51
|
Zeng H, Ling X, Zhu H, Deng J, Ma X, Zhang H, Deng L, Shi Z, Li X. Unraveling spongy Co 3O 4 mediated activation of peroxymonosulfate: Overlooked involvement of instantaneously produced high-valent-cobalt-oxo. CHEMOSPHERE 2022; 305:135323. [PMID: 35716707 DOI: 10.1016/j.chemosphere.2022.135323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Peroxymonosulfate (PMS) activation induced by tricobalt tetroxide spinel (Co3O4) has been confirmed as a typical Haber-Weiss reaction, while free radicals were once considered as the dominated reactive species in the previous studies. However, the catalytic mechanism of the spongy Co3O4 driven PMS activation was surprisingly found as a radical/nonradical mixed process rather than a pure radical process in the present work. The important role of sulfate radical (SO4-) was confirmed through the quenching experiments. Despite the inhibition of furfuryl alcohol (FFA) and 1,4-benzoquinone (BQ) on degradation was generally accepted as the evidence to support the existence of 1O2 and O2-, additional experiments using methyl phenyl sulfoxide (PMSO) as the indicator indeed verified high-valent-cobalt-oxo rather than 1O2 and O2- dominated the very early reaction stage. Notably, instead of homogeneous Co3+, heterogeneous Co(IV) = O on catalyst surface was believed to be responsible for the oxidation of organics. Spongy Co3O4 not only possessed stronger catalytic ability than commercial Co3O4 (k[spongy Co3O4] = 0.74 min-1, k[Co3O4] = 0.08 min-1), but also owned preferable stability. The performance of catalytic system was barely affected by the solution pH under the near neutral condition. Besides, little suppression of the widely existing anions on the degradation indicated the potential application of spongy Co3O4/PMS system. This study provides a reliable oxidation technology for the removal of organic pollutants, and sheds new light on the cobalt oxide triggered PMS activation process.
Collapse
Affiliation(s)
- Hanxuan Zeng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, PR China
| | - Xiao Ling
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, PR China
| | - Hao Zhu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, PR China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, PR China.
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, PR China
| | - Haojie Zhang
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, PR China.
| | - Lin Deng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, PR China
| | - Zhou Shi
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, PR China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| |
Collapse
|
52
|
Tailored design of MXene-like 2D MOF derived carbon/Fe3O4 Fenton-like catalysts towards effective removal of contaminants via size-exclusion effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
53
|
Darabdhara J, Ahmaruzzaman M. Recent developments in MOF and MOF based composite as potential adsorbents for removal of aqueous environmental contaminants. CHEMOSPHERE 2022; 304:135261. [PMID: 35697109 DOI: 10.1016/j.chemosphere.2022.135261] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
With the growth of globalization which has been the primary cause of water pollution, it is utmost necessary for us living being to have access to clean water for the purpose of drinking, washing and various other useful applications. With the purpose of future security and to restore our ecological balance, it is essential to give much significance towards the removal of unwanted toxic contaminants from our water resources. In this regard adsorptive removal of toxic pollutants from wastewater with porous adsorbent is regarded as one of the most promising way for water decontamination process. Metal organic frameworks (MOFs) comprising of uniformly arranged pores, abundant active sites and containing an easily tunable structure has aroused as a promising material for adsorbent to remove the unwanted contaminants from water sources. The adsorption of pollutants by the different MOFs surface are driven by various interactions including π-π, acid-base, electrostatic and H-bonding etc. On the other hand, the removal of various contaminants by MOFs is influenced by various factors including pH, temperature and initial concentration. In this review we will specifically discuss the adsorptive removal of different organic and inorganic pollutants present in our water systems with the use of MOFs as adsorbent along with the various factors and interaction mechanism manipulating the adsorption behaviour.
Collapse
Affiliation(s)
- Jnyanashree Darabdhara
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
54
|
Jin C, Han P, Li G, Zhang Y, Sun H, Shen W, Sun C, Wei H. Space-Confined Surface Layer in Superstructured Ni-N-C Catalyst for Enhanced Catalytic Degradation of m-Cresol by PMS Activation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40834-40840. [PMID: 36053002 DOI: 10.1021/acsami.2c09111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The broad application of peroxymonosulfate (PMS)-assisted oxidation by heterogeneous catalysts for contaminant removal suffers from the limitation of low PMS decomposition efficiency and consequent excessive electrolyte residues. In this work, we report that a micrometer-scale superstructured Ni-N-C catalyst Ni-NCNT/CB with a nanotube-array surface layer exhibits ultrahigh m-cresol removal efficiency with low PMS input and possesses ∼17-fold higher catalytic specific activity (reaction rate constant normalized to per Ni-Nx site) compared to the traditional Ni-SAC catalyst. Electron paramagnetic resonance results indicate that 1O2 is the dominant oxygen species, and Ni-NCNT/CB with a space-confined layer exhibits high 1O2 utilization for m-cresol degradation. Electrochemical impedance spectroscopy and a normalized k value of Ni-NCNT/CB confirm the spatial confinement effect on the catalyst surface, which is beneficial for regulating the mass transfer and exerting the high activity of active sites. This study gives a new application for spatial confinement, and the configuration of Ni-NCNT/CB may guide a rational catalyst design for AOP wastewater treatment.
Collapse
Affiliation(s)
- Chengyu Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Peiwei Han
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Gao Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yanan Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Hao Sun
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Wenjie Shen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Chenglin Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| |
Collapse
|
55
|
Zhang Y, Mei Y, Ma S, Yang Y, Deng X, Guan Y, Zhao T, Jiang B, Yao T, Yang Q, Wu J. A simple and green method to prepare non-typical yolk/shell nanoreactor with dual-shells and multiple-cores: Enhanced catalytic activity and stability in Fenton-like reaction. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129234. [PMID: 35739754 DOI: 10.1016/j.jhazmat.2022.129234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, non-typical yolk/shell structure has drawn much attentions due to the better catalytic performance than traditional counterparts (one yolk/one shell). In this study, ZIF-67 @Co2SiO4/SiO2 yolk/shell structure was prepared in one-step at room temperature, in which ZIF-67 was served as the hard-template, H2O was served as etchant and tetraethyl orthosilicat was served as the raw material for Co2SiO4/SiO2. After calcination, the non-typical CoxOy @Co2SiO4/SiO2 yolk/shell nanoreactor with Co2SiO4/SiO2 dual-shells and CoxOy multiple-cores was obtained. On the one hand, more active sites were exposed on multiple-cores surface and better protection were provided by dual-shells. On the other hand, the sheet-like Co2SiO4 inner shell not only extended the travel path and retention time of pollutants trapped in cavity, but also separated the multiple-cores from aggregation. Therefore, the nanoreactor displayed the outstanding catalytic activity and recyclability in Fenton-like reaction. Metronidazole (20 mg/L) was completely degraded after 30 min, rhodamine B (50 mg/L) and methyl orange (20 mg/L) were removed even within 5.0 min. Catalytic mechanism indicated that 1O2 greatly contributed to the pollutant degradation. This paper presented a simple, versatile, green and energy-saving method for non-typical yolk/shell nanoreactor, and it could inspire to prepare other catalysts with high activity and stability for environmental remediation.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yuqing Mei
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shouchun Ma
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yang Yang
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xianhe Deng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yina Guan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Tingting Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Tongjie Yao
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Qingfeng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Jie Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
56
|
Zhang M, Ruan J, Wang L, Zhao Z, Shao W, Li J, Chen Z, Gu C, Qiao W. MXene-like carbon sheet/ carbon nanotubes derived from metal-organic frameworks for efficient removal of tetracycline by non-radical dominated advanced oxidation processes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
57
|
Liu J, Jiang J, Wang M, Kang J, Zhang J, Liu S, Tang Y, Li S. Peroxymonosulfate activation by cobalt particles embedded into biochar for levofloxacin degradation: Efficiency, stability, and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
58
|
Jiang D, Fang D, Zhou Y, Wang Z, Yang Z, Zhu J, Liu Z. Strategies for improving the catalytic activity of metal-organic frameworks and derivatives in SR-AOPs: Facing emerging environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119386. [PMID: 35550132 DOI: 10.1016/j.envpol.2022.119386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
As persulfate activator, Metal organic frameworks (MOFs) and derivatives are widely concerned in degradation of emerging environmental pollutants by advanced oxygen technology dominated by sulfate radical () (SR-AOPs). However, the poor stability and low catalytic efficiency limit the performance of MOFs, requiring multiple strategies to further enhance their catalytic activity. The aim of this paper is to improve the catalytic activity of MOFs and their derivatives by physical and chemical enhancement strategies. Physical enhancement strategies mainly refer to the activation strategies including thermal activation, microwave activation and photoactivation. However, the physical enhancement strategies need energy consumption and require high stability of MOFs. As a substitute, chemical enhancement strategies are more widely used and represented by optimization, modification, composites and derivatives. In addition, the identification of reactive oxygen species, active site and electron distribution are important for distinguishing radical and non-radical pathways. Finally, as a new wastewater treatment technology exploration of unknown areas in SR-AOPs could better promote the technology development.
