51
|
Siemers AK, Palm WU, Faubel C, Mänz JS, Steffen D, Ruck W. Sources of nitrogen heterocyclic PAHs (N-HETs) along a riverine course. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:69-79. [PMID: 28301813 DOI: 10.1016/j.scitotenv.2017.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
For the first time the occurrence of 26 nitrogen heterocyclic polyaromatic hydrocarbons (N-HETs) and the antiepileptic drug carbamazepine (CBZ) as a marker for anthropogenic influence was determined in an entire river system and its influents. Besides the investigation of diurnal and annual variations in concentrations, dilution and load calculations, the aims were to facilitate transferability to other rivers by identifying sources of the different substances. To create a sufficient database over 180 aqueous samples from the River Fuhse (Lower Saxony, Germany), its catchment area, effluents of municipal and industrial wastewater treatment plants (WWTPs) and rainwater were analyzed. Typical substances found in background water samples and rain samples were quinoline and isoquinoline, whereas 1-/3-methylisoquinoline were traced back to an industrial WWTP. Due to similar concentration levels in the effluents of municipal WWTPs, their impact on the river correlated with their nominal loads. In municipal WWTP effluents CBZ (cmedian=1693ngL-1), 2-methylquinoline (cmedian=64ngL-1), and acridine (cmedian=62ngL-1) prevailed. Although the occurrence of N-HETs at contaminated sites is a widely discussed scientific topic, this study showed that the investigated site was a source with only small volumetric contribution to N-HET concentrations in the adjacent river. In total the River Fuhse discharges 20kga-1 N-HETs and 21kga-1 CBZ into the receiving river.
Collapse
Affiliation(s)
- Anne-Kathrin Siemers
- Leuphana University of Lüneburg, Institute for Sustainable and Environmental Chemistry, Scharnhorststr. 1, 21335 Lüneburg, Germany
| | - Wolf-Ulrich Palm
- Leuphana University of Lüneburg, Institute for Sustainable and Environmental Chemistry, Scharnhorststr. 1, 21335 Lüneburg, Germany.
| | - Christina Faubel
- Leuphana University of Lüneburg, Institute for Sustainable and Environmental Chemistry, Scharnhorststr. 1, 21335 Lüneburg, Germany
| | - Jan Sebastian Mänz
- Leuphana University of Lüneburg, Institute for Sustainable and Environmental Chemistry, Scharnhorststr. 1, 21335 Lüneburg, Germany
| | - Dieter Steffen
- Lower Saxony Water Management, Coastal Defense and Nature Conservation Agency (NLWKN), An der Scharlake 39, 31135 Hildesheim, Germany
| | - Wolfgang Ruck
- Leuphana University of Lüneburg, Institute for Sustainable and Environmental Chemistry, Scharnhorststr. 1, 21335 Lüneburg, Germany
| |
Collapse
|
52
|
Xiao H, Brinkmann M, Thalmann B, Schiwy A, Große Brinkhaus S, Achten C, Eichbaum K, Gembé C, Seiler TB, Hollert H. Toward Streamlined Identification of Dioxin-like Compounds in Environmental Samples through Integration of Suspension Bioassay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3382-3390. [PMID: 28190338 DOI: 10.1021/acs.est.6b06003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Effect-directed analysis (EDA) is a powerful strategy to identify biologically active compounds in environmental samples. However, in current EDA studies, fractionation and handling procedures are laborious, consist of multiple evaporation steps, and thus bear the risk of contamination and decreased recoveries of the target compounds. The low resulting throughput has been one of the major bottlenecks of EDA. Here, we propose a high-throughput EDA (HT-EDA) work-flow combining reversed phase high-performance liquid chromatography fractionation of samples into 96-well microplates, followed by toxicity assessment in the micro-EROD bioassay with the wild-type rat hepatoma H4IIE cells, and chemical analysis of bioactive fractions. The approach was evaluated using single substances, binary mixtures, and extracts of sediment samples collected at the Three Gorges Reservoir, Yangtze River, China, as well as the rivers Rhine and Elbe, Germany. Selected bioactive fractions were analyzed by highly sensitive gas chromatography-atmospheric pressure laser ionization-time-of-flight-mass spectrometry. In addition, we optimized the work-flow by seeding previously adapted suspension-cultured H4IIE cells directly into the microplate used for fractionation, which makes any transfers of fractionated samples unnecessary. The proposed HT-EDA work-flow simplifies the procedure for wider application in ecotoxicology and environmental routine programs.
