51
|
Fu H, Wang B, Zhu D, Zhou Z, Bao S, Qu X, Guo Y, Ling L, Zheng S, Duan P, Mao J, Schmidt-Rohr K, Tao S, Alvarez PJJ. Mechanism for selective binding of aromatic compounds on oxygen-rich graphene nanosheets based on molecule size/polarity matching. SCIENCE ADVANCES 2022; 8:eabn4650. [PMID: 35905181 PMCID: PMC9337764 DOI: 10.1126/sciadv.abn4650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Selective binding of organic compounds is the cornerstone of many important industrial and pharmaceutical applications. Here, we achieved highly selective binding of aromatic compounds in aqueous solution and gas phase by oxygen-enriched graphene oxide (GO) nanosheets via a previously unknown mechanism based on size matching and polarity matching. Oxygen-containing functional groups (predominately epoxies and hydroxyls) on the nongraphitized aliphatic carbons of the basal plane of GO formed highly polar regions that encompass graphitic regions slightly larger than the benzene ring. This facilitated size match-based interactions between small apolar compounds and the isolated aromatic region of GO, resulting in high binding selectivity relative to larger apolar compounds. The interactions between the functional group(s) of polar aromatics and the epoxy/hydroxyl groups around the isolated aromatic region of GO enhanced binding selectivity relative to similar-sized apolar aromatics. These findings provide opportunities for precision separations and molecular recognition enabled by size/polarity match-based selectivity.
Collapse
Affiliation(s)
- Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Bingyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Jiangsu 210094, China
| | - Dongqiang Zhu
- Key Laboratory of the Ministry of Education for Earth Surface Processes, School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhicheng Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Shidong Bao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Yong Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Jiangsu 210098, China
| | - Lan Ling
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jingdong Mao
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | | | - Shu Tao
- Key Laboratory of the Ministry of Education for Earth Surface Processes, School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Pedro J. J. Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
52
|
Safari M, Rezaee R, Soltani RDC, Asgari E. Dual immobilization of magnetite nanoparticles and biosilica within alginate matrix for the adsorption of Cd(II) from aquatic phase. Sci Rep 2022; 12:11473. [PMID: 35794461 PMCID: PMC9259746 DOI: 10.1038/s41598-022-15844-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 12/07/2022] Open
Abstract
The adsorption of cadmium ions by magnetite (Fe3O4)@biosilica/alginate (MBA nano-hybrid) was the main aim of the present investigation. Herein, MBA nano-hybrid was synthesized via chemical precipitation technique. As-synthesized MBA nano-hybrid was characterized using FT-IR, FESEM and XRD analyzes. Based on the results, the maximum adsorption capacity of the adsorbent for the removal of Cd(II) was obtained at the initial pH of 7.0. At the initial Cd(II) concentration of 40 mg/L, increasing the reaction time to 180 min led to the Cd adsorption of 35.36 mg/g. Since the removal of Cd(II) after the reaction time of 60 min was insignificant, the reaction time of 60 min was considered as optimum reaction time for performing the experimental runs. According to the results, Langmuir isotherm and pseudo-second order kinetic models were the best fitted models with high correlation coefficients (R2 > 0.99). The results of thermodynamic study indicated exothermic (positive ΔH°) and spontaneous nature (negative ΔG°) of the adsorption of Cd(II) on the surface of MBA nano-hybrid. Negligible reduction in the adsorption capacity of the nano-hybrid was observed (16.57%) after fifth experimental runs, indicating high reusability potential of the as-synthesized nano-hybrid adsorbent.
Collapse
Affiliation(s)
- Mahdi Safari
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Rezaee
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Esrafil Asgari
- Department of Environmental Health Engineering, School of Public Health, Khoy University of Medical Sciences, Khoy, Iran.
| |
Collapse
|
53
|
Martínez-Periñán E, Martínez-Sobrino Á, Bravo I, García-Mendiola T, Mateo-Martí E, Pariente F, Lorenzo E. Neutral Red-carbon nanodots for selective fluorescent DNA sensing. Anal Bioanal Chem 2022; 414:5537-5548. [PMID: 35288763 PMCID: PMC9242914 DOI: 10.1007/s00216-022-03980-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/25/2023]
Abstract
Carbon nanodots modified with Neutral Red covalently inserted in the nanostructure (NR-CDs) have been prepared by a simple synthesis method based on microwave irradiation under controlled temperature and pressure. The synthetized NR-CDs have been characterized by different techniques, demonstrating the covalent bonding of Neutral Red molecules to the carbon dots nanostructure. Fluorescence activity of the prepare NR-CDs has been explored showing different interaction pathways with singled and doubled stranded DNA. These studies have been successfully applied to develop a new fluorescence DNA hybridization assay to the detection of a specific DNA sequence of Escherichia coli bacteria.
Collapse
Affiliation(s)
- Emiliano Martínez-Periñán
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Álvaro Martínez-Sobrino
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Iria Bravo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Eva Mateo-Martí
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Félix Pariente
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
54
|
Maksimovskii EA, Maslova OV, Semenova OI, Vasileva IG, Kosinova ML. SYNTHESIS FEATURES AND STRUCTURAL CHARACTERIZATION OF CARBON NANOWALLS PREPARED FROM ORGANOBORON COMPOUNDS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622070125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology 2022; 20:262. [PMID: 35672712 PMCID: PMC9171489 DOI: 10.1186/s12951-022-01477-8] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/23/2022] [Indexed: 12/31/2022] Open
Abstract
Interest in nanomaterials and especially nanoparticles has exploded in the past decades primarily due to their novel or enhanced physical and chemical properties compared to bulk material. These extraordinary properties have created a multitude of innovative applications in the fields of medicine and pharma, electronics, agriculture, chemical catalysis, food industry, and many others. More recently, nanoparticles are also being synthesized ‘biologically’ through the use of plant- or microorganism-mediated processes, as an environmentally friendly alternative to the expensive, energy-intensive, and potentially toxic physical and chemical synthesis methods. This transdisciplinary approach to nanoparticle synthesis requires that biologists and biotechnologists understand and learn to use the complex methodology needed to properly characterize these processes. This review targets a bio-oriented audience and summarizes the physico–chemical properties of nanoparticles, and methods used for their characterization. It highlights why nanomaterials are different compared to micro- or bulk materials. We try to provide a comprehensive overview of the different classes of nanoparticles and their novel or enhanced physicochemical properties including mechanical, thermal, magnetic, electronic, optical, and catalytic properties. A comprehensive list of the common methods and techniques used for the characterization and analysis of these properties is presented together with a large list of examples for biogenic nanoparticles that have been previously synthesized and characterized, including their application in the fields of medicine, electronics, agriculture, and food production. We hope that this makes the many different methods more accessible to the readers, and to help with identifying the proper methodology for any given nanoscience problem.
