23117-23128. [PMID: 34549113 PMCID: PMC8444197 DOI: 10.1021/acsomega.1c02651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Microfluidic-based synthesis is a powerful technique to prepare well-defined homogenous nanoparticles (NPs). However, the mechanisms defining NP properties, especially size evolution in a microchannel, are not fully understood. Herein, microfluidic and bulk syntheses of riboflavin (RF)-targeted poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG-RF) micelles were evaluated experimentally and computationally. Using molecular dynamics (MD), a conventional "random" model for bulk self-assembly of PLGA-PEG-RF was simulated and a conceptual "interface" mechanism was proposed for the microfluidic self-assembly at an atomic scale. The simulation results were in agreement with the observed experimental outcomes. NPs produced by microfluidics were smaller than those prepared by the bulk method. The computational approach suggested that the size-determining factor in microfluidics is the boundary of solvents in the entrance region of the microchannel, explaining the size difference between the two experimental methods. Therefore, this computational approach can be a powerful tool to gain a deeper understanding and optimize NP synthesis.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department
of Chemical Engineering, Urmia University
of Technology, 57166-93188 Urmia, Iran
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| | - Reza Maleki
- Computational
Biology and Chemistry Group (CBCG), Universal
Scientific Education and Research Network (USERN), Tehran 1449614535 Iran
| | - Natascha Ingrid Drude
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
- Department
of Experimental Neurology, Charité
−Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mohammad Khedri
- Computational
Biology and Chemistry Group (CBCG), Universal
Scientific Education and Research Network (USERN), Tehran 1449614535 Iran
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Alexander Jans
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Mostafa Keshavarz Moraveji
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Milita Darguzyte
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| | - Ebrahim Ghasemy
- Centre
Énergie Matériaux Télécommunications, Institut national de la recherché, 1650 Boul. Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Lobat Tayebi
- School
of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Fabian Kiessling
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| |
Collapse
|
61
|
Ejeta F. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine. Drug Des Devel Ther 2021; 15:3881-3891. [PMID: 34531650 PMCID: PMC8439440 DOI: 10.2147/dddt.s324580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
Nanomedicine drug delivery systems hold great potential for the therapy of many diseases, especially cancer. However, the controlled drug delivery systems of nanomedicine bring many challenges to clinical practice. These difficulties can be attributed to the high batch-to-batch variations and insufficient production rate of traditional preparation methods, as well as a lack of technology for fast screening of nanoparticulate drug delivery structures with high correlation to in vivo tests. These problems may be addressed through microfluidic technology. Microfluidics, for example, can not only produce nanoparticles in a well-controlled, reproducible, and high-throughput manner, but it can also continuously create three-dimensional environments to mimic physiological and/or pathological processes. This overview gives a top-level view of the microfluidic devices advanced to put together nanoparticulate drug delivery systems, including drug nanosuspensions, polymer nanoparticles, polyplexes, structured nanoparticles and therapeutic nanoparticles. Additionally, highlighting the current advances of microfluidic systems in fabricating the more and more practical fashions of the in vitro milieus for fast screening of nanoparticles was reviewed. Overall, microfluidic technology provides a promising technique to boost the scientific delivery of nanomedicine and nanoparticulate drug delivery systems. Nonetheless, digital microfluidics with droplets and liquid marbles is the answer to the problems of cumbersome external structures, in addition to the rather big pattern volume. As the latest work is best at the proof-of-idea of liquid-marble-primarily based on totally virtual microfluidics, computerized structures for developing liquid marble, and the controlled manipulation of liquid marble, including coalescence and splitting, are areas of interest for bringing this platform toward realistic use.
