51
|
Rock C, Rivera B, Gerba CP. Microbial Source Tracking. Environ Microbiol 2015. [DOI: 10.1016/b978-0-12-394626-3.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
52
|
Harrault L, Jardé E, Jeanneau L, Petitjean P. Are fecal stanols suitable to record and identify a pulse of human fecal contamination in short-term exposed shellfish? A microcosm study. MARINE POLLUTION BULLETIN 2014; 89:40-48. [PMID: 25455370 DOI: 10.1016/j.marpolbul.2014.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/08/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
In this study, the capacity of oysters to bioaccumulate fecal stanols and to record a source-specific fingerprint was investigated by the short-term contamination of seawater microcosms containing oysters with a human effluent. Contaminated oysters bioaccumulated the typical fecal stanols coprostanol and 24-ethylcoprostanol and their bioaccumulation kinetics were similar to that of the Fecal Indicator Bacteria Escherichia coli used in European legislation. Although stanol fingerprints of contaminated water allowed the identification of the human specific fingerprint, this was not the case for oysters. This discrepancy is attributed to (i) high concentrations of endogenous cholestanol and sitostanol, responsible for "unbalanced" stanol fingerprints, (ii) different accumulation/depuration kinetics of fecal coprostanol and 24-ethylcoprostanol and (iii) the limits of the analytical pathway used. These results show that fecal stanols bioaccumulated by oysters are useful to record fecal contamination but the usefulness of stanol fingerprints to identify specific sources of contamination in shellfish currently seems limited.
Collapse
Affiliation(s)
- Loïc Harrault
- CNRS, UMR 6118 Geosciences Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France.
| | - Emilie Jardé
- CNRS, UMR 6118 Geosciences Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Laurent Jeanneau
- CNRS, UMR 6118 Geosciences Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Patrice Petitjean
- CNRS, UMR 6118 Geosciences Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France
| |
Collapse
|
53
|
Distribution of human-specific bacteroidales and fecal indicator bacteria in an urban watershed impacted by sewage pollution, determined using RNA- and DNA-based quantitative PCR assays. Appl Environ Microbiol 2014; 81:91-9. [PMID: 25326295 DOI: 10.1128/aem.02446-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The identification of fecal pollution sources is commonly carried out using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as "naked DNA" in the environment. Furthermore, it has been shown that rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) assays can be more sensitive than rRNA gene-based qPCR assays since metabolically active cells usually contain higher numbers of ribosomes than quiescent cells. To this end, we compared the detection frequency of host-specific markers and fecal bacteria using RNA-based RT-qPCR and DNA-based qPCR methods for water samples collected in sites impacted by combined sewer overflows. As a group, fecal bacteria were more frequently detected in most sites using RNA-based methods. Specifically, 8, 87, and 85% of the samples positive for general enterococci, Enterococcus faecalis, and Enterococcus faecium markers, respectively, were detected using RT-qPCR, but not with the qPCR assay counterpart. On average, two human-specific Bacteroidales markers were not detected when using DNA in 12% of the samples, while they were positive for all samples when using RNA (cDNA) as the template. Moreover, signal intensity was up to three orders of magnitude higher in RT-qPCR assays than in qPCR assays. The human-specific Bacteroidales markers exhibited moderate correlation with conventional fecal indicators using RT-qPCR results, suggesting the persistence of nonhuman sources of fecal pollution or the presence of false-positive signals. In general, the results from this study suggest that RNA-based assays can increase the detection sensitivity of fecal bacteria in urban watersheds impacted with human fecal sources.
Collapse
|
54
|
Davies CL, Surridge BWJ, Gooddy DC. Phosphate oxygen isotopes within aquatic ecosystems: global data synthesis and future research priorities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 496:563-575. [PMID: 25108797 DOI: 10.1016/j.scitotenv.2014.07.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
The oxygen isotope ratio of dissolved inorganic phosphate (δ(18)Op) represents a novel and potentially powerful stable isotope tracer for biogeochemical research. Analysis of δ(18)Op may offer new insights into the relative importance of different sources of phosphorus within natural ecosystems. Due to the isotope fractionations that occur alongside the metabolism of phosphorus, δ(18)Op could also be used to better understand the intracellular and extracellular reaction mechanisms that control phosphorus cycling. In this review focussed on aquatic ecosystems, we examine the theoretical basis to using stable oxygen isotopes within phosphorus research. We consider the methodological challenges involved in accurately determining δ(18)Op, given aquatic matrices in which potential sources of contaminant oxygen are ubiquitous. Finally, we synthesise the existing global data regarding δ(18)Op in aquatic ecosystems, concluding by identifying four key areas for future development of δ(18)Op research. Through this synthesis, we seek to stimulate broader interest in the use of δ(18)Op to address the significant research and management challenges that continue to surround the stewardship of phosphorus.
Collapse
Affiliation(s)
- Ceri L Davies
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Ben W J Surridge
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Daren C Gooddy
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK
| |
Collapse
|
55
|
Eichmiller JJ, Borchert AJ, Sadowsky MJ, Hicks RE. Decay of genetic markers for fecal bacterial indicators and pathogens in sand from Lake Superior. WATER RESEARCH 2014; 59:99-111. [PMID: 24793108 DOI: 10.1016/j.watres.2014.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/07/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
Beach sands impact water quality and pathogen loads, however, the comparative decay of the fecal indicator bacteria (FIB) Enterococcus spp. and Escherichia coli, and pathogens in freshwater sand have not been examined. In this study, freshwater sand microcosms were inoculated with sewage and pure cultures of bacterial pathogens to compare relative decay rates. The abundance of culturable Enterococcus spp. and E. coli, genetic markers for Enterococcus spp. (Entero1), total Bacteroides (AllBac), and human-specific Bacteroides (HF183), and genetic markers for the pathogens Campylobacter jejuni, methicillin-resistant Staphylococcus aureus (MRSA), Salmonella enterica subsp. enterica serovar Typhimurium, and Shigella flexneri were monitored over the course of two weeks using conventional culture methods and quantitative PCR (qPCR). The effect of moisture on the persistence of culturable FIB and all genetic markers was also determined. In addition, propidium monoazide (PMA) treatment was used to examine differences in the persistence of total genetic markers and those from live cells. Decay rates were statistically compared using Tukey's test. Moisture had a significant (p ≤ 0.05) effect on the decay rates of culturable indicator bacteria, total AllBac markers, and genetic markers for FIB, Salmonella, and MRSA from live cells. At 14% sand moisture, the decay rate of total markers was slower than that of live cells for all qPCR assays, but at 28% moisture, there was no difference in the decay rates of total and live markers for any assay. AllBac and MRSA markers increased in sand at 28% moisture, probably indicating cellular growth. Overall, culturable FIB and HF183 had decay rates that were most comparable to the bacterial pathogen markers examined in this study, whereas Entero1 and AllBac rarely exhibited decay rates similar to the bacterial pathogens in this study. The choice of FIB for assessment of fecal contamination in freshwater sand should take into account the pathogen of concern and sand moisture conditions.
Collapse
Affiliation(s)
- Jessica J Eichmiller
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, United States; Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, United States
| | - Andrew J Borchert
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, United States
| | - Michael J Sadowsky
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, United States; BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, United States
| | - Randall E Hicks
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, United States.
| |
Collapse
|
56
|
Hamner S, Broadaway SC, Berg E, Stettner S, Pyle BH, Big Man N, Old Elk J, Eggers MJ, Doyle J, Kindness L, Good Luck B, Ford TE, Camper AC. Detection and source tracking of Escherichia coli, harboring intimin and Shiga toxin genes, isolated from the Little Bighorn River, Montana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 24:341-362. [PMID: 24044742 DOI: 10.1080/09603123.2013.835030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Little Bighorn River flows through the Crow Indian Reservation in Montana. In 2008, Escherichia coli concentrations as high as 7179 MPN/100 ml were detected in the river at the Crow Agency Water Treatment Plant intake site. During 2008, 2009, and 2012, 10 different serotypes of E. coli, including O157:H7, harboring both intimin and Shiga toxin genes were isolated from a popular swim site of the Little Bighorn River in Crow Agency. As part of a microbial source tracking study, E. coli strains were isolated from river samples as well as from manure collected from a large cattle feeding operation in the upper Little Bighorn River watershed; 23% of 167 isolates of E. coli obtained from the manure tested positive for the intimin gene. Among these manure isolates, 19 were identified as O156:H8, matching the serotype of an isolate collected from a river sampling site close to the cattle feeding area.
Collapse
Affiliation(s)
- Steve Hamner
- a Department of Microbiology , Montana State University , Bozeman , MT , USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Teklehaimanot GZ, Coetzee MAA, Momba MNB. Faecal pollution loads in the wastewater effluents and receiving water bodies: a potential threat to the health of Sedibeng and Soshanguve communities, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9589-9603. [PMID: 24838129 DOI: 10.1007/s11356-014-2980-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
The discharge of untreated or inadequately treated effluents has been identified among the activities responsible for the spread of a wide range of potentially infectious agents. The aim of this study was to determine whether inadequate treatment of wastewater and the faecal pollution load of effluents and receiving water bodies in Sedibeng District and Soshanguve peri-urban area of the Tshwane Metropolitan Municipality could be a potential threat to the health of the surrounding communities. Variations in the counts of faecal indicator bacteria and pathogenic microorganisms and compliance of the effluents and receiving water bodies with South African and World Health Organization standards were assessed between August 2011 and May 2012 using culture-based methods and molecular techniques. The overall quality of effluents did not comply with the South African special standard of no risk for unrestricted irrigation (zero Escherichia coli/100 ml). The quality of the receiving water bodies did not comply with South African regulatory limits set for domestic purposes (zero E. coli/100 ml, <30 faecal enterococci/100 ml and <1 somatic coliphages/100 ml), for full contact recreation (<20 somatic coliphages/100 ml) and aquaculture (<10 E. coli/100 ml) and WHO standards for full and intermediate contact recreational use (<1 E. coli/100 ml and <40 faecal enterococci/100 ml, respectively). The PCR results revealed the prevalence of pathogenic microorganisms; between 0 and 60 % of samples tested positive for Salmonella Typhimurium and Shigella dysenteriae, and between 20 and 60% of samples tested positive for Vibrio cholerae. These findings demonstrated that potential health risks might be associated with the use of the target river waters for domestic, recreational and irrigation purposes. This study calls for a prompt intervention to improve wastewater management.