Collapse
|
56
|
Lopes RC, Rocha BG, Maçôas EM, Marques EF, Martinho JM. Combining metal nanoclusters and carbon nanomaterials: Opportunities and challenges in advanced nanohybrids. Adv Colloid Interface Sci 2022; 304:102667. [PMID: 35462268 DOI: 10.1016/j.cis.2022.102667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022]
Abstract
The development of functional materials with uniquely advanced properties lies at the core of nanoscience and nanotechnology. From the myriad possible combinations of organic and/or inorganic blocks, hybrids combining metal nanoclusters and carbon nanomaterials have emerged as highly attractive colloidal materials for imaging, sensing (optical and electrochemical) and catalysis, among other applications. While the metal nanoclusters provide extraordinary luminescent and electronic properties, the carbon nanomaterials (of zero, one or two dimensions) convey versatility, as well as unique interfacial, electronic, thermal, optical, and mechanical properties, which altogether can be put to use for the desired application. Herein, we present an overview of the field, for experts and non-experts, encompassing the basic properties of the building blocks, a systematic view of the chemical preparation routes and physicochemical properties of the hybrids, and a critical analysis of their ongoing and emerging applications. Challenges and opportunities, including directions towards green chemistry approaches, are also discussed.
Collapse
|
57
|
Study of Intermolecular Interaction between Small Molecules and Carbon Nanobelt: Electrostatic, Exchange, Dispersive and Inductive Forces. Catalysts 2022. [DOI: 10.3390/catal12050561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The conjugated structure of carbon is used in chemical sensing and small molecule catalysis because of its high charge transfer ability, and the interaction between carbon materials and small molecules is the main factor determining the performance of sensing and catalytic reactions. In this work, Reduced Density Gradient (RDG) and Symmetry-Adapted Perturbation Theory (SAPT) energy decomposition methods were used in combination to investigate the heterogeneity of catalytic substrates commonly used in energy chemistry with [6, 6] the carbon nanobelt ([6, 6] CNB, the interaction properties and mechanisms inside and outside the system). The results show that most of the attractive forces between dimers are provided by dispersive interactions, but electrostatic interactions cannot be ignored either. The total energy of the internal adsorption of [6, 6] CNB was significantly smaller than that of external adsorption, which led to the small molecules being more inclined to adsorb in the inner region of [6, 6] CNB. The dispersive interactions of small molecules adsorbed on [6, 6] CNB were also found to be very high. Furthermore, the dispersive interactions of the same small molecules adsorbed inside [6, 6] CNB were significantly stronger than those adsorbed outside. In [6, 6] CNB dimers, dispersion played a major role in the mutual attraction of molecules, accounting for 70% of the total attraction.
Collapse
|
58
|
Carbon-Based Nanocatalysts (CnCs) for Biomass Valorization and Hazardous Organics Remediation. NANOMATERIALS 2022; 12:nano12101679. [PMID: 35630900 PMCID: PMC9147642 DOI: 10.3390/nano12101679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023]
Abstract
The continuous increase of the demand in merchandise and fuels augments the need of modern approaches for the mass-production of renewable chemicals derived from abundant feedstocks, like biomass, as well as for the water and soil remediation pollution resulting from the anthropogenic discharge of organic compounds. Towards these directions and within the concept of circular (bio)economy, the development of efficient and sustainable catalytic processes is of paramount importance. Within this context, the design of novel catalysts play a key role, with carbon-based nanocatalysts (CnCs) representing one of the most promising class of materials. In this review, a wide range of CnCs utilized for biomass valorization towards valuable chemicals production, and for environmental remediation applications are summarized and discussed. Emphasis is given in particular on the catalytic production of 5-hydroxymethylfurfural (5-HMF) from cellulose or starch-rich food waste, the hydrogenolysis of lignin towards high bio-oil yields enriched predominately in alkyl and oxygenated phenolic monomers, the photocatalytic, sonocatalytic or sonophotocatalytic selective partial oxidation of 5-HMF to 2,5-diformylfuran (DFF) and the decomposition of organic pollutants in aqueous matrixes. The carbonaceous materials were utilized as stand-alone catalysts or as supports of (nano)metals are various types of activated micro/mesoporous carbons, graphene/graphite and the chemically modified counterparts like graphite oxide and reduced graphite oxide, carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and fullerenes.
Collapse
|
59
|
Fang M, Zhao T, Zhao X, Tang Z, Liu S, Wang J, Niu L, Wu F. Effect of Tube Diameters and Functional Groups on Adsorption and Suspension Behaviors of Carbon Nanotubes in Presence of Humic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1592. [PMID: 35564302 PMCID: PMC9100522 DOI: 10.3390/nano12091592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
Abstract
The adsorption and suspension behaviors of carbon nanotubes (CNTs) in the water environment determine the geochemical cycle and ecological risk of CNTs and the compounds attached to them. In this study, CNTs were selected as the research object, and the effect of tube diameters and functional groups (multiwall CNTs (MWNTs) and hydroxylated MWNTs (HMWNTs)) on the adsorption and suspension behaviors of the CNTs in the presence of humic acid (HA) was systematically analyzed. The results indicate that HA adsorption decreased with the increase in the solution pH, and the adsorption amount and rate were negatively correlated with the tube diameter of the CNTs. The surface hydroxylation of the CNTs prevented the adsorption of HA, and the maximum adsorption amounts on the MWNTs and HMWNTs were 195.95 and 74.74 mg g-1, respectively. HA had an important effect on the suspension of the CNTs, especially for the surface hydroxylation, and the suspension of the CNTs increased with the increase in the tube diameter. The characteristics of the CNTs prior to and after adsorbing HA were characterized by transmission electron microscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy and Raman spectroscopy. The results indicate that surface hydroxylation of the CNTs increased the adsorption of aromatic compounds, and that the CNTs with a smaller diameter and a larger specific surface area had a disordered carbon accumulation microstructure and many defects, where the adsorption of part of the HA would cover the defects on the CNTs' surface. Density functional theory (DFT) calculations demonstrated that HA was more easily adsorbed on the CNTs without surface hydroxylation. This investigation is helpful in providing a theoretical basis for the scientific management of the production and application of CNTs, and the scientific assessment of their geochemical cycle and ecological risk.
Collapse
Affiliation(s)
- Mengyuan Fang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.F.); (T.Z.); (X.Z.); (J.W.); (L.N.); (F.W.)
- College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China
| | - Tianhui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.F.); (T.Z.); (X.Z.); (J.W.); (L.N.); (F.W.)
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.F.); (T.Z.); (X.Z.); (J.W.); (L.N.); (F.W.)
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.F.); (T.Z.); (X.Z.); (J.W.); (L.N.); (F.W.)
| | - Shasha Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.F.); (T.Z.); (X.Z.); (J.W.); (L.N.); (F.W.)
| | - Lin Niu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.F.); (T.Z.); (X.Z.); (J.W.); (L.N.); (F.W.)