Collapse
Affiliation(s)
- Fikadu Ejeta
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|
62
|
Chung CH, Lau CML, Sin DT, Chung JT, Zhang Y, Chau Y, Yao S. Droplet-Based Microfluidic Synthesis of Hydrogel Microparticles via Click Chemistry-Based Cross-Linking for the Controlled Release of Proteins. ACS APPLIED BIO MATERIALS 2021; 4:6186-6194. [DOI: 10.1021/acsabm.1c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Casper H.Y. Chung
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Chi Ming Laurence Lau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Dixon T. Sin
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jin Teng Chung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yuzi Zhang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| |
Collapse
|
63
|
Jha AK, Zamani S, Kumar A. Green synthesis and characterization of silver nanoparticles using Pteris vittata extract and their therapeutic activities. Biotechnol Appl Biochem 2021; 69:1653-1662. [PMID: 34347920 DOI: 10.1002/bab.2235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023]
Abstract
The bacterial infections have been substantially increasing with higher mortality and new regimens required for their management. The present work deals with the green synthesis of silver nanoparticles (AgNPs) using leaf extract of Pteris vittata at pH 9.0. The AgNPs showed a single absorption peak at 407 nm. The morphology of AgNPs was found to be spherical in shape analyzed by scanning electron micrographs. The X-ray diffraction studies revealed the face-centered cubic structure of AgNPs with a 17-nm average crystallite size. They showed the antimicrobial activity against Pseudomonas aeruginosa, and the cell growth was completely ceased at the minimum inhibitory concentration (MIC); 100 μg/mL, with rapidly decreased cell viability. This bactericidal effect was due to the enhancement of cell permeability caused by cell disruption. The AgNPs lead to show a promising antiquorum-sensing activity by inhibition of toxin protease and pyocyanin in P. aeruginosa by 88% and, 94% respectively, at the sub-MIC concentration (0.25× MIC). These results conclude that the green synthesis of AgNPs shows a promising antimicrobial and antivirulence activity against P. aeruginosa.
Collapse
Affiliation(s)
- Anal Kant Jha
- Department of Chemistry, T. M. Bhagalpur University, Bhagalpur, India
| | - Sabiha Zamani
- Centre for Nanoscience and Nanotechnology, Aryabhatta Knowledge University, Patna, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India.,Department of Biotechnology, Central University of South Bihar, Gaya, India
| |
Collapse
|
64
|
Jung Y, Kim D. Recent advances in hybrid system of porous silicon nanoparticles and biocompatible polymers for biomedical applications. Biomed Eng Lett 2021; 11:171-181. [PMID: 34350046 PMCID: PMC8316517 DOI: 10.1007/s13534-021-00194-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022] Open
Abstract
Hybrid systems of nanoparticles and polymers have emerged as a new material in the biomedical field. To date, various kinds of hybrid systems have been introduced and applied to drug delivery, regenerative medicine, therapeutics, disease diagnosis, and medical implantation. Among them, the hybridization of nanostructured porous silicon nanoparticles (pSiNPs) and biocompatible polymers has been highlighted due to its unique biological and physicochemical properties. This review focuses on the recent advances in the hybrid systems of pSiNPs and biocompatible polymers from an engineering aspect and its biomedical applications. Representative hybrid formulations, (i) Polymer-coated pSiNPs, (ii) pSiNPs-embedded polymeric nanofibers, are outlined along with their preparation methods, biomedical applications, and future perspectives. We believe this review provides insight into a new hybrid system of pSiNPs and biocompatible polymers as a promising nano-platform for further biomedical applications. Recently developed and representative hybrid systems of porous silicon nanoparticles and biocompatible polymers and their biomedical applications are introduced.
Collapse
Affiliation(s)
- Yuna Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447 Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447 Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul, 02447 Republic of Korea
| |
Collapse
|
65
|
Sicard F, Toro-Mendoza J. Armored Droplets as Soft Nanocarriers for Encapsulation and Release under Flow Conditions. ACS NANO 2021; 15:11406-11416. [PMID: 34264056 PMCID: PMC8397430 DOI: 10.1021/acsnano.1c00955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/13/2021] [Indexed: 05/05/2023]
Abstract
Technical challenges in precision medicine and environmental remediation create an increasing demand for smart materials that can select and deliver a probe load to targets with high precision. In this context, soft nanomaterials have attracted considerable attention due to their ability to simultaneously adapt their morphology and functionality to complex ambients. Two major challenges are to precisely control this adaptability under dynamic conditions and provide predesigned functionalities that can be manipulated by external stimuli. Here, we report on the computational design of a distinctive class of soft nanocarriers, built from armored nanodroplets, able to selectively encapsulate or release a probe load under specific flow conditions. First, we describe in detail the mechanisms at play in the formation of pocket-like structures in armored nanodroplets and their stability under external flow. Then we use that knowledge to test the capacity of these pockets to yield flow-assisted encapsulation or expulsion of a probe load. Finally, the rheological properties of these nanocarriers are put into perspective with those of delivery systems employed in pharmaceutical and cosmetic technology.