Collapse
Affiliation(s)
- Giorgis Z Teklehaimanot
- Water Care Unit, Department of Environmental, Water and Earth Sciences, TUT, Private Bag X680, 175 Nelson Mandela Drive, Arcadia Campus, Pretoria, 0001, South Africa
| | | | | |
Collapse
|
58
|
Jofre J, Blanch AR, Lucena F, Muniesa M. Bacteriophages infecting Bacteroides as a marker for microbial source tracking. WATER RESEARCH 2014; 55:1-11. [PMID: 24583570 DOI: 10.1016/j.watres.2014.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 05/25/2023]
Abstract
Bacteriophages infecting certain strains of Bacteroides are amid the numerous procedures proposed for tracking the source of faecal pollution. These bacteriophages fulfil reasonably well most of the requirements identified as appropriate for a suitable marker of faecal sources. Thus, different host strains are available that detect bacteriophages preferably in water contaminated with faecal wastes corresponding to different animal species. For phages found preferably in human faecal wastes, which are the ones that have been more extensively studied, the amounts of phages found in waters contaminated with human fecal samples is reasonably high; these amounts are invariable through the time; their resistance to natural and anthropogenic stressors is comparable to that of other relatively resistant indicator of faecal pollution such us coliphages; the abundance ratios of somatic coliphages and bacteriophages infecting Bacteroides thetaiotaomicron GA17 are unvarying in recent and aged contamination; and standardised detection methods exist. These methods are easy, cost effective and provide data susceptible of numerical analysis. In contrast, there are some uncertainties regarding their geographical stability, and consequently suitable hosts need to be isolated for different geographical areas. However, a feasible method has been described to isolate suitable hosts in a given geographical area. In summary, phages infecting Bacteroides are a marker of faecal sources that in our opinion merits being included in the "toolbox" for microbial source tracking. However, further research is still needed in order to make clear some uncertainties regarding some of their characteristics and behaviour, to compare their suitability to the one of emerging methods such us targeting Bacteroidetes by qPCR assays; or settling molecular methods for their determination.
Collapse
Affiliation(s)
- Joan Jofre
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain.
| | - Anicet R Blanch
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain
| | - Francisco Lucena
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain
| | - Maite Muniesa
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain
| |
Collapse
|
59
|
Development of the Analysis of Fecal Stanols in the Oyster Crassostrea gigas
and Identification of Fecal Contamination in Shellfish Harvesting Areas. Lipids 2014; 49:597-607. [DOI: 10.1007/s11745-014-3908-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
|
60
|
McMinn BR, Korajkic A, Ashbolt NJ. Evaluation of Bacteroides fragilis GB-124 bacteriophages as novel human-associated faecal indicators in the United States. Lett Appl Microbiol 2014; 59:115-21. [PMID: 24725119 DOI: 10.1111/lam.12252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/05/2014] [Accepted: 03/14/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Phages infecting human-associated Bacteroides fragilis (GB-124 phages) have been employed in the European Union (EU) to identify human faecal pollution, but their utility for the United States was unclear. Primary sewage samples were collected seasonally from seven wastewater treatment plants (WWTP) across the continental United States, and more time-intensive sampling was conducted at local WWTPs. All samples were assayed for plaque-forming units (PFU) of GB-124 phages, somatic and FRNA-specific coliphages, as well as adenoviruses (by quantitative PCR [qPCR]). Animal faecal samples (>250) from 14 different species were tested for the presence of the three phage groups. GB-124 phages were consistently detected in sewage (10-10(2) PFU ml(-1) ), but not in animal faeces. While density estimates of both coliphages in sewage were approximately one order of magnitude higher than GB-124 phages, they were both randomly detected in animal faecal samples (10(2) -10(5) g(-1) dry weight). Stability of all three phages was inversely proportional to temperature; persistence was greatest at 5°C compared to 20 and 35°C, where no phages were detectable after a week. In summary, GB-124 phages appear to be a feasible alternative indicator organism and benefit from being sewage associated, while providing an inexpensive detection technique for infectious virions. SIGNIFICANCE AND IMPACT OF THE STUDY Bacteroides fragilis GB-124 phages appear to be restricted to human sewage sources in the United States, being absent from 264 animal faecal samples from 14 different species and present in approx. 90% (34/38) of primary sewage effluent samples collected across the country. Although somatic and F-specific coliphages were present in sewage samples at higher densities, unlike GB-124 phages, both coliphage types were also detected in animal faecal samples. Hence, GB-124 phages may prove to be a useful novel indicator group for human faecal pollution in the continental United States.
Collapse
Affiliation(s)
- B R McMinn
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH, USA
| | | | | |
Collapse
|
61
|
Weigand MR, Ashbolt NJ, Konstantinidis KT, Santo Domingo JW. Genome sequencing reveals the environmental origin of enterococci and potential biomarkers for water quality monitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3707-3714. [PMID: 24571132 DOI: 10.1021/es4054835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Enterococci are common members of the gut microbiome and their ease of culturing has facilitated worldwide use as indicators of fecal pollution of waters. However, enterococci were recently shown to persist in environmental habitats, often in the absence of fecal input, potentially confounding water quality assays. Toward resolving this issue and providing a more complete picture of natural enterococci diversity, 11 isolates of Enterococcus faecalis recovered from freshwater watersheds (environmental) were sequenced and compared to 59 available enteric genomes. Phenotypically and phylogenetically the environmental E. faecalis were indistinguishable from their enteric counterparts. However, distinct environmental- and enteric-associated gene signatures, encoding mostly accessory nutrient utilization pathways, were detected among the variable genes. Specifically, a nickel uptake operon was over-represented in environmental genomes, while genes for utilization of sugars thought to be abundant in the gut such as xylose were over-represented in enteric genomes. The distribution and phylogeny of these identified signatures suggest that ancestors of E. faecalis resided in extra-enteric habitats, challenging the prevailing commensal view of enterococci ecology. Thus, habitat-associated gene content changes faster than core genome phylogeny and may include biomarkers for reliably detecting fecal contaminants for improved microbial water quality monitoring.
Collapse
Affiliation(s)
- Michael R Weigand
- School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | | | | | |
Collapse
|
62
|
Halliday E, McLellan SL, Amaral-Zettler LA, Sogin ML, Gast RJ. Comparison of bacterial communities in sands and water at beaches with bacterial water quality violations. PLoS One 2014; 9:e90815. [PMID: 24599478 PMCID: PMC3944938 DOI: 10.1371/journal.pone.0090815] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/05/2014] [Indexed: 11/18/2022] Open
Abstract
Recreational water quality, as measured by culturable fecal indicator bacteria (FIB), may be influenced by persistent populations of these bacteria in local sands or wrack, in addition to varied fecal inputs from human and/or animal sources. In this study, pyrosequencing was used to generate short sequence tags of the 16S hypervariable region ribosomal DNA from shallow water samples and from sand samples collected at the high tide line and at the intertidal water line at sites with and without FIB exceedance events. These data were used to examine the sand and water bacterial communities to assess the similarity between samples, and to determine the impact of water quality exceedance events on the community composition. Sequences belonging to a group of bacteria previously identified as alternative fecal indicators were also analyzed in relationship to water quality violation events. We found that sand and water samples hosted distinctly different overall bacterial communities, and there was greater similarity in the community composition between coastal water samples from two distant sites. The dissimilarity between high tide and intertidal sand bacterial communities, although more similar to each other than to water, corresponded to greater tidal range between the samples. Within the group of alternative fecal indicators greater similarity was observed within sand and water from the same site, likely reflecting the anthropogenic contribution at each beach. This study supports the growing evidence that community-based molecular tools can be leveraged to identify the sources and potential impact of fecal pollution in the environment, and furthermore suggests that a more diverse bacterial community in beach sand and water may reflect a less contaminated site and better water quality.
Collapse
Affiliation(s)
- Elizabeth Halliday
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Sandra L. McLellan
- School of Freshwater Sciences, Great Lakes Water Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Linda A. Amaral-Zettler
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Department of Geosciences, Brown University, Providence, Rhode Island, United States of America
| | - Mitchell L. Sogin
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Rebecca J. Gast
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
63
|
Lee CS, Lee C, Marion J, Wang Q, Saif L, Lee J. Occurrence of human enteric viruses at freshwater beaches during swimming season and its link to water inflow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:757-66. [PMID: 24333998 DOI: 10.1016/j.scitotenv.2013.11.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 05/27/2023]
Abstract
Human enteric viruses are significant etiological agents for many recreational waterborne illnesses. The occurrence and density of human enteric viruses such as human adenovirus (HAdV), human enterovirus (HEnV), and human norovirus genogroups I/II (HNoV GI/GII) were investigated using quantitative real-time PCR (qPCR) at freshwater beaches along with monitoring fecal indicators and environmental parameters. During the 2009 swimming season, water samples were collected from three inland freshwater beaches in Ohio, USA. Of the total samples, 40% (26/65) and 17% (11/65) were positive for HAdV and HEnV respectively, but HNoV GI/GII were not detected. There was no significant association among the detected human enteric viruses (HAdV and HEnV) and fecal bacteria indicators (Escherichia coli and Bacteroides) by Spearman correlation and principal component analyses. Logistic regression analysis also revealed that the odds of finding HAdV or HEnV was not influenced by levels of fecal bacteria indicators. However, there was a 14-fold increase in the odds of HEnV detection for each 1-log increase in daily water inflow (m(3)/s) into freshwater beach reservoirs (adjusted odds ratio=14.2; 95% confidence interval=1.19-171). In summary, the viral occurrence at the freshwater beaches was not readily explained by the levels of fecal bacteria indicators, but appeared to be more related to water reservoir inflows. These results suggest that hydrological data must be considered in future epidemiology efforts aimed at characterizing beach water safety.