Collapse
Affiliation(s)
- Danni Jiang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Di Fang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yu Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiwei Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - ZiHao Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| |
Collapse
|
59
|
Zhu T, Jiang J, Wang J, Zhang Z, Zhang J, Chang J. Fe/Co redox and surficial hydroxyl potentiation in the FeCo 2O 4 enhanced Co 3O 4/persulfate process for TC degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114855. [PMID: 35390662 DOI: 10.1016/j.jenvman.2022.114855] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/08/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
A magnetic FeCo2O4/Co3O4 nanocomposite was successfully synthesized by a facile hydrothermal method as an efficient activator for persulfate (PS) activation to degrade tetracycline (TC) in an aqueous solution. TC removal and mineralization efficiencies reached up to 91.63% and 43.57% in 120 min in the FCC-3/PS system, respectively. The mixed-valence of Fe/Co in the nanocomposite catalyst was beneficial for electrons transfer between Co and Fe elements and enhanced the redox circulation of Fe and Co in between divalent and trivalent. Surficial analysis and phosphate adsorption test confirmed the existence of -OH groups on the surfaces of FeCo2O4/Co3O4 nanocomposite. Fe/Co redox and surficial hydroxyl in the catalyst played significant roles in the TC potentiation degradation, which was contributed by the plenty of adsorbed -OH groups and excellent dispersity of FeCo2O4 in the FeCo2O4/Co3O4 composite. The sulfate radicals were major species followed by the hydroxyl radicals, and the surficial adsorbed hydroxyl made great contributions to radical generation. The cycling test and intermediate toxicity analysis indicated that the nanocomposite was considered stable and practicable in water treatment. This work demonstrated that the FeCo2O4/Co3O4 nanocomposite was an effective and environ-friendly catalyst towards PS activation for removing organic pollutants from water.
Collapse
Affiliation(s)
- Tong Zhu
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinping Jiang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China; Jiangsu Kangda Testing Technology Co, Ltd, Suzhou, 215126, China
| | - Jisheng Wang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhening Zhang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiao Zhang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Chang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
60
|
Sun Y, Xiong R, Zhang J, Ma Y, Li Y, Ji W, Ma Y, Wang Z. Insight into synergetic mechanism of CuyMn5-yOx/hG-activated peroxydisulfate enhances tetracycline antibiotics degradation and toxicity assessment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
61
|
Li W, Li W, He K, Tang L, Liu Q, Yang K, Chen YD, Zhao X, Wang K, Lin H, Lv S. Peroxymonosulfate activation by oxygen vacancies-enriched MXene nano-Co 3O 4 co-catalyst for efficient degradation of refractory organic matter: Efficiency, mechanism, and stability. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128719. [PMID: 35325862 DOI: 10.1016/j.jhazmat.2022.128719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Cobalt-based catalysts have been widely explored in the degradation of organic pollutants based on peroxymonosulfate (PMS) activation. Herein, we report an MXene nano-Co3O4 co-catalyst enriched with oxygen vacancies (Ov) and steadily fixed in nickel foam (NF) plates, which is used as an efficient and stable PMS activator for the removal of 1,4-dioxane (1,4-D). Ti originating from MXene was doped into the Co3O4 crystal, generating large amounts of Ov, which could provide more active sites to enhance PMS activation and facilitate the transformation of Co2+ and Co3+, causing a high stability. As a result, the 1,4-D removal efficiency of the NF/MXene-Co3O4/PMS system (kapp: 2.41 min-1) was about four times higher than that of the NF/Co3O4/PMS system (kapp: 0.62 min-1). In addition, singlet oxygen was the predominant reactive oxygen species. Notably, the 1,4-D removal of the NF/MXene-Co3O4/PMS system was over 95% after 20 h operation in the single-pass filtration mode with only 3.72% accumulative Co leaching, showing excellent stability and reusability of NF/MXene-Co3O4. This work provides a defect engineering strategy to design a robust and stable catalytic system for water treatment, which expands the application of MXene in the field of environmental remediation.
Collapse
Affiliation(s)
- Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kuanchang He
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Longxiang Tang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Qian Liu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Kui Yang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yi-Di Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xin Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Kai Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Hui Lin
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Sihao Lv
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
62
|
Pan S, Nie X, Guo X, Hu H, Liu B, Zhang Y. Enhanced removal of phosphonates from aqueous solution using PMS/UV/hydrated zirconium oxide process. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
63
|
Core-shell bimetallic Fe-Co MOFs to activated peroxymonosulfate for efficient degradation of 2-chlorophenol. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
64
|
He Y, Yin Z, Wang Z, Wang H, Xiong W, Song B, Qin H, Xu P, Zeng G. Metal-organic frameworks as a good platform for the fabrication of multi-metal nanomaterials: design strategies, electrocatalytic applications and prospective. Adv Colloid Interface Sci 2022; 304:102668. [PMID: 35489143 DOI: 10.1016/j.cis.2022.102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/01/2022]
Abstract
MOF-derived multi-metal nanomaterials are attracting numerous attentions in widespread applications such as catalysis, sensors, energy storage and conversion, and environmental remediation. Compared to the monometallic counterparts, the presence of foreign metal is expected to bring new physicochemical properties, thus exhibiting synergistic effect for enhanced performance. MOFs have been proved as a good platform for the fabrication of polymetallic nanomaterials with requisite features. Herein, various design strategies related to constructing multi-metallic nanomaterials from MOFs are summarized for the first time, involving metal nodal substitution, seed epitaxial growth, ion-exchange strategy, guest species encapsulation, solution impregnation and combination with extraneous substrate. Afterwards, the recent advances of multi-metallic nanomaterials for electrocatalytic applications, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), are systematically discussed. Finally, a personal outlook on the future trends and challenges are also presented with hope to enlighten deeper understanding and new thoughts for the development of multi-metal nanomaterials from MOFs.