Collapse
Affiliation(s)
- François Sicard
- Department
of Physics and Astronomy, University College
London, WC1E 6BT London, U.K.
- Department
of Chemical Engineering, University College
London, WC1E 7JE London, U.K.
| | - Jhoan Toro-Mendoza
- Centro
de Estudios Interdisciplinarios de la Fisica, Instituto Venezolano de Investigaciones Cientificas, Caracas 1020A, Venezuela
| |
Collapse
|
66
|
Guttenplan APM, Tahmasebi Birgani Z, Giselbrecht S, Truckenmüller RK, Habibović P. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Adv Healthc Mater 2021; 10:e2100371. [PMID: 34033239 PMCID: PMC11468311 DOI: 10.1002/adhm.202100371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Indexed: 12/24/2022]
Abstract
In recent years, the use of microfabrication techniques has allowed biomaterials studies which were originally carried out at larger length scales to be miniaturized as so-called "on-chip" experiments. These miniaturized experiments have a range of advantages which have led to an increase in their popularity. A range of biomaterial shapes and compositions are synthesized or manufactured on chip. Moreover, chips are developed to investigate specific aspects of interactions between biomaterials and biological systems. Finally, biomaterials are used in microfabricated devices to replicate the physiological microenvironment in studies using so-called "organ-on-chip," "tissue-on-chip" or "disease-on-chip" models, which can reduce the use of animal models with their inherent high cost and ethical issues, and due to the possible use of human cells can increase the translation of research from lab to clinic. This review gives an overview of recent developments at the interface between microfabrication and biomaterials science, and indicates potential future directions that the field may take. In particular, a trend toward increased scale and automation is apparent, allowing both industrial production of micron-scale biomaterials and high-throughput screening of the interaction of diverse materials libraries with cells and bioengineered tissues and organs.
Collapse
Affiliation(s)
- Alexander P. M. Guttenplan
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
67
|
Shepherd SJ, Issadore D, Mitchell MJ. Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials 2021; 274:120826. [PMID: 33965797 PMCID: PMC8752123 DOI: 10.1016/j.biomaterials.2021.120826] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics-devices that manipulate fluids on a micrometer scale-have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques-such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets.
Collapse
Affiliation(s)
- Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
68
|
Abedini-Nassab R, Pouryosef Miandoab M, Şaşmaz M. Microfluidic Synthesis, Control, and Sensing of Magnetic Nanoparticles: A Review. MICROMACHINES 2021; 12:768. [PMID: 34210058 PMCID: PMC8306075 DOI: 10.3390/mi12070768] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023]
Abstract
Magnetic nanoparticles have attracted significant attention in various disciplines, including engineering and medicine. Microfluidic chips and lab-on-a-chip devices, with precise control over small volumes of fluids and tiny particles, are appropriate tools for the synthesis, manipulation, and evaluation of nanoparticles. Moreover, the controllability and automation offered by the microfluidic chips in combination with the unique capabilities of the magnetic nanoparticles and their ability to be remotely controlled and detected, have recently provided tremendous advances in biotechnology. In particular, microfluidic chips with magnetic nanoparticles serve as sensitive, high throughput, and portable devices for contactless detecting and manipulating DNAs, RNAs, living cells, and viruses. In this work, we review recent fundamental advances in the field with a focus on biomedical applications. First, we study novel