Collapse
Affiliation(s)
- Chang Soo Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Cheonghoon Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Marion
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linda Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Jiyoung Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA; Department of Food Sciences & Technology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
64
|
Araújo S, Henriques IS, Leandro SM, Alves A, Pereira A, Correia A. Gulls identified as major source of fecal pollution in coastal waters: a microbial source tracking study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:84-91. [PMID: 24140684 DOI: 10.1016/j.scitotenv.2013.09.075] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
Gulls were reported as sources of fecal pollution in coastal environments and potential vectors of human infections. Microbial source tracking (MST) methods were rarely tested to identify this pollution origin. This study was conducted to ascertain the source of water fecal contamination in the Berlenga Island, Portugal. A total of 169 Escherichia coli isolates from human sewage, 423 isolates from gull feces and 334 water isolates were analyzed by BOX-PCR. An average correct classification of 79.3% was achieved. When an 85% similarity cutoff was applied 24% of water isolates were present in gull feces against 2.7% detected in sewage. Jackknifing resulted in 29.3% of water isolates classified as gull, and 10.8% classified as human. Results indicate that gulls constitute a major source of water contamination in the Berlenga Island. This study validated a methodology to differentiate human and gull fecal pollution sources in a real case of a contaminated beach.
Collapse
Affiliation(s)
- Susana Araújo
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel S Henriques
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Sérgio Miguel Leandro
- GIRM, Marine Resources Research Group, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, Campus 4, 2520-641 Peniche, Portugal
| | - Artur Alves
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Anabela Pereira
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - António Correia
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
65
|
Ebentier DL, Hanley KT, Cao Y, Badgley BD, Boehm AB, Ervin JS, Goodwin KD, Gourmelon M, Griffith JF, Holden PA, Kelty CA, Lozach S, McGee C, Peed LA, Raith M, Ryu H, Sadowsky MJ, Scott EA, Santo Domingo J, Schriewer A, Sinigalliano CD, Shanks OC, Van De Werfhorst LC, Wang D, Wuertz S, Jay JA. Evaluation of the repeatability and reproducibility of a suite of qPCR-based microbial source tracking methods. WATER RESEARCH 2013; 47:6839-6848. [PMID: 23911226 DOI: 10.1016/j.watres.2013.01.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/17/2013] [Accepted: 01/20/2013] [Indexed: 06/02/2023]
Abstract
Many PCR-based methods for microbial source tracking (MST) have been developed and validated within individual research laboratories. Inter-laboratory validation of these methods, however, has been minimal, and the effects of protocol standardization regimes have not been thoroughly evaluated. Knowledge of factors influencing PCR in different laboratories is vital to future technology transfer for use of MST methods as a tool for water quality management. In this study, a blinded set of 64 filters (containing 32 duplicate samples generated from 12 composite fecal sources) were analyzed by three to five core laboratories with a suite of PCR-based methods utilizing standardized reagents and protocols. Repeatability (intra-laboratory variability) and reproducibility (inter-laboratory variability) of observed results were assessed. When standardized methodologies were used, intra- and inter-laboratory %CVs were generally low (median %CV 0.1-3.3% and 1.9-7.1%, respectively) and comparable to those observed in similar inter-laboratory validation studies performed on other methods of quantifying fecal indicator bacteria (FIB) in environmental samples. ANOVA of %CV values found three human-associated methods (BsteriF1, BacHum, and HF183Taqman) to be similarly reproducible (p > 0.05) and significantly more reproducible (p < 0.05) than HumM2. This was attributed to the increased variability associated with low target concentrations detected by HumM2 (approximately 1-2 log10copies/filter lower) compared to other human-associated methods. Cow-associated methods (BacCow and CowM2) were similarly reproducible (p > 0.05). When using standardized protocols, variance component analysis indicated sample type (fecal source and concentration) to be the major contributor to total variability with that from replicate filters and inter-laboratory analysis to be within the same order of magnitude but larger than inherent intra-laboratory variability. However, when reagents and protocols were not standardized, inter-laboratory %CV generally increased with a corresponding decline in reproducibility. Overall, these findings verify the repeatability and reproducibility of these MST methods and highlight the need for standardization of protocols and consumables prior to implementation of larger scale MST studies involving multiple laboratories.
Collapse
Affiliation(s)
- Darcy L Ebentier
- Department of Civil and Environmental Engineering, University of California Los Angeles, 5732 Boelter Hall, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Mohapatra BR, Broersma K, Nordin R, Mazumder A. Evaluation of Repetitive Extragenic Palindromic-PCR for Discrimination of FecalEscherichia colifrom Humans, and Different Domestic- and Wild-Animals. Microbiol Immunol 2013; 51:733-40. [PMID: 17704635 DOI: 10.1111/j.1348-0421.2007.tb03962.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The objective of this study was to investigate the potential of repetitive extragenic palindromic anchored polymerase chain reaction (rep-PCR) in differentiating fecal Escherichia coli isolates of human, domestic- and wild-animal origin that might be used as a molecular tool to identify the possible source(s) of fecal pollution of source water. A total of 625 fecal E. coli isolates of human, 3 domestic- (cow, dog and horse) and 7 wild-animal (black bear, coyote, elk, marmot, mule deer, raccoon and wolf) species were characterized by rep-PCR DNA fingerprinting technique coupled with BOX A1R primer and discriminant analysis. Discriminant analysis of rep-PCR DNA fingerprints of fecal E. coli isolates from 11 host sources revealed an average rate of correct classification of 79.89%, and 84.6%, 83.8%, 83.3%, 82.5%, 81.6%, 80.8%, 79.8%, 79.3%, 77.4%, 73.2% and 63.6% of elk, human, marmot, mule deer, cow, coyote, raccoon, horse, dog, wolf and black bear fecal E. coli isolates were assigned to the correct host source. These results suggest that rep-PCR DNA fingerprinting procedures can be used as a source tracking tool for detection of human- as well as animal-derived fecal contamination of water.
Collapse
Affiliation(s)
- Bidyut R Mohapatra
- Water and Watershed Research Program, Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, Canada.
| | | | | | | |
Collapse
|
67
|
VanderWaal KL, Atwill ER, Isbell LA, McCowan B. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J Anim Ecol 2013; 83:406-14. [PMID: 24117416 DOI: 10.1111/1365-2656.12137] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/28/2013] [Indexed: 01/10/2023]
Abstract
Although network analysis has drawn considerable attention as a promising tool for disease ecology, empirical research has been hindered by limitations in detecting the occurrence of pathogen transmission (who transmitted to whom) within social networks. Using a novel approach, we utilize the genetics of a diverse microbe, Escherichia coli, to infer where direct or indirect transmission has occurred and use these data to construct transmission networks for a wild giraffe population (Giraffe camelopardalis). Individuals were considered to be a part of the same transmission chain and were interlinked in the transmission network if they shared genetic subtypes of E. coli. By using microbial genetics to quantify who transmits to whom independently from the behavioural data on who is in contact with whom, we were able to directly investigate how the structure of contact networks influences the structure of the transmission network. To distinguish between the effects of social and environmental contact on transmission dynamics, the transmission network was compared with two separate contact networks defined from the behavioural data: a social network based on association patterns, and a spatial network based on patterns of home-range overlap among individuals. We found that links in the transmission network were more likely to occur between individuals that were strongly linked in the social network. Furthermore, individuals that had more numerous connections or that occupied 'bottleneck' positions in the social network tended to occupy similar positions in the transmission network. No similar correlations were observed between the spatial and transmission networks. This indicates that an individual's social network position is predictive of transmission network position, which has implications for identifying individuals that function as super-spreaders or transmission bottlenecks in the population. These results emphasize the importance of association patterns in understanding transmission dynamics, even for environmentally transmitted microbes like E. coli. This study is the first to use microbial genetics to construct and analyse transmission networks in a wildlife population and highlights the potential utility of an approach integrating microbial genetics with network analysis.
Collapse
Affiliation(s)
- Kimberly L VanderWaal
- Animal Behavior Graduate Group, University of California, Shields Avenue, Davis, CA, 95616, USA.,International Institute for Human-Animal Networks, University of California, Davis, CA, USA.,Wangari Maathai Institute for Peace and Environmental Studies, University of Nairobi, PO Box 29053-00635, Nairobi, Kenya
| | - Edward R Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA.,Western Institute for Food Safety and Security, University of California, Davis, CA, USA
| | - Lynne A Isbell
- Animal Behavior Graduate Group, University of California, Shields Avenue, Davis, CA, 95616, USA.,Department of Anthropology, University of California, Davis, CA, USA
| | - Brenda McCowan
- Animal Behavior Graduate Group, University of California, Shields Avenue, Davis, CA, 95616, USA.,International Institute for Human-Animal Networks, University of California, Davis, CA, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
68
|
Kapoor V, Smith C, Santo Domingo JW, Lu T, Wendell D. Correlative assessment of fecal indicators using human mitochondrial DNA as a direct marker. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10485-10493. [PMID: 23919424 DOI: 10.1021/es4020458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Identifying the source of surface water fecal contamination is paramount to mitigating pollution and risk to human health. Fecal bacteria such as E. coli have been staple indicator organisms for over a century, however there remains uncertainty with E. coli-based metrics since these bacteria are abundant in the environment. The relationships between the presence of direct indicator of human waste (human mitochondrial DNA), human-specific Bacteroidales, and E. coli were studied for water samples taken from an urban creek system (Duck Creek Watershed, Cincinnati, OH) impacted by combined sewer overflows. Logistic regression analysis shows that human-specific Bacteroidales correlates much more closely to human mitochondrial DNA (R = 0.62) relative to E. coli (R = 0.33). We also examine the speciation of Bacteroidales within the Duck Creek Watershed using next-generation sequencing technology (Ion Torrent) and show the most numerous populations to be associated with sewage. Here we demonstrate that human-specific Bacteroidales closely follow the dynamics of human mitochondrial DNA concentration changes, indicating that these obligate anaerobes are more accurate than E. coli for fecal source tracking, lending further support to risk overestimation using coliforms, especially fecal coliforms and E. coli.