Collapse
Affiliation(s)
| | - Markus Brinkmann
- Toxicology Centre and School of Environment and Sustainability, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | | | | | - Sigrid Große Brinkhaus
- Institute of Geology and Palaeontology-Applied Geology, University of Münster , 48149 Münster, Germany
| | - Christine Achten
- Institute of Geology and Palaeontology-Applied Geology, University of Münster , 48149 Münster, Germany
| | | | | | | | - Henner Hollert
- College of Resources and Environmental Science, Chongqing University , 400030 Chongqing, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , 210023 Nanjing, China
- College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University , 200092 Shanghai, China
| |
Collapse
|
53
|
Lui KH, Bandowe BAM, Tian L, Chan CS, Cao JJ, Ning Z, Lee SC, Ho KF. Cancer risk from polycyclic aromatic compounds in fine particulate matter generated from household coal combustion in Xuanwei, China. CHEMOSPHERE 2017; 169:660-668. [PMID: 27912191 DOI: 10.1016/j.chemosphere.2016.11.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/15/2016] [Accepted: 11/20/2016] [Indexed: 05/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM2.5) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. A sample from the community with the highest mortality contained the highest total concentration of PAHs, OPAHs and AZAs and posed the highest excess cancer risk from a lifetime of inhaling fine particulates. Positive correlations between total carbonyl-OPAHs, total AZAs and total PAHs implied that the emissions were dependent on similar factors, regardless of sample location and type. The calculated cancer risk ranged from 5.23-10.7 × 10-3, which is higher than the national average. The risk in each sample was ∼1-2 orders of magnitude higher than that deemed high risk, suggesting that the safety of these households is in jeopardy. The lack of potency equivalency factors for the PAH derivatives could possibly have underestimated the overall cancer risk.
Collapse
Affiliation(s)
- K H Lui
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Benjamin A Musa Bandowe
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012 Bern, Switzerland
| | - Linwei Tian
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Chi-Sing Chan
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun-Ji Cao
- Key Laboratory of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - Zhi Ning
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - S C Lee
- Department of Civil and Structural Engineering, Research Center of Urban Environmental Technology and Management, The Hong Kong Polytechnic University, Hong Kong, China
| | - K F Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Key Laboratory of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China.
| |
Collapse
|
54
|
Endocrine Disruption and In Vitro Ecotoxicology: Recent Advances and Approaches. IN VITRO ENVIRONMENTAL TOXICOLOGY - CONCEPTS, APPLICATION AND ASSESSMENT 2017; 157:1-58. [DOI: 10.1007/10_2016_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
55
|
Di Paolo C, Ottermanns R, Keiter S, Ait-Aissa S, Bluhm K, Brack W, Breitholtz M, Buchinger S, Carere M, Chalon C, Cousin X, Dulio V, Escher BI, Hamers T, Hilscherová K, Jarque S, Jonas A, Maillot-Marechal E, Marneffe Y, Nguyen MT, Pandard P, Schifferli A, Schulze T, Seidensticker S, Seiler TB, Tang J, van der Oost R, Vermeirssen E, Zounková R, Zwart N, Hollert H. Bioassay battery interlaboratory investigation of emerging contaminants in spiked water extracts - Towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring. WATER RESEARCH 2016; 104:473-484. [PMID: 27585427 DOI: 10.1016/j.watres.2016.08.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/30/2016] [Accepted: 08/09/2016] [Indexed: 05/18/2023]
Abstract
Bioassays are particularly useful tools to link the chemical and ecological assessments in water quality monitoring. Different methods cover a broad range of toxicity mechanisms in diverse organisms, and account for risks posed by non-target compounds and mixtures. Many tests are already applied in chemical and waste assessments, and stakeholders from the science-police interface have recommended their integration in regulatory water quality monitoring. Still, there is a need to address bioassay suitability to evaluate water samples containing emerging pollutants, which are a current priority in water quality monitoring. The presented interlaboratory study (ILS) verified whether a battery of miniaturized bioassays, conducted in 11 different laboratories following their own protocols, would produce comparable results when applied to evaluate blinded samples consisting of a pristine water extract spiked with four emerging pollutants as single chemicals or mixtures, i.e. triclosan, acridine, 17α-ethinylestradiol (EE2) and 3-nitrobenzanthrone (3-NBA). Assays evaluated effects on aquatic organisms from three different trophic levels (algae, daphnids, zebrafish embryos) and mechanism-specific effects using in vitro estrogenicity (ER-Luc, YES) and mutagenicity (Ames fluctuation) assays. The test battery presented complementary sensitivity and specificity to evaluate the different blinded water extract spikes. Aquatic organisms differed in terms of sensitivity to triclosan (algae > daphnids > fish) and acridine (fish > daphnids > algae) spikes, confirming the complementary role of the three taxa for water quality assessment. Estrogenicity and mutagenicity assays identified with high precision the respective mechanism-specific effects of spikes even when non-specific toxicity occurred in mixture. For estrogenicity, although differences were observed between assays and models, EE2 spike relative induction EC50 values were comparable to the literature, and E2/EE2 equivalency factors reliably reflected the sample content. In the Ames, strong revertant induction occurred following 3-NBA spike incubation with the TA98 strain, which was of lower magnitude after metabolic transformation and when compared to TA100. Differences in experimental protocols, model organisms, and data analysis can be sources of variation, indicating that respective harmonized standard procedures should be followed when implementing bioassays in water monitoring. Together with other ongoing activities for the validation of a basic bioassay battery, the present study is an important step towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring.