microfluidic-based methods in synthesizing magnetic nanoparticles as well as microparticles encapsulating them. We review both continues-flow and droplet-based microreactors, including the ones based on the cross-flow, co-flow, and flow-focusing methods. Then, we investigate the microfluidic-based methods for manipulating tiny magnetic particles. These manipulation techniques include the ones based on external magnets, embedded micro-coils, and magnetic thin films. Finally, we review techniques invented for the detection and magnetic measurement of magnetic nanoparticles and magnetically labeled bioparticles. We include the advances in anisotropic magnetoresistive, giant magnetoresistive, tunneling magnetoresistive, and magnetorelaxometry sensors. Overall, this review covers a wide range of the field uniquely and provides essential information for designing "lab-on-a-chip" systems for synthesizing magnetic nanoparticles, labeling bioparticles with them, and sorting and detecting them on a single chip.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Department of Biomedical Engineering, University of Neyshabur, Neyshabur 9319774446, Iran
| | | | - Merivan Şaşmaz
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Adiyaman University, Adiyaman 02040, Turkey;
| |
Collapse
|
69
|
Rial R, González-Durruthy M, Liu Z, Ruso JM. Advanced Materials Based on Nanosized Hydroxyapatite. Molecules 2021; 26:3190. [PMID: 34073479 PMCID: PMC8198166 DOI: 10.3390/molecules26113190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/02/2023] Open
Abstract
The development of new materials based on hydroxyapatite has undergone a great evolution in recent decades due to technological advances and development of computational techniques. The focus of this review is the various attempts to improve new hydroxyapatite-based materials. First, we comment on the most used processing routes, highlighting their advantages and disadvantages. We will now focus on other routes, less common due to their specificity and/or recent development. We also include a block dedicated to the impact of computational techniques in the development of these new systems, including: QSAR, DFT, Finite Elements of Machine Learning. In the following part we focus on the most innovative applications of these materials, ranging from medicine to new disciplines such as catalysis, environment, filtration, or energy. The review concludes with an outlook for possible new research directions.
Collapse
Affiliation(s)
- Ramón Rial
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.R.); (M.G.-D.)
| | - Michael González-Durruthy
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.R.); (M.G.-D.)
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA;
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.R.); (M.G.-D.)
| |
Collapse
|
70
|
Strategies to load therapeutics into polysaccharide-based nanogels with a focus on microfluidics: A review. Carbohydr Polym 2021; 266:118119. [PMID: 34044935 DOI: 10.1016/j.carbpol.2021.118119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023]
Abstract
Nowadays nanoparticles are increasingly investigated for the targeted and controlled delivery of therapeutics, as suggested by the high number of research articles (2400 in 2000 vs 8500 in 2020). Among them, almost 2% investigated nanogels in 2020. Nanogels or nanohydrogels (NGs) are nanoparticles formed by a swollen three-dimensional network of synthetic polymers or natural macromolecules such as polysaccharides. NGs represent a highly versatile nanocarrier, able to deliver a number of therapeutics. Currently, NGs are undergoing clinical trials for the delivery of anti-cancer vaccines. Herein, the strategies to load low molecular weight drugs, (poly)peptides and genetic material into polysaccharide NGs as well as to formulate NGs-based vaccines are summarized, with a focus on the microfluidics approach.
