51
|
|
52
|
Imaging trace element distributions in single organelles and subcellular features. Sci Rep 2016; 6:21437. [PMID: 26911251 PMCID: PMC4766485 DOI: 10.1038/srep21437] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/15/2016] [Indexed: 12/30/2022] Open
Abstract
The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.
Collapse
|
53
|
Maret W. Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules. Metallomics 2015; 7:202-11. [PMID: 25362967 DOI: 10.1039/c4mt00230j] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Essential metal ions are tightly controlled in biological systems. An understanding of metal metabolism and homeostasis is being developed from quantitative information of the sizes, concentrations, and dynamics of cellular and subcellular metal ion pools. In the case of human zinc metabolism, minimally 24 proteins of two zinc transporter families and a dozen metallothioneins participate in cellular uptake, extrusion, and re-distribution among cellular compartments. Significantly, zinc(ii) ions are now considered signaling ions in intra- and intercellular communication. Such functions require transients of free zinc ions. It is experimentally quite challenging to distinguish zinc that is protein-bound from zinc that is not bound to proteins. Measurement of total zinc is relatively straightforward with analytical techniques such as atomic absorption/emission spectroscopy or inductively coupled plasma mass spectrometry. Total zinc concentrations of human cells are 200-300 μM. In contrast, the pool of non-protein bound zinc is mostly examined with fluorescence microscopy/spectroscopy. There are two widely applied fluorescence approaches, one employing low molecular weight chelating agents ("probes") and the other metal-binding proteins ("sensors"). The protein sensors, such as the CALWY, Zap/ZifCY, and carbonic anhydrase-based sensors, can be genetically encoded and have certain advantages in terms of controlling intracellular concentration, localization, and calibration. When employed correctly, both probes and sensors can establish qualitative differences in free zinc ion concentrations. However, when quantitative information is sought, the assumptions underlying the applications of probes and sensors must be carefully examined and even then measured pools of free zinc ions remain methodologically defined. A consensus is building that the steady-state free zinc ion concentrations in the cytosol are in the picomolar range but there is no consensus on their concentrations in subcellular compartments. Applying the extensive toolbox of available probes/sensors in biological systems requires an understanding of the principles of cellular zinc homeostasis and the chemical biology of the probes and sensors. Regardless of limitations in specificity (for a particular metal ion), selectivity (for a particular metal pool), and sensitivity (detection limit), the technology is making remarkable contributions to imaging zinc with high spatiotemporal resolution in single cells and to defining the biochemical functions of zinc ions in cellular regulation.
Collapse
Affiliation(s)
- Wolfgang Maret
- King's College London, Faculty of Life Sciences and Medicine, Division of Diabetes and Nutritional Sciences and Department of Biochemistry, Metal Metabolism Group, 150 Stamford St., London SE1 9NH, UK.
| |
Collapse
|
54
|
Hessels AM, Chabosseau P, Bakker MH, Engelen W, Rutter GA, Taylor KM, Merkx M. eZinCh-2: A Versatile, Genetically Encoded FRET Sensor for Cytosolic and Intraorganelle Zn(2+) Imaging. ACS Chem Biol 2015; 10:2126-34. [PMID: 26151333 PMCID: PMC4577962 DOI: 10.1021/acschembio.5b00211] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zn(2+) plays essential and diverse roles in numerous cellular processes. To get a better understanding of intracellular Zn(2+) homeostasis and the putative signaling role of Zn(2+), various fluorescent sensors have been developed that allow monitoring of Zn(2+) concentrations in single living cells in real time. Thus far, two families of genetically encoded FRET-based Zn(2+) sensors have been most widely applied, the eCALWY sensors developed by our group and the ZapCY sensors developed by Palmer and co-workers. Both have been successfully used to measure cytosolic free Zn(2+), but distinctly different concentrations have been reported when using these sensors to measure Zn(2+) concentrations in the ER and mitochondria. Here, we report the development of a versatile alternative FRET sensor containing a de novo Cys2His2 binding pocket that was created on the surface of the donor and acceptor fluorescent domains. This eZinCh-2 sensor binds Zn(2+) with a high affinity that is similar to that of eCALWY-4 (Kd = 1 nM at pH 7.1), while displaying a substantially larger change in emission ratio. eZinCh-2 not only provides an attractive alternative for measuring Zn(2+) in the cytosol but was also successfully used for measuring Zn(2+) in the ER, mitochondria, and secretory vesicles. Moreover, organelle-targeted eZinCh-2 can also be used in combination with the previously reported redCALWY sensors to allow multicolor imaging of intracellular Zn(2+) simultaneously in the cytosol and the ER or mitochondria.
Collapse
Affiliation(s)
- Anne M. Hessels
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems (ICMS),
Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Pauline Chabosseau
- Section
of Cell Biology and Functional Genomics, Division of Medicine, Imperial College London, London, United Kingdom
| | - Maarten H. Bakker
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems (ICMS),
Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wouter Engelen
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems (ICMS),
Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Guy A. Rutter
- Section
of Cell Biology and Functional Genomics, Division of Medicine, Imperial College London, London, United Kingdom
| | - Kathryn M. Taylor
- Breast
Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical
Sciences, Cardiff University, Cardiff, United Kingdom
| | - Maarten Merkx
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems (ICMS),
Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
55
|
Abstract
Zinc is an important micronutrient, essential in the diet to avoid a variety of conditions associated with malnutrition such as diarrhoea and alopecia. Lowered circulating levels of zinc are also found in diabetes mellitus, a condition which affects one in twelve of the adult population and whose treatments consume approximately 10 % of healthcare budgets. Zn2+ ions are essential for a huge range of cellular functions and, in the specialised pancreatic β-cell, for the storage of insulin within the secretory granule. Correspondingly, genetic variants in the SLC30A8 gene, which encodes the diabetes-associated granule-resident Zn2+ transporter ZnT8, are associated with an altered risk of type 2 diabetes. Here, we focus on (i) recent advances in measuring free zinc concentrations dynamically in subcellular compartments, and (ii) studies dissecting the role of intracellular zinc in the control of glucose homeostasis in vitro and in vivo. We discuss the effects on insulin secretion and action of deleting or over-expressing Slc30a8 highly selectively in the pancreatic β-cell, and the role of zinc in insulin signalling. While modulated by genetic variability, healthy levels of dietary zinc, and hence normal cellular zinc homeostasis, are likely to play an important role in the proper release and action of insulin to maintain glucose homeostasis and lower diabetes risk.
Collapse
|
56
|
The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner. Biochem J 2015; 467:47-62. [PMID: 25583260 DOI: 10.1042/bj20141441] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human Tribbles (TRB)-related pseudokinases are CAMK (calcium/calmodulin-dependent protein kinase)-related family members that have evolved a series of highly unusual motifs in the 'pseudocatalytic' domain. In canonical kinases, conserved amino acids bind to divalent metal ions and align ATP prior to efficient phosphoryl-transfer to substrates. However, in pseudokinases, atypical residues give rise to diverse and often unstudied biochemical and structural features that are thought to be central to cellular functions. TRB proteins play a crucial role in multiple signalling networks and overexpression confers cancer phenotypes on human cells, marking TRB pseudokinases out as a novel class of drug target. In the present paper, we report that the human pseudokinase TRB2 retains the ability to both bind and hydrolyse ATP weakly in vitro. Kinase activity is metal-independent and involves a catalytic lysine residue, which is conserved in TRB proteins throughout evolution alongside several unique amino acids in the active site. A similar low level of autophosphorylation is also preserved in the closely related human TRB3. By employing chemical genetics, we establish that the nucleotide-binding site of an 'analogue-sensitive' (AS) TRB2 mutant can be targeted with specific bulky ligands of the pyrazolo-pyrimidine (PP) chemotype. Our analysis confirms that TRB2 retains low levels of ATP binding and/or catalysis that is targetable with small molecules. Given the significant clinical successes associated with targeting of cancer-associated kinases with small molecule inhibitors, it is likely that similar approaches will be useful for further evaluating the TRB pseudokinases, with the translation of this information likely to furnish new leads for drug discovery.