Collapse
Affiliation(s)
- Carolina Di Paolo
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Richard Ottermanns
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Steffen Keiter
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany; Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | | | - Kerstin Bluhm
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Werner Brack
- UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Magnus Breitholtz
- Department of Applied Environmental Science - ITM, Stockholm University, Stockholm, Sweden
| | - Sebastian Buchinger
- Department Biochemistry and Ecotoxicology, Federal Institute of Hydrology, Koblenz, Germany
| | | | - Carole Chalon
- ISSeP (Scientific Institute of Public Service), Liège, Wallonia, Belgium
| | - Xavier Cousin
- Laboratoire d'Ecotoxicologie, Ifremer, L'Houmeau, France; Laboratoire de Physiologie et Génétique des Poissons, Inra, Rennes, France
| | | | - Beate I Escher
- UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany; National Research Centre for Environmental Toxicology - Entox, The University of Queensland, Brisbane, Australia; Centre for Applied Geosciences, Eberhard Karls University Tübingen, Germany
| | - Timo Hamers
- Institute for Environmental Studies -IVM, VU University Amsterdam, The Netherlands
| | - Klára Hilscherová
- Research Centre for Toxic Compounds in the Environment - RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sergio Jarque
- Research Centre for Toxic Compounds in the Environment - RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Adam Jonas
- Research Centre for Toxic Compounds in the Environment - RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Yves Marneffe
- ISSeP (Scientific Institute of Public Service), Liège, Wallonia, Belgium
| | | | | | - Andrea Schifferli
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Dübendorf, Switzerland
| | - Tobias Schulze
- UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sven Seidensticker
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany; Centre for Applied Geosciences, Eberhard Karls University Tübingen, Germany
| | | | - Janet Tang
- National Research Centre for Environmental Toxicology - Entox, The University of Queensland, Brisbane, Australia
| | - Ron van der Oost
- WATERNET Institute for the Urban Water Cycle, Division of Technology Research & Engineering, Amsterdam, The Netherlands
| | | | - Radka Zounková
- Research Centre for Toxic Compounds in the Environment - RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nick Zwart
- Institute for Environmental Studies -IVM, VU University Amsterdam, The Netherlands
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
56
|
Bluhm K, Seiler TB, Anders N, Klankermayer J, Schaeffer A, Hollert H. Acute embryo toxicity and teratogenicity of three potential biofuels also used as flavor or solvent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:786-795. [PMID: 27243931 DOI: 10.1016/j.scitotenv.2016.05.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/07/2016] [Accepted: 05/08/2016] [Indexed: 06/05/2023]
Abstract
The demand for biofuels increases due to concerns regarding greenhouse gas emissions and depletion of fossil oil reserves. Many substances identified as potential biofuels are solvents or already used as flavors or fragrances. Although humans and the environment may be readily exposed little is known regarding their (eco)toxicological effects. In this study, the three potential biofuels ethyl levulinate (EL), 2-methyltetrahydrofuran (2-MTHF) and 2-methylfuran (2-MF) were investigated for their acute embryo toxicity and teratogenicity using the fish embryo toxicity (FET) test to identify unknown hazard potentials and to allow focusing further research on substances with low toxic potentials. In addition, two fossil fuels (diesel and gasoline) and an established biofuel (rapeseed oil methyl ester) were investigated as references. The FET test is widely accepted and used in (eco)toxicology. It was performed using the zebrafish Danio rerio, a model organism useful for the prediction of human teratogenicity. Testing revealed a higher acute toxicity for EL (LC50: 83mg/L) compared to 2-MTHF (LC50: 2980mg/L), 2-MF (LC50: 405mg/L) and water accommodated fractions of the reference fuels including gasoline (LC50: 244mg DOC/L). In addition, EL caused a statistically significant effect on head development resulting in elevated head lengths in zebrafish embryos. Results for EL reduce its likelihood of use as a biofuel since other substances with a lower toxic potential are available. The FET test applied at an early stage of development might be a useful tool to avoid further time and money requiring steps regarding research on unfavorable biofuels.