Collapse
|
65
|
Peroxymonosulfate activation by Co3O4/SnO2 for efficient degradation of ofloxacin under visible light. J Colloid Interface Sci 2022; 615:650-662. [DOI: 10.1016/j.jcis.2022.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 01/10/2023]
|
66
|
Zhang YJ, Huang GX, Winter LR, Chen JJ, Tian L, Mei SC, Zhang Z, Chen F, Guo ZY, Ji R, You YZ, Li WW, Liu XW, Yu HQ, Elimelech M. Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination. Nat Commun 2022; 13:3005. [PMID: 35637224 PMCID: PMC9151758 DOI: 10.1038/s41467-022-30560-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 12/31/2022] Open
Abstract
Removal of organic micropollutants from water through advanced oxidation processes (AOPs) is hampered by the excessive input of energy and/or chemicals as well as the large amounts of residuals resulting from incomplete mineralization. Herein, we report a new water purification paradigm, the direct oxidative transfer process (DOTP), which enables complete, highly efficient decontamination at very low dosage of oxidants. DOTP differs fundamentally from AOPs and adsorption in its pollutant removal behavior and mechanisms. In DOTP, the nanocatalyst can interact with persulfate to activate the pollutants by lowering their reductive potential energy, which triggers a non-decomposing oxidative transfer of pollutants from the bulk solution to the nanocatalyst surface. By leveraging the activation, stabilization, and accumulation functions of the heterogeneous catalyst, the DOTP can occur spontaneously on the nanocatalyst surface to enable complete removal of pollutants. The process is found to occur for diverse pollutants, oxidants, and nanocatalysts, including various low-cost catalysts. Significantly, DOTP requires no external energy input, has low oxidant consumption, produces no residual byproducts, and performs robustly in real environmental matrices. These favorable features render DOTP an extremely promising nanotechnology platform for water purification. Removal of organic micropollutants from water through advanced oxidation processes is hampered by the excessive input of energy and/or chemicals as well as the large amounts of residuals resulting from incomplete mineralization. Here the authors present a new alternative water purification technology to adsorption and advanced oxidation.
Collapse
|
67
|
Sheng J, Xu J, Qin B, Jiang H. Three-dimensional flower-like magnetic CoFe-LDHs/CoFe 2O 4 composites activating peroxymonosulfate for high efficient degradation of aniline. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114693. [PMID: 35189554 DOI: 10.1016/j.jenvman.2022.114693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
In this study, 3D flower-like magnetic CoFe-LDHs/CoFe2O4 was prepared by a facile urea hydrothermal method and utilized to activate peroxymonosulfate (PMS) for degrading aniline (AN). CoFe-LDHs/CoFe2O4 was systematically characterized to explore the relationship between its structure and catalytic performance. Compared with CoFe-LDHs synthesized by co-precipitation method, CoFe-LDHs/CoFe2O4 exhibited three dimensional structure and larger specific surface, which could increase the degradation efficiency of AN markedly. 96% of 10 mg L-1 AN could be eliminated by 0.3 mM PMS and 50 mg L-1 CoFe-LDHs/CoFe2O4 at initial pH 6 within 5 min and the total organic carbon (TOC) removal efficiency could be high to 52.8% in 30 min. CoFe-LDHs/CoFe2O4 can be separated by a magnet easily due to its magnetism, which makes it avoid secondary pollution and provide convenience. After recycling six times, the degradation efficiency still maintained at 92.6%. Besides, CoFe-LDHs/CoFe2O4/PMS can degrade AN in practical water samples effectively. In addition, the possible mechanism of CoFe-LDHs/CoFe2O4/PMS system for the degradation of AN was proposed. The radical scavenging experiments confirmed that SO4·-, HO· and O2·- were involved and SO4·- played a dominant role in the degradation of AN, and it was further proved by electron Paramagnetic Resonance (EPR) as well. Our findings can provide some new insights into the efficient and skillful design and application of heterogeneous catalyst for environmental remediation.
Collapse
Affiliation(s)
- Jialing Sheng
- College of Science, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jiangyan Xu
- College of Science, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Benyuan Qin
- College of Science, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Hongmei Jiang
- College of Science, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
68
|
Du X, Wang S, Ye F, Qingrui Z. Derivatives of metal-organic frameworks for heterogeneous Fenton-like processes: From preparation to performance and mechanisms in wastewater purification - A mini review. ENVIRONMENTAL RESEARCH 2022; 206:112414. [PMID: 34808127 DOI: 10.1016/j.envres.2021.112414] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Organic pollution is an ever-growing issue in aquatic environment, Fenton-like processes have gained widespread acceptance due to their high oxidative potential and environmental compatibility. Derivatives of metal-organic frameworks (MOFs) are emerging heterogeneous Fenton-like catalysts, which have advantages of large surface area, diversity of structures, and abundant active sites. This work focuses on the recent advances in MOFs derivatives including metal compounds and metal incorporated carbons for Fenton-like processes. First, preparation strategies, structures and compositions are introduced. And then, the removal of organic pollutant in Fenton, electro-Fenton, and photo-Fenton process catalyzed by MOFs derivative is summarized, respectively. The contents particularly devote efforts to build connections among preparation, structures, compositions, and performance. Furthermore, the mechanisms of improving performance are discussed in detail. Finally, the perspectives of MOFs derivatives toward Fenton-like applications are proposed.
Collapse
Affiliation(s)
- Xuedong Du
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Shuo Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Fei Ye
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Zhang Qingrui
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, PR China; Qinhuangdao Tianda Environmental Protection Research Institute Co., China.
| |
Collapse
|
69
|
Eskandari makvand M, Sabzalipour S, Cheraghia M, Orak N. Removal of malathion insecticide from aqueous solution by the integration of persulfate process and magnetite nanoparticles loaded on carbon (Fe3O4@CNT) in the presence of ultraviolet radiation. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.1993260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Sima Sabzalipour
- Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Mahboobeh Cheraghia
- Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Neda Orak
- Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
70
|
Ma Q, Zhang Y, Zhu X, Chen B. Hollow multi-shelled Co 3O 4 as nanoreactors to activate peroxymonosulfate for highly effective degradation of Carbamazepine: A novel strategy to reduce nano-catalyst agglomeration. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127890. [PMID: 34863576 DOI: 10.1016/j.jhazmat.2021.127890] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/07/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Reducing the agglomeration of nano-catalysts to retain the active catalytic sites is crucial for the advanced oxidation processes (AOPs) of peroxymonosulfate activation in wastewater treatments. Herein, Co3O4 hollow multi-shelled structures (HoMSs) were successfully prepared as the nanoreactors to reduce the agglomeration of nano-catalysts in catalytic reaction. Compared with single-shelled and double-shelled Co3O4 HoMSs, triple-shelled Co3O4 HoMSs (TS-Co3O4) exhibited best catalytic performance and the carbamazepine (5 mg L-1) degradation reached 100% within 30 min. The hollow multi-shelled structures showed a significant role in reducing the agglomeration of catalysts. The value of hydrodynamic diameter/true particle size of TS-Co3O4 was 1.58, which meant TS-Co3O4 could be regarded as a single dispersion or two together in aqueous solution. The shells of TS-Co3O4 supported each other and outer shells could protect the inner ones, hence the stability increased. Besides, the hollow cavity between shells reduced the mass diffusion resistance and increased the contact of reactants with active sites. Mechanism studies showed sulfate radicals (SO4•-) played a leading role in the degradation of carbamazepine. This work provided an effective way to reduce the agglomeration and retain the active sites of cobalt-based catalysts in AOPs, so as to balance the conflict between the reactivity and stability of nano-catalysts.