Collapse
|
71
|
Maity S, Bhuyan T, Bhattacharya R, Bandyopadhyay D. Self-Organized Implanting of Micro/Nanofiltration Membranes in Advanced Flow μ-Reactors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19430-19442. [PMID: 33851814 DOI: 10.1021/acsami.1c01078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A low-cost, simple, and one-step synthesis of cellulose acetate nanoparticles (CANPs) has been invented using a continuous-flow advanced microfluidic reactor. For this purpose, the CANPs are self-organized inside a cross-junction microchannel by flowing cellulose acetate (CA) dissolved in N,N-dimethylformamide (DMF) through the axial inlet and the antisolvent water through the pair of side inlets. The preferential solubility (insolubility) of DMF (CA) to antisolvent water stimulates the in situ synthesis of CANPs at the DMF/water miscible interface following a phase-inversion process. Subsequently, nanofiltration, ultrafiltration, and microfiltration membranes of different porosities and permeabilities have been prepared from freshly synthesized CANPs. The porosity, thickness, transparency, and wettability of the membranes are tuned by varying the thickness of the membranes, size of the nanoparticles, and the porosity of the membranes. The as-synthesized CANPs show enhanced bactericidal properties with and without loading an external drug, curcumin, which has been validated against the Gram-negative Pseudomonas aeruginosa species. Importantly, enabling a pulsatile flow during the synthesis, the CANPs are embedded as nanofiltration membranes inside the microfluidic channel. Such microfluidic devices have been used to separate a corrosive dye from water. Concisely, the proposed in situ synthesis of CANPs in the continuous-flow microfluidic reactors, their usage for fabricating membranes with tunable wettability and transparency, and their subsequent integration into the microfluidic channel show the potential of the invention for a host of applications related to health care and environmental remediation.
Collapse
Affiliation(s)
- Surjendu Maity
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Tamanna Bhuyan
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Rishav Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
72
|
Chang J, Zhang Y, Li Y, Han Z, Tian F, Liu C, Feng Q, Wang Y, Sun J, Zhang L. Multilayer Ratiometric Fluorescent Nanomachines for Imaging mRNA in Live Cells. SMALL METHODS 2021; 5:e2001047. [PMID: 34927842 DOI: 10.1002/smtd.202001047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Indexed: 06/14/2023]
Abstract
Detection of mRNA expression in live cells during treatment is a challenging task, despite its importance in tumor biology and potential therapeutic leads. Here a multilayer ratiometric fluorescent nanomachine for live-cell perturbation and imaging of mRNA at single cell resolution is reported. The nanomachines fabricated by microfluidic approaches consist of fluorescent polymeric cores and multiple lipid layers, which can efficiently deliver siRNA and molecular beacons (MBs) to cytosol and then release the cargo in a sequential way. The siRNA molecules released from the outer lipid layers lead to silencing of multidrug resistance 1 (MDR1) gene, and the MBs from the middle lipid layers detect the presence of MDR1 mRNA. The fluorescent ratio of MBs to fluorescent polymeric cores positively correlates with the expression level of MDR1 mRNA in MCF-7/ADR cells during siRNA treatment. The nanomachines provide comparable results with traditional qPCR for quantifying mRNA, showing great potential for modulation and imaging of intratumoral mRNA in vitro and in vivo.
Collapse
Affiliation(s)
- Jianqiao Chang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Yu Zhang
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Yike Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Ziwei Han
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Fei Tian
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Chao Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Qiang Feng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
73
|
Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. Nanomaterials Synthesis through Microfluidic Methods: An Updated Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:864. [PMID: 33800636 PMCID: PMC8066900 DOI: 10.3390/nano11040864] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 01/10/2023]
Abstract
Microfluidic devices emerged due to an interdisciplinary "collision" between chemistry, physics, biology, fluid dynamics, microelectronics, and material science. Such devices can act as reaction vessels for many chemical and biological processes, reducing the occupied space, equipment costs, and reaction times while enhancing the quality of the synthesized products. Due to this series of advantages compared to classical synthesis methods, microfluidic technology managed to gather considerable scientific interest towards nanomaterials production. Thus, a new era of possibilities regarding the design and development of numerous applications within the pharmaceutical and medical fields has emerged. In this context, the present review provides a thorough comparison between conventional methods and microfluidic approaches for nanomaterials synthesis, presenting the most recent research advancements within the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandra Cătălina Bîrcă