Collapse
Affiliation(s)
- Vikram Kapoor
- School of Energy, Environmental, Biological & Medical Engineering, University of Cincinnati , Cincinnati, Ohio 45221, United States
| | | | | | | | | |
Collapse
|
69
|
Use of a genetically-engineered Escherichia coli strain as a sample process control for quantification of the host-specific bacterial genetic markers. Appl Microbiol Biotechnol 2013; 97:9165-73. [PMID: 23989919 DOI: 10.1007/s00253-013-5188-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/08/2013] [Accepted: 08/10/2013] [Indexed: 10/26/2022]
Abstract
Quantitative PCR (qPCR) assays targeting the host-specific Bacteroides-Prevotella 16S rRNA genetic markers have been proposed as one of the promising approaches to identify the source of fecal contamination in environmental waters. One of the concerns of qPCR assays to environmental samples is the reliability of quantified values, since DNA extraction followed by qPCR assays are usually performed without appropriate sample process control (SPC) and internal amplification controls (IACs). To check the errors in sample processing and improve the reliability of qPCR results, it is essential to evaluate the DNA recovery efficiency and PCR amplification efficiency of the target genetic markers and correct the measurement results. In this study, we constructed a genetically-engineered Escherichia coli K12 strain (designated as strain MG1655 Δlac::kan) as sample process control and evaluated the applicability to environmental water samples. The recovery efficiency of the SPC strain MG1655 Δlac::kan was similar to that of Bacteroides fragilis JCM 11019, when DNA were extracted from water samples spiked with the two bacteria. Furthermore, the SPC was included in the qPCR assays with propidium monoazide (PMA) treatment, which can exclude the genetic markers from dead cells. No significant DNA loss was observed in the PMA treatment. The inclusion of both the SPC (strain MG1655 Δlac::kan) and IAC in qPCR assays with PMA treatment gave the assurance of reliable results of host-specific Bacteroides-Prevotella 16S rRNA genetic markers in environmental water samples.
Collapse
|
70
|
Harwood VJ, Staley C, Badgley BD, Borges K, Korajkic A. Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiol Rev 2013; 38:1-40. [PMID: 23815638 DOI: 10.1111/1574-6976.12031] [Citation(s) in RCA: 432] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 05/08/2013] [Accepted: 06/25/2013] [Indexed: 01/22/2023] Open
Abstract
Microbial source tracking (MST) describes a suite of methods and an investigative strategy for determination of fecal pollution sources in environmental waters that rely on the association of certain fecal microorganisms with a particular host. MST is used to assess recreational water quality and associated human health risk, and total maximum daily load allocations. Many methods rely on signature molecules (markers) such as DNA sequences of host-associated microorganisms. Human sewage pollution is among the greatest concerns for human health due to (1) the known risk of exposure to human waste and (2) the public and regulatory will to reduce sewage pollution; however, methods to identify animal sources are receiving increasing attention as our understanding of zoonotic disease potential improves. Here, we review the performance of MST methods in initial reports and field studies, with particular emphasis on quantitative PCR (qPCR). Relationships among human-associated MST markers, fecal indicator bacteria, pathogens, and human health outcomes are presented along with recommendations for future research. An integrated understanding of the advantages and drawbacks of the many MST methods targeting human sources advanced over the past several decades will benefit managers, regulators, researchers, and other users of this rapidly growing area of environmental microbiology.
Collapse
Affiliation(s)
- Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
71
|
Jent JR, Ryu H, Toledo-Hernández C, Santo Domingo JW, Yeghiazarian L. Determining hot spots of fecal contamination in a tropical watershed by combining land-use information and meteorological data with source-specific assays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5794-5802. [PMID: 23590856 DOI: 10.1021/es304066z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The objective of this study was to combine knowledge of environmental, topographical, meteorological, and anthropologic factors in the Río Grande de Arecibo (RGA) watershed in Puerto Rico with information provided by microbial source tracking (MST) to map hot spots (i.e., likely sources) of fecal contamination. Water samples were tested for the presence of human and bovine fecal contamination in addition to fecal indicator bacteria and correlated against several land uses and the density of septic tanks, sewers, and latrines. Specifically, human sources were positively correlated with developed (r = 0.68), barren land uses (r = 0.84), density of septic tanks (r = 0.78), slope (r = 0.63), and the proximity to wastewater treatment plants (WWTPs) (r = 0.82). Agricultural land, the number of upstream National Pollution Discharge Elimination System (NPDES) facilities, and density of latrines were positively associated with the bovine marker (r = 0.71; r = 0.74; and r = 0.68, respectively). Using this information, we provided a hot spot map, which shows areas that should be closely monitored for fecal contamination in the RGA watershed. The results indicated that additional bovine assays are needed in tropical regions. We concluded that meteorological, topographical, anthropogenic, and land cover data are needed to evaluate and verify the performance of MST assays and, therefore, to identify important sources of fecal contamination in environmental waters.
Collapse
Affiliation(s)
- Justin R Jent
- School of Energy, Environmental, Biological & Medical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | | | | | | | | |
Collapse
|
72
|
Prevalence of Escherichia coli in surface waters of Southeast Asian cities. World J Microbiol Biotechnol 2013; 29:2115-24. [DOI: 10.1007/s11274-013-1376-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 05/10/2013] [Indexed: 12/21/2022]
|
73
|
Kim JY, Lee H, Lee JE, Chung MS, Ko GP. Identification of human and animal fecal contamination after rainfall in the Han River, Korea. Microbes Environ 2013; 28:187-94. [PMID: 23666535 PMCID: PMC4070672 DOI: 10.1264/jsme2.me12187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We investigated the effect of rainfall on the levels and sources of microbial contamination in the Han River, Korea. Thirty-four samples were collected at two sampling sites located upstream and downstream in the river from July 2010 to February 2011. Various fecal indicator microorganisms, including total coliform, fecal coliform, Escherichia coli, Enterococcus spp., somatic and male-specific (F+) coliphage, and four major enteric viruses were analyzed. Rainfall was positively correlated with the levels of fecal coliform and norovirus at both sampling sites. Additionally, rainfall was positively correlated with the levels of total coliform, E. coli, Enterococcus spp., and F+ coliphage at the upstream site. To identify the source of fecal contamination, microbial source tracking (MST) was conducted using both male-specific (F+) RNA coliphage and the Enterococcus faecium esp gene as previously described. Our results clearly indicated that the majority of fecal contamination at the downstream Han River site was from a human source. At the upstream sampling site, contamination from human fecal matter was very limited; however, fecal contamination from non-point animal sources increased following rainfall. In conclusion, our data suggest that rainfall significantly affects the level and source of fecal contamination in the Han River, Korea.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul National University, Kwanak-ro 1, Kwanak-gu, Seoul, 151–752, Republic of Korea
| | | | | | | | | |
Collapse
|
74
|
Marti R, Gannon VPJ, Jokinen C, Lanthier M, Lapen DR, Neumann NF, Ruecker NJ, Scott A, Wilkes G, Zhang Y, Topp E. Quantitative multi-year elucidation of fecal sources of waterborne pathogen contamination in the South Nation River basin using bacteroidales microbial source tracking markers. WATER RESEARCH 2013; 47:2315-2324. [PMID: 23497974 DOI: 10.1016/j.watres.2013.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/30/2013] [Accepted: 02/02/2013] [Indexed: 06/01/2023]
Abstract
Over a seven-year period (2004-2010) 1095 water samples were obtained from the South Nation River basin at multiple watershed monitoring sites (Ontario, Canada). Real-time PCR using Bacteroidales specific markers was used to identify the origin (human (10% prevalence), ruminant (22%), pig (~2%), Canada goose (4%) and muskrat (7%)) of fecal pollution. In parallel, the distribution of fecal indicator bacteria and waterborne pathogens (Cryptosporidium oocysts, Giardia cysts, Escherichia coli O157:H7, Salmonella enterica and Campylobacter spp.) was evaluated. Associations between the detection of specific Bacteroidales markers and the presence of fecal indicator bacteria, pathogens, and distinct land use or environmental variables were evaluated. Linear correlations between Bacteroidales markers and fecal indicator bacteria were weak. However, mean marker densities, and the presence and absence of markers could be discriminated on the basis of threshold fecal indicator densities. The ruminant-specific Bacteroidales marker was the most frequently detected marker in water, consistent with the large number of dairy farms in the study area. Detection of the human or the ruminant markers were associated with a slightly higher risk of detecting S. enterica. Detection of the muskrat marker was related to more frequent Campylobacter spp. detections. Important positive associations between markers and pathogens were found among: i) total Bacteroidales and Cryptosporidium and Giardia, ii) ruminant marker and S. enterica, and iii) muskrat and Campylobacter spp.