Collapse
Affiliation(s)
- Qipu Ma
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| | - Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
71
|
Abdel-Salam MO, Yoon T. Cobalt-ferrite/Ag-fMWCNT hybrid nanocomposite catalyst for efficient degradation of synthetic organic dyes via peroxymonosulfate activation. ENVIRONMENTAL RESEARCH 2022; 205:112424. [PMID: 34838758 DOI: 10.1016/j.envres.2021.112424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The activation of peroxymonosulfate (PMS) by nanocatalysts has shown promise as an effective wastewater treatment protocol. Magnetic CoFe2O4/Ag-nanoparticles (NPs) anchored on functionalized multiwalled carbon nanotubes (fMWCNTs), a support material, were synthesized using a one-pot solvothermal method. The surface morphologies and physicochemical properties of the CoFe2O4/Ag-fMWCNT hybrid nanocomposite catalyst were investigated by powder X-ray diffraction analysis, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption isotherms. The activity of the nanocomposite combined with PMS (serving as an activator) toward the degradation of rhodamine B, methylene blue, methyl orange, and methyl red was investigated. The obtained optimal 0.02 g CoFe2O4/Ag-fMWCNTs exhibited the highest PMS activation performance, with a removal percentage of 100% for 20 ppm dye concentration at pH 6.5 within 14 min. In addition, the rhodamine B degradation product was investigated by analyzing the intermediate products by liquid chromatography/mass spectrometry (LC-MS). The homogeneous distribution of CoFe2O4/Ag NPs on fMWCNTs accelerated PMS activation and enhanced the catalytic degradation of dyes. The effects of the reaction parameters on the dye degradation efficiency were investigated by using different nanocatalysts (fMWCNTs, CoFe2O4/fMWCNTs, and CoFe2O4/Ag-fMWCNTs) as well as by varying the pH (3-11), dye concentration (10-50 mg/l), catalyst dose (0.002-0.3 g), and PMS dose (0.02-0.1 g). Quenching experiments revealed that sulfate radicals are primarily responsible for rhodamine B degradation. A plausible mechanism for catalytic PMS activation was also proposed. Complete decolorization occurred within the first few minutes of the reaction. Furthermore, the catalytic activity of the CoFe2O4/Ag-fMWCNT/PMS hybrid nanocomposite remained stable after five successive cycles. This study verifies the applicability of CoFe2O4/Ag-fMWCNTs as an ultrafast catalyst for the complete removal of persistent organic pollutants via PMS activation, revealing their promising application in wastewater treatment.
Collapse
Affiliation(s)
- M O Abdel-Salam
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea; Nanotechnology Research Center, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO, 11727, Cairo, Egypt.
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
72
|
Chen Y, Shi Y, Wan D, Zhao J, He Q, Liu Y. Synergistic adsorption and advanced oxidation activated by persulfate for degradation of tetracycline hydrochloride using iron-modified spent bleaching earth carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24704-24715. [PMID: 34825336 DOI: 10.1007/s11356-021-17435-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
At present, tetracycline hydrochloride (TCH) is a widely used antibiotic, and is often detected in water, posing a serious harm to human and ecological health. In this study, spent bleaching earth (SBE) was pyrolyzed to obtain spent bleaching earth carbon (SBE@C) and the nano Fe0/SBE@C prepared after zero-valent iron loading was adopted to remove TCH in water for the first time. The combination of nano Fe0/SBE@C and PS, the strong adsorption of SBE@C coupled with the oxidation of free radicals could achieve TCH efficient removal. The effects of nano Fe0 load, nano Fe0/SBE@C dosage, solution initial pH, and PS/TCH molar ratio on TCH removal efficiency in nano Fe0/SBE@C + PS system were studied. The results indicate that the optimal reaction conditions are 5% nano Fe0 load, 0.2 g/L nano Fe0/SBE@C dosage, initial pH of 3, PS/TCH molar ratio of 100:1. Under these conditions, TCH removal efficiency could reach 91%. Meanwhile, response surface methodology (RSM) was applied to predict optimal value of reaction conditions. The removal efficiency corresponding to the predicted optimal conditions was consistent with the actual removal efficiency obtained from the experiment. Moreover, six reaction systems were tested, and TCH removal efficiency in the SBE@C + PS system was 22.6%. When nano Fe0 was loaded on SBE@C, TCH removal efficiency in Fe0/SBE@C + PS system increased to 78.2%, in which TCH was first adsorbed on the surface of nano Fe0/SBE@C, and then was degraded by the oxidation of SO4•- and •OH. Totally, the nano Fe0/SBE@C + PS system displayed excellent TCH removal efficiency, good stability and reusability, exhibiting a promise toward TCH removal.
Collapse
Affiliation(s)
- Yue Chen
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Yahui Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, 450001, Henan, China
| | - Jihong Zhao
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Qiaochong He
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, 450001, Henan, China
| | - Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
73
|
Zhu W, Han M, Kim D, Zhang Y, Kwon G, You J, Jia C, Kim J. Facile preparation of nanocellulose/Zn-MOF-based catalytic filter for water purification by oxidation process. ENVIRONMENTAL RESEARCH 2022; 205:112417. [PMID: 34856164 DOI: 10.1016/j.envres.2021.112417] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Sulfate radical (SO4•-)-based advanced oxidation processes (SR-AOPs) have recently attracted much attention due to their potential in degrading organic pollutants. Metal-organic frameworks (MOFs) have been reported as effective materials to generate SO4•-. However, it is challenging to separate and recover the dispersed MOF particles from the reaction solution when MOFs are used alone. We used cellulose nanofibers (CNFs) as a porous filter template to immobilize Zn-based MOF, zeolitic imidazolate framework-8 (ZIF-8), and obtained a catalytic composite membrane having peroxymonosulfate (PMS) activating function to produce SO4•-. The CNF was effective in holding ZIF-8 nanoparticle and making a durable porous filter. The activated PMS-produced •OH and SO4•- radicals from ZIF-8 play an important role in the catalytic reaction. More than 90% of methylene blue and rhodamine B was degraded by ZIF-8/CNFs composite membrane in the PMS environment within 60 min. The ZIF-8/CNFs catalytic filters can be used several times without performance reduction for organic dye degradation. The results show that ZIF-8/CNFs catalytic membrane can be separated from organic pollution system quickly and used for the efficient separation and recovery of MOF particle-based catalytic materials. Therefore, this study provides a new perspective for fabricating the MOFs particles-immobilized catalytic filter by biomass nanocellulose-based materials for water purification. This method can be used for facile fabrication of the cellulose-based porous functional filter and open diverse applications.