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.C.); (A.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
74
|
Prakash R, Ghosh S. Effect of Bend Wettability on Hydrodynamics of Liquid–Liquid Two-phase Flow in Serpentine Mini Geometry. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ravi Prakash
- Department of Chemical Engineering, IIT Roorkee, Roorkee 247667, India
| | - Sumana Ghosh
- Department of Chemical Engineering, IIT Roorkee, Roorkee 247667, India
| |
Collapse
|
75
|
Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. Fabrication and Applications of Microfluidic Devices: A Review. Int J Mol Sci 2021; 22:2011. [PMID: 33670545 PMCID: PMC7921936 DOI: 10.3390/ijms22042011] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Microfluidics is a relatively newly emerged field based on the combined principles of physics, chemistry, biology, fluid dynamics, microelectronics, and material science. Various materials can be processed into miniaturized chips containing channels and chambers in the microscale range. A diverse repertoire of methods can be chosen to manufacture such platforms of desired size, shape, and geometry. Whether they are used alone or in combination with other devices, microfluidic chips can be employed in nanoparticle preparation, drug encapsulation, delivery, and targeting, cell analysis, diagnosis, and cell culture. This paper presents microfluidic technology in terms of the available platform materials and fabrication techniques, also focusing on the biomedical applications of these remarkable devices.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandra Cătălina Bîrcă
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
76
|
Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies. Colloids Surf B Biointerfaces 2021; 201:111633. [PMID: 33639513 DOI: 10.1016/j.colsurfb.2021.111633] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Microfluidic platforms have become highly attractive tools for synthesis of nanoparticles, including lipid nano-self-assemblies, owing to unique features and at least three important aspects inherent to miniaturized micro-devices. Firstly, the fluids flow under controlled conditions in the microchannels, providing well-defined flow profiles and shorter diffusion lengths that play important roles in enhancing the continuous production of lipid and polymer nanoparticles with relatively narrow size distributions. Secondly, various geometries adapted to microfluidic device designs can be utilized for enhancing the colloidal stability of nanoparticles and improving their drug loading. Thirdly, microfluidic devices are usually compatible with in situ characterization methods for real-time monitoring of processes occurring inside the microchannels. This is unlike conventional nanoparticle synthesis methods, where a final solution or withdrawn aliquots are separately analysed. These features inherent to microfluidic devices provide a tool-set allowing not only precise nanoparticle size control, but also real-time analyses for process optimization. In this review, we focus on recent advances and developments in the use of microfluidic devices for synthesis of lipid nanoparticles. We present different designs based on hydrodynamic flow focusing, droplet-based methods and controlled microvortices, and discuss integration of microfluidic platforms with synchrotron small-angle X ray scattering (SAXS) for in situ structural characterization of lipid nano-self-assemblies under continuous flow conditions, along with major challenges and future directions in this research area.
Collapse
|
77
|
Arduino I, Liu Z, Rahikkala A, Figueiredo P, Correia A, Cutrignelli A, Denora N, Santos HA. Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique. Acta Biomater 2021; 121:566-578. [PMID: 33326887 DOI: 10.1016/j.actbio.2020.12.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
In recent years, several studies have shown that the use of solid lipid nanoparticles (SLN) as a colloidal drug delivery system was more advantageous than lipid emulsions, liposomes and polymeric nanoparticles. SLNs have numerous advantages of different nanosystems and rule out many of their drawbacks. Despite the numerous advantages of SLNs, translation from the preclinical formulation to the industrial scale-up is limited. In order to provide a reproducible and reliable method of producing nanoparticles, and thus, obtain an industrial scale-up, several methods of synthesis of nanoparticles by microfluidic have been developed. Microfluidic technique allows a good control and a continuous online synthesis of nanosystems compared to synthesis in bulk, leading to a narrow size distribution, high batch-to-batch reproducibility, as well as to the industrial scale-up feasibility. This work described the optimization process to produce SLNs by microfluidics. The SLNs produced by microfluidics were characterized by complementary optical and morphological techniques and compared with those produced by bulk method. SLNs were loaded with paclitaxel and sorafenib, used as model drugs. The anti-cancer efficiency of the SLNs formulation was estimated with 2D and 3D tumour models of two different cell lines, and the cellular uptake was also studied with fluorescence-assisted measurements.