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.F.); (T.Z.); (X.Z.); (J.W.); (L.N.); (F.W.)
| |
Collapse
|
60
|
Sargazi S, Er S, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, Hosseinikhah SM, Bilal M, Kyzas GZ. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chem Biol Interact 2022; 361:109964. [PMID: 35513013 DOI: 10.1016/j.cbi.2022.109964] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded oligonucleotides that link to various substrates with great affinity and selectivity, including small molecules, peptides, proteins, cells, and tissues. For this reason, they can be used as imaging agents for cancer imaging techniques. Multifunctional nanomaterials combined with imaging probes and drugs are promising cancer diagnosis and treatment candidates. On the other hand, carbon-based nanomaterials (CNMs), including such as fullerene, carbon nanotubes, carbon-based quantum dots, carbon nanohorns, graphene oxide and its derivatives carbon nanodots, and nanodiamonds, are sort of smart materials that can be used in a variety of theranostic applications, including photo-triggered therapies. The remarkable physical characteristics, functionalizable chemistry, biocompatibility, and optical properties of these nanoparticles have enabled their utilization in less-invasive therapies. The theranostic agents that emerged by combining aptamers with CNMs have opened a novel alternative for personified medicine of cancer, target-specific imaging, and label-free diagnosis of a broad range of cancers, as well as pathogens. Aptamer-functionalized CNMs have been used as nanovesicles for targeted delivery of anti-cancer agents (i.e., doxorubicin and 5-fluorouracil) to tumor sites. Furthermore, these CNMs conjugated with aptamers have shown great advantages over standard CNMs to sensitively detect Mycobacterium tuberculosis, Escherichia coli, staphylococcus aureus, Vibrio parahaemolyticus, Salmonella typhimurium, Pseudomonas aeruginosa, and Citrobacter freundii. Regrettably, CNMs can form compounds defined as NOAA (nano-objects, and their aggregates and agglomerates larger than 100 nm), that accumulate in the body and cause toxic effects. Surface modification and pretreatment with albumin avoid agglomeration and increase the dispersibility of CNMs, so it is needed to guarantee the desirable interactions between functionalized CNMs and blood plasma proteins. This preliminary review aimed to comprehensively discuss the features and uses of aptamer-conjugated CNMs to manage cancer and bacterial infections.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 98167-43463, Iran
| | - Simge Er
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Sultan Sacide Gelen
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, 538-98615, Zabol, Iran.
| | - Narges Ebrahimi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, 65404, Greece.
| |
Collapse
|
61
|
Howarth JR, White AO, Hedayati A, Niu Y, Palmer RE, Tang KW. Interactions between multi-walled carbon nanotubes and plankton as detected by Raman spectroscopy. CHEMOSPHERE 2022; 295:133889. [PMID: 35131272 DOI: 10.1016/j.chemosphere.2022.133889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Raman spectroscopy has been commonly used in materials science to detect chemicals. Based on inelastic scattering of light after incident photons interact with a molecule, it has high potential for non-destructive detection of specific contaminants in living biological specimens. The increasing use of carbon nanotubes (CNTs) increases its chance to enter the aquatic habitats through direct discharge, surface runoff and atmospheric deposition, but their potential environmental impacts remain poorly known. We tested the use of Raman spectroscopy to investigate the interactions between multi-walled CNTs (MWCNTs) and aquatic plankton in vivo. For phytoplankton cells (Scenedesmus obliquus) that were exposed to MWCNTs, Raman spectroscopy was able to distinguish between background biological material and MWCNTs that adhere to the cells (G-band peak at 1590 cm-1 and D-band peak at 1350 cm-1 in the Raman spectra that were unique to MWCNTs). Harmful effects of MWCNT exposure manifested as lower photosynthetic efficiency and/or lower specific growth rate in the phytoplankton. MWCNT particles also adhered to the body surface of zooplankton, especially the carapace. Both Ceriodaphnia sp. and Daphnia sp. ingested MWCNTs directly, which was verified by the signature G-band and D-band Raman peaks in the zooplankton gut region. MWCNTs remained in the gut overnight after the zooplankton had been returned to clean water, showing that the zooplankton retained MWCNTs inside their body for an extended time, thereby increasing the chance to disperse and transfer the contaminants throughout the aquatic food web. Our results demonstrate that Raman spectroscopy is a promising method for non-destructive investigation of the uptake and dynamic fate of CNTs and other contaminants in aquatic organisms.
Collapse
Affiliation(s)
- Jack R Howarth
- Department of Biosciences, Faculty of Science & Engineering, Swansea University, SA2 8PP, UK
| | - Alvin Orbaek White
- Energy Safety Research Institute, Faculty of Science & Engineering, Swansea University, SA1 8EN, UK; Chemical Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK.
| | - Ali Hedayati
- TECNALIA, Basque Research and Technology Alliance (BRTA), Alava Science and Technology Park, Leonardo da Vinci 11, 01510, Vitoria-Gasteiz, Spain
| | - Yubiao Niu
- Nanomaterials Lab, Mechanical Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - Richard E Palmer
- Nanomaterials Lab, Mechanical Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - Kam W Tang
- Department of Biosciences, Faculty of Science & Engineering, Swansea University, SA2 8PP, UK.
| |
Collapse
|
62
|
Chithra A, Sekar R, Senthil Kumar P, Padmalaya G. A review on removal strategies of microorganisms from water environment using nanomaterials and their behavioural characteristics. CHEMOSPHERE 2022; 295:133915. [PMID: 35143869 DOI: 10.1016/j.chemosphere.2022.133915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Significant findings for microbial removal have led to expertise on several kinds of nanomaterials that made new paths for removing various biological contaminants in a variety of water resources in recent years. Furthermore, advancements in multifunctional nanocomposites synthesis pave the enhanced possibility for their use in water treatment system design. The adsorption towards microbial elimination has been reviewed and compared in this review article using four common kinds of nanomaterials: carbon materials, metal oxides, metal/metal oxides, polymeric metal oxide nanocomposites and their most important mechanistic behavior also discussed. We also describe and analyze recent findings on the effects of engineered nanomaterials on microbial communities in natural and artificial environments. Understanding the removal mechanistic strategy is crucial to improving the nanoparticles (NPs) efficiency and increasing their applicability against a variety of bacteria in various environmental conditions. Also, our study focused on their behavioral effects on microbial structure and functionality towards the removal. Future research opportunities connected to the use of nanomaterials in microbial control and inactivation with societal and health implications are also discussed. We also highlight a number of interesting research subjects that might be of futuristic interest to the scientific community.
Collapse
Affiliation(s)
- A Chithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, 638401, Tamilnadu, India
| | - Rajaseetharama Sekar
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, 638401, Tamilnadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India.
| | - G Padmalaya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India
| |
Collapse
|
63
|
Fasfous I, El-Sheikh A, Awwad A, Al-Degs Y, Dawoud J. Interaction Influence of Contact Time and pH on Cobalt Retention by
Carbon Nanotubes Bearing Various Loads of TiO2 and Fe3O4. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666211021145844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
<P>Background: Nanomaterials have facilitated remarkable advances in the remediation of
many environmental problems. A few studies have tackled the removal of Co (II) from aqueous
solutions using nanomaterials. Herein, we studied the retention kinetics of cobalt species on carbon
nanotubes (CNTs) bearing different amounts of TiO2 and Fe3O4 nanomaterials individually.
<P>
Methods: CNTs and their TiO2/Fe3O4-modified nanomaterials were well characterized. Cobalt
retention by these adsorbents was investigated considering different influencing factors such as Co
(II) content, solution pH, and time. The kinetic data were fitted with pseudo-first-order, pseudosecond-
order rate models, and intra-particle diffusion models for better elucidation of the mechanism
of Co retention.