Collapse
|
57
|
Kim HL, Ra H, Kim KR, Lee JM, Im H, Kim YH. Poly(ADP-ribosyl)ation of p53 contributes to TPEN-induced neuronal apoptosis. Mol Cells 2015; 38:312-7. [PMID: 25813624 PMCID: PMC4400305 DOI: 10.14348/molcells.2015.2142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 01/23/2023] Open
Abstract
Depletion of intracellular zinc by N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) induces p53-mediated protein synthesis-dependent apoptosis of mouse cortical neurons. Here, we examined the requirement for poly(ADP-ribose) polymerase (PARP)-1 as an upstream regulator of p53 in zinc depletion-induced neuronal apoptosis. First, we found that chemical inhibition or genetic deletion of PARP-1 markedly attenuated TPEN-induced apoptosis of cultured mouse cortical neurons. Poly(ADP-ribosyl)ation of p53 occurred starting 1 h after TPEN treatment. Suggesting the critical role of PARP-1, the TPEN-induced increase of stability and activity of p53 as well as poly(ADP-ribosyl)ation of p53 was almost completely blocked by PARP inhibition. Consistent with this, the induction of downstream proapoptotic proteins PUMA and NOXA was noticeably reduced by chemical inhibitors or genetic deletion of PARP-1. TPEN-induced cytochrome C release into the cytosol and caspase-3 activation were also blocked by inhibition of PARP-1. Taken together, these findings indicate that PARP-1 is essential for TPEN-induced neuronal apoptosis.
Collapse
Affiliation(s)
| | | | - Ki-Ryeong Kim
- Department of Molecular Biology, Sejong University, Seoul 143-747,
Korea
| | - Jeong-Min Lee
- Department of Molecular Biology, Sejong University, Seoul 143-747,
Korea
| | - Hana Im
- Department of Molecular Biology, Sejong University, Seoul 143-747,
Korea
| | - Yang-Hee Kim
- Department of Molecular Biology, Sejong University, Seoul 143-747,
Korea
| |
Collapse
|
58
|
Blanden AR, Yu X, Wolfe AJ, Gilleran JA, Augeri DJ, O'Dell RS, Olson EC, Kimball SD, Emge TJ, Movileanu L, Carpizo DR, Loh SN. Synthetic metallochaperone ZMC1 rescues mutant p53 conformation by transporting zinc into cells as an ionophore. Mol Pharmacol 2015; 87:825-31. [PMID: 25710967 DOI: 10.1124/mol.114.097550] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
p53 is a Zn(2+)-dependent tumor suppressor inactivated in >50% of human cancers. The most common mutation, R175H, inactivates p53 by reducing its affinity for the essential zinc ion, leaving the mutant protein unable to bind the metal in the low [Zn(2+)]free environment of the cell. The exploratory cancer drug zinc metallochaperone-1 (ZMC1) was previously demonstrated to reactivate this and other Zn(2+)-binding mutants by binding Zn(2+) and buffering it to a level such that Zn(2+) can repopulate the defective binding site, but how it accomplishes this in the context of living cells and organisms is unclear. In this study, we demonstrated that ZMC1 increases intracellular [Zn(2+)]free by functioning as a Zn(2+) ionophore, binding Zn(2+) in the extracellular environment, diffusing across the plasma membrane, and releasing it intracellularly. It raises intracellular [Zn(2+)]free in cancer (TOV112D) and noncancer human embryonic kidney cell line 293 to 15.8 and 18.1 nM, respectively, with half-times of 2-3 minutes. These [Zn(2+)]free levels are predicted to result in ∼90% saturation of p53-R175H, thus accounting for its observed reactivation. This mechanism is supported by the X-ray crystal structure of the [Zn(ZMC1)2] complex, which demonstrates structural and chemical features consistent with those of known metal ionophores. These findings provide a physical mechanism linking zinc metallochaperone-1 in both in vitro and in vivo activities and define the remaining critical parameter necessary for developing synthetic metallochaperones for clinical use.
Collapse
Affiliation(s)
- Adam R Blanden
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Xin Yu
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Aaron J Wolfe
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - John A Gilleran
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - David J Augeri
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Ryan S O'Dell
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Eric C Olson
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - S David Kimball
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Thomas J Emge
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Liviu Movileanu
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Darren R Carpizo
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| |
Collapse
|
59
|
Yang H, Keen CL, Lanoue L. Influence of intracellular zinc on cultures of rat cardiac neural crest cells. ACTA ACUST UNITED AC 2015; 104:11-22. [PMID: 25689142 DOI: 10.1002/bdrb.21135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/08/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Developmental zinc (Zn) deficiency increases the incidence of heart anomalies in rat fetuses, in regions and structures derived from the outflow tract. Given that the development of the outflow tract requires the presence of cardiac neural crest cells (cNCC), we speculated that Zn deficiency selectively kills cNCC and could lead to heart malformations. METHODS Cardiac NCC were isolated from E10.5 rat embryos and cultured in control media (CTRL), media containing 3 μM of the cell permeable metal chelator N, N, N', N'-tetrakis (2-pyridylmethyl) ethylene diamine (TPEN), or in TPEN-treated media supplemented with 3 μM Zn (TPEN + Zn). Cardiac NCC were collected after 6, 8, and 24 h of treatment to assess cell viability, proliferation, and apoptosis. RESULTS The addition of TPEN to the culture media reduced free intracellular Zn pools and cell viability as assessed by low ATP production, compared to cells grown in control or Zn-supplemented media. There was an accumulation of reactive oxygen species, a release of mitochondrial cytochrome c into the cytoplasm, and an increased cellular expression of active caspase-3 in TPEN-treated cNCC compared to cNCC cultured in CTRL or TPEN + Zn media. CONCLUSION Zn deficiency can result in oxidative stress in cNCC, and subsequent decreases in their population and metabolic activity. These data support the concept that Zn deficiency associated developmental heart defects may arise in part as a consequence of altered cNCC metabolism.
Collapse
Affiliation(s)
- Hsunhui Yang
- Department of Nutrition, University of California, Davis, California
| | | | | |
Collapse
|
60
|
Kim B, Pithadia AS, Fierke CA. Kinetics and thermodynamics of metal-binding to histone deacetylase 8. Protein Sci 2015; 24:354-65. [PMID: 25516458 DOI: 10.1002/pro.2623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/08/2014] [Indexed: 11/11/2022]
Abstract
Histone deacetylase 8 (HDAC8) was originally classified as a Zn(II)-dependent deacetylase on the basis of Zn(II)-dependent HDAC8 activity in vitro and illumination of a Zn(II) bound to the active site. However, in vitro measurements demonstrated that HDAC8 has higher activity with a bound Fe(II) than Zn(II), although Fe(II)-HDAC8 rapidly loses activity under aerobic conditions. These data suggest that in the cell HDAC8 could be activated by either Zn(II) or Fe(II). Here we detail the kinetics, thermodynamics, and selectivity of Zn(II) and Fe(II) binding to HDAC8. To this end, we have developed a fluorescence anisotropy assay using fluorescein-labeled suberoylanilide hydroxamic acid (fl-SAHA). fl-SAHA binds specifically to metal-bound HDAC8 with affinities comparable to SAHA. To measure the metal affinity of HDAC, metal binding was coupled to fl-SAHA and assayed from the observed change in anisotropy. The metal KD values for HDAC8 are significantly different, ranging from picomolar to micromolar for Zn(II) and Fe(II), respectively. Unexpectedly, the Fe(II) and Zn(II) dissociation rate constants from HDAC8 are comparable, koff ∼0.0006 s(-1), suggesting that the apparent association rate constant for Fe(II) is slow (∼3 × 10(3) M(-1) s(-1)). Furthermore, monovalent cations (K(+) or Na(+)) that bind to HDAC8 decrease the dissociation rate constant of Zn(II) by ≥100-fold for K(+) and ≥10-fold for Na(+), suggesting a possible mechanism for regulating metal exchange in vivo. The HDAC8 metal affinities are comparable to the readily exchangeable Zn(II) and Fe(II) concentrations in cells, consistent with either or both metal cofactors activating HDAC8.