Collapse
Affiliation(s)
- Wenkai Zhu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China; Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minsu Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Donggyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Goomin Kwon
- Department of Plant & Environmental New Resources, Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jungmok You
- Department of Plant & Environmental New Resources, Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| | - Chong Jia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
74
|
Xu C, Yang G, Li J, Zhang S, Fang Y, Peng F, Zhang S, Qiu R. Efficient purification of tetracycline wastewater by activated persulfate with heterogeneous Co-V bimetallic oxides. J Colloid Interface Sci 2022; 619:188-197. [PMID: 35395537 DOI: 10.1016/j.jcis.2022.03.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/26/2022]
Abstract
The persistence and wide dispersion of antibiotics have a severe impact on the ecological environment. Developing an effective method with universal applicability to remove pollutants is pretty necessary. Herein, a bimetallic oxides (Co3V2O8) heterogeneous material was successfully prepared and used to activate the persulfate (PS) for purification of tetracycline (TC) wastewater. By exploring the reaction conditions and influencing factors, the removal rate of 50 mg⋅L-1 TC reached 87.1% by Co3V2O8/PS system, and the reaction rate constant was up to 0.0271 min-1. As a highly efficient catalyst for the activation of PS, Co3V2O8/PS system produces radicals of SO4•-, •OH, •O2- and 1O2 in the reaction process due to the Co(II) and V(IV) exchange electrons with S2O82- and O2. Simultaneously, the internal electron exchange occurs between Co(II)/Co(III) and V(IV)/V(V), which stabilizes the content of Co(II) and V(IV). This work provides a novel activator for PS activation to degrade contaminants and contributes to a better understanding of the PS activation mechanism by transition compound.
Collapse
Affiliation(s)
- Chuanyi Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Guanrong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jie Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shanqing Zhang
- Centre for Clean Environment and Energy and School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Yueping Fang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Feng Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shengsen Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
75
|
Li B, Wang YF, Zhang L, Xu HY. Enhancement strategies for efficient activation of persulfate by heterogeneous cobalt-containing catalysts: A review. CHEMOSPHERE 2022; 291:132954. [PMID: 34800505 DOI: 10.1016/j.chemosphere.2021.132954] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
As a clean and efficient technology for the degradation of organic contaminants, sulfate radical based advanced oxidation processes (SR-AOPs) have attracted more and more attention in the past decades. Cobalt is regarded as the most reactive and efficient non-noble metal catalyst for the activation of persulfate including peroxymonosulfate (PMS) and peroxydisulfate (PDS) to produce sulfate radicals. Due to the limitations of homogeneous catalytic systems, the heterogeneous cobalt-containing catalysts have been emerged and rapidly developed. Various strategies have been schemed to further enhance the activation ability of persulfate by heterogeneous cobalt-containing catalysts. This paper provides an overview on the recent progress in enhancement strategies for the highly efficient activation of persulfate by heterogeneous cobalt-containing catalysts. With a brief introduction on the chemistry and feature of sulfate radical reactions catalyzed by homogeneous Co2+/Co3+ species, the main strategies for enhancing persulfate activation by heterogeneous cobalt-containing catalysts are summarized, such as surface and morphology design, multiple reactive centers design, organic-inorganic hybrids and heterostructure composites. Future perspectives of heterogeneous SR-AOPs systems catalyzed by cobalt-containing catalysts are outlined.
Collapse
Affiliation(s)
- Bo Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Yun-Fei Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Lu Zhang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Huan-Yan Xu
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| |
Collapse
|
76
|
Huang B, Xiong Z, Zhou P, Zhang H, Pan Z, Yao G, Lai B. Ultrafast degradation of contaminants in a trace cobalt(II) activated peroxymonosulfate process triggered through borate: Indispensable role of intermediate complex. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127641. [PMID: 34742611 DOI: 10.1016/j.jhazmat.2021.127641] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Among all homogeneous catalysts, cobalt ions show the highest catalytic performance for the activation of peroxymonosulfate (PMS). Herein, we report a Co2+/PMS/H3BO3 system that can effectively generate reactive oxygen species (ROS) with ultra-low Co2+ dosage (5 μg/L). Co2+/PMS/H3BO3 system showed ultrafast reactivity and wide applicability for various pollutants. Sulfamethoxazole (SMX, 2 mg/L) could be completely removed within 5 min, and the corresponding kobs reached up to 1.1239 min-1. The introduction of H3BO3 significantly promoted the generation of ROS. The turnover frequency (TOF) calculated through dividing kobs by the cobalt ions concentration is as high as 224.78 min-1, which is much higher than most of the current research. Through a series of theoretical and experimental analyses, the complex of H2BO3--MS (HSO5B(OH)3-) was inferred to be the key substance that led to the excellent performance of the system. This work provides new insights into the Co2+/PMS system in the presence of borate buffer.
Collapse
Affiliation(s)
- Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, China.
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| | - Zhicheng Pan
- Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Institute of Environmental Engineering, RWTH Aachen University, Germany
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| |
Collapse
|
77
|
Xie Q, Lei C, Chen W, Huang B. Mesoporous ferrihydrite-supported Pd nanoparticles for enhanced catalytic dehalogenation of chlorinated environmental pollutant. J Colloid Interface Sci 2022; 608:2907-2920. [PMID: 34839921 DOI: 10.1016/j.jcis.2021.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/21/2021] [Accepted: 11/06/2021] [Indexed: 01/11/2023]
Abstract
Organic chlorides are a group of ubiquitous environmental pollutants that have attracted wide attention because of their carcinogenetic effect on human. Catalytic hydrodechlorination represents one of the most promising methods for the removal of these contaminants, but it suffers from drawbacks such as catalytic inefficiency and/or instability, and the danger of using H2 as hydrogen source. The relationship between the catalyst structure and its dehalogenation activity has not been completely understood. By combining the advantages of Pd nanocatalyst and mesoporous ferrihydrite (Fh) with its distinctive structure, here we present a new composite material with Pd nanoparticles (NPs) supported onto the Fh (Pd/Fh), which has excellent catalytic dehalogenation performance with a rapid, complete dechlorination of chlorophenol (turnover frequency 25.2 min-1) and the ability to perform well over a wide range of pH and temperature. The superior catalytic property of Pd/Fh can be attributed to the three unique functions of Fh, including: 1) having abundant hydroxyl groups that provide interaction sites with metals for incorporating highly dispersed small Pd NPs; 2) facilitating the fast adsorption of chlorophenol onto the catalyst surface via hydrogen bonding and importantly, 3) working as an electron mediator to greatly enhance the electron transfer from iron or chemicals (e.g., NaBH4) to the catalyst, thereby achieving a synergistic effect between Pd catalyst and support, and an enhanced dechlorination activity. In essence, this work presents a promising catalyst for the efficient dehalogenation of chlorinated environmental pollutants and provides an insight into the relationship between catalyst structure and dehalogenation activity.
Collapse
Affiliation(s)
- Qianqian Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chao Lei
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Wenqian Chen
- Department of Pharmacy, National University of Singapore, S9, 4 Science Drive 2, Singapore 117544, Singapore
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
78
|
Ezugwu CI, Sonawane JM, Rosal R. Redox-active metal-organic frameworks for the removal of contaminants of emerging concern. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
79
|
Li W, Zhang Y, Cheng X, Wang J, Yang B, Guo H. Amino-modified metal–organic frameworks as peroxymonosulfate catalyst for bisphenol AF decontamination: ROS generation, degradation pathways, and toxicity evaluation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
80
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
81
|
Feng Y, Sang W, Deng Z, Zhang S, Li C. Co-N-C@SiO2 core@shell architectures enhanced stability to activate peroxymonosulfate (PMS) for efficient sulfamethoxazole degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
82
|
Zhang Z, Ding H, Li Y, Yu J, Ding L, Kong Y, Ma J. Nitrogen-doped biochar encapsulated Fe/Mn nanoparticles as cost-effective catalysts for heterogeneous activation of peroxymonosulfate towards the degradation of bisphenol-A: Mechanism insight and performance assessment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120136] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
83
|
Engineering titanium-organic framework decorated silver molybdate and silver vanadate as antimicrobial, anticancer agents, and photo-induced hydroxylation reactions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113572] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
84
|
Wang J, Peng R, Chen K, Wang Y, Xie T, Zhu Q, Peng Y, Liu S, Yao Z. A novel CoNi 7O 8/MnO 2 nanocomposite supported on Ni foam as a peroxymonosulfate activator for the highly efficient singlet oxygen mediated removal of methylene blue. NEW J CHEM 2022. [DOI: 10.1039/d2nj00112h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel CoNi7O8/MnO2 supported on Ni foam presented excellent catalytic activity toward PMS activation, with 100% MB removal achieved within 15 min.