<P>
Results: XRD evidenced the formation of TiO2 and Fe3O4. High loads of both oxides were needed
for higher and faster Co retention by CNTs. Co retention capacity increased with increasing the
solution pH. The pseudo-second-order model presented the kinetics of Co retention at 30 oC, and
48% of available capacity was attained within the first hour of interaction by CNT-TiO2 and with a
moderate S/L ratio of 0.5 g/L. Co retention was increased with the amount of oxide to reach a maximum
value of 16. 40 mg/g (90.2% TiO2) and 13.60 mg/g (48.2% Fe3O4). The Jovanović equilibrium
model predicted the maximum retention values as the nearest to the experimental ones.
<P>
Conclusion: The potential of CNT-Fe3O4/TiO2 nanomaterials has been successfully demonstrated
for the removal of cobalt, which makes them highly attractive and cost-effective adsorbents for
wastewater treatment. The reported retention and removal rate values were relatively better than
those seen in the literature. Loading different active oxides by CNTs is an interesting research area
as selective adsorbents can be fabricated with affordable experimental costs.
Collapse
Affiliation(s)
- Ismail Fasfous
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Amjad El-Sheikh
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Anas Awwad
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Yahya Al-Degs
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Jamal Dawoud
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
64
|
Dhanya V, Arunraj B, Rajesh N. Prospective application of phosphorylated carbon nanofibers with a high adsorption capacity for the sequestration of uranium from ground water. RSC Adv 2022; 12:13511-13522. [PMID: 35520136 PMCID: PMC9066443 DOI: 10.1039/d2ra02031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
In this study carbon nanofibers (CNF) were phosphorylated by using ortho-phosphoric acid and applied for adsorptive remediation of uranium from water. The phosphorylated carbon nanofibers (PCNF) showed 96% removal of uranium as compared to 79% by CNF. The adsorption data from batch adsorption studies fitted well with the Langmuir model and a maximum adsorption capacity of 512.8 mg g-1 was obtained at pH 6.0 while the adsorption followed pseudo second order kinetics. A detailed characterisation of the adsorbent has been carried out using various analytical and spectroscopic tools. The application of the adsorbent to ground water samples exhibited promising results even in the presence of other interfering cations and anions which is imperative considering the toxic effects of uranium in ground water.
Collapse
Affiliation(s)
- V Dhanya
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500078 India
| | - Balasubramanian Arunraj
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500078 India
| | - N Rajesh
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500078 India
| |
Collapse
|
65
|
Applications of Polymeric Membranes with Carbon Nanotubes: A Review. MEMBRANES 2022; 12:membranes12050454. [PMID: 35629780 PMCID: PMC9144913 DOI: 10.3390/membranes12050454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023]
Abstract
Nanomaterials have been commonly employed to enhance the performance of polymeric membrane materials that are used in several industrial applications. Carbon nanotubes (CNTs) have gained notable attention over the years for use in membrane technology due to their anti-biofouling properties, salt rejection capability, exceptional electrical conductivity, and mechanical properties. This paper aims to discuss some of the recent applications of CNTs in membrane technology and their effect on a larger scale. The paper reviews successful case studies of incorporation of CNTs in membranes and their impact on water purification, desalination, gas separations, and energy storage, in an effort to provide a better understanding of their capabilities. Regarding the future trends of this technology, this review emphasizes improving the large-scale production processes and addressing environmental and health-related hazards of CNTs during production and usage.
Collapse
|
66
|
De Luca P, Macario A, Siciliano C, B.Nagy J. Recovery of Biophenols from Olive Vegetation Waters by Carbon Nanotubes. MATERIALS 2022; 15:ma15082893. [PMID: 35454586 PMCID: PMC9025687 DOI: 10.3390/ma15082893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022]
Abstract
In this work, the possibility of using carbon nanotubes for the treatment of olive vegetation waters (OVWs) was investigated. In general, the disposal of OVWs represents an important environmental problem. The possibility of considering these waters no longer just as a problem but as a source of noble substances, thanks to the recovery of biophenols from them, was tested. In particular, predetermined quantities of olive vegetation waters were treated with carbon nanotubes. The quantities of adsorbed biophenols were studied as a function of the quantities of carbon nanotubes used and the contact time. The experimental conditions for obtaining both the highest possible quantities of biophenol and a purer adsorbate with the highest percentage of biophenols were studied. After the adsorption tests, the vegetation waters were analyzed by UV spectrophotometry to determine, in particular, the variation in the concentration of biophenols. The carbon nanotubes were weighed before and after each adsorption test. In addition, kinetic studies of the adsorption processes were considered. Carbon nanotubes proved their effectiveness in recovering biophenols.
Collapse
Affiliation(s)
- Pierantonio De Luca
- Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, University of Calabria, I-87036 Arcavacata di Rende, Italy;
- Correspondence: ; Tel.: +39-0984-496757
| | - Anastasia Macario
- Dipartimento di Ingegneria per l’Ambiente, University of Calabria, I-87036 Arcavacata di Rende, Italy;
| | - Carlo Siciliano
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, University of Calabria, I-87036 Arcavacata di Rende, Italy;
| | - Janos B.Nagy
- Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, University of Calabria, I-87036 Arcavacata di Rende, Italy;
| |
Collapse
|
67
|
Advances in particulate matter filtration: Materials, performance, and application. GREEN ENERGY & ENVIRONMENT 2022. [PMCID: PMC10119549 DOI: 10.1016/j.gee.2022.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Air-borne pollutants in particulate matter (PM) form, produced either physically during industrial processes or certain biological routes, have posed a great threat to human health. Particularly during the current COVID-19 pandemic, effective filtration of the virus is an urgent matter worldwide. In this review, we first introduce some fundamentals about PM, including its source and classification, filtration mechanisms, and evaluation parameters. Advanced filtration materials and their functions are then summarized, among which polymers and MOFs are discussed in detail together with their antibacterial performance. The discussion on the application is divided into end-of-pipe treatment and source control. Finally, we conclude this review with our prospective view on future research in this area.
Collapse
|
68
|
Small nanoparticles bring big prospect: The synthesis, modification, photoluminescence and sensing applications of carbon dots. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
69
|
Mariyappan V, Chen SM, Murugan K, Jeevika A, Jeyapragasam T, Ramachandran R. Electrochemical sensor based on cobalt ruthenium sulfide nanoparticles embedded on boron nitrogen co-doped reduced graphene oxide for the determination of nitrite. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
70
|
The copolymer coating effect on the catalytic activity of magnetic carbon nanotube (CNT-Fe3O4) in the multi-component reactions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
71
|
Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNanoparticles are the gateway to the new era in drug delivery of biocompatible agents. Several products have emerged from nanomaterials in quest of developing practical wound healing dressings that are nonantigenic, antishear stress, and gas-exchange permeable. Numerous studies have isolated and characterised various wound healing nanomaterials and nanoproducts. The electrospinning of natural and synthetic materials produces fine products that can be mixed with other wound healing medications and herbs. Various produced nanomaterials are highly influential in wound healing experimental models and can be used commercially as well. This article reviewed the current state-of-the-art and briefly specified the future concerns regarding the different systems of nanomaterials in wound healing (i.e., inorganic nanomaterials, organic and hybrid nanomaterials, and nanofibers). This review may be a comprehensive guidance to help health care professionals identify the proper wound healing materials to avoid the usual wound complications.