Collapse
|
78
|
Wei X, Chen K, Guo S, Liu W, Zhao XZ. Emerging Microfluidic Technologies for the Detection of Circulating Tumor Cells and Fetal Nucleated Red Blood Cells. ACS APPLIED BIO MATERIALS 2021; 4:1140-1155. [DOI: 10.1021/acsabm.0c01325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoyun Wei
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Keke Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shishang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
79
|
Lu JM, Wang HF, Pan JZ, Fang Q. Research Progress of Microfluidic Technique in Synthesis of Micro/Nano Materials. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
80
|
Fabozzi A, Della Sala F, di Gennaro M, Solimando N, Pagliuca M, Borzacchiello A. Polymer based nanoparticles for biomedical applications by microfluidic techniques: from design to biological evaluation. Polym Chem 2021. [DOI: 10.1039/d1py01077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of microfluidic technologies represents a new strategy to produce and test drug delivery systems.
Collapse
Affiliation(s)
- Antonio Fabozzi
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Francesca Della Sala
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Mario di Gennaro
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Nicola Solimando
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Maurizio Pagliuca
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| |
Collapse
|
81
|
High throughput acoustic microfluidic mixer controls self-assembly of protein nanoparticles with tuneable sizes. J Colloid Interface Sci 2020; 585:229-236. [PMID: 33285461 DOI: 10.1016/j.jcis.2020.11.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 11/24/2022]
Abstract
HYPOTHESIS Protein nanoparticles have attracted increased interest due to their broad applications ranging from drug delivery and vaccines to biocatalysts and biosensors. The morphology and the size of the nanoparticles play a crucial role in determining their suitability for different applications. Yet, effectively controlling the size of the nanoparticles is still a significant challenge in their manufacture. The hypothesis of this paper is that the assembly conditions and size of protein particles can be tuned via a mechanical route by simply modifying the mixing time and strength, while keeping the chemical parameters constant. EXPERIMENTAL We use an acoustically actuated, high throughput, ultrafast, microfluidic mixer for the assembly of protein particles with tuneable sizes. The performance of the acoustic micro-mixer is characterized via Laser Doppler Vibrometry and image processing. The assembly of protein nanoparticles is monitored by dynamic light scattering (DLS) and transmission electron microscopy (TEM). FINDINGS By changing actuation parameters, the turbulence and mixing in the microchannel can be precisely varied to control the initiation of protein particle assembly while the solution conditions of assembly (pH and ionic strength) are kept constant. Importantly, mixing times as low as 6 ms can be achieved for triggering protein assembly in the microfluidic channel. In comparison to the conventional batch process of assembly, the acoustic microfluidic mixer approach produces smaller particles with a more uniform size distribution, promising a new way to manufacture protein particles with controllable quality.
Collapse
|
82
|
Bose P, Chakraborty P, Mohanty JS, Ray Chowdhuri A, Khatun E, Ahuja T, Mahendranath A, Pradeep T. Atom transfer between precision nanoclusters and polydispersed nanoparticles: a facile route for monodisperse alloy nanoparticles and their superstructures. NANOSCALE 2020; 12:22116-22128. [PMID: 33118573 DOI: 10.1039/d0nr04033a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Reactions between atomically precise noble metal nanoclusters (NCs) have been studied widely in the recent past, but such processes between NCs and plasmonic nanoparticles (NPs) have not been explored earlier. For the first time, we demonstrate spontaneous reactions between an atomically precise NC, Au25(PET)18 (PET = 2-phenylethanethiol), and polydispersed silver NPs with an average diameter of 4 nm and protected with PET, resulting in alloy NPs under ambient conditions. These reactions were specific to the nature of the protecting ligands as no reaction was observed between the Au25(SBB)18 NC (SBB = 4-(tert-butyl)benzyl mercaptan) and the very same silver NPs. The mechanism involves an interparticle exchange of the metal and ligand species where the metal-ligand interface plays a vital role in controlling the reaction. The reaction proceeds through transient Au25-xAgx(PET)n alloy cluster intermediates as observed in time-dependent electrospray ionization mass spectrometry (ESI MS). High-resolution transmission electron microscopy (HRTEM) analysis of the resulting dispersion showed the transformation of polydispersed silver NPs into highly monodisperse gold-silver alloy NPs which assembled to form 2-dimensional superlattices. Using NPs of other average sizes (3 and 8 nm), we demonstrated that size plays an important role in the reactivity as observed in ESI MS and HRTEM.