Collapse
Affiliation(s)
- Jiankang Wang
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Rong Peng
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Kui Chen
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Yajing Wang
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Taiping Xie
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Quanxi Zhu
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Yuan Peng
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Songli Liu
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Zhongping Yao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
85
|
Lei Y, Wu H, Ma J, Cheng H, Komarneni S. Activation of Na 2S 2O 8 by α-Fe 2O 3/CuS composite oxides for the degradation of Orange II under visible light irradiation. NEW J CHEM 2022. [DOI: 10.1039/d1nj05426k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Layered α-Fe2O3/CuS nanoflowers with abundant active sites were synthesized by a hydrothermal method.
Collapse
Affiliation(s)
- Yu Lei
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Huiqi Wu
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Jianfeng Ma
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi, 545006, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Materials Research Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
86
|
Wang FX, Zhang ZC, Yi XH, Wang CC, Wang P, Wang CY, Yu B. A micron-sized Co-MOF sheet to activate peroxymonosulfate for efficient organic pollutant degradation. CrystEngComm 2022. [DOI: 10.1039/d2ce00791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Co-MOF with a 2D morphology (BUC-92) was prepared, which exhibited outstanding rhodamine B (RhB) degradation performance via peroxymonosulfate (PMS) activation.
Collapse
Affiliation(s)
- Fu-Xue Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Zi-Chen Zhang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Xiao-Hong Yi
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Chao-Yang Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Baoyi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences Engineering, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
87
|
Srivastava V. Ru Nanoparticle Functionalized Silica Nanotubes as a Catalyst for CO2
Hydrogenation Reaction. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210810151325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
The catalytic display of supported heterogeneous catalysts is essentially reliant on their
constitutive elements, including active species and supports. Accordingly, the scheme and development
of active catalysts with synergistically enhanced outcomes between active sites and supports
are of high importance. A simple NaBH4 reduction method was used to synthesize cylindrical
amine-functionalized silica nanotubes supported Ru catalyst (ASNT@Ru catalyst), including
amine functionality. The physicochemical properties of the material were analyzed by various analytical
methods such as SEM-TEM analysis, N2 physisorption, ICP-OES, XPS, etc., and all the data
were found in good agreement with each other. Amine-free SNT support using the calcination
process was also synthesized to examine the effect of amine in ASNT support on the uniform Ru
dispersion. Taking advantage of the fundamental physical and chemical properties of ASNT support
and well-distributed Ru NPs, the ASNT@Ru catalyst was utilized for CO2 hydrogenation reaction,
which gave excellent catalytic activity/ stability in terms of a good quantity of the formic.
Catalysts recycling was recorded five times, and formic acid was obtained in good quantity.
Collapse
Affiliation(s)
- Vivek Srivastava
- Mathematics & Basic Science: Chemistry, NIIT University, NH-8 Jaipur/Delhi Highway, Neemrana (Rajasthan), Pin
Code: 301705, India
| |
Collapse
|
88
|
Bhaumik M, Maity A, Brink HG. Metallic nickel nanoparticles supported polyaniline nanotubes as heterogeneous Fenton-like catalyst for the degradation of brilliant green dye in aqueous solution. J Colloid Interface Sci 2021; 611:408-420. [PMID: 34959012 DOI: 10.1016/j.jcis.2021.11.181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/01/2022]
Abstract
Metallic nanoparticles supported on porous matrices are promising heterogeneous catalysts for Fenton-like reaction towards the degradation of organic contaminants in water. Herein, novel magnetic nanocomposites (NCs) of metallic nickel (Ni0) nanoparticles and nanotubular polyaniline matrix (PANI/Ni0 NCs) were fabricated by simple reductive formation of Ni0 nanoparticles upon the pre-synthesized PANI nanotubes (NTs) surface and applied as heterogeneous Fenton-like catalyst in degrading cationic brilliant green dye (BG) in aqueous solution. Various physico-chemical characterization techniques revealed effective supporting of soft ferromagnetic well dispersed nano-dimensional Ni0 particles onto the PANI NTs matrix. Heterogeneous Fenton-like catalytic performance of PANI/Ni0 NCs for BG degradation in the presence of hydrogen peroxide (H2O2) oxidant demonstrated their superiority when compared with unsupported Ni0 nanoparticles counterpart. Experiments with a minimum 0.1 g/L of NCs and 10 mM of H2O2 displayed complete degradation of 100 mg/L BG within 120 min reaction time. Improved BG degradation was observed with increase in the dose of PANI/Ni0, H2O2 concentration and temperature, whereas it reduced with rise in initial concentration of BG. The rate of degradation was well described by the pseudo-first- order kinetic model. Six consecutive BG degradation experiments confirmed NCs reusability without loss of original (∼100%) degradation efficiency up to the fifth cycle. Finally, liquid chromatography-mass spectrometric (LC-MS) analyses of the BG samples after 120 min degradation time exposed the formation of N,N-diethylaniline as degradation product along with partial mineralization of the other end products via the attack of reactive hydroxyl radicals (HO•) produced in the catalytic system.
Collapse
Affiliation(s)
- Madhumita Bhaumik
- Chemical Engineering Department, University of Pretoria, South Africa.
| | - Arjun Maity
- DST/CSIR, Centre for Nanostructure and Advanced Materials (CeNAM), Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa; Department of Chemical Science, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| | - Hendrik G Brink
- Chemical Engineering Department, University of Pretoria, South Africa.
| |
Collapse
|
89
|
Insights into enhanced peroxydisulfate activation with S doped Fe@C catalyst for the rapid degradation of organic pollutants. J Colloid Interface Sci 2021; 610:24-34. [PMID: 34920214 DOI: 10.1016/j.jcis.2021.12.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/09/2023]
Abstract
In this study, the S modified iron-based catalyst (S-Fe@C) for activating peroxydisulfate (PDS) was fabricated by heating the S-MIL-101 (Fe) precursor at 800 °C. The resulted S-Fe@C composite mainly consisted of carbon, Fe0, FeS, FeS2, and Fe3O4, and showed strong magnetism. Compared with Fe@C obtained from MIL-101 (Fe), the S-Fe@C exhibited much higher performance (1.5 times larger) on PDS activation and the S-Fe@C/PDS could rapidly degrade various organic pollutants in 5 min under the attack of the species of SO4-·, 1O2, electro-transfer and Fe(IV). The S element in enhancing the PDS activation mainly involved two mechanisms. Firstly, the doped S could speed up the electron transfer efficiency, resulting in a promotion on PDS decomposition; secondly, the S2- S22- or S0 could achieve the circulation of Fe2+ and Fe3+, leading to the formation of non-radicals Fe(IV) and 1O2.