Collapse
|
72
|
Hussain A, Rehman F, Rafeeq H, Waqas M, Asghar A, Afsheen N, Rahdar A, Bilal M, Iqbal HMN. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air - A review. CHEMOSPHERE 2022; 289:133252. [PMID: 34902385 DOI: 10.1016/j.chemosphere.2021.133252] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023]
Abstract
Nanotechnology, as an emerging science, has taken over all fields of life including industries, health and medicine, environmental issues, agriculture, biotechnology etc. The use of nanostructure molecules has revolutionized all sectors. Environmental pollution is a great concern now a days, in all industrial and developing as well as some developed countries. A number of remedies are in practice to overcome this problem. The application of nanotechnology in the bioremediation of environmental pollutants is a step towards revolution. The use of various types of nanoparticles (TiO2 based NPs, dendrimers, Fe based NPs, Silica and carbon nanomaterials, Graphene based NPs, nanotubes, polymers, micelles, nanomembranes etc.) is in practice to diminish environmental hazards. For this many In-situ (bioventing, bioslurping, biosparging, phytoremediation, permeable reactive barrier etc.) and Ex-situ (biopile, windrows, bioreactors, land farming etc.) methodologies are employed. Improved properties like nanoscale size, less time utilization, high adaptability for In-situ and Ex-situ use, undeniable degree of surface-region to-volume proportion for possible reactivity, and protection from ecological elements make nanoparticles ideal for natural applications. There are distinctive nanomaterials and nanotools accessible to treat the pollutants. Each of these methods and nanotools depends on the properties of foreign substances and the pollution site. The current designed review highlights the techniques used for bioremediation of environmental pollutants as well as use of various nanoparticles along with proposed In-situ and Ex-situ bioremediation techniques.
Collapse
Affiliation(s)
- Asim Hussain
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Fazeelat Rehman
- Department of Chemistry, School of Natural Sciences, National University of Sciences & Technology, Islamabad 44000, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Muhammad Waqas
- Department of Applied Sciences, National Textile University Faisalabad, 37610, Pakistan
| | - Asma Asghar
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
73
|
Le TTH, Ngo TT, Nguyen THH, Pham TD, Vu TXH, Tran QV. Green Nanoarchitectonics Using Cleistocalyx Operculatus Leaf Extract in the Preparation of Multifunctional Graphene Oxide/Fe3O4/Ag Nanomaterials for Water Decontamination and Disinfection. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
74
|
Kim S, Nam SN, Jang A, Jang M, Park CM, Son A, Her N, Heo J, Yoon Y. Review of adsorption-membrane hybrid systems for water and wastewater treatment. CHEMOSPHERE 2022; 286:131916. [PMID: 34416582 DOI: 10.1016/j.chemosphere.2021.131916] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Adsorption is an effective method for the removal of inorganic and organic contaminants and has been commonly used as a pretreatment method to improve contaminant removal and control flux during membrane filtration. Over the last two decades, many researchers have reported the use of hybrid systems comprising various adsorbents and different types of membranes, such as nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF) membranes, to remove contaminants from water. However, a comprehensive evaluation of the removal mechanisms and effects of the operating conditions on the transport of contaminants through hybrid systems comprising various adsorbents and NF, UF, or MF membranes has not been performed to date. Therefore, a systematic review of contaminant removal using adsorption-membrane hybrid systems is critical, because the transport of inorganic and organic contaminants via the hybrid systems is considerably affected by the contaminant properties, water quality parameters, and adsorbent/membrane physicochemical properties. Herein, we provide a comprehensive summary of the most recent studies on adsorption-NF/UF/MF membrane systems using various adsorbents and membranes for contaminant removal from water and wastewater and highlight the future research directions to address the current knowledge gap.
Collapse
Affiliation(s)
- Sewoon Kim
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Seong-Nam Nam
- Department of Civil and Environmental Engineering, Korea Army Academy at Yeong-Cheon, 495 Hogook-ro, Kokyungmeon, Yeong-Cheon, Gyeongbuk, 38900, South Korea
| | - Am Jang
- School of Civil and Architecture Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-16 Gu, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1, Wolgye-Dong Nowon-Gu, Seoul, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Namguk Her
- Department of Civil and Environmental Engineering, Korea Army Academy at Yeong-Cheon, 495 Hogook-ro, Kokyungmeon, Yeong-Cheon, Gyeongbuk, 38900, South Korea
| | - Jiyong Heo
- Department of Civil and Environmental Engineering, Korea Army Academy at Yeong-Cheon, 495 Hogook-ro, Kokyungmeon, Yeong-Cheon, Gyeongbuk, 38900, South Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| |
Collapse
|
75
|
Ahmed MM, Badawy MT, Ahmed FK, Kalia A, Abd-Elsalam KA. Fruit peel waste-to-wealth: Bionanomaterials production and their applications in agroecosystems. AGRI-WASTE AND MICROBES FOR PRODUCTION OF SUSTAINABLE NANOMATERIALS 2022:231-257. [DOI: 10.1016/b978-0-12-823575-1.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
76
|
Ajith MP, Aswathi M, Priyadarshini E, Rajamani P. Recent innovations of nanotechnology in water treatment: A comprehensive review. BIORESOURCE TECHNOLOGY 2021; 342:126000. [PMID: 34587582 DOI: 10.1016/j.biortech.2021.126000] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Environmental pollution from organic and inorganic pollutants poses a threat to the ecosystem. Pollutant's prevalence and persistence have increased significantly in recent years. In order to enhance the quality of naturally accessible water to a level suitable for human consumption, a number of techniques have been employed. In this context, the use of cutting-edge nanotechnology to classical process engineering paves the way for technical encroachments in advanced water and wastewater technology. Nanotechnology has the potential to ameliorate the quality, availability, and viability of water supplies in the long run by facilitating reuse, recycling and remediation of water. The promising role of nanotechnology in wastewater remediation is highlighted in this paper, which also covers current advancements in nanotechnology-mediated remediation systems. Moreover, nano-based materials such as nano-adsorbents, photocatalysts, nano-metals and nanomembranes are discussed in this review of recent breakthroughs in nanotechnologies for water contaminant remediation.