Collapse
Affiliation(s)
- Byungchul Kim
- Chemical Biology Program, University of Michigan, Ann Arbor, Michigan, 48109-2216
| | | | | |
Collapse
|
61
|
Hessels AM, Merkx M. Genetically-encoded FRET-based sensors for monitoring Zn2+ in living cells. Metallomics 2015; 7:258-66. [DOI: 10.1039/c4mt00179f] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We discuss the development and application of genetically-encoded FRET sensors as attractive tools to study intracellular Zn2+ homeostasis and signaling.
Collapse
Affiliation(s)
- Anne M. Hessels
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems
- Department of Biomedical Engineering
- Eindhoven University of Technology
- Eindhoven, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems
- Department of Biomedical Engineering
- Eindhoven University of Technology
- Eindhoven, The Netherlands
| |
Collapse
|
62
|
Bakthavatsalam S, Sarkar A, Rakshit A, Jain S, Kumar A, Datta A. Tuning macrocycles to design ‘turn-on’ fluorescence probes for manganese(ii) sensing in live cells. Chem Commun (Camb) 2015; 51:2605-8. [DOI: 10.1039/c4cc09542a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We report novel ‘turn-on’ fluorescence probes for imaging Mn2+ in live cells.
Collapse
Affiliation(s)
- Subha Bakthavatsalam
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Colaba
- India
| | - Anindita Sarkar
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Colaba
- India
| | - Ananya Rakshit
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Colaba
- India
| | - Shubhi Jain
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Colaba
- India
| | - Amit Kumar
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Colaba
- India
| | - Ankona Datta
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Colaba
- India
| |
Collapse
|
63
|
Gayomba SR, Zhai Z, Jung HI, Vatamaniuk OK. Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. FRONTIERS IN PLANT SCIENCE 2015; 6:716. [PMID: 26442030 PMCID: PMC4568396 DOI: 10.3389/fpls.2015.00716] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/27/2015] [Indexed: 05/03/2023]
Abstract
Iron (Fe) is essential for plant growth and development. However, alkaline soils, which occupy approximately 30% of the world's arable lands, are considered Fe-limiting for plant growth because insoluble Fe (III) chelates prevail under these conditions. In contrast, high bioavailability of Fe in acidic soils can be toxic to plants due to the ability of Fe ions to promote oxidative stress. Therefore, plants have evolved sophisticated mechanisms to sense and respond to the fluctuation of Fe availability in the immediate environment and to the needs of developing shoot tissues to preclude deficiency while avoiding toxicity. In this review, we focus on recent advances in our understanding of local and systemic signaling of Fe status with emphasis on the contribution of Fe, its interaction with other metals and metal ligands in triggering molecular responses that regulate Fe uptake and partitioning in the plant body.
Collapse
Affiliation(s)
| | | | | | - Olena K. Vatamaniuk
- *Correspondence: Olena K. Vatamaniuk, Soil and Crop Sciences Section, School of Integrative Plant Sciences, Cornell University, 360 Tower Road, 608 Bradfield Hall, Ithaca, NY 14853, USA,
| |
Collapse
|
64
|
Myers SA. Zinc transporters and zinc signaling: new insights into their role in type 2 diabetes. Int J Endocrinol 2015; 2015:167503. [PMID: 25983752 PMCID: PMC4423030 DOI: 10.1155/2015/167503] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential trace element that plays a vital role in many biological processes including growth and development, immunity, and metabolism. Recent studies have highlighted zinc's dynamic role as a "cellular second messenger" in the control of insulin signaling and glucose homeostasis. Accordingly, mechanisms that contribute to dysfunctional zinc signaling are suggested to be associated with metabolic disease states including cancer, cardiovascular disease, Alzheimer's disease, and diabetes. The actions of the proteins that control the uptake, storage, and distribution of zinc, the zinc transporters, are under intense investigation due to their emerging role in type 2 diabetes. The synthesis, secretion, and action of insulin are dependent on zinc and the transporters that make this ion available to cellular processes. This suggests that zinc plays a previously unidentified role where changes in zinc status over time may affect insulin activity. This previously unexplored concept would raise a whole new area of research into the pathophysiology of insulin resistance and introduce a new class of drug target with utility for diabetes pharmacotherapy.
Collapse
Affiliation(s)
- Stephen A. Myers
- University of Tasmania (UTAS), School of Health Sciences, Newnham Campus, Launceston, TAS 7250, Australia
- *Stephen A. Myers:
| |
Collapse
|
65
|
Abstract
The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼ 25% acquiring preassembled metal cofactors. The remaining ∼ 70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells.
Collapse
Affiliation(s)
- Andrew W Foster
- From the Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Deenah Osman
- From the Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Nigel J Robinson
- From the Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
66
|
Pancholi J, Hodson DJ, Jobe K, Rutter GA, Goldup SM, Watkinson M. Biologically targeted probes for Zn 2+: a diversity oriented modular "click-S NAr-click" approach†Electronic supplementary information (ESI) available: Full experimental details including characterisation of all novel compounds can be found in the ESI. See DOI: 10.1039/c4sc01249f. Chem Sci 2014; 5:3528-3535. [PMID: 25580213 PMCID: PMC4285101 DOI: 10.1039/c4sc01249f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/26/2014] [Indexed: 12/29/2022] Open
Abstract
We describe a one-pot strategy for the high yielding, operationally simple synthesis of fluorescent probes for Zn2+ that bear biological targeting groups and exemplify the utility of our method through the preparation of a small library of sensors. Investigation of the fluorescence behaviour of our library revealed that although all behaved as expected in MeCN, under biologically relevant conditions in HEPES buffer, a plasma membrane targeting sensor displayed a dramatic switch on response to excess Zn2+ as a result of aggregation phenomena. Excitingly, in cellulo studies in mouse pancreatic islets demonstrated that this readily available sensor was indeed localised to the exterior of the plasma membrane and clearly responded to the Zn2+ co-released when the pancreatic beta cells were stimulated to release insulin. Conversely, sensors that target intracellular compartments were unaffected. These results demonstrate that this sensor has the potential to allow the real time study of insulin release from living cells and exemplifies the utility of our simple synthetic approach.
Collapse
Affiliation(s)
- J Pancholi
- School of Biological and Chemical Science , Queen Mary University of London , Mile End Road , London , E1 4NS , UK . ;
| | - D J Hodson
- Section of Cell Biology , Division of Diabetes , Endocrinology and Metabolism , Department of Medicine , Imperial College London , London , W12 0NN , UK .
| | - K Jobe
- School of Biological and Chemical Science , Queen Mary University of London , Mile End Road , London , E1 4NS , UK . ;
| | - G A Rutter
- Section of Cell Biology , Division of Diabetes , Endocrinology and Metabolism , Department of Medicine , Imperial College London , London , W12 0NN , UK .
| | - S M Goldup
- School of Biological and Chemical Science , Queen Mary University of London , Mile End Road , London , E1 4NS , UK . ;
| | - M Watkinson
- School of Biological and Chemical Science , Queen Mary University of London , Mile End Road , London , E1 4NS , UK . ;
| |
Collapse
|
67
|
Stefanson AL, Bakovic M. Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients 2014; 6:3777-801. [PMID: 25244368 PMCID: PMC4179188 DOI: 10.3390/nu6093777] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 01/10/2023] Open
Abstract
It has become increasingly evident that chronic inflammation underpins the development of many chronic diseases including cancer, cardiovascular disease and type 2 diabetes. Oxidative stress is inherently a biochemical dysregulation of the redox status of the intracellular environment, which under homeostatic conditions is a reducing environment, whereas inflammation is the biological response to oxidative stress in that the cell initiates the production of proteins, enzymes, and other compounds to restore homeostasis. At the center of the day-to-day biological response to oxidative stress is the Keap1/Nrf2/ARE pathway, which regulates the transcription of many antioxidant genes that preserve cellular homeostasis and detoxification genes that process and eliminate carcinogens and toxins before they can cause damage. The Keap1/Nrf2/ARE pathway plays a major role in health resilience and can be made more robust and responsive by certain dietary factors. Transient activation of Nrf2 by dietary electrophilic phytochemicals can upregulate antioxidant and chemopreventive enzymes in the absence of actual oxidative stress inducers. Priming the Keap1/Nrf2/ARE pathway by upregulating these enzymes prior to oxidative stress or xenobiotic encounter increases cellular fitness to respond more robustly to oxidative assaults without activating more intense inflammatory NFκB-mediated responses.