Collapse
Affiliation(s)
- Kerstin Bluhm
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas-Benjamin Seiler
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Nico Anders
- RWTH Aachen University, Aachener Verfahrenstechnik - Enzyme Process Technology, Worringerweg 1, 52074 Aachen, Germany
| | - Jürgen Klankermayer
- RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 1, 52074 Aachen, Germany
| | - Andreas Schaeffer
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany; Chongqing University, College of Resources and Environmental Science, Chongqing 400715, China; Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing 210093, China
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany; Chongqing University, College of Resources and Environmental Science, Chongqing 400715, China; Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing 210093, China; Tongji University, College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China.
| |
Collapse
|
57
|
Xiao H, Kuckelkorn J, Nüßer LK, Floehr T, Hennig MP, Roß-Nickoll M, Schäffer A, Hollert H. The metabolite 3,4,3',4'-tetrachloroazobenzene (TCAB) exerts a higher ecotoxicity than the parent compounds 3,4-dichloroaniline (3,4-DCA) and propanil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 551-552:304-316. [PMID: 26878642 DOI: 10.1016/j.scitotenv.2016.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Abstract
3,4,3',4'-tetrachloroazobenzene (TCAB) is not commercially manufactured but formed as an unwanted by-product in the manufacturing of 3,4-dichloroaniline (3,4-DCA) or metabolized from the degradation of chloranilide herbicides, like propanil. While a considerable amount of research has been done concerning the toxicological and ecotoxicological effects of propanil and 3,4-DCA, limited information is available on TCAB. Our study examined the toxicity of TCAB in comparison to its parent compounds propanil and 3,4-DCA, using a battery of bioassays including in vitro with aryl hydrocarbon receptor (AhR) mediated activity by the 7-ethoxyresorufin-O-deethylase (EROD) assay and micro-EROD, endocrine-disrupting activity with chemically activated luciferase gene expression (CALUX) as well as in vivo with fish embryo toxicity (FET) assays with Danio rerio. Moreover, the quantitative structure activity response (QSAR) concepts were applied to simulate the binding affinity of TCAB to certain human receptors. It was shown that TCAB has a strong binding affinity to the AhR in EROD and micro-EROD induction assay, with the toxic equivalency factor (TEF) of 8.7×10(-4) and 1.2×10(-5), respectively. TCAB presented to be a weak endocrine disrupting compound with a value of estradiol equivalence factor (EEF) of 6.4×10(-9) and dihydrotestosterone equivalency factor (DEF) of 1.1×10(-10). No acute lethal effects of TCAB were discovered in FET test after 96h of exposure. Major sub-lethal effects detected were heart oedema, yolk malformation, as well as absence of blood flow and tail deformation. QSAR modelling suggested an elevated risk to environment, particularly with respect to binding to the AhR. An adverse effect potentially triggering ERβ, mineralocorticoid, glucocorticoid and progesterone receptor activities might be expected. Altogether, the results obtained suggest that TCAB exerts a higher toxicity than both propanil and 3,4-DCA. This should be considered when assessing the impact of these compounds for the environment and also for regulatory decisions.
Collapse
Affiliation(s)
- Hongxia Xiao
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Jochen Kuckelkorn
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Leonie Katharina Nüßer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Tilman Floehr
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Michael Patrick Hennig
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Martina Roß-Nickoll
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Tiansheng Road Beibei 1, Chongqing 400715, People's Republic of China.
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing 210023, People's Republic of China; College of Resources and Environmental Science, Chongqing University, Tiansheng Road Beibei 1, Chongqing 400715, People's Republic of China.