Collapse
Affiliation(s)
- Romain Marti
- Agriculture and Agri-Food Canada, 1391 Sandford Str., London, Ontario N5V 4T3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Eichmiller JJ, Hicks RE, Sadowsky MJ. Distribution of genetic markers of fecal pollution on a freshwater sandy shoreline in proximity to wastewater effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3395-402. [PMID: 23473470 PMCID: PMC3629727 DOI: 10.1021/es305116c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Water, sand, and sediment from a Lake Superior harbor site continuously receiving wastewater effluent was sampled monthly for June to October 2010 and from May to September 2011. Understanding the dynamics of genetic markers of fecal bacteria in these matrices is essential to accurately characterizing health risks. Genetic markers for enterococci, total Bacteroides, and human-associated Bacteroides were measured in site-water, sand, and sediment and in final effluent by quantitative PCR. The similarity between the quantity of molecular markers in the water column and effluent indicated that the abundance of genetic markers in the water column was likely controlled by effluent inputs. Effluent turbidity was positively correlated (p ≤ 0.05) with AllBac and HF183 in final effluent and AllBac in the water column. In sand and sediment, Entero1 and AllBac were most abundant in the upper 1-3 cm depths, whereas HF183 was most abundant in the upper 1 cm of sand and at 7 cm in sediment. The AllBac and Entero1 markers were 1- and 2-orders of magnitude more abundant in sand and sediment relative to the water column per unit mass. These results indicate that sand and sediment may act as reservoirs for genetic markers of fecal pollution at some freshwater sites.
Collapse
Affiliation(s)
- Jessica J. Eichmiller
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 438 BorH, St. Paul, MN 55108
- Department of Biology, University of Minnesota Duluth, 1035 Kirby Drive, SSB 207, Duluth, MN 55812
| | - Randall E. Hicks
- Department of Biology, University of Minnesota Duluth, 1035 Kirby Drive, SSB 207, Duluth, MN 55812
| | - Michael J. Sadowsky
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 438 BorH, St. Paul, MN 55108
- BioTechnology Institute, University of Minnesota,1479 Gortner Ave., 140 Gortner Labs, St. Paul, MN 55108
- Corresponding author: Michael Sadowsky, Department of Soil, Water, and Climate, University of Minnesota, 439 Borlaug Hall, 1991 Upper Buford Drive, Saint Paul, MN 55108, Phone: (612) 624-2706, Fax: (612) 625-2208,
| |
Collapse
|
76
|
Lee CS, Lee J. Application of host-specific source-tracking tools for rapid identification of fecal contamination in fresh produce by humans and livestock. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:1089-96. [PMID: 22936295 DOI: 10.1002/jsfa.5855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Fecal contamination in fresh produce is a public health concern because it may contain human pathogens. We introduced host-specific quantitative real-time polymerase chain reaction (qPCR) assays for the rapid detection and identification of fecal contamination sources from humans and farm animals (cow, pig, chicken) in fresh produce. Each composite fecal sample was spiked on lettuce at two contamination levels (0.2 mg or 2 mg feces g⁻¹), followed by qPCR assays for detecting each host-specific genetic marker: BoBac (cow); PF163 (pig); CP3-49 (chicken); and HF183 and gyrB (human). Two commercial DNA extraction kits were compared to evaluate DNA recovery yields and removal of PCR inhibition. Sketa2 assay was conducted to assess the presence of PCR inhibition in the contaminated lettuce. RESULTS All the qPCR assays yielded reliable detection from contaminated lettuce (2 mg feces g⁻¹), where their target gene numbers were 1.5-5.0 × 10³ (HF183), 0.8-2.2 × 10³ (gyrB), 0.6-1.6 × 10³ (BoBac), 1.6-3.0 × 10³ (CP3-49) and 1.1-2.2 × 10³ (PF163) copies g⁻¹ of lettuce. Among the two extraction kits, QIAamp DNA Stool Kit resulted in 2-3 times higher sensitivity and 20% less PCR inhibition than the PowerFood™ kit. CONCLUSION This study provides information on the optimized host-specific qPCR assay in identifying sources of fecal contamination in fresh produce and is useful for tracking the contamination source and improving agricultural practice.
Collapse
Affiliation(s)
- Chang Soo Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
77
|
Biache C, Philp RP. The use of sterol distributions combined with compound specific isotope analyses as a tool to identify the origin of fecal contamination in rivers. WATER RESEARCH 2013; 47:1201-8. [PMID: 23267530 DOI: 10.1016/j.watres.2012.11.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 05/02/2023]
Abstract
The sterol distributions of 9 sediment samples from the Illinois River Basin (OK and AR, USA) were examined in order to identify the source of fecal contamination. The samples were extracted with organic solvent using sonication and the fractions containing the sterols were isolated and analyzed by gas chromatography-mass spectrometry. The sterol distributions of the Illinois River samples were dominated by phytosterols. They were compared to those of different animal feces and manures using a principal component analysis and correspondence appeared between the sediments and one group of chicken feces samples. Gas chromatography-isotope ratio mass spectrometry analyses were also performed to determine the δ(13)C values for the phytosterols and to get an indication of their origin based on the C(3)/C(4) plant signatures. The δ(13)C values obtained ranged from -30.6 ‰ to -17.4 ‰ (VPDB) corresponding to a mixed signature between C(3) and C(4) plants, indicating a C(4) plant contribution to the C(3) plant natural background. These observations indicate that a proportion of the phytosterols originated from chicken feces.
Collapse
Affiliation(s)
- Coralie Biache
- School of Geology and Geophysics, The University of Oklahoma, Norman, OK 73019, USA.
| | | |
Collapse
|
78
|
Janezic KJ, Ferry B, Hendricks EW, Janiga BA, Johnson T, Murphy S, Roberts ME, Scott SM, Theisen AN, Hung KF, Daniel SL. Phenotypic and Genotypic Characterization of Escherichia coli Isolated from Untreated Surface Waters. Open Microbiol J 2013; 7:9-19. [PMID: 23539437 PMCID: PMC3606946 DOI: 10.2174/1874285801307010009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/22/2022] Open
Abstract
A common member of the intestinal microbiota in humans and animals is Escherichia coli. Based on the presence of virulence factors, E. coli can be potentially pathogenic. The focus of this study was to isolate E. coli from untreated surface waters (37 sites) in Illinois and Missouri and determine phenotypic and genotypic diversity among isolates. Water samples positive for fecal coliforms based on the Colisure® test were streaked directly onto Eosin Methylene Blue (EMB) agar (37°C) or transferred to EC broth (44.5°C). EC broth cultures producing gas were then streaked onto EMB agar. Forty-five isolates were identified as E. coli using API 20E and Enterotube II identification systems, and some phenotypic variation was observed in metabolism and fermentation. Antibiotic susceptibility of each isolate was also determined using the Kirby-Bauer Method. Differential responses to 10 antimicrobial agents were seen with 7, 16, 2, and 9 of the isolates resistant to ampicillin, cephalothin, tetracycline, and triple sulfonamide, respectively. All of the isolates were susceptible or intermediate to amoxicillin, ciprofloxacin, polymyxin B, gentamicin, imipenem, and nalidixic acid. Genotypic variation was assessed through multiplex Polymerase Chain Reaction for four virulence genes (stx1 and stx2 [shiga toxin], eaeA [intimin]; and hlyA [enterohemolysin]) and one housekeeping gene (uidA [β-D-glucuronidase]). Genotypic variation was observed with two of the isolates possessing the virulence gene (eaeA) for intimin. These findings increase our understanding of the diversity of E. coli in the environment which will ultimately help in the assessment of this organism and its role in public health.
Collapse
Affiliation(s)
- Kristopher J Janezic
- Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois 61920, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Vuong NM, Villemur R, Payment P, Brousseau R, Topp E, Masson L. Fecal source tracking in water using a mitochondrial DNA microarray. WATER RESEARCH 2013; 47:16-30. [PMID: 23084117 DOI: 10.1016/j.watres.2012.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/28/2012] [Accepted: 09/03/2012] [Indexed: 06/01/2023]
Abstract
A mitochondrial-based microarray (mitoArray) was developed for rapid identification of the presence of 28 animals and one family (cervidae) potentially implicated in fecal pollution in mixed activity watersheds. Oligonucleotide probes for genus or subfamily-level identification were targeted within the 12S rRNA - Val tRNA - 16S rRNA region in the mitochondrial genome. This region, called MI-50, was selected based on three criteria: 1) the ability to be amplified by universal primers 2) these universal primer sequences are present in most commercial and domestic animals of interest in source tracking, and 3) that sufficient sequence variation exists within this region to meet the minimal requirements for microarray probe discrimination. To quantify the overall level of mitochondrial DNA (mtDNA) in samples, a quantitative-PCR (Q-PCR) universal primer pair was also developed. Probe validation was performed using DNA extracted from animal tissues and, for many cases, animal-specific fecal samples. To reduce the amplification of potentially interfering fish mtDNA sequences during the MI-50 enrichment step, a clamping PCR method was designed using a fish-specific peptide nucleic acid. DNA extracted from 19 water samples were subjected to both array and independent PCR analyses. Our results confirm that the mitochondrial microarray approach method could accurately detect the dominant animals present in water samples emphasizing the potential for this methodology in the parallel scanning of a large variety of animals normally monitored in fecal source tracking.
Collapse
Affiliation(s)
- Nguyet-Minh Vuong
- Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
80
|
Molecular fingerprinting of cyanobacteria from river biofilms as a water quality monitoring tool. Appl Environ Microbiol 2012; 79:1459-72. [PMID: 23263954 DOI: 10.1128/aem.03351-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Benthic cyanobacterial communities from Guadarrama River (Spain) biofilms were examined using temperature gradient gel electrophoresis (TGGE), comparing the results with microscopic analyses of field-fixed samples and the genetic characterization of cultured isolates from the river. Changes in the structure and composition of cyanobacterial communities and their possible association with eutrophication in the river downstream were studied by examining complex TGGE patterns, band extraction, and subsequent sequencing of 16S rRNA gene fragments. Band profiles differed among sampling sites depending on differences in water quality. The results showed that TGGE band richness decreased in a downstream direction, and there was a clear clustering of phylotypes on the basis of their origins from different locations according to their ecological requirements. Multivariate analyses (cluster analysis and canonical correspondence analysis) corroborated these differences. Results were consistent with those obtained from microscopic observations of field-fixed samples. According to the phylogenetic analysis, morphotypes observed in natural samples were the most common phylotypes in the TGGE sequences. These phylotypes were closely related to Chamaesiphon, Aphanocapsa, Pleurocapsa, Cyanobium, Pseudanabaena, Phormidium, and Leptolyngbya. Differences in the populations in response to environmental variables, principally nutrient concentrations (dissolved inorganic nitrogen and soluble reactive phosphorus), were found. Some phylotypes were associated with low nutrient concentrations and high levels of dissolved oxygen, while other phylotypes were associated with eutrophic-hypertrophic conditions. These results support the view that once a community has been characterized and its genetic fingerprint obtained, this technique could be used for the purpose of monitoring rivers.