Collapse
Affiliation(s)
- Amanda L Stefanson
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada N1G 2W1.
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
68
|
Chabosseau P, Tuncay E, Meur G, Bellomo EA, Hessels A, Hughes S, Johnson PRV, Bugliani M, Marchetti P, Turan B, Lyon AR, Merkx M, Rutter GA. Mitochondrial and ER-targeted eCALWY probes reveal high levels of free Zn2+. ACS Chem Biol 2014; 9:2111-20. [PMID: 25011072 PMCID: PMC6101202 DOI: 10.1021/cb5004064] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc (Zn2+) ions are increasingly recognized as playing an important role in cellular physiology. Whereas the free Zn2+ concentration in the cytosol has been established to be 0.1-1 nM, the free Zn2+ concentration in subcellular organelles is not well-established. Here, we extend the eCALWY family of genetically encoded Förster Resonance Energy Transfer (FRET) Zn2+ probes to permit measurements in the endo(sarco)plasmic reticulum (ER) and mitochondrial matrix. Deployed in a variety of mammalian cell types, these probes reveal resting mitochondrial free [Zn2+] values of ∼300 pM, somewhat lower than in the cytosol but 3 orders of magnitude higher than recently reported using an alternative FRET-based sensor. By contrast, free ER [Zn2+] was found to be ≥5 nM, which is >5000-fold higher than recently reported but consistent with the proposed role of the ER as a mobilizable Zn2+ store. Treatment of β-cells or cardiomyocytes with sarco(endo)plasmic reticulum Ca2+-ATPase inhibitors, mobilization of ER Ca2+ after purinergic stimulation with ATP, or manipulation of ER redox, exerted no detectable effects on [Zn2+]ER. These findings question the previously proposed role of Ca2+ in Zn2+ mobilization from the ER and suggest that high ER Zn2+ levels may be an important aspect of cellular homeostasis.
Collapse
Affiliation(s)
- Pauline Chabosseau
- Section of Cell Biology, Division of Medicine, and ‡National Heart and Lung Institute, Imperial College London , London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Kong BY, Duncan FE, Que EL, Kim AM, O'Halloran TV, Woodruff TK. Maternally-derived zinc transporters ZIP6 and ZIP10 drive the mammalian oocyte-to-egg transition. Mol Hum Reprod 2014; 20:1077-89. [PMID: 25143461 DOI: 10.1093/molehr/gau066] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rapid cellular zinc influx regulates early mammalian development during the oocyte-to-egg transition through modulation of the meiotic cell cycle. Despite the physiological necessity of this zinc influx, the molecular mechanisms that govern such accumulation are unknown. Here we show that the fully grown mammalian oocyte does not employ a transcriptionally based mechanism of zinc regulation involving metal response element-binding transcription factor-1 (MTF-1), as demonstrated by a lack of MTF-1 responsiveness to environmental zinc manipulation. Instead, the mammalian oocyte controls zinc uptake through two maternally derived and cortically distributed zinc transporters, ZIP6 and ZIP10. Targeted disruption of these transporters using several approaches during meiotic maturation perturbs the intracellular zinc quota and results in a cell cycle arrest at a telophase I-like state. This arrest phenocopies established models of zinc insufficiency during the oocyte-to-egg transition, indicating the essential function of these maternally expressed transporters. Labile zinc localizes to punctate cytoplasmic structures in the human oocyte, and ZIP6 and ZIP10 are enriched in the cortex. Altogether, we demonstrate a mechanism of metal regulation required for female gamete development that may be evolutionarily conserved.
Collapse
Affiliation(s)
- B Y Kong
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 250 East Superior Street, Suite 3-2303, Chicago, IL 60611, USA
| | - F E Duncan
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 250 East Superior Street, Suite 3-2303, Chicago, IL 60611, USA
| | - E L Que
- The Chemistry of Life Processes Institute and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - A M Kim
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 250 East Superior Street, Suite 3-2303, Chicago, IL 60611, USA
| | - T V O'Halloran
- The Chemistry of Life Processes Institute and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208, USA
| | - T K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 250 East Superior Street, Suite 3-2303, Chicago, IL 60611, USA Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208, USA
| |
Collapse
|
70
|
McCranor BJ, Szmacinski H, Zeng HH, Stoddard AK, Hurst T, Fierke CA, Lakowicz JR, Thompson RB. Fluorescence lifetime imaging of physiological free Cu(II) levels in live cells with a Cu(II)-selective carbonic anhydrase-based biosensor. Metallomics 2014; 6:1034-42. [PMID: 24671220 PMCID: PMC4305278 DOI: 10.1039/c3mt00305a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Copper is a required trace element that plays key roles in a number of human enzymes, such that copper deficiency or genetic defects in copper transport lead to serious or fatal disease. Rae, et al., had famously predicted that free copper ion levels in the cell cytoplasm were extremely low, typically too low to be observable. We recently developed a variant of human apocarbonic anhydrase II for sensing metal ions that exhibits 25-fold better selectivity for Cu(II) over Zn(II) than the wild type protein, enabling us to accurately measure Cu(II) in the presence of ordinary cellular (picomolar) concentrations of free zinc. We inserted a fluorescent labeled Cu(II)-specific variant of human apocarbonic anhydrase into PC-12 cells and found that the levels are indeed extremely low (in the femtomolar range). We imaged the free Cu(II) levels in living cells by means of frequency-domain fluorescence lifetime microscopy. Implications of this finding are discussed.
Collapse
Affiliation(s)
- Bryan J McCranor
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Carter KP, Young AM, Palmer AE. Fluorescent sensors for measuring metal ions in living systems. Chem Rev 2014; 114:4564-601. [PMID: 24588137 PMCID: PMC4096685 DOI: 10.1021/cr400546e] [Citation(s) in RCA: 1545] [Impact Index Per Article: 154.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Kyle P. Carter
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| | - Alexandra M. Young
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| | - Amy E. Palmer
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| |
Collapse
|
72
|
Lanquar V, Grossmann G, Vinkenborg JL, Merkx M, Thomine S, Frommer WB. Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology. THE NEW PHYTOLOGIST 2014; 202:198-208. [PMID: 24372442 DOI: 10.1111/nph.12652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/18/2013] [Indexed: 05/03/2023]
Abstract
Zinc plays a central role in all living cells as a cofactor for enzymes and as a structural element enabling the adequate folding of proteins. In eukaryotic cells, metals are highly compartmentalized and chelated. Although essential to characterize the mechanisms of Zn(2+) homeostasis, the measurement of free metal concentrations in living cells has proved challenging and the dynamics are difficult to determine. Our work combines the use of genetically encoded Förster resonance energy transfer (FRET) sensors and a novel microfluidic technology, the RootChip, to monitor the dynamics of cytosolic Zn(2+) concentrations in Arabidopsis root cells. Our experiments provide estimates of cytosolic free Zn(2+) concentrations in Arabidopsis root cells grown under sufficient (0.4 nM) and excess (2 nM) Zn(2+) supply. In addition, monitoring the dynamics of cytosolic [Zn(2+) ] in response to external supply suggests the involvement of high- and low-affinity uptake systems as well as release from internal stores. In this study, we demonstrate that the combination of genetically encoded FRET sensors and microfluidics provides an attractive tool to monitor the dynamics of cellular metal ion concentrations over a wide concentration range in root cells.