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing 210023, People's Republic of China; College of Resources and Environmental Science, Chongqing University, Tiansheng Road Beibei 1, Chongqing 400715, People's Republic of China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Siping Road 1239, Shanghai 200092, People's Republic of China.
| |
Collapse
|
58
|
Witter AE, Nguyen MH. Determination of oxygen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 209:186-96. [PMID: 26646479 DOI: 10.1016/j.envpol.2015.10.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 05/10/2023]
Abstract
Recent studies indicate that PAH transformation products such as ketone or quinone-substituted PAHs (OPAHs) are potent aryl hydrocarbon receptor (AhR) activators that elicit toxicological effects independent of those observed for PAHs. Here, we measured eight OPAHs, two sulfur-containing (SPAH), one oxygen-containing (DBF), and one nitrogen-containing (CARB) heterocyclic PAHs (i.e. ΣONS-PAHs = OPAH8 + SPAH + DBF + CARB) in 35 stream sediments collected from a small (∼1303 km(2)) urban watershed located in south-central Pennsylvania, USA. Combined ΣONS-PAH concentrations ranged from 59 to 1897 μg kg(-1) (mean = 568 μg kg(-1); median = 425 μg kg(-1)) and were 2.4 times higher in urban versus rural areas, suggesting that activities taking place on urban land serve as a source of ΣONS-PAHs to sediments. To evaluate urban land use metrics that might explain these data, Spearman rank correlation analyses was used to evaluate the degree of association between ΣONS-PAH concentrations and urban land-use/land-cover metrics along an urban-rural transect at two spatial scales (500-m and 1000-m upstream). Combined ΣONS-PAH concentrations showed highly significant (p < 0.0001) correlations with ΣPAH19, residential and commercial/industrial land use (RESCI), and combined state and local road miles (MILES), suggesting that ΣONS-PAHs originate from similar sources as PAHs. To evaluate OPAH sources, a subset of ΣONS-PAHs for which reference assemblages exist, an average OPAH fractional assemblage for urban sediments was derived using agglomerative hierarchal cluster (AHC) analysis, and compared to published OPAH source profiles. Urban sediments from the Condoguinet Creek (n = 21) showed highly significant correlations with urban particulate matter (X(2) = 0.05, r = 0.91, p = 0.0047), suggesting that urban particulate matter is an important OPAH source to sediments in this watershed. Results suggest the inclusion of ΣONS-PAH measurements adds value to traditional PAH analyses, and may help elucidate and refine pollutant source identification in urban watersheds.
Collapse
Affiliation(s)
- Amy E Witter
- Department of Chemistry, Dickinson College, PO Box 1773, Carlisle, PA 17013, USA.
| | - Minh H Nguyen
- Department of Chemistry, Dickinson College, PO Box 1773, Carlisle, PA 17013, USA
| |
Collapse
|
59
|
Titaley I, Chlebowski A, Truong L, Tanguay RL, Massey Simonicha SL. Identification and Toxicological Evaluation of Unsubstituted PAHs and Novel PAH Derivatives in Pavement Sealcoat Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2016. [PMID: 30079367 DOI: 10.1021/acs.estlett.6b00116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Pavement sealcoat products contain high concentrations of unsubstituted polycyclic aromatic hydrocarbons (PAHs), but the assessment of the potential toxicological impact is limited without the inclusion of PAH derivatives. This study determined the concentrations of 23 unsubstituted PAHs, 11 high molecular weight-PAHs (MW302-PAHs), and 56 PAH derivatives, including 10 methyl-PAHs (MPAHs), 10 heterocyclic-PAHs (Hetero-PAHs), 26 nitrated-PAHs (NPAHs), and 10 oxygenated-PAHs (OPAHs) in coal-tar and asphalt based sealcoat products and time point scrapes. Inclusion of MW302-PAHs resulted in an increase of 4.1-38.7% in calculated benzo[a]pyrene-carcinogenic equivalent (B[a]Peq) concentrations for the coal-tar based products. Increases in some NPAH and OPAH concentrations were measured after application, suggesting the possibility of photochemical transformation of unsubstituted PAHs. The Ames assay indicated that the asphalt based product was not mutagenic, but the coal-tar based sealcoat products were. The zebrafish developmental toxicity tests suggested that fractions where NPAHs and OPAHs eluted have the most significant adverse effects.