Collapse
|
81
|
Kayhanian M, Fruchtman BD, Gulliver JS, Montanaro C, Ranieri E, Wuertz S. Review of highway runoff characteristics: comparative analysis and universal implications. WATER RESEARCH 2012; 46:6609-6624. [PMID: 22959661 DOI: 10.1016/j.watres.2012.07.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 02/16/2012] [Accepted: 07/16/2012] [Indexed: 06/01/2023]
Abstract
This review interprets highway runoff characterization studies performed on different continents. The results are synthesized to discuss the historical trends, first flush effects of pollutants, pollutant form as dissolved vs. particulate, and to identify surrogate water quality parameters. The information presented in this review showed that: (1) variability has been observed in all quality parameters from each continent and among continents; (2) with a few exceptions the variability seems to be within the expected range; (3) inconsistent monitoring data as well as inconsistent quality assurance and quality control measures were reported among studies, which may be partially responsible for variability of water quality results; (4) compared with historic data, the concentration of total Pb decreased exponentially, which can mostly be credited to leaded gasoline phase-out regulation; (5) first flush effects of pollutants based on concentration have been reported consistently (however, mass first flush effects for pollutants have been reported inconsistently compared with concentration first flush effect); (6) most metal pollutants and phosphorus are present in both the particulate and dissolved forms; and (7) strong correlations were observed between TSS, TDS, TOC and iron (Fe) and 13 other constituents and water quality parameters (turbidity, O&G, TPH, DOC, TKN, EC, Cl, Cd, Cr, Cu, Ni, Pb, Zn).
Collapse
Affiliation(s)
- Masoud Kayhanian
- Department of Civil and Environmental Engineering, University of California, Davis One Shields Avenue, Ghausi Hall, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Muniesa M, Lucena F, Blanch AR, Payán A, Jofre J. Use of abundance ratios of somatic coliphages and bacteriophages of Bacteroides thetaiotaomicron GA17 for microbial source identification. WATER RESEARCH 2012; 46:6410-6418. [PMID: 23039916 DOI: 10.1016/j.watres.2012.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 06/01/2023]
Abstract
Water contaminated with human faeces is a risk to human health and management of water bodies can be improved by determining the sources of faecal pollution. Field studies show that existing methods are insufficient and that different markers are required. This study proposes the combined use of two microbial indicators, the concentrations of which are presented as ratios. This provides a more reliable approach to identifying faecal sources as it avoids variation due to treatment or ageing of the contamination. Among other indicators, bacteriophages have been proposed as rapid and cheap indicators of faecal pollution. Samples analysed in this study were derived from wastewater treatment plants (raw sewage, secondary and tertiary effluents and raw sewage sludge) river water, seawater and animal related wastewater. The abundance ratios of faecal coliforms and Bacteroides phages, either strain RYC2056 (non-specific for faecal origin) or strain GA17 (specific for human pollution), and among somatic coliphages and phages infecting both Bacteroides strains, were evaluated. The results indicate that the ratio of somatic coliphages and phages infecting Bacteroides strain GA17, which is specific to human faecal sources, provides a robust method for discriminating samples, even those presenting different levels and ages of pollution, and allows samples polluted with human faeces to be distinguished from those containing animal faecal pollution. This method allows the generation of numerical data that can be further applied to numerical methods for faecal pollution discrimination.
Collapse
Affiliation(s)
- Maite Muniesa
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
83
|
Gentry-Shields J, Rowny JG, Stewart JR. HuBac and nifH source tracking markers display a relationship to land use but not rainfall. WATER RESEARCH 2012; 46:6163-74. [PMID: 23021338 DOI: 10.1016/j.watres.2012.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/15/2012] [Accepted: 09/06/2012] [Indexed: 05/20/2023]
Abstract
Identification of the source of fecal pollution is becoming a priority for states and territories in the U.S. in order to meet water quality standards and to develop and implement total maximum daily loads. The goal of this research was to relate microbial source tracking (MST) assay concentrations to land use and levels of impervious surfaces in order to gauge how increasing development is associated with human fecal contamination in inland watersheds. The concentrations of two proposed MST markers, targeting nifH of Methanobrevibacter smithii and HuBac of Bacteroides sp., were positively correlated with increasing anthropogenic development and impervious surfaces. Higher concentrations of these MST markers in more urbanized watersheds suggest that increasing development negatively affects water quality. Neither MST marker concentration was correlated with antecedent rainfall levels, and detection of markers did not differ between dry weather and rain events. Water samples were also analyzed for norovirus and enterovirus, but these enteric viruses were rarely detected. These MST results differ from previous studies that have found correlations between traditional fecal indicator bacteria (FIB) and antecedent rainfall. This difference suggests that the MST markers used in this study may be more specific for recent, land-based contamination events as opposed to resuspension of particle-associated organisms in waterways. HuBac was detected in 98% of samples, correlating with fecal coliform and Escherichia coli concentrations. The ubiquity of the HuBac marker in our samples suggests that this marker does not provide sufficiently different or additional information than FIB, and it is likely this marker was amplifying non-human targets. The nifH marker was detected in 30% of samples. Less than half of the nifH-positive samples contained levels of fecal coliforms or E. coli above regulatory thresholds, suggesting that nifH would be more useful when utilized simultaneously with FIB than in a tiered monitoring strategy. The results of this research suggests that land use factors play an important role in characterizing and mitigating fecal contamination in watersheds.
Collapse
Affiliation(s)
- Jennifer Gentry-Shields
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | | | | |
Collapse
|
84
|
Kobayashi A, Sano D, Hatori J, Ishii S, Okabe S. Chicken- and duck-associated Bacteroides–Prevotella genetic markers for detecting fecal contamination in environmental water. Appl Microbiol Biotechnol 2012; 97:7427-37. [DOI: 10.1007/s00253-012-4469-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/13/2012] [Accepted: 09/21/2012] [Indexed: 11/30/2022]
|
85
|
Perchec-Merien AM, Lewis GD. NaturalizedEscherichia colifrom New Zealand wetland and stream environments. FEMS Microbiol Ecol 2012; 83:494-503. [DOI: 10.1111/1574-6941.12010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/19/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Gillian D. Lewis
- School of Biological Sciences; The University of Auckland; Auckland; New Zealand
| |
Collapse
|
86
|
Murugan K, Prabhakaran P, Al-Sohaibani S, Sekar K. Identification of source of faecal pollution of Tirumanimuttar River, Tamilnadu, India using microbial source tracking. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:6001-6012. [PMID: 22016043 DOI: 10.1007/s10661-011-2398-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 10/04/2011] [Indexed: 05/31/2023]
Abstract
Efficient management of deteriorating water bodies can be achieved by determining the sources of faecal pollution. Resourceful techniques for discrimination of the sources of Escherichia coli in surface water have recently been developed, including the use of river water to facilitate faecal indicator surveillance, identification of sources of faecal contamination and employing relevant management practices to maintain water quality. This study was conducted to employ microbial source tracking (MST) techniques for the determination of the sources of faecal pollution based on a water quality investigation of the physico-chemical characteristics and coliform count point of the Tirumanimuttar River. To accomplish this, an MST library-based antibiotic resistance analysis, serotyping and the genomic tool rep-PCR techniques were applied, and the obtained results were analysed statistically. Among 135 and 70 E. coli isolates present in the library and water samples collected from the river and nearby well water sources, respectively, most showed intrinsic, high or moderate resistance to antibiotics. Isolates from human and pig faecal sources were 92% homologous with the samples from the river, whereas isolates from sewage and dairy cattle showed 89% and 80% homology, respectively. These findings indicated that the Tirumanimuttar River is subjected to stress from anthropogenic activities and runoff contaminated with agricultural and human faecal contamination. The sources of faecal pollution identified in this study may facilitate the monitoring and management of the Tirumanimuttar River.
Collapse
Affiliation(s)
- Kasi Murugan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | | | | | | |
Collapse
|
87
|
Derrien M, Jardé E, Gruau G, Pourcher AM, Gourmelon M, Jadas-Hécart A, Pierson Wickmann AC. Origin of fecal contamination in waters from contrasted areas: stanols as Microbial Source Tracking markers. WATER RESEARCH 2012; 46:4009-4016. [PMID: 22673347 DOI: 10.1016/j.watres.2012.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 06/01/2023]
Abstract
Improving the microbiological quality of coastal and river waters relies on the development of reliable markers that are capable of determining sources of fecal pollution. Recently, a principal component analysis (PCA) method based on six stanol compounds (i.e. 5β-cholestan-3β-ol (coprostanol), 5β-cholestan-3α-ol (epicoprostanol), 24-methyl-5α-cholestan-3β-ol (campestanol), 24-ethyl-5α-cholestan-3β-ol (sitostanol), 24-ethyl-5β-cholestan-3β-ol (24-ethylcoprostanol) and 24-ethyl-5β-cholestan-3α-ol (24-ethylepicoprostanol)) was shown to be suitable for distinguishing between porcine and bovine feces. In this study, we tested if this PCA method, using the above six stanols, could be used as a tool in "Microbial Source Tracking (MST)" methods in water from areas of intensive agriculture where diffuse fecal contamination is often marked by the co-existence of human and animal sources. In particular, well-defined and stable clusters were found in PCA score plots clustering samples of "pure" human, bovine and porcine feces along with runoff and diluted waters in which the source of contamination is known. A good consistency was also observed between the source assignments made by the 6-stanol-based PCA method and the microbial markers for river waters contaminated by fecal matter of unknown origin. More generally, the tests conducted in this study argue for the addition of the PCA method based on six stanols in the MST toolbox to help identify fecal contamination sources. The data presented in this study show that this addition would improve the determination of fecal contamination sources when the contamination levels are low to moderate.