Collapse
Affiliation(s)
- Viviane Lanquar
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama St, Stanford, CA, 94305, USA
- CNRS, Institut des Sciences du Végétal, Saclay Plant Sciences, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Guido Grossmann
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama St, Stanford, CA, 94305, USA
| | - Jan L Vinkenborg
- Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Sébastien Thomine
- CNRS, Institut des Sciences du Végétal, Saclay Plant Sciences, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama St, Stanford, CA, 94305, USA
| |
Collapse
|
73
|
Zhao L, Wang Z, Xi Z, Xu D, Chen S, Liu Y. The Reaction of Arsenite with Proteins Relies on Solution Conditions. Inorg Chem 2014; 53:3054-61. [DOI: 10.1021/ic402891t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Linhong Zhao
- CAS Key
Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory,
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026 China
| | - Zhen Wang
- CAS Key
Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory,
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026 China
| | - Zhaoyong Xi
- CAS Key
Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory,
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026 China
| | - Dechen Xu
- CAS Key
Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory,
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026 China
| | - Siming Chen
- CAS Key
Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory,
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026 China
| | - Yangzhong Liu
- CAS Key
Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory,
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026 China
| |
Collapse
|
74
|
Bellomo E, Massarotti A, Hogstrand C, Maret W. Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics 2014; 6:1229-39. [DOI: 10.1039/c4mt00086b] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel mechanism by which Zn2+ modulates PTP1B activity encompasses the binding to the closed and phospho-intermediate forms only.
Collapse
Affiliation(s)
- Elisa Bellomo
- King's College London
- Metal Metabolism Group
- Division of Diabetes and Nutritional Sciences
- School of Medicine
- London, UK
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco
- Universitá degli Studi del Piemonte Orientale “A. Avogadro”
- 28100 Novara, Italy
| | - Christer Hogstrand
- King's College London
- Metal Metabolism Group
- Division of Diabetes and Nutritional Sciences
- School of Medicine
- London, UK
| | - Wolfgang Maret
- King's College London
- Metal Metabolism Group
- Division of Diabetes and Nutritional Sciences
- School of Medicine
- London, UK
| |
Collapse
|
75
|
Motara H, Mistry D, Brown DR, Cryan RA, Nigen M, Page MI. pH and basicity of ligands control the binding of metal-ions to B. cereus B1 β-lactamase. Chem Sci 2014. [DOI: 10.1039/c4sc00601a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metallo-β-lactamases (MBLs) are a group of enzymes responsible for a significant proportion of bacterial resistance to β-lactam antibiotics by catalysing the hydrolysis of the β-lactam.
Collapse
Affiliation(s)
- Hasina Motara
- IPOS
- The Page Laboratories
- Department of Chemical and Biological Sciences
- The University of Huddersfield
- Huddersfield, UK
| | - Dharmit Mistry
- IPOS
- The Page Laboratories
- Department of Chemical and Biological Sciences
- The University of Huddersfield
- Huddersfield, UK
| | - David R. Brown
- IPOS
- The Page Laboratories
- Department of Chemical and Biological Sciences
- The University of Huddersfield
- Huddersfield, UK
| | - Robert A. Cryan
- IPOS
- The Page Laboratories
- Department of Chemical and Biological Sciences
- The University of Huddersfield
- Huddersfield, UK
| | - Michaël Nigen
- Centre d'Ingénierie des Protéines
- Institut de Chimie B6
- Université de Liège
- B-4000 Liège, Belgium
| | - Michael I. Page
- IPOS
- The Page Laboratories
- Department of Chemical and Biological Sciences
- The University of Huddersfield
- Huddersfield, UK
| |
Collapse
|
76
|
Dagbay K, Eron SJ, Serrano BP, Velázquez-Delgado EM, Zhao Y, Lin D, Vaidya S, Hardy JA. A multipronged approach for compiling a global map of allosteric regulation in the apoptotic caspases. Methods Enzymol 2014; 544:215-49. [PMID: 24974292 DOI: 10.1016/b978-0-12-417158-9.00009-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the most promising and as yet underutilized means of regulating protein function is exploitation of allosteric sites. All caspases catalyze the same overall reaction, but they perform different biological roles and are differentially regulated. It is our hypothesis that many allosteric sites exist on various caspases and that understanding both the distinct and overlapping mechanisms by which each caspase can be allosterically controlled should ultimately enable caspase-specific inhibition. Here we describe the ongoing work and methods for compiling a comprehensive map of apoptotic caspase allostery. Central to this approach are the use of (i) the embedded record of naturally evolved allosteric sites that are sensitive to zinc-mediated inhibition, phosphorylation, and other posttranslational modifications, (ii) structural and mutagenic approaches, and (iii) novel binding sites identified by both rationally-designed and screening-derived small-molecule inhibitors.
Collapse
Affiliation(s)
- Kevin Dagbay
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Scott J Eron
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Banyuhay P Serrano
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Yunlong Zhao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Di Lin
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Sravanti Vaidya
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jeanne A Hardy
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA.
| |
Collapse
|
77
|
Zhu L, Yuan Z, Simmons JT, Sreenath K. Zn(II)-coordination modulated ligand photophysical processes - the development of fluorescent indicators for imaging biological Zn(II) ions. RSC Adv 2014; 4:20398-20440. [PMID: 25071933 PMCID: PMC4111279 DOI: 10.1039/c4ra00354c] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Molecular photophysics and metal coordination chemistry are the two fundamental pillars that support the development of fluorescent cation indicators. In this article, we describe how Zn(II)-coordination alters various ligand-centered photophysical processes that are pertinent to developing Zn(II) indicators. The main aim is to show how small organic Zn(II) indicators work under the constraints of specific requirements, including Zn(II) detection range, photophysical requirements such as excitation energy and emission color, temporal and spatial resolutions in a heterogeneous intracellular environment, and fluorescence response selectivity between similar cations such as Zn(II) and Cd(II). In the last section, the biological questions that fluorescent Zn(II) indicators help to answer are described, which have been motivating and challenging this field of research.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| | - Zhao Yuan
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| | - J. Tyler Simmons
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| | - Kesavapillai Sreenath
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| |
Collapse
|
78
|
Pomorski A, Kochańczyk T, Miłoch A, Krężel A. Method for accurate determination of dissociation constants of optical ratiometric systems: chemical probes, genetically encoded sensors, and interacting molecules. Anal Chem 2013; 85:11479-86. [PMID: 24180305 DOI: 10.1021/ac402637h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ratiometric chemical probes and genetically encoded sensors are of high interest for both analytical chemists and molecular biologists. Their high sensitivity toward the target ligand and ability to obtain quantitative results without a known sensor concentration have made them a very useful tool in both in vitro and in vivo assays. Although ratiometric sensors are widely used in many applications, their successful and accurate usage depends on how they are characterized in terms of sensing target molecules. The most important feature of probes and sensors besides their optical parameters is an affinity constant toward analyzed molecules. The literature shows that different analytical approaches are used to determine the stability constants, with the ratio approach being most popular. However, oversimplification and lack of attention to detail results in inaccurate determination of stability constants, which in turn affects the results obtained using these sensors. Here, we present a new method where ratio signal is calibrated for borderline values of intensities of both wavelengths, instead of borderline ratio values that generate errors in many studies. At the same time, the equation takes into account the cooperativity factor or fluorescence artifacts and therefore can be used to characterize systems with various stoichiometries and experimental conditions. Accurate determination of stability constants is demonstrated utilizing four known optical ratiometric probes and sensors, together with a discussion regarding other, currently used methods.