Collapse
Affiliation(s)
- Ivan Titaley
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Anna Chlebowski
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - Staci L Massey Simonicha
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
60
|
Brinkmann M, Preuss TG, Hollert H. Advancing In Vitro-In Vivo Extrapolations of Mechanism-Specific Toxicity Data Through Toxicokinetic Modeling. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 157:293-317. [PMID: 27619489 DOI: 10.1007/10_2015_5015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
International legislation, such as the European REACH regulation (registration, evaluation, authorization, and restriction of chemicals), mandates the assessment of potential risks of an ever-growing number of chemicals to the environment and human health. Although this legislation is considered one of the most important investments in consumer safety ever, the downside is that the current testing strategies within REACH rely on extensive animal testing. To address the ethical conflicts arising from these increased testing requirements, decision-makers, such as the European Chemicals Agency (ECHA), are committed to Russel and Burch's 3R principle (i.e., reduction, replacement, refinement) by demanding that animal experiments should be substituted with appropriate alternatives whenever possible. A potential solution of this dilemma might be the application of in vitro bioassays to estimate toxic effects using cells or cellular components instead of whole organisms. Although such assays are particularly useful to assess potential mechanisms of toxic action, scientists require appropriate methods to extrapolate results from the in vitro level to the situation in vivo. Toxicokinetic models are a straightforward means of bridging this gap. The present chapter describes different available options for in vitro-in vivo extrapolation (IVIVE) of mechanism-specific effects focused on fish species and also reviews the implications of confounding factors during the conduction of in vitro bioassays and their influence on the optimal choice of different dose metrics.
Collapse
Affiliation(s)
- Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | | | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
- College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road Beibei, Chongqing, 400715, China.
- College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China.
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
61
|
Chibwe L, Geier MC, Nakamura J, Tanguay RL, Aitken MD, Simonich SLM. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015. [PMID: 26200254 PMCID: PMC4666737 DOI: 10.1021/acs.est.5b00499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (prebioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (postbioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, postbioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental toxicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, postbioremediation (p < 0.05). In addition, a statistically significant increase in developmental toxicity was measured in one polar soil extract fraction, postbioremediation (p < 0.05). A series of morphological abnormalities, including peculiar caudal fin malformations and hyperpigmentation in the tail, were measured in several soil extract fractions in embryonic zebrafish, both pre- and postbioremediation. The increased toxicity measured postbioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase postbioremediation. However, the increased toxicity measured postbioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded.
Collapse
Affiliation(s)
- Leah Chibwe
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Mitra C. Geier
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Jun Nakamura
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Michael D. Aitken
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Staci L. Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Corresponding Author Address: 1141 Agricultural and Life Sciences, Corvallis, OR 97331-7301, USA; telephone: (541) 737-9194; fax: (541) 737-0497;
| |
Collapse
|
62
|
Hug C, Zhang X, Guan M, Krauss M, Bloch R, Schulze T, Reinecke T, Hollert H, Brack W. Microbial reporter gene assay as a diagnostic and early warning tool for the detection and characterization of toxic pollution in surface waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2523-2532. [PMID: 26033406 DOI: 10.1002/etc.3083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/13/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
Surface water samples constantly receive a vast mixture of micropollutants mainly originating from wastewater treatment plants (WWTPs). High-throughput live cell arrays provide a promising method for the characterization of the effects of chemicals and the associated molecular mechanisms. In the present study, this test system was evaluated for the first time for the characterization of a set of typical surface water extracts receiving effluent from WWTPs. The extracts containing complex mixtures of micropollutants were analyzed for the expression of 90 stress responsive genes in the Escherichia coli reporter gene assay. The most affected pathways and the genes most sensitive to surface water samples suggested prominent stress-responsive pathways for wastewater-impacted surface water, such as oxidative stress, DNA damage, and drug resistance. Samples strongly affecting particular pathways were identified by statistical analysis of gene expression. Transcription data were correlated with contamination data from chemical screening and percentages of wastewater in the samples. Samples with particular effects and outstanding chemical composition were analyzed. For these samples, hypotheses on the alteration of the transcription of genes involved in drug resistance and DNA repair attributable to the presence of pharmaceuticals were drawn.