Collapse
Affiliation(s)
- M P Ajith
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - M Aswathi
- Department of Biomedical Engineering, Indian Institute of Technology -Hyderabad, Hyderabad 502285, India
| | - Eepsita Priyadarshini
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paulraj Rajamani
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
77
|
Alshahrani A, Alharbi A, Alnasser S, Almihdar M, Alsuhybani M, AlOtaibi B. Enhanced heavy metals removal by a novel carbon nanotubes buckypaper membrane containing a mixture of two biopolymers: Chitosan and i-carrageenan. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
78
|
Ma B, Li B, Li Y, Fan X, Zhang F, Zhang G, Zhu Y, Peng W. Synthesis of nitrogen and sulfur Co-doped carbon with special hollow sphere structure for enhanced catalytic oxidation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
79
|
Phosphorus Dynamics in the Soil–Plant–Environment Relationship in Cropping Systems: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work performs a review of the relevant aspects of agronomic dynamics of phosphorus (P) in the soil–plant relationship as a community (crop ecophysiology), the effect of environmental conditions and global warming on the redistribution and translocation of P in some crop, and the use of good agricultural practices with the aim of improving the efficiency of the element. The research focuses on Northern Europe, North-Eastern Asia, Oceania, North America, and the tropical area of Latin America. This review covers general research and specific works on P found in the literature, 70% of which date from the last 10 years, as well as some older studies that have been of great relevance as references and starting points for more recent investigations. The dynamics of P in a system implies taking into account genetic aspects of the plant, component of the soil–plant–fertilizer–environment relationship, and use of technologies at the molecular level. In addition, in a climate change scenario, the availability of this element can significantly change depending on whether it is labile or non-labile.
Collapse
|
80
|
Fadia P, Tyagi S, Bhagat S, Nair A, Panchal P, Dave H, Dang S, Singh S. Calcium carbonate nano- and microparticles: synthesis methods and biological applications. 3 Biotech 2021; 11:457. [PMID: 34631356 PMCID: PMC8497680 DOI: 10.1007/s13205-021-02995-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Calcium carbonate micro- and nanoparticles are considered as chemically inert materials. Therefore, they are widely considered in the field of biosensing, drug delivery, and as filler material in plastic, paper, paint, sealant, and adhesive industries. The unusual properties of calcium carbonate-based nanomaterials, such as biocompatibility, high surface-to-volume ratio, robust nature, easy synthesis, and surface functionalization, and ability to exist in a variety of morphologies and polymorphs, make them an ideal candidate for both industrial and biomedical applications. Significant research efforts have been devoted for developing novel synthesis methods of calcium carbonate particles in micrometer and nanometer dimensions. This review highlights different approaches of the synthesis of calcium carbonate micro- and nanoparticles, such as precipitation, slow carbonation, emulsion, polymer-mediated method, including in-situ polymerization, mechano-chemical, microwave-assisted method, and biological methods. The applications of these versatile calcium carbonate micro- and nanoparticles in the biomedical field (such as in drug delivery, therapeutics, tissue engineering, antimicrobial activity, biosensing applications), in industries, and environmental sector has also been comprehensively covered.
Collapse
Affiliation(s)
- Preksha Fadia
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Simona Tyagi
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Stuti Bhagat
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032 India
| | - Abhishek Nair
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Pooja Panchal
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Harsh Dave
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Sadev Dang
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Sanjay Singh
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032 India
| |
Collapse
|
81
|
Yang D, Gao P, Ren X, Niu Y, Wu Z, Gu Z, Peng H. The role of solvents and oxygen-containing functional groups on the adsorption of Bisphenol A on carbon nanotubes. ENVIRONMENTAL TECHNOLOGY 2021; 42:4260-4268. [PMID: 32249723 DOI: 10.1080/09593330.2020.1752815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
The wide application of endocrine disruptors (EDs) has recently created great public concerns because of their toxicities. Previous studies have stated that the effect of oxygen-containing functional groups of carbon nanotubes (CNTs) for Bisphenol A (BPA) sorption, but no study has been quantified the exact contribution of the oxygen-containing functional groups. Moreover, the role of solvents on the adsorption of BPA should be considered. Considering the well properties of CNTs, graphitized (MG), carboxylated (MC) and hydroxylated (MH) multi-walled CNTs were selected as model adsorbents, BPA was used as model adsorbate. Solubility and single point adsorption coefficient (logKd) of BPA were n-hexadecane > water > methanol, suggesting that hydrophobic interaction was the main mechanism for BPA sorption on CNTs. For different functional groups of CNTs, π-π interaction between MH and BPA may be stronger than that of MC, and thus the sorption of BPA on MH was higher than that of MC. Moreover, hydrogen bond resulted in the higher adsorption of BPA on MH when compared with MC. The oxygen-containing functional groups of CNTs played a key role for BPA sorption in methanol because the values of contribution were 20%-45% for -OH and were 5%-25% for -COOH. In n-hexadecane, other factors such as hydrophobic interactions should be considered because the contribution percentages of -OH were ca.15% and the values for -COOH were ca.10%. The results are expected to provide important information on the interaction of EDs and CNTs.
Collapse
Affiliation(s)
- Dong Yang
- Faculty of Agriculture and Food, Kunming University of Science & Technology, Kunming, People's Republic of China
| | - Peng Gao
- City College, Kunming University of Science & Technology, Kunming, People's Republic of China
| | - Xin Ren
- Faculty of Agriculture and Food, Kunming University of Science & Technology, Kunming, People's Republic of China
| | - Yifan Niu
- Faculty of Agriculture and Food, Kunming University of Science & Technology, Kunming, People's Republic of China
| | - Zhenfen Wu
- Faculty of Agriculture and Food, Kunming University of Science & Technology, Kunming, People's Republic of China
| | - Zhenggang Gu
- Faculty of Civil Engineering and Mechanics, Kunming University of Science & Technology, Kunming, People's Republic of China
| | - Hongbo Peng
- Faculty of Agriculture and Food, Kunming University of Science & Technology, Kunming, People's Republic of China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, People's Republic of China
| |
Collapse
|
82
|
Effect of pulmonary surfactant on the dispersion of carbon nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
83
|
Qin H, Sun Y, Rao D, Qiao J. Abiotic reductive removal of organic contaminants catalyzed by carbon materials: A short review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2374-2390. [PMID: 34250667 DOI: 10.1002/wer.1610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Since the observation that carbon materials can facilitate electron transfer between reactants, there is growing literature on the abiotic reductive removal of organic contaminants catalyzed by them. Most of the interest in these processes arises from the participation of carbon materials in the natural transformation of contaminants and the possibility of developing new strategies for environmental treatment and remediation. The combinations of various carbon materials and reductants have been investigated for the reduction of nitro-organic compounds, halogenated organics, and azo dyes. The reduction rates of a certain compound in carbon-reductant systems vary with the surface properties of carbon materials, although there are controversial conclusions on the properties governing the catalytic performance. This review scrutinizes the contributions of quinone moieties, electron conductivity, and other carbon properties to the activity of carbon materials. It also discusses the contaminant-dependent reduction pathways, that is, electron transfer through conductive carbon and intermediates formed during the reaction, along with possibly additional activation of contaminant molecules by carbon. Moreover, modification strategies to improve the catalytic activity for reduction are summarized. Future research needs are proposed to advance the understanding of reaction mechanisms and improve the practical utility of carbon material for water treatment. PRACTITIONER POINTS: Reduction rates of contaminants in carbon-reductant systems and modification strategies for carbon materials are summarized. Mechanisms for the catalytic activity of carbon materials are discussed. Research needs for new insights into carbon-catalyzed reduction are proposed.