Collapse
Affiliation(s)
- M Derrien
- Géosciences Rennes, UMR CNRS-Université de Rennes I, Campus de Beaulieu, batiment 15 bureau 306/2, 35042 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
Host-associated microbial communities are unique to individuals, affect host health, and correlate with disease states. Although advanced technologies capture detailed snapshots of microbial communities, high within- and between-subject variation hampers discovery of microbial signatures in diagnostic or forensic settings. We suggest turning to machine learning and discuss key directions toward harnessing human-associated microbial signatures.
Collapse
|
89
|
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST. Bayesian community-wide culture-independent microbial source tracking. Nat Methods 2011; 8:761-3. [PMID: 21765408 PMCID: PMC3791591 DOI: 10.1038/nmeth.1650] [Citation(s) in RCA: 1133] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 06/02/2011] [Indexed: 12/13/2022]
Abstract
Contamination is a critical issue in high-throughput metagenomic studies, yet progress toward a comprehensive solution has been limited. We present SourceTracker, a Bayesian approach to estimate the proportion of contaminants in a given community that come from possible source environments. We applied SourceTracker to microbial surveys from neonatal intensive care units (NICUs), offices and molecular biology laboratories, and provide a database of known contaminants for future testing.
Collapse
Affiliation(s)
- Dan Knights
- Department of Computer Science, University of Colorado, Boulder, Colorado, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Derrien M, Jarde E, Gruau G, Pierson-Wickmann AC. Extreme variability of steroid profiles in cow feces and pig slurries at the regional scale: implications for the use of steroids to specify fecal pollution sources in waters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7294-7302. [PMID: 21604805 DOI: 10.1021/jf201040v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Thirty-five samples of cow feces (cowpat and cow manure) and pig slurries subjected to different treatment processes and different storage times before land spreading were extracted and analyzed by gas chromatography-mass spectrometry to determine their fecal stanol profiles. The fresh pig slurry data presented here increase considerably the classical range of values obtained for steroid ratios, resulting in an overlap with the range for cow feces. These results lead to the inability to distinguish species source of feces on the basis of steroid ratios alone. The cause of these differences is not known, although it appears likely to be related to differences in the metabolism of animals in relation to their age and/or variations in diet, rather than to secondary mechanisms of steroid degradation during storage or/and treatment of the feces. Nevertheless, the specificity of steroids to serve as a tool to differentiate cow feces from pig slurries is restored by considering the fecal stanol profile, notably, the six most diagnostic stanol compounds, which are 5β-cholestan-3β-ol (coprostanol), 5β-cholestan-3α-ol (epicoprostanol), 24-methyl-5α-cholestan-3β-ol (campestanol), 24-ethyl-5α-cholestan-3β-ol (sitostanol), 24-ethyl-5β-cholestan-3β-ol (24-ethylcoprostanol), and 24-ethyl-5β-cholestan-3α-ol (24-ethylepicoprostanol). In this study, chemometric analysis of the fingerprint of these six stanols using principal components analysis (PCA) distinguished pig slurries from cow feces. The application of PCA to the stanol profiles, as developed in this study, could be a promising tool for identifying the animal source in fecal contamination of waters.
Collapse
Affiliation(s)
- Morgane Derrien
- UMR CNRS 6118 Geosciences Rennes, Université Rennes 1, Campus de Beaulieu, France
| | | | | | | |
Collapse
|
91
|
Srinivasan S, Aslan A, Xagoraraki I, Alocilja E, Rose JB. Escherichia coli, enterococci, and Bacteroides thetaiotaomicron qPCR signals through wastewater and septage treatment. WATER RESEARCH 2011; 45:2561-2572. [PMID: 21420709 DOI: 10.1016/j.watres.2011.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 05/30/2023]
Abstract
Fecal indicators such as Escherichia coli and enterococci are used as regulatory tools to monitor water with 24 h cultivation techniques for possible input of sewage or feces and presence of potential enteric pathogens yet their source (human or animal) cannot be determined with routine methods. This critical uncertainty has furthered water pollution science toward new molecular approaches. Members of Bacteroides genus, such as Bacteroides thetaiotaomicron are found to have features that allow their use as alternative fecal indicators and for Microbial Source Tracking (MST). The overall aim of this study was to evaluate the concentration and fate of B. thetaiotaomicron, throughout a wastewater treatment facility and septage treatment facility. A large number of samples were collected and tested for E. coli and enterococci by both cultivation and qPCR assays. B. thetaiotaomicron qPCR equivalent cells (mean: 1.8 × 10(7)/100 mL) were present in significantly higher concentrations than E. coli or enterococci in raw sewage and at the same levels in raw septage. The removal of B. thetaiotaomicron target qPCR signals was similar to E. coli and enterococci DNA during the treatment of these wastes and ranged from 3 to 5 log(10) for wastewater and was 7 log(10) for the septage. A significant correlation was found between B. thetaiotaomicron marker and each of the conventional indicators throughout the waste treatment process for both raw sewage and septage. A greater variability was found with enterococci when compared to E. coli, and CFU and equivalent cells could be contrasted by various treatment processes to examine removal and inactivation via septage and wastewater treatment. These results are compared and contrasted with other qPCR studies and other targets in wastewater samples providing a view of DNA targets in such environments.
Collapse
Affiliation(s)
- Sangeetha Srinivasan
- Department of Fisheries and Wildlife, 13, Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
92
|
Johnston C, Ufnar JA, Griffith JF, Gooch JA, Stewart JR. A real-time qPCR assay for the detection of the nifH gene of Methanobrevibacter smithii, a potential indicator of sewage pollution. J Appl Microbiol 2011; 109:1946-56. [PMID: 21070516 DOI: 10.1111/j.1365-2672.2010.04824.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To develop a quantitative, real-time PCR assay to detect the nifH gene of Methanobrevibacter smithii. Methanobrevibacter smithii is a methanogenic archaea found in the intestinal tract of humans that may be a useful indicator of sewage pollution in water. METHODS AND RESULTS Quantification standards were prepared from Meth. smithii genomic DNA dilutions, and a standard curve was used to quantify the target gene and calculate estimated genome equivalency units. A competitive internal positive control was designed and incorporated into the assay to assess inhibition in environmental extracts. Testing the assay against a panel of 23 closely related methanogen species demonstrated specificity of the assay for Meth. smithii. A set of 36 blind water samples was then used as a field test of the assay. The internal control identified varying levels of inhibition in 29 of 36 (81%) samples, and the Meth. smithii target was detected in all water samples with known sewage input. CONCLUSIONS The quantitative PCR assay developed in this study is a sensitive and rapid method for the detection of the Meth. smithii nifH gene that includes an internal control to assess inhibition. Further research is required both to better evaluate host specificity of this assay and the correlation with human health risks. SIGNIFICANCE AND IMPACT OF THE STUDY This research is the first description of the development of a rapid and sensitive quantitative assay for a methanogenic archaeal indicator of sewage pollution.
Collapse
Affiliation(s)
- C Johnston
- Jardon and Howard Technologies Incorporated, Orlando, FL, USA.
| | | | | | | | | |
Collapse
|
93
|
Flood C, Ufnar J, Wang S, Johnson J, Carr M, Ellender R. Lack of correlation between enterococcal counts and the presence of human specific fecal markers in Mississippi creek and coastal waters. WATER RESEARCH 2011; 45:872-878. [PMID: 20950837 DOI: 10.1016/j.watres.2010.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 09/13/2010] [Accepted: 09/17/2010] [Indexed: 05/30/2023]
Abstract
The objective of this study was to determine whether statistically valid correlations could be shown between enterococcal counts of samples from creek and coastal sites and the presence of two molecular, library-independent markers that specify human and/or sewage pollution. Four hundred ninety samples were collected between August 2007 and April 2009 to determine enterococcal counts and the presence of genetic markers for the sewage indicator organisms Methanobrevibacter smithii and Bacteroidales. The presence of human/sewage markers and enterococcal counts were higher in creek samples than coastal samples, but the higher creek levels did not statistically correlate with the either enterococcal count or the presence of the markers present in coastal samples. Furthermore, there was no correlation between enterococcal counts in coastal samples and either marker at any of the beach sites tested. The results of this investigation in Mississippi coastal waters suggest that human/sewage markers are unlikely to correlate with enterococci counts in the nearshore environment and that enterococcal counts may be indicative of other animal or environmental sources. Additionally, a study comparing conventional gel electrophoresis with capillary electrophoresis did not convincingly establish that one method was better than the other in regard to the results obtained. The capillary method does allow reproducibility of results and the ability to analyze multiple samples in a short period of time; however, the operational expenditures exceed the cost of traditional gel electrophoresis.