Collapse
Affiliation(s)
- Christine Hug
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Saxony, Germany
- Institute for Environmental Research, Department of Ecosystem Analyses, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Jiangsu, People's Republic of China
| | - Miao Guan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Jiangsu, People's Republic of China
| | - Martin Krauss
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Saxony, Germany
| | - Robert Bloch
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Saxony, Germany
| | - Tobias Schulze
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Saxony, Germany
| | - Tim Reinecke
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Saxony, Germany
| | - Henner Hollert
- Institute for Environmental Research, Department of Ecosystem Analyses, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Jiangsu, People's Republic of China
- College of Resources and Environmental Science, Chongqing University, Chongqing, Chongqing, People's Republic of China
- Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai, Shanghai, People's Republic of China
| | - Werner Brack
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Saxony, Germany
- Institute for Environmental Research, Department of Ecosystem Analyses, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| |
Collapse
|
63
|
Mahler BJ, Ingersoll CG, Van Metre PC, Kunz JL, Little EE. Acute toxicity of runoff from sealcoated pavement to Ceriodaphnia dubia and Pimephales promelas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5060-5069. [PMID: 25860716 DOI: 10.1021/acs.est.5b00933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Runoff from coal-tar-based (CT) sealcoated pavement is a source of polycyclic aromatic hydrocarbons (PAHs) and N-heterocycles to surface waters. We investigated acute toxicity of simulated runoff collected from 5 h to 111 days after application of CT sealcoat and from 4 h to 36 days after application of asphalt-based sealcoat containing about 7% CT sealcoat (AS/CT-blend). Ceriodaphnia dubia (cladocerans) and Pimephales promelas (fathead minnows) were exposed in the laboratory to undiluted and 1:10 diluted runoff for 48 h, then transferred to control water and exposed to 4 h of ultraviolet radiation (UVR). Mortality following exposure to undiluted runoff from unsealed asphalt pavement and UVR was ≤10% in all treatments. Test organisms exposed to undiluted CT runoff samples collected during the 3 days (C. dubia) or 36 days (P. promelas) following sealcoat application experienced 100% mortality prior to UVR exposure; with UVR exposure, mortality was 100% for runoff collected across the entire sampling period. Phototoxic-equivalent PAH concentrations and mortality demonstrated an exposure-response relation. The results indicate that runoff remains acutely toxic for weeks to months after CT sealcoat application.
Collapse
Affiliation(s)
- Barbara J Mahler
- †U.S. Geological Survey, 1505 Ferguson Lane, Austin, Texas 78754, United States
| | | | - Peter C Van Metre
- †U.S. Geological Survey, 1505 Ferguson Lane, Austin, Texas 78754, United States
| | - James L Kunz
- ‡U.S. Geological Survey, 4200 New Haven Rd., Columbia, Missouri 65201, United States
| | - Edward E Little
- ‡U.S. Geological Survey, 4200 New Haven Rd., Columbia, Missouri 65201, United States
| |
Collapse
|
64
|
Siemers AK, Mänz JS, Palm WU, Ruck WKL. Development and application of a simultaneous SPE-method for polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, heterocyclic PAHs (NSO-HET) and phenols in aqueous samples from German Rivers and the North Sea. CHEMOSPHERE 2015; 122:105-114. [PMID: 25482976 DOI: 10.1016/j.chemosphere.2014.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/31/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), heterocyclic PAHs (NSO-HETs), alkylated PAHs and phenols are known as the prevailing contaminants in groundwater at tar contaminated sites. Besides these local sources, the concentrations and the distribution in particular of NSO-HETs in environmental samples, such as rivers, have received notably less attention. To investigate their occurrence in river basins two sensitive analytical methods for the simultaneous extraction of 86 substances including NSO-HETs, classical EPA-PAHs, alkylated PAHs and phenols were developed: liquid-liquid extraction for the whole water phase and solid phase extraction for the dissolved water phase only. Solely GC-MS or additionally LC-MSMS for fractionated basic nitrogen heterocycles (N-HETs) were used for quantification. Limits of quantification were in the low ngL(-1) range. Concentrations were determined in 29 aqueous samples from 8 relatively large rivers located in Lower Saxony (Germany) and the North Sea. NSO-HETs had comparable or even higher sum concentrations than EPA-PAHs. N-HETs, especially acridine and quinolines with concentrations of up to 20ngL(-1) per substance, were predominant.
Collapse
Affiliation(s)
- Anne-Kathrin Siemers
- Leuphana University Lüneburg, Institute of Sustainable and Environmental Chemistry, Scharnhorststr. 1, 21335 Lüneburg, Germany
| | - Jan Sebastian Mänz
- Leuphana University Lüneburg, Institute of Sustainable and Environmental Chemistry, Scharnhorststr. 1, 21335 Lüneburg, Germany
| | - Wolf-Ulrich Palm
- Leuphana University Lüneburg, Institute of Sustainable and Environmental Chemistry, Scharnhorststr. 1, 21335 Lüneburg, Germany.