Collapse
|
90
|
Joseph J, Iftekhar S, Srivastava V, Fallah Z, Zare EN, Sillanpää M. Iron-based metal-organic framework: Synthesis, structure and current technologies for water reclamation with deep insight into framework integrity. CHEMOSPHERE 2021; 284:131171. [PMID: 34198064 DOI: 10.1016/j.chemosphere.2021.131171] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Water is a supreme requirement for the existence of life, the contamination from the point and non-point sources are creating a great threat to the water ecosystem. Advance tools and techniques are required to restore the water quality and metal-organic framework (MOFs) with a tunable porous structure, striking physical and chemical properties are an excellent candidate for it. Fe-based MOFs, which developed rapidly in recent years, are foreseen as most promising to overcome the disadvantages of traditional water depolluting practices. Fe-MOFs with low toxicity and preferable stability possess excellent performance potential for almost all water remedying techniques in contrast to other MOF structures, especially visible light photocatalysis, Fenton, and Fenton-like heterogeneous catalysis. Fe-MOFs become essential tool for water treatment due to their high catalytic activity, abundant active site and pollutant-specific adsorption. However, the structural degradation under external chemical, photolytic, mechanical, and thermal stimuli is impeding Fe-MOFs from further improvement in activity and their commercialization. Understanding the shortcomings of structural integrity is crucial for large-scale synthesis and commercial implementation of Fe-MOFs-based water treatment techniques. Herein we summarize the synthesis, structure and recent advancements in water remediation methods using Fe-MOFs in particular more attention is paid for adsorption, heterogeneous catalysis and photocatalysis with clear insight into the mechanisms involved. For ease of analysis, the pollutants have been classified into two major classes; inorganic pollutants and organic pollutants. In this review, we present for the first time a detailed insight into the challenges in employing Fe-MOFs for water remediation due to structural instability.
Collapse
Affiliation(s)
- Jessy Joseph
- Department of Chemistry, Jyväskylä University, Jyväskylä, Finland
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70120, Finland
| | - Varsha Srivastava
- Department of Chemistry, Jyväskylä University, Jyväskylä, Finland; Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, Oulu, 90014, Finland.
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | | | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731, PR China; Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; School of Chemistry, Shoolini University, Solan, Himachal Pradesh, 173229, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark
| |
Collapse
|
91
|
Fang Y, Yang Y, Yang Z, Li H, Roesky HW. Advances in design of metal-organic frameworks activating persulfate for water decontamination. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
92
|
Zhou C, Zhu L, Deng L, Zhang H, Zeng H, Shi Z. Efficient activation of peroxymonosulfate on CuS@MIL-101(Fe) spheres featured with abundant sulfur vacancies for coumarin degradation: Performance and mechanisms. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
93
|
Lin L, Liu J, Liu X, Gao Z, Rui N, Yao S, Zhang F, Wang M, Liu C, Han L, Yang F, Zhang S, Wen XD, Senanayake SD, Wu Y, Li X, Rodriguez JA, Ma D. Reversing sintering effect of Ni particles on γ-Mo 2N via strong metal support interaction. Nat Commun 2021; 12:6978. [PMID: 34848709 PMCID: PMC8632928 DOI: 10.1038/s41467-021-27116-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
Reversing the thermal induced sintering phenomenon and forming high temperature stable fine dispersed metallic centers with unique structural and electronic properties is one of the ever-lasting targets of heterogeneous catalysis. Here we report that the dispersion of metallic Ni particles into under-coordinated two-dimensional Ni clusters over γ-Mo2N is a thermodynamically favorable process based on the AIMD simulation. A Ni-4nm/γ-Mo2N model catalyst is synthesized and used to further study the reverse sintering effect by the combination of multiple in-situ characterization methods, including in-situ quick XANES and EXAFS, ambient pressure XPS and environmental SE/STEM etc. The under-coordinated two-dimensional layered Ni clusters on molybdenum nitride support generated from the Ni-4nm/γ-Mo2N has been demonstrated to be a thermally stable catalyst in 50 h stability test in CO2 hydrogenation, and exhibits a remarkable catalytic selectivity reverse compared with traditional Ni particles-based catalyst, leading to a chemo-specific CO2 hydrogenation to CO.
Collapse
Affiliation(s)
- Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering and BIC-ESAT Peking University, 100871, Beijing, P. R. China
| | - Jinjia Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- National Energy Centre for Coal to Liquids, Synfuels China Co. Ltd, Beijing, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Science, Shanghai Jiao Tong University, Shanghai, China.
| | - Zirui Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering and BIC-ESAT Peking University, 100871, Beijing, P. R. China
| | - Ning Rui
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Siyu Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Feng Zhang
- Materials Science and Chemical Engineering Department, State University of New York, Stony Brook, NY, USA
| | - Maolin Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering and BIC-ESAT Peking University, 100871, Beijing, P. R. China
| | - Chang Liu
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Lili Han
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Xiao-Dong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- National Energy Centre for Coal to Liquids, Synfuels China Co. Ltd, Beijing, China
| | | | - Yichao Wu
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, China
| | - Xiaonian Li
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, China
| | - José A Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA.
- Materials Science and Chemical Engineering Department, State University of New York, Stony Brook, NY, USA.
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering and BIC-ESAT Peking University, 100871, Beijing, P. R. China.
| |
Collapse
|
94
|
Shi X, Hong P, Huang H, Yang D, Zhang K, He J, Li Y, Wu Z, Xie C, Liu J, Kong L. Enhanced peroxymonosulfate activation by hierarchical porous Fe 3O 4/Co 3S 4 nanosheets for efficient elimination of rhodamine B: Mechanisms, degradation pathways and toxicological analysis. J Colloid Interface Sci 2021; 610:751-765. [PMID: 34857379 DOI: 10.1016/j.jcis.2021.11.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/13/2021] [Accepted: 11/21/2021] [Indexed: 12/31/2022]
Abstract
Fenton-like catalysts have usually superior catalytic activities, however, some drawbacks of ion leaching and difficult-to-recovery limit their applications. In this work, a hierarchical porous Fe3O4/Co3S4 catalyst was fabricated via a simple phase change reaction to overcome these shortcomings. The introduced iron cooperates with cobalt achieving high-efficiency activation of peroxymonosulfate (PMS) to eliminate Rhodamine B (RhB). The results showed that 0.05 g/L Fe3O4/Co3S4 and 1 mM PMS could quickly remove 100% of 200 mg/L RhB within 20 min, and the removal rate of RhB remained above 82% after 5 cycles. Moreover, the as-prepared Fe3O4/Co3S4 possessed a great magnetic separation capacity and good stability of low metal leaching dose. Radical quenching experiments and electron paramagnetic resonance (EPR) techniques proved that sulfate radicals (SO4•-) were the dominant reactive oxygen species responding for RhB degradation. X-ray photoelectron spectroscopy (XPS) pointed out that the synergism of sulfur promoted the cycling of Co3+/Co2+ and Fe3+/Fe2+, boosting the electron transfer between Fe3O4/Co3S4 and PMS. Moreover, the degradation pathways of RhB were deduced by combining liquid chromatography-mass spectrometry (LC-MS) analysis and density functional theory (DFT) calculations. The toxicities of RhB and its intermediates were evaluated as well, which provided significant assistance in the exploration of their ecological risks.