Collapse
Affiliation(s)
- Adam Pomorski
- Laboratory of Chemical Biology, Faculty of Biotechnology, University of Wrocław , Joliot-Curie 14a, 50-383 Wrocław, Poland
| | | | | | | |
Collapse
|
79
|
Qin Y, Miranda JG, Stoddard CI, Dean KM, Galati DF, Palmer AE. Direct comparison of a genetically encoded sensor and small molecule indicator: implications for quantification of cytosolic Zn(2+). ACS Chem Biol 2013; 8:2366-71. [PMID: 23992616 DOI: 10.1021/cb4003859] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent sensors are powerful tools for visualizing and quantifying molecules and ions in living cells. A variety of small molecule and genetically encoded sensors have been developed for studying intracellular Zn(2+) homeostasis and signaling, but no direct comparisons exist, making it challenging for researchers to identify the appropriate sensor for a given application. Here we directly compare the widely used small molecule probe FluoZin-3 and a genetically encoded sensor, ZapCY2. We demonstrate that, in contrast to FluoZin-3, ZapCY2 exhibits a well-defined cytosolic localization, provides estimates of Zn(2+) concentration with little variability, does not perturb cytosolic Zn(2+) levels, and exhibits rapid Zn(2+) response dynamics. ZapCY2 was used to measure Zn(2+) concentrations in 5 different cell types, revealing higher cytosolic Zn(2+) levels in prostate cancer cells compared to normal prostate cells (although the total zinc is reduced in prostate cancer cells), suggesting distinct regulatory mechanisms.
Collapse
Affiliation(s)
- Yan Qin
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| | - Jose G. Miranda
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| | - Caitlin I. Stoddard
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| | - Kevin M. Dean
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| | - Domenico F. Galati
- Department
of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, UCB
347, Boulder, Colorado 80309, United States
| | - Amy E. Palmer
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| |
Collapse
|
80
|
Petkovic V, Miletta MC, Eblé A, Iliev DI, Binder G, Flück CE, Mullis PE. Effect of zinc binding residues in growth hormone (GH) and altered intracellular zinc content on regulated GH secretion. Endocrinology 2013; 154:4215-25. [PMID: 23970781 DOI: 10.1210/en.2013-1089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endocrine cells store hormones in concentrated forms (aggregates) in dense-core secretory granules that are released upon appropriate stimulation. Zn(2+) binding to GH through amino acid residues His18, His21, and Glu174 are essential for GH dimerization and might mediate its aggregation and storage in secretory granules. To investigate whether GH-1 gene mutations at these positions interfere with this process, GH secretion and intracellular production were analyzed in GC cells (rat pituitary cell line) transiently expressing wt-GH and/or GH Zn mutant (GH-H18A-H21A-E174A) in forskolin-stimulated vs nonstimulated conditions. Reduced secretion of the mutant variant (alone or coexpressed with wt-GH) compared with wt-GH after forskolin stimulation was observed, whereas an increased intracellular accumulation of GH Zn mutant vs wt-GH correlates with its altered extracellular secretion. Depleting Zn(2+) from culture medium using N,N,N',N'-tetrakis(2-pyridylemethyl)ethylenediamine, a high-affinity Zn(2+) chelator, led to a significant reduction of the stimulated wt-GH secretion. Furthermore, externally added Zn(2+) to culture medium increased intracellular free Zn(2+) levels and recovered wt-GH secretion, suggesting its direct dependence on free Zn(2+) levels after forskolin stimulation. Confocal microscopy analysis of the intracellular secretory pathway of wt-GH and GH Zn mutant indicated that both variants pass through the regulated secretory pathway in a similar manner. Taken together, our data support the hypothesis that loss of affinity of GH to Zn(2+) as well as altering intracellular free Zn(2+) content may interfere with normal GH dimerization (aggregation) and storage of the mutant variant (alone or with wt-GH), which could possibly explain impaired GH secretion.
Collapse
Affiliation(s)
- Vibor Petkovic
- PhD, Division of Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital, Inselspital, CH-3010 Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
81
|
Travaglia A, La Mendola D, Magrì A, Pietropaolo A, Nicoletti VG, Grasso G, Malgieri G, Fattorusso R, Isernia C, Rizzarelli E. Zinc(II) interactions with brain-derived neurotrophic factor N-terminal peptide fragments: inorganic features and biological perspectives. Inorg Chem 2013; 52:11075-83. [PMID: 24070197 DOI: 10.1021/ic401318t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal differentiation, growth, and survival; it is involved in memory formation and higher cognitive functions. The N-terminal domain of BDNF is crucial for the binding selectivity and activation of its specific TrkB receptor. Zn(2+) ion binding may influence BDNF activity. Zn(2+) complexes with the peptide fragment BDNF(1-12) encompassing the sequence 1-12 of the N-terminal domain of BDNF were studied by means of potentiometry, electrospray mass spectrometry, NMR, and density functional theory (DFT) approaches. The predominant Zn(2+) complex species, at physiological pH, is [ZnL] in which the metal ion is bound to an amino, an imidazole, and two water molecules (NH2, N(Im), and 2O(water)) in a tetrahedral environment. DFT-based geometry optimization of the zinc coordination environment showed a hydrogen bond between the carboxylate and a water molecule bound to zinc in [ZnL]. The coordination features of the acetylated form [AcBDNF(1-12)] and of a single mutated peptide [BDNF(1-12)D3N] were also characterized, highlighting the role of the imidazole side chain as the first anchoring site and ruling out the direct involvement of the aspartate residue in the metal binding. Zn(2+) addition to the cell culture medium induces an increase in the proliferative activity of the BDNF(1-12) peptide and of the whole protein on the SHSY5Y neuroblastoma cell line. The effect of Zn(2+) is opposite to that previously observed for Cu(2+) addition, which determines a decrease in the proliferative activity for both peptide and protein, suggesting that these metals might discriminate and modulate differently the activity of BDNF.
Collapse
Affiliation(s)
- Alessio Travaglia
- Center for Neural Science, New York University , 4 Washington Place, New York, New York 10003, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Wang D, Fierke CA. The BaeSR regulon is involved in defense against zinc toxicity in E. coli. Metallomics 2013; 5:372-83. [PMID: 23446818 DOI: 10.1039/c3mt20217h] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intracellular zinc homeostasis is regulated by an extensive network of transporters, ligands and transcription factors. The zinc detoxification functions of three transporters and a periplasmic protein regulated by the BaeSR two-component system were explored in this work by evaluating the effect of single gene knockouts in the BaeSR regulon on the cell growth rate, free zinc, total zinc and total copper after zinc shock. Two exporters, MdtABC and MdtD, and the periplasmic protein, Spy, are involved in zinc detoxification based on the growth defects at high cell density and increases in free (>1000-fold) and total zinc/copper (>2-fold) that were observed in the single knockout strains upon exposure to zinc. These proteins complement the ATP-driven zinc export mediated by ZntA in E. coli to limit zinc toxicity. These results highlight the functions of the BaeSR regulon in metal homeostasis.