Collapse
Affiliation(s)
- C Flood
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406-001, USA
| | | | | | | | | | | |
Collapse
|
94
|
Lee DY, Weir SC, Lee H, Trevors JT. Quantitative identification of fecal water pollution sources by TaqMan real-time PCR assays using Bacteroidales 16S rRNA genetic markers. Appl Microbiol Biotechnol 2010; 88:1373-83. [DOI: 10.1007/s00253-010-2880-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
|
95
|
|
96
|
Lee JE, Lee S, Sung J, Ko G. Analysis of human and animal fecal microbiota for microbial source tracking. ISME JOURNAL 2010; 5:362-5. [PMID: 20686512 DOI: 10.1038/ismej.2010.120] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microbial compositions of human and animal feces from South Korea were analyzed and characterized. In total, 38 fecal samples (14 healthy adult humans, 6 chickens, 6 cows, 6 pigs and 6 geese) were analyzed by 454 pyrosequencing of the V2 region of the 16S rRNA gene. Four major phyla, Actinobacteria, Proteobacteria, Firmicutes and Bacteroidetes, were identified in the samples. Principal coordinate analysis suggested that microbiota from the same host species generally clustered, with the exception of those from humans, which exhibited sample-specific compositions. A network-based analysis revealed that several operational taxonomic units (OTUs), such as Lactobacillus sp., Clostridium sp. and Prevotella sp., were commonly identified in all fecal sources. Other OTUs were present only in fecal samples from a single organism. For example, Yania sp. and Bifidobacterium sp. were identified specifically in chicken and human fecal samples, respectively. These specific OTUs or their respective biological markers could be useful for identifying the sources of fecal contamination in water by microbial source tracking.
Collapse
Affiliation(s)
- Jung Eun Lee
- Department of Environmental Health and Institute of Health and Environmental, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
97
|
Girones R, Ferrús MA, Alonso JL, Rodriguez-Manzano J, Calgua B, Corrêa ADA, Hundesa A, Carratala A, Bofill-Mas S. Molecular detection of pathogens in water--the pros and cons of molecular techniques. WATER RESEARCH 2010; 44:4325-39. [PMID: 20619868 DOI: 10.1016/j.watres.2010.06.030] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 05/04/2023]
Abstract
Pollution of water by sewage and run-off from farms produces a serious public health problem in many countries. Viruses, along with bacteria and protozoa in the intestine or in urine are shed and transported through the sewer system. Even in highly industrialized countries, pathogens, including viruses, are prevalent throughout the environment. Molecular methods are used to monitor viral, bacterial, and protozoan pathogens, and to track pathogen- and source-specific markers in the environment. Molecular techniques, specifically polymerase chain reaction-based methods, provide sensitive, rapid, and quantitative analytical tools with which to study such pathogens, including new or emerging strains. These techniques are used to evaluate the microbiological quality of food and water, and to assess the efficiency of virus removal in drinking and wastewater treatment plants. The range of methods available for the application of molecular techniques has increased, and the costs involved have fallen. These developments have allowed the potential standardization and automation of certain techniques. In some cases they facilitate the identification, genotyping, enumeration, viability assessment, and source-tracking of human and animal contamination. Additionally, recent improvements in detection technologies have allowed the simultaneous detection of multiple targets in a single assay. However, the molecular techniques available today and those under development require further refinement in order to be standardized and applicable to a diversity of matrices. Water disinfection treatments may have an effect on the viability of pathogens and the numbers obtained by molecular techniques may overestimate the quantification of infectious microorganisms. The pros and cons of molecular techniques for the detection and quantification of pathogens in water are discussed.
Collapse
Affiliation(s)
- Rosina Girones
- Department of Microbiology, Faculty of Biology, University of Barcelona. Av. Diagonal 645, 08028 Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Lee CS, Lee J. Evaluation of new gyrB-based real-time PCR system for the detection of B. fragilis as an indicator of human-specific fecal contamination. J Microbiol Methods 2010; 82:311-8. [PMID: 20643165 DOI: 10.1016/j.mimet.2010.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 11/18/2022]
Abstract
A rapid and specific gyrB-based real-time PCR system has been developed for detecting Bacteroides fragilis as a human-specific marker of fecal contamination. Its specificity and sensitivity was evaluated by comparison with other 16S rRNA gene-based primers using closely related Bacteroides and Prevotella. Many studies have used 16S rRNA gene-based method targeting Bacteroides because this genus is relatively abundant in human feces and is useful for microbial source tracking. However, 16S rRNA gene-based primers are evolutionarily too conserved among taxa to discriminate between human-specific species of Bacteroides and other closely related genera, such as Prevotella. Recently, one of the housekeeping genes, gyrB, has been used as an alternative target in multilocus sequence analysis (MLSA) to provide greater phylogenetic resolution. In this study, a new B. fragilis-specific primer set (Bf904F/Bf958R) was designed by alignments of 322 gyrB genes and was compared with the performance of the 16S rRNA gene-based primers in the presence of B. fragilis, Bacteroides ovatus and Prevotella melaninogenica. Amplicons were sequenced and a phylogenetic tree was constructed to confirm the specificity of the primers to B. fragilis. The gyrB-based primers successfully discriminated B. fragilis from B. ovatus and P. melaninogenica. Real-time PCR results showed that the gyrB primer set had a comparable sensitivity in the detection of B. fragilis when compared with the 16S rRNA primer set. The host-specificity of our gyrB-based primer set was validated with human, pig, cow, and dog fecal samples. The gyrB primer system had superior human-specificity. The gyrB-based system can rapidly detect human-specific fecal source and can be used for improved source tracking of human contamination.
Collapse
Affiliation(s)
- Chang Soo Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
99
|
Sinigalliano CD, Fleisher JM, Gidley ML, Solo-Gabriele HM, Shibata T, Plano LRW, Elmir SM, Wanless D, Bartkowiak J, Boiteau R, Withum K, Abdelzaher AM, He G, Ortega C, Zhu X, Wright ME, Kish J, Hollenbeck J, Scott T, Backer LC, Fleming LE. Traditional and molecular analyses for fecal indicator bacteria in non-point source subtropical recreational marine waters. WATER RESEARCH 2010; 44:3763-72. [PMID: 20605185 PMCID: PMC2947316 DOI: 10.1016/j.watres.2010.04.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 03/09/2010] [Accepted: 04/22/2010] [Indexed: 05/03/2023]
Abstract
The use of enterococci as the primary fecal indicator bacteria (FIB) for the determination of recreational water safety has been questioned, particularly in sub/tropical marine waters without known point sources of sewage. Alternative FIB (such as the Bacteroidales group) and alternative measurement methods (such as rapid molecular testing) have been proposed to supplement or replace current marine water quality testing methods which require culturing enterococci. Moreover, environmental parameters have also been proposed to supplement current monitoring programs. The objective of this study was to evaluate the health risks to humans from exposure to subtropical recreational marine waters with no known point source. The study reported symptoms between one set of human subjects randomly assigned to marine water exposure with intensive environmental monitoring compared with other subjects who did not have exposure. In addition, illness outcomes among the exposed bathers were compared to levels of traditional and alternative FIB (as measured by culture-based and molecular-based methods), and compared to easily measured environmental parameters. Results demonstrated an increase in self-reported gastrointestinal, respiratory and skin illnesses among bathers vs. non-bathers. Among the bathers, a dose-response relationship by logistic regression modeling was observed for skin illness, where illness was positively related to enterococci enumeration by membrane filtration (odds ratio = 1.46 [95% confidence interval = 0.97-2.21] per increasing log10 unit of enterococci exposure) and positively related to 24 h antecedent rain fall (1.04 [1.01-1.07] per increasing millimeters of rain). Acute febrile respiratory illness was inversely related to water temperature (0.74 [0.56-0.98] per increasing degree of water temperature). There were no significant dose-response relationships between report of human illness and any of the other FIB or environmental measures. Therefore, for non-point source subtropical recreational marine waters, this study suggests that humans may be at increased risk of reported illness, and that the currently recommended and investigational FIB may not track gastrointestinal illness under these conditions; the relationship between other human illness and environmental measures is less clear.
Collapse
Affiliation(s)
- Christopher D Sinigalliano
- National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Smith A, Sterba-Boatwright B, Mott J. Novel application of a statistical technique, Random Forests, in a bacterial source tracking study. WATER RESEARCH 2010; 44:4067-76. [PMID: 20566209 DOI: 10.1016/j.watres.2010.05.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 03/22/2010] [Accepted: 05/12/2010] [Indexed: 05/22/2023]
Abstract
In this study, data from bacterial source tracking (BST) analysis using antibiotic resistance profiles were examined using two statistical techniques, Random Forests (RF) and discriminant analysis (DA) to determine sources of fecal contamination of a Texas water body. Cow Trap and Cedar Lakes are potential oyster harvesting waters located in Brazoria County, Texas, that have been listed as impaired for bacteria on the 2004 Texas 303(d) list. Unknown source Escherichia coli were isolated from water samples collected in the study area during two sampling events. Isolates were confirmed as E. coli using carbon source utilization profiles and then analyzed via ARA, following the Kirby-Bauer disk diffusion method. Zone diameters from ARA profiles were analyzed with both DA and RF. Using a two-way classification (human vs nonhuman), both DA and RF categorized over 90% of the 299 unknown source isolates as a nonhuman source. The average rates of correct classification (ARCCs) for the library of 1172 isolates using DA and RF were 74.6% and 82.3%, respectively. ARCCs from RF ranged from 7.7 to 12.0% higher than those from DA. Rates of correct classification (RCCs) for individual sources classified with RF ranged from 23.2 to 0.2% higher than those of DA, with a mean difference of 9.0%. Additional evidence for the outperformance of DA by RF was found in the comparison of training and test set ARCCs and examination of specific disputed isolates; RF produced higher ARCCs (ranging from 8 to 13% higher) than DA for all 1000 trials (excluding the two-way classification, in which RF outperformed DA 999 out of 1000 times). This is of practical significance for analysis of bacterial source tracking data. Overall, based on both DA and RF results, migratory birds were found to be the source of the largest portion of the unknown E. coli isolates. This study is the first known published application of Random Forests in the field of BST.
Collapse
Affiliation(s)
- Amanda Smith
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5800, Corpus Christi, TX 78412, United States.
| | | | | |
Collapse
|