| | - Wolfgang K L Ruck
- Leuphana University Lüneburg, Institute of Sustainable and Environmental Chemistry, Scharnhorststr. 1, 21335 Lüneburg, Germany
| |
Collapse
|
65
|
Rowland SJ, Pereira AS, Martin JW, Scarlett AG, West CE, Lengger SK, Wilde MJ, Pureveen J, Tegelaar EW, Frank RA, Hewitt LM. Mass spectral characterisation of a polar, esterified fraction of an organic extract of an oil sands process water. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2352-62. [PMID: 25279749 DOI: 10.1002/rcm.7024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 05/24/2023]
Abstract
RATIONALE Characterising complex mixtures of organic compounds in polar fractions of heavy petroleum is challenging, but is important for pollution studies and for exploration and production geochemistry. Oil sands process-affected water (OSPW) stored in large tailings ponds by Canadian oil sands industries contains such mixtures. METHODS A polar OSPW fraction was obtained by silver ion solid-phase extraction with methanol elution. This was examined by numerous methods, including electrospray ionisation (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) and ultra-high-pressure liquid chromatography (uHPLC)/Orbitrap MS, in multiple ionisation and MS/MS modes. Compounds were also synthesised for comparison. RESULTS The major ESI ionisable compounds detected (+ion mode) were C15-28 SO3 species with 3-7 double bond equivalents (DBE) and C27-28 SO5 species with 5 DBE. ESI-MS/MS collision-induced losses were due to water, methanol, water plus methanol and water plus methyl formate, typical of methyl esters of hydroxy acids. Once the fraction was re-saponified, species originally detected by positive ion MS, could be detected only by negative ion MS, consistent with their assignment as sulphur-containing hydroxy carboxylic acids. The free acid of a keto dibenzothiophene alkanoic acid was added to an unesterified acid extract of OSPW in known concentrations as a putative internal standard, but attempted quantification in this way proved unreliable. CONCLUSIONS The results suggest the more polar acidic organic SO3 constituents of OSPW include C15-28 S-containing, alicyclic and aromatic hydroxy carboxylic acids. SO5 species are possibly sulphone analogues of these. The origin of such compounds is probably via further biotransformation (hydroxylation) of the related S-containing carboxylic acids identified previously in a less polar OSPW fraction. The environmental risks, corrosivity and oil flow assurance effects should be easier to assess, given that partial structures are now known, although further identification is still needed.
Collapse
Affiliation(s)
- S J Rowland
- Biogeochemistry Research Centre, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Cwiertny DM, Snyder SA, Schlenk D, Kolodziej EP. Environmental designer drugs: when transformation may not eliminate risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11737-45. [PMID: 25216024 PMCID: PMC4204896 DOI: 10.1021/es503425w] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmental transformation processes, including those occurring in natural and engineered systems, do not necessarily drastically alter molecular structures of bioactive organic contaminants. While the majority of generated transformation products are likely benign, substantial conservation of structure in transformation products can imply conservation or even creation of bioactivity across multiple biological end points and thus incomplete mitigation of ecological risk. Therefore, focusing solely on parent compound removal for contaminants of higher relative risk, the most common approach to fate characterization, provides no mechanistic relationship to potential biological effects and is inadequate as a comprehensive metric for reduction of ecological risks. Here, we explore these phenomena for endocrine-active steroid hormones, focusing on examples of conserved bioactivity and related implications for fate assessment, regulatory approaches, and research opportunities.
Collapse
Affiliation(s)
- David M. Cwiertny
- Civil
and Environmental Engineering, University
of Iowa, 4105 Seamans
Center, Iowa City, Iowa 52242, United States
- (D.M.C.) Phone: +1-319-335-1401; fax: +1-319-335-5660; e-mail:
| | - Shane A. Snyder
- Chemical
and Environmental Engineering, University
of Arizona, 1133 E. James
E. Rogers Way, Tucson, Arizona 85721, United States
- NUS
Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, T-Lab Building, Singapore 117411
| | - Daniel Schlenk
- Department
of Environmental Sciences, University of
California, Riverside, Riverside, California 92521, United States
| | - Edward P. Kolodziej
- Interdisciplinary
Arts and Sciences, University of Washington,
Tacoma, 1900 Commerce
Street, Tacoma, Washington 98402, United States
- Department
of Civil and Environmental Engineering, University of Washington, 201 More Hall, Seattle, Washington 98195, United States
- (E.P.K.) Phone: +1-253-692-5659; fax: +1-253-692-5718; e-mail:
| |
Collapse
|