Collapse
Affiliation(s)
- Hejie Qin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Yuankui Sun
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - Dandan Rao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Junlian Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
- International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, China
| |
Collapse
|
84
|
Amina M, Al Musayeib NM, Alarfaj NA, El-Tohamy MF, Al-Hamoud GA. Antibacterial and Anticancer Potentials of Presynthesized Photosensitive Plectranthus cylindraceus Oil/TiO 2/Polyethylene Glycol Polymeric Bionanocomposite. Bioinorg Chem Appl 2021; 2021:5562206. [PMID: 34754300 PMCID: PMC8572642 DOI: 10.1155/2021/5562206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
The present study is concerned with the fabrication of the bifunctional Plectranthus cylindraceus oil/TiO2/polyethylene glycol polymeric film for antibacterial and anticancer activities. The suggested film is based on the utility of naturally extracted P. cylindraceus oil in the formation of the polymeric bionanocomposite film decorated with TiO2 nanoparticles. The bionanocomposite film was fabricated by incorporating 15 w% of P. cylindraceus oil with 10 w% polyethylene glycol and 5 w% TiO2 nanoparticles. The active components of P. cylindraceus oil were verified using gas chromatography coupled with mass spectrometry (GC-MS). The surface morphology of the resulted bionanocomposite film was characterized by various spectroscopic and microscopic techniques. The antibacterial potential of the fabricated bionanocomposite film was investigated against four pathogenic strains. The obtained results revealed excellent sensitivity against the bacterial strains, particularly E. coli and S. aureus, with minimum inhibitory concentration 320 µg mL-1 and minimum bactericidal concentration 640 and 1280 µg mL-1 for E. coli and S. aureus, respectively. Polymeric bionanocomposite exerted significant cytotoxicity against human lung carcinoma cell lines in a concentration-dependent manner with an IC50 value of 42.7 ± 0.25 μg mL-1. Safety assessment test against peripheral blood mononuclear cells (PBMCs) demonstrated that the bionanocomposite is nontoxic in nature. Bionanocomposite also showed potent photocatalytic effects. Overall, the results concluded that the bionanocomposite has expressed scope for multifaceted biomedical applications.
Collapse
Affiliation(s)
- Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawal M. Al Musayeib
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawal A. Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Maha F. El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Gadah A. Al-Hamoud
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
85
|
Carbon-Based Nanocomposite Smart Sensors for the Rapid Detection of Mycotoxins. NANOMATERIALS 2021; 11:nano11112851. [PMID: 34835617 PMCID: PMC8621137 DOI: 10.3390/nano11112851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023]
Abstract
Carbon-based nanomaterials have become the subject of intensive interest because their intriguing physical and chemical properties are different from those of their bulk counterparts, leading to novel applications in smart sensors. Mycotoxins are secondary metabolites with different structures and toxic effects produced by fungi. Mycotoxins have low molecular weights and highly diverse molecular structures, which can induce a spectrum of biological effects in humans and animals even at low concentrations. A tremendous amount of biosensor platforms based on various carbon nanocomposites have been developed for the determination of mycotoxins. Therefore, the contents of this review are based on a balanced combination of our own studies and selected research studies performed by academic groups worldwide. We first address the vital preparation methods of biorecognition unit (antibodies, aptamers, molecularly imprinted polymers)-functionalized carbon-based nanomaterials for sensing mycotoxins. Then, we summarize various types of smart sensors for the detection of mycotoxins. We expect future research on smart sensors to show a significant impact on the detection of mycotoxins in food products.
Collapse
|
86
|
Zhang L, Ou C, Magana-Arachchi D, Vithanage M, Vanka KS, Palanisami T, Masakorala K, Wijesekara H, Yan Y, Bolan N, Kirkham MB. Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11055. [PMID: 34769574 PMCID: PMC8582694 DOI: 10.3390/ijerph182111055] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
Particulate matter (PM) is a complex mixture of solid particles and liquid droplets suspended in the air with varying size, shape, and chemical composition which intensifies significant concern due to severe health effects. Based on the well-established human health effects of outdoor PM, health-based standards for outdoor air have been promoted (e.g., the National Ambient Air Quality Standards formulated by the U.S.). Due to the exchange of indoor and outdoor air, the chemical composition of indoor particulate matter is related to the sources and components of outdoor PM. However, PM in the indoor environment has the potential to exceed outdoor PM levels. Indoor PM includes particles of outdoor origin that drift indoors and particles that originate from indoor activities, which include cooking, fireplaces, smoking, fuel combustion for heating, human activities, and burning incense. Indoor PM can be enriched with inorganic and organic contaminants, including toxic heavy metals and carcinogenic volatile organic compounds. As a potential health hazard, indoor exposure to PM has received increased attention in recent years because people spend most of their time indoors. In addition, as the quantity, quality, and scope of the research have expanded, it is necessary to conduct a systematic review of indoor PM. This review discusses the sources, pathways, characteristics, health effects, and exposure mitigation of indoor PM. Practical solutions and steps to reduce exposure to indoor PM are also discussed.
Collapse
Affiliation(s)
- Ling Zhang
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong University, Nantong 226019, China;
- School of Health, Jiangsu Food & Pharmaceutical Science College, Huai’an 223003, China
| | - Changjin Ou
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong University, Nantong 226019, China;
| | - Dhammika Magana-Arachchi
- Molecular Microbiology and Human Diseases Project, National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (D.M.-A.); (M.V.)
| | - Meththika Vithanage
- Molecular Microbiology and Human Diseases Project, National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (D.M.-A.); (M.V.)
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Kanth Swaroop Vanka
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Kanaji Masakorala
- Department of Botany, Faculty of Science, University of Ruhuna, Matara 80000, Sri Lanka;
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka;
| | - Yubo Yan
- Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huai’an 223300, China
| | - Nanthi Bolan
- School of Agriculture and Environment, Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia;
| | - M. B. Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
87
|
Lim JV, Bee ST, Tin Sin L, Ratnam CT, Abdul Hamid ZA. A Review on the Synthesis, Properties, and Utilities of Functionalized Carbon Nanoparticles for Polymer Nanocomposites. Polymers (Basel) 2021; 13:polym13203547. [PMID: 34685309 PMCID: PMC8538275 DOI: 10.3390/polym13203547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
Carbon can form different allotropes due to its tetravalency. Different forms of carbon such as carbon nanotubes (CNTs), carbon nanofibers, graphene, fullerenes, and carbon black can be used as nanofillers in order to enhance the properties of polymer nanocomposites. These carbon nanomaterials are of interest in nanocomposites research and other applications due to their excellent properties, such as high Young’s Modulus, tensile strength, electrical conductivity, and specific surface area. However, there are some flaws that can be found in the carbon nanoparticles such as tendency to agglomerate, insoluble in aqueous or organic solvents or being unreactive with the polymer surface. In this study, the aim is to study functionalization in order to rectify some of these shortcomings by attaching different functional groups or particles to the surface of these carbon nanoparticles; this also enables the synthesis of high-performance polymer nanocomposites. The main findings include the effects of functionalization on carbon nanoparticles and the applications of polymer nanocomposites with carbon nanoparticles as nanofillers in the industry. Additionally, the different methods used to produce polymer composites such as in situ polymerization, solution mixing and melt blending are studied, as these methods involve the dispersion of carbon nanofillers within the polymer matrix.