Collapse
Affiliation(s)
- Xu Shi
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Peidong Hong
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Hongqi Huang
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Dandan Yang
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Kaisheng Zhang
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Junyong He
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Yulian Li
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Zijian Wu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Chao Xie
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China.
| | - Jinhuai Liu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Lingtao Kong
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China.
| |
Collapse
|
95
|
Liu J, Yin H, Nie Q, Wang H, Zhou J, Zou S. Encapsulating Mn 3O 4 Nanorods in a Shell of SiO 2 Nanobubbles for Confined Fenton-Type Catalysis. Inorg Chem 2021; 60:16658-16665. [PMID: 34672543 DOI: 10.1021/acs.inorgchem.1c02557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Core-shell structured nanomaterials with delicate architectures have attracted considerable attention for realizing multifunctional responses and harnessing multiple interfaces for enhanced functionalities. Here, we report a controllable synthesis of core-shell structured Mn3O4@SiO2NB nanomaterials consisting of Mn3O4 nanorods covered with a shell of SiO2 nanobubbles. A series of Mn3O4@SiO2NB catalysts with tunable secondary structures can be synthesized by simply tuning the feeding ratio and the modification conditions. The as-synthesized Mn3O4@SiO2NB catalysts exhibit excellent catalytic performance in the degradation of methylene blue (MB) because the Fenton-type reaction between Mn3O4 and H2O2 is confined in an MB-rich environment created by the SiO2 nanobubble shell. The confined Fenton-type catalysis maximizes the contact of MB molecules with the reactive oxygen species and significantly promotes the degradation efficiency of MB. Under optimal conditions, Mn3O4@SiO2NB-0.4 can reach a degradation efficiency of 92% at room temperature and neutral pH within 12 min, which outperforms most reported Mn-based catalysts.
Collapse
Affiliation(s)
- Juanjuan Liu
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310036, P. R. China
| | - Haoyong Yin
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310036, P. R. China
| | - Qiulin Nie
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310036, P. R. China
| | - Hui Wang
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310036, P. R. China
| | - Jie Zhou
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310036, P. R. China
| | - Shihui Zou
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
96
|
Wang H, Zheng F, Xue G, Wang Y, Li G, Tang Z. Recent advances in hollow metal-organic frameworks and their composites for heterogeneous thermal catalysis. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1095-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
97
|
Najafi M, Abednatanzi S, Yousefi A, Ghaedi M. Photocatalytic Activity of Supported Metal Nanoparticles and Single Atoms. Chemistry 2021; 27:17999-18014. [PMID: 34672043 DOI: 10.1002/chem.202102877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 12/22/2022]
Abstract
Photocatalysis has been known as one of the promising technologies due to its eco-friendly nature. However, the potential application of many photocatalysts is limited owing to their large bandgaps and inefficient use of the solar spectrum. One strategy to overcome this problem is to combine the advantages of heteroatom-containing supports with active metal centers to accurately adjust the structural parameters. Metal nanoparticles (MNPs) and single atom catalysts (SACs) are excellent candidates due to their distinctive coordination environment which enhances photocatalytic activity. Metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and carbon nitride (g-C3 N4 ) have shown great potential as catalyst support for SACs and MNPs. The numerous combinations of organic linkers with various heteroatoms and metal ions provide unique structural characteristics to achieve advanced materials. This review describes the recent advancement of the modified MOFs, COFs and g-C3 N4 with SACs and NPs for enhanced photocatalytic applications with emphasis on environmental remediation.
Collapse
Affiliation(s)
- Mahnaz Najafi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74813, Islamic Republic of Iran
| | - Sara Abednatanzi
- COMOC-Centre for Ordered Materials, Organometallics and Catalysis Department of Chemistry, Ghent University, Krijgslaan 281, S3, Gent, 9000, Belgium
| | - Abbas Yousefi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74813, Islamic Republic of Iran
| | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74813, Islamic Republic of Iran
| |
Collapse
|
98
|
Chi H, Wan J, Zhou X, Sun J, Yan B. Fe@C activated peroxymonosulfate system for effectively degrading emerging contaminants: Analysis of the formation and activation mechanism of Fe coordinately unsaturated metal sites. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126535. [PMID: 34218190 DOI: 10.1016/j.jhazmat.2021.126535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Carbon-encapsulated Fe nanocomposites (Fe@C), obtained by pyrolysis of metal-organic frameworks (MOFs), can activate peroxymonosulfate (PMS) to remove emerging contaminants (ECs). Unfortunately, the current MOFs-derived catalysts always inevitably produce more iron-oxide compounds that unfavorable for PMS activation. In this work, according to the thermogravimetric curve of Fe(II)-MOF-74, to discuss the role of pyrolysis temperature on the structural characteristics of Fe@C. The results demonstrated that Fe@C-4 could obtain abundant coordinately unsaturated metal sites and exhibited the best activation performance. Radical-quenching experiments and EPR measurements confirm that the generated sulfate radical (SO4-˙) and singlet oxygen (1O2) only degraded approximately 35% of TBBPA. Meanwhile, negatively charged complex intermediates formed by the weak interaction between Fe@C-4 and PMS was proposed as the dominant reactive species, and approximately 65% of TBBPA was degraded. This work optimizes the synthesis strategy and mechanism of Fe@C and provides a methodological reference for the design of Fe-based catalysts.
Collapse
Affiliation(s)
- Haiyuan Chi
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jian Sun
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
99
|
Hashemzadeh B, Alamgholiloo H, Noroozi Pesyan N, Asgari E, Sheikhmohammadi A, Yeganeh J, Hashemzadeh H. Degradation of ciprofloxacin using hematite/MOF nanocomposite as a heterogeneous Fenton-like catalyst: A comparison of composite and core-shell structures. CHEMOSPHERE 2021; 281:130970. [PMID: 34289624 DOI: 10.1016/j.chemosphere.2021.130970] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
A novel strategy was described to fabricate hematite-MOF materials with morphologies (core-shell) and (composite) as an efficient peroxymonosulfate (PMS) activator for degrading ciprofloxacin (CIP) antibiotics. First, α-Fe2O3 nanoparticles (NPs) with a size distribution range of 80 nm were prepared by surfactant-assisted reflux method. Then, cobalt-based metal-organic framework (ZIF-67) was grown onto the α-Fe2O3 NPs with ultrasonic and solvothermal method, which can control the nanostructures morphology. The physicochemical properties of these nanostructures were probed by ATR-IR, WA-XRD, FESEM, VSM, TEM, and EDS spectroscopy. The results showed that all the added CIP (20 ppm) antibiotics were completely degraded in 30 min in the α-Fe2O3/ZIF-67 (0.10 g/L) and PMS (0.20 g/L) system with rate constant of 0.130 min-1. To validate the merits of the α-Fe2O3/ZIF-67, α-Fe2O3@ZIF-67 core-shell nanostructures were also applied under similar conditions. The findings demonstrated that Co/Fe species within α-Fe2O3/ZIF-67 composite catalyzed PMS synergistically to the formation of the OH and SO4- and 1O2 for CIP degradation. Furthermore, α-Fe2O3/ZIF-67 showed good recyclability enabling facile separation of the catalyst from reaction mixtures using an external magnet. The current protocol can be a useful criterion in designing various Magnetic-MOF composites with controlled morphologies for environmental remediation.
Collapse
Affiliation(s)
- Bayram Hashemzadeh
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran.
| | - Hassan Alamgholiloo
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran.
| | - Nader Noroozi Pesyan
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, 57159, Urmia, Iran
| | - Esrafil Asgari
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran
| | - Amir Sheikhmohammadi
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran
| | - Jaber Yeganeh
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran
| | - Hassan Hashemzadeh
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
100
|
Robust self-cleaning urchin-like Ni/Co LDH stainless steel mesh for gravity-driven oil/water emulsion separation and catalytic degradation of aromatic dyes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|