Collapse
Affiliation(s)
- Paulami Bose
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Jung S, Lee J, Lim J, Suh J, Kim T, Ahn J, Kim WJ, Kim Y. Polymeric Nanoparticles Controlled by On-Chip Self-Assembly Enhance Cancer Treatment Effectiveness. Adv Healthc Mater 2020; 9:e2001633. [PMID: 33073526 PMCID: PMC7677199 DOI: 10.1002/adhm.202001633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Indexed: 02/05/2023]
Abstract
Nanoparticle (NP)-based drug delivery systems or nanomedicines have broadened the horizon of translational research for decades. Conventional bulk mixing synthesis methods have impeded successful clinical translations of nanomedicines due to the limited ability of the controlled, scalable production with high uniformity. Herein, an on-chip preparation of self-assembled, drug-encapsulated polymeric NPs is presented for their improved uniformity and homogeneity that results in enhanced anti-cancer effect in vitro and in vivo. The NPs are formulated through rapid convective mixing of two aqueous solutions of a hydrophilic polymer and an anti-cancer drug, doxorubicin (DOX), in the swirling microvortex reactor (SMR). Compared to conventional bulk-mixed NPs (BMPs), the microvortex-synthesized NPs (MVPs) exhibit narrower size distributions and better size tunability. It is found that the improved uniformity and homogeneity of the MVPs not only enhance cellular uptake and anti-cancer effect with pH-responsive drug release in vitro, but also result in an improved tumor regression and decreased side effects at off-targeted organs in vivo. The findings demonstrate that uniformly designed NPs with more homogeneous properties can induce a significant enhancement of an anti-cancer effect in vivo. The results show the potential of a high-speed on-chip synthesis as a scalable manufacturing platform for reliable clinical translations of nanomedicines.
Collapse
Affiliation(s)
- Sungjin Jung
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junseok Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junha Lim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeeyeon Suh
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taeyoung Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jungho Ahn
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
84
|
Sun Z, Wu B, Ren Y, Wang Z, Zhao C, Hai M, Weitz DA, Chen D. Diverse Particle Carriers Prepared by Co‐Precipitation and Phase Separation: Formation and Applications. Chempluschem 2020; 86:49-58. [DOI: 10.1002/cplu.202000497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Zhu Sun
- Institute of Process Equipment College of Energy Engineering Zhejiang University Zheda Road No. 38 Hangzhou 310027 China
| | - Baiheng Wu
- Institute of Process Equipment College of Energy Engineering Zhejiang University Zheda Road No. 38 Hangzhou 310027 China
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Zheda Road No. 38 Hangzhou 310027 China
| | - Yixin Ren
- Institute of Process Equipment College of Energy Engineering Zhejiang University Zheda Road No. 38 Hangzhou 310027 China
| | - Zhongzhen Wang
- Institute of Process Equipment College of Energy Engineering Zhejiang University Zheda Road No. 38 Hangzhou 310027 China
| | - Chun‐Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St Lucia QLD 4072 Australia
| | - Mingtan Hai
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Dong Chen
- Institute of Process Equipment College of Energy Engineering Zhejiang University Zheda Road No. 38 Hangzhou 310027 China
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Zheda Road No. 38 Hangzhou 310027 China
| |
Collapse
|
85
|
Han Z, Lv W, Li Y, Chang J, Zhang W, Liu C, Sun J. Improving Tumor Targeting of Exosomal Membrane-Coated Polymeric Nanoparticles by Conjugation with Aptamers. ACS APPLIED BIO MATERIALS 2020; 3:2666-2673. [DOI: 10.1021/acsabm.0c00181] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ziwei Han
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100149, China
| | - Wenxing Lv
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yike Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100149, China
| | - Jianqiao Chang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wei Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100149, China
| | - Chao Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100149, China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100149, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, School of Chemistry and Molecular Engineering, Shanghai 200062, China
| |
Collapse
|