Collapse
Affiliation(s)
- Jun-Ven Lim
- Department of Mechanical and Material Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia;
| | - Soo-Tueen Bee
- Department of Mechanical and Material Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia;
- Correspondence: or (S.-T.B.); or (L.T.S.)
| | - Lee Tin Sin
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia
- Correspondence: or (S.-T.B.); or (L.T.S.)
| | - Chantara Thevy Ratnam
- Radiation Processing Technology Division Malaysian Nuclear Agency, Bangi, Kajang 43000, Selangor, Malaysia;
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| |
Collapse
|
88
|
Lim JW, Ahn YR, Park G, Kim HO, Haam S. Application of Nanomaterials as an Advanced Strategy for the Diagnosis, Prevention, and Treatment of Viral Diseases. Pharmaceutics 2021; 13:1570. [PMID: 34683863 PMCID: PMC8540357 DOI: 10.3390/pharmaceutics13101570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic poses serious global health concerns with the continued emergence of new variants. The periodic outbreak of novel emerging and re-emerging infectious pathogens has elevated concerns and challenges for the future. To develop mitigation strategies against infectious diseases, nano-based approaches are being increasingly applied in diagnostic systems, prophylactic vaccines, and therapeutics. This review presents the properties of various nanoplatforms and discusses their role in the development of sensors, vectors, delivery agents, intrinsic immunostimulants, and viral inhibitors. Advanced nanomedical applications for infectious diseases have been highlighted. Moreover, physicochemical properties that confer physiological advantages and contribute to the control and inhibition of infectious diseases have been discussed. Safety concerns limit the commercial production and clinical use of these technologies in humans; however, overcoming these limitations may enable the use of nanomaterials to resolve current infection control issues via application of nanomaterials as a platform for the diagnosis, prevention, and treatment of viral diseases.
Collapse
Affiliation(s)
- Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| |
Collapse
|
89
|
Yang Z, Deng C, Wu Y, Dai Z, Tang Q, Cheng C, Xu Y, Hu R, Liu C, Chen X, Zhang X, Li A, Xiong X, Su J, Yan A. Insights into the mechanism of multi-walled carbon nanotubes phytotoxicity in Arabidopsis through transcriptome and m6A methylome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147510. [PMID: 33991908 DOI: 10.1016/j.scitotenv.2021.147510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
With the increasing production and wide application of carbon nanotubes (CNTs), they are inevitably released into the natural environment and ecosystems, where plants are the main primary producers. Hence, it is imperative to understand the toxic effects of CNTs on plants. The molecular mechanisms underlying the toxic effects of CNTs on plants are still unclear. Therefore, in the present study, we investigated the effects of high concentrations of multi-walled CNTs (MWCNTs) on Arabidopsis. Root elongation and leaf development were severely inhibited after MWCNT exposure. Excess production of H2O2, O2-, and malondialdehyde was observed, indicating that MWCNTs induced oxidative stress. The antioxidant system was activated to counter MWCNTs-induced oxidative stress. Combinatorial transcriptome and m6A methylome analysis revealed that MWCNTs suppressed auxin signaling and photosynthesis. Reactive oxygen species metabolism, toxin metabolism, and plant responses to pathogens were enhanced to cope with the phytotoxicity of MWCNTs. Our results provide new insights into the molecular mechanisms of CNT phytotoxicity and plant defense responses to CNTs.
Collapse
Affiliation(s)
- Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yupeng Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Rong Hu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Crop Gene Engineering Key Laboratory of Hunan Province, Changsha, Hunan, 410128, China
| | - Chan Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xiaojun Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xiaoyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Alei Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xinghua Xiong
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Crop Gene Engineering Key Laboratory of Hunan Province, Changsha, Hunan, 410128, China.
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - An Yan
- National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| |
Collapse
|
90
|
Chen YH, Wang BK, Hou WC. Graphitic carbon nitride embedded with graphene materials towards photocatalysis of bisphenol A: The role of graphene and mediation of superoxide and singlet oxygen. CHEMOSPHERE 2021; 278:130334. [PMID: 34126674 DOI: 10.1016/j.chemosphere.2021.130334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Composite photocatalysts comprising graphitic carbon nitride (g-C3N4) and graphene materials were synthesized and evaluated in the photocatalysis of bisphenol A (BPA) with a focus on elucidating the reaction mechanism. Embedding reduced graphene oxide (rGO) to g-C3N4 significantly accelerated the photocatalysis rate of BPA by three folds under visible light irradiation at neutral pH. We showed that rGO synthesized in intimate contact with g-C3N4 increased the surface areas and electrical conductivity of the g-C3N4 composites and promoted the electron-hole pair separation. The BPA photodegradation mechanism involved selective oxidants as superoxide (O2•-) and singlet oxygen (1O2) that were formed through one-electron reduction of O2 and the unique oxidation of O2•- by photogenerated hole (h+), respectively. The synthesized photocatalyst exhibited superior visible light photoreactivity to that of N-doped P25 TiO2, good photo-stability and reuse potential, and was operative in complex wastewater. rGO embedded g-C3N4 achieved good photomineralization of BPA at 80% in 4 h compared to 40% of bare g-C3N4. This study sheds light on the photocatalysis mechanism of BPA with a metal-free, promising rGO/g-C3N4 photocatalyst.
Collapse
Affiliation(s)
- Yu-Hsin Chen
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Bo-Kai Wang
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Wen-Che Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| |
Collapse
|
91
|
Morena A, Campisciano V, Comès A, Liotta LF, Gruttadauria M, Aprile C, Giacalone F. A Study on the Stability of Carbon Nanoforms-Polyimidazolium Network Hybrids in the Conversion of CO 2 into Cyclic Carbonates: Increase in Catalytic Activity after Reuse. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2243. [PMID: 34578558 PMCID: PMC8468297 DOI: 10.3390/nano11092243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
Three different carbon nanoforms (CNFs), single-walled and multi-walled carbon nanotubes (SWCNTs, MWCNTs) and carbon nanohorns (CNHs), have been used as supports for the direct polymerization of variable amounts of a bis-vinylimidazolium salt. Transmission electron microscopy confirmed that all CNFs act as templates on the growth of the polymeric network, which perfectly covers the nanocarbons forming a cylindrical (SWCNTs, MWCNTs) or spherical (CNHs) coating. The stability of these hybrid materials was investigated in the conversion of CO2 into cyclic carbonate under high temperature and CO2 pressure. Compared with the homopolymerized monomer, nanotube-based materials display an improved catalytic activity. Beside the low catalytic loading (0.05-0.09 mol%) and the absence of Lewis acid co-catalysts, all the materials showed high TON values (up to 1154 for epichlorohydrin with SW-1:2). Interestingly, despite the loss of part of the polymeric coating for crumbling or peeling, the activity increases upon recycling of the materials, and this behaviour was ascribed to their change in morphology, which led to materials with higher surface areas and with more accessible catalytic sites