Collapse
Affiliation(s)
- Da Wang
- Department of Chemistry, The University of Michigan, 930 N University Ave, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
83
|
Na YJ, Hwang IH, Jo HY, Lee SA, Park GJ, Kim C. Fluorescent chemosensor based-on the combination of julolidine and furan for selective detection of zinc ion. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2013.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
84
|
Structural parameters of Zn(II) complexes of 8-hydroxyquinoline-based tripodal ligands affect fluorescence quantum yield. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.11.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
85
|
Palanimuthu D, Shinde SV, Dayal D, Somasundaram K, Samuelson AG. Imaging Intracellular Zinc by Using a Glyoxal Bis(4-methyl-4-phenyl-3-thiosemicarbazone) Ligand. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
86
|
Helal A, Kim HS. Carbazole incorporated ratiometric chemosensor for Zn2+. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 105:273-279. [PMID: 23318770 DOI: 10.1016/j.saa.2012.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
An electron donating carbazole incorporated thiazole (3) based Zn(2+) selective intrinsic chemosensor has been synthesized and investigated. It was found that electron donating substituents such as methyl and carbazole on chemosensor (1) produce remarkable red shift in emission upon complexation with Zn(2+). The sensor shows a selective fluorescence response with Zn(2+) over biologically relevant cations (Ca(2+), Mg(2+), Na(+), and K(+)) and biologically non-relevant cations (Cd(2+), In(3+) and Ga(3+)) in an aqueous ethanol system. It also produce an enhancement in the quantum yield and a longer emission wavelength shift on Zn(2+) binding with the potential of a ratiometric assay.
Collapse
Affiliation(s)
- Aasif Helal
- Department of Applied Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | |
Collapse
|
87
|
Takashima H, Fukuda M, Nakagaki F, Ogata T, Tsukahara K. Photoinduced Electron-Transfer Reactions of Carbonic Anhydrase Inhibitor Containing Tris(2,2′-bipyridine)ruthenium(II) Analogue. J Phys Chem B 2013; 117:2625-35. [DOI: 10.1021/jp310604w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hiroshi Takashima
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Misa Fukuda
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Fumie Nakagaki
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Tomoko Ogata
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Keiichi Tsukahara
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
88
|
Abstract
After iron, zinc is the most abundant essential trace metal. Intracellular zinc ([Zn]i) is maintained across a wide range of cells and species in a tight quota (100 to 500 μM) by a dynamic process of transport, intracellular vesicular storage, and binding to a large number of proteins (estimated at 3-10% of human proteome). As such, zinc is an integral component of numerous metalloenzymes, structural proteins, and transcription factors. It is generally assumed that a vanishingly small component of [Zn]i, referred to as free or labile zinc, and operationally defined as the pool sensitive to chelation (by agents such as N, N, N’, N’-tetrakis [2-pyridylmethyl] ethylenediamine [TPEN]) and capable of detection by a variety of chemical and genetic sensors, participates in signal transduction pathways. Zinc deficiencies, per se, can arise from acquired (malnutrition, alcoholism) or genetic (mutations in molecules affecting zinc homeostasis, the informative and first example being acrodermatitis enteropathica) factors or as a component of various diseases (e.g., sickle cell disease, cystic fibrosis, sepsis). Hypozincemia has profound effects on developing humans, and all facets of physiological function (neuronal, endocrine, immunological) are affected, although considerably less is known regarding cardiovascular pathophysiology. In this review, we provide an update on current knowledge of molecular and cellular aspects of zinc homeostasis and then focus on implications of zinc signaling in pulmonary endothelium as it relates to programmed cell death, altered contractility, and septic and aseptic injury to this segment of the lung.
Collapse
Affiliation(s)
- Kalidasan Thambiayya
- Department of Bioengineering, University of Pittsburgh and University of Pittsburgh School of Medicine and Graduate School Public Health, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
89
|
Wolfson NA, Pitcairn CA, Fierke CA. HDAC8 substrates: Histones and beyond. Biopolymers 2013; 99:112-26. [PMID: 23175386 PMCID: PMC3507420 DOI: 10.1002/bip.22135] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/04/2012] [Accepted: 07/30/2012] [Indexed: 01/05/2023]
Abstract
The lysine deacetylase family of enzymes (HDACs) was first demonstrated to catalyze deacetylation of acetyllysine residues on histones. In subsequent years, HDACs have been shown to recognize a large pool of acetylated nonhistone proteins as substrates. Recently, thousands of acetylated proteins have been discovered, yet in most cases, the HDAC that catalyzes deacetylation in vivo has not been identified. This gap has created the need for better in vivo, in vitro, and in silico approaches for determining HDAC substrates. While HDAC8 is the best kinetically and structurally characterized HDAC, few efficient substrates have yet been substantiated in vivo. In this review, we delineate factors that may be important for determining HDAC8 substrate recognition and catalytic activity, including structure, complex formation, and post-translational modifications. This summary provides insight into the challenges of identifying in vivo substrates for HDAC8, and provides a good vantage point for understanding the variables important for predicting HDAC substrate recognition.
Collapse
Affiliation(s)
- Noah A Wolfson
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
| | | | | |
Collapse
|
90
|
Zeng HH, Matveeva EG, Stoddard AK, Fierke CA, Thompson RB. Long wavelength fluorescence ratiometric zinc biosensor. J Fluoresc 2013; 23:375-9. [PMID: 23345045 DOI: 10.1007/s10895-013-1161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
A protein-based emission ratiometric fluorescence biosensor is described that exhibits sensitivity to free zinc ion in solution down to picomolar concentrations. Ratiometric measurements are widely used to assure accurate quantitation, and emission ratios are preferred for laser scanning microscopes such as confocal fluorescence microscopes. The relatively long emission wavelengths used are well suited to studies in tissues and other matrices which exhibit significant fluorescence background, and the apo-carbonic anhydrase moiety recognizes zinc ion with high and controllable specificity.
Collapse
Affiliation(s)
- Hui Hui Zeng
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
91
|
Application of Zinpyr-1 for the investigation of zinc signals in Escherichia coli. Biometals 2013; 26:167-77. [PMID: 23324851 DOI: 10.1007/s10534-012-9604-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 12/21/2012] [Indexed: 12/22/2022]
Abstract
Changes of the pico- to nanomolar concentration of free intracellular Zn(2+) are part of the signal transduction in mammalian cells. These zinc signals regulate the enzymatic activity of target proteins such as protein tyrosine phosphatases. For Escherichia coli, previous studies have reported diverging concentrations from femto- to picomolar, raising the question if Zn(2+) could also have a function in bacterial signaling. This manuscript explores the use of the low molecular weight fluorescent probe Zinpyr-1 in E. coli. The probe detects free Zn(2+) in these bacteria. Comparable to mammalian cells, other metal ions, especially Hg(2+) and Cd(2+), interfere with the detection of Zn(2+). Moreover, experiments in E. coli were particularly prone to artifacts based on cellular autofluorescence, necessitating corrections that are not required in mammalian cells. Based on measurements in lysates of E. coli and the mammalian cell line Jurkat, similar values between 0.1 and 0.2 nM free Zn(2+) were found. For E. coli, this corresponds to less than one free zinc ion per cell. Moreover, phosphatase inhibition by Zn(2+) was only observed in Jurkat, but not E. coli. This excludes a function for zinc signals as a regulator of bacterial phosphatases. Still, changes in the free Zn(2+) concentration were observed in response to elevated extracellular Zn(2+) and pH, or to addition of the detergent NP-40, suggesting that other processes could be controlled by the free intracellular Zn(2+) concentration.
Collapse
|
92
|
Abstract
The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of "zinc finger" proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron.
Collapse
Affiliation(s)
- Wolfgang Maret
- King's College London, Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, School of Medicine, London, United Kingdom.
| |
Collapse
|
93
|
Niu W, Guo J. Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids. MOLECULAR BIOSYSTEMS 2013; 9:2961-70. [DOI: 10.1039/c3mb70204a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
94
|
Radford RJ, Chyan W, Lippard SJ. Peptide-based Targeting of Fluorescent Zinc Sensors to the Plasma Membrane of Live Cells. Chem Sci 2013; 4:3080-3084. [PMID: 23878718 DOI: 10.1039/c3sc50974e] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Combining fluorescent zinc sensors with the facile syntheses and biological targeting capabilities of peptides, we created green- and blue-emitting probes that, (i) are readily prepared on the solid-phase, (ii) retain the photophysical and zinc-binding properties of the parent sensor, and (iii) can be directed to the extracellular side of plasma membranes in live cells for detection of mobile zinc.
Collapse
Affiliation(s)
- Robert J Radford
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | | | | |
Collapse
|
95
|
Zhu S, Zhang J, Janjanam J, Vegesna G, Luo FT, Tiwari A, Liu H. Highly water-soluble BODIPY-based fluorescent probes for sensitive fluorescent sensing of zinc(ii). J Mater Chem B 2013; 1:1722-1728. [DOI: 10.1039/c3tb00249g] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
96
|
Oteiza PI. Zinc and the modulation of redox homeostasis. Free Radic Biol Med 2012; 53:1748-59. [PMID: 22960578 PMCID: PMC3506432 DOI: 10.1016/j.freeradbiomed.2012.08.568] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/12/2022]
Abstract
Zinc, a redox-inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintaining the cell redox balance through various mechanisms including: (i) the regulation of oxidant production and metal-induced oxidative damage; (ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione, and other thiol oxidant species; (iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and acts per se as a scavenging oxidant; (iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and (v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue dysfunction in cell and animal models of zinc deficiency highlight the relevant role of zinc in the preservation of cell redox homeostasis. However, although the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the molecules, targets, and mechanisms involved are still partially known and the subject of active research.
Collapse
Affiliation(s)
- Patricia I Oteiza
- Department of Nutrition and Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
97
|
Brophy MB, Hayden JA, Nolan EM. Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin. J Am Chem Soc 2012; 134:18089-100. [PMID: 23082970 DOI: 10.1021/ja307974e] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calprotectin (CP) is an antimicrobial protein produced and released by neutrophils that inhibits the growth of pathogenic microorganisms by sequestering essential metal nutrients in the extracellular space. In this work, spectroscopic and thermodynamic metal-binding studies are presented to delineate the zinc-binding properties of CP. Unique optical absorption and EPR spectroscopic signatures for the interfacial His(3)Asp and His(4) sites of human calprotectin are identified by using Co(II) as a spectroscopic probe. Zinc competition titrations employing chromophoric Zn(II) indicators provide a 2:1 Zn(II):CP stoichiometry, confirm that the His(3)Asp and His(4) sites of CP coordinate Zn(II), and reveal that the Zn(II) affinity of both sites is calcium-dependent. The calcium-insensitive Zn(II) competitor ZP4 affords dissociation constants of K(d1) = 133 ± 58 pM and K(d2) = 185 ± 219 nM for CP in the absence of Ca(II). These values decrease to K(d1) ≤ 10 pM and K(d2) ≤ 240 pM in the presence of excess Ca(II). The K(d1) and K(d2) values are assigned to the His(3)Asp and His(4) sites, respectively. In vitro antibacterial activity assays indicate that the metal-binding sites and Ca(II)-replete conditions are required for CP to inhibit the growth of both Gram-negative and -positive bacteria. Taken together, these data provide a working model whereby calprotectin responds to physiological Ca(II) gradients to become a potent Zn(II) chelator in the extracellular space.
Collapse
Affiliation(s)
- Megan Brunjes Brophy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
98
|
Xue L, Li G, Zhu D, Liu Q, Jiang H. Rational Design of a Ratiometric and Targetable Fluorescent Probe for Imaging Lysosomal Zinc Ions. Inorg Chem 2012; 51:10842-9. [DOI: 10.1021/ic301307v] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lin Xue
- Beijing National Laboratory
for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
| | - Guoping Li
- Beijing National Laboratory
for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- Graduate School of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dongjian Zhu
- Beijing National Laboratory
for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- Graduate School of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qing Liu
- Beijing National Laboratory
for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- Graduate School of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hua Jiang
- Beijing National Laboratory
for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
| |
Collapse
|
99
|
Hasan R, Rink L, Haase H. Zinc signals in neutrophil granulocytes are required for the formation of neutrophil extracellular traps. Innate Immun 2012; 19:253-64. [DOI: 10.1177/1753425912458815] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Zinc signals, i.e. changes in the free intracellular Zn2+concentration, are an integral component of signal transduction in several immune cells. The aim of the present study was to investigate if this is also the case in neutrophil granulocytes. One neutrophil function is NETosis, the release of a matrix composed of DNA, chromatin and granule proteins to capture extracellular bacteria within so-called neutrophil extracellular traps (NET). NETosis can be induced by the protein kinase C (PKC) activator 12-myristate 13-acetate (PMA). PMA treatment led to a zinc signal in neutrophil granulocytes. NETosis was inhibited when the zinc signal was sequestered by the membrane permeable high affinity chelator N, N, N′, N′,-tetrakis (2-pyridylmethyl)ethylenediamine (TPEN). PKC-mediated NET formation depends on the production of reactive oxygen species (ROS) by NADPH oxidase. Inhibition of NADPH oxidase with diphenyleneiodonium chloride blocked ROS formation and NETosis, as well as the zinc signal. TPEN, however, had no effect on PKC activity and ROS production, indicating that Zn2+ is not required for activation of PKC, but for signals downstream of ROS production. In conclusion, zinc signals are an essential component of the ROS-dependent signal transduction leading to NETosis.
Collapse
Affiliation(s)
- Rafah Hasan
- RWTH Aachen University Hospital, Medical Faculty, Institute of Immunology, Germany
| | - Lothar Rink
- RWTH Aachen University Hospital, Medical Faculty, Institute of Immunology, Germany
| | - Hajo Haase
- RWTH Aachen University Hospital, Medical Faculty, Institute of Immunology, Germany
| |
Collapse
|
100
|
Cohen L, Asraf H, Sekler I, Hershfinkel M. Extracellular pH regulates zinc signaling via an Asp residue of the zinc-sensing receptor (ZnR/GPR39). J Biol Chem 2012; 287:33339-50. [PMID: 22879599 DOI: 10.1074/jbc.m112.372441] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zinc activates a specific Zn(2+)-sensing receptor, ZnR/GPR39, and thereby triggers cellular signaling leading to epithelial cell proliferation and survival. Epithelial cells that express ZnR, particularly colonocytes, face frequent changes in extracellular pH that are of physiological and pathological implication. Here we show that the ZnR/GPR39-dependent Ca(2+) responses in HT29 colonocytes were maximal at pH 7.4 but were reduced by about 50% at pH 7.7 and by about 62% at pH 7.1 and were completely abolished at pH 6.5. Intracellular acidification did not attenuate ZnR/GPR39 activity, indicating that the pH sensor of this protein is located on an extracellular domain. ZnR/GPR39-dependent activation of extracellular-regulated kinase (ERK)1/2 or AKT pathways was abolished at acidic extracellular pH of 6.5. A similar inhibitory effect was monitored for the ZnR/GPR39-dependent up-regulation of Na(+)/H(+) exchange activity at pH 6.5. Focusing on residues putatively facing the extracellular domain, we sought to identify the pH sensor of ZnR/GPR39. Replacing the histidine residues forming the Zn(2+) binding site, His(17) or His(19), or other extracellular-facing histidines to alanine residues did not abolish the pH dependence of ZnR/GPR39. In contrast, replacing Asp(313) with alanine resulted in similar Ca(2+) responses triggered by ZnR/GPR39 at pH 7.4 or 6.5. This mutant also showed similar activation of ERK1/2 and AKT pathways, and ZnR-dependent up-regulation of Na(+)/H(+) exchange at pH 7.4 and pH 6.5. Substitution of Asp(313) to His or Glu residues restored pH sensitivity of the receptor. This indicates that Asp(313), which was shown to modulate Zn(2+) binding, is an essential residue of the pH sensor of GPR39. In conclusion, ZnR/GPR39 is tuned to sense physiologically relevant changes in extracellular pH that thus regulate ZnR-dependent signaling and ion transport activity.
Collapse
Affiliation(s)
- Limor Cohen
- Department of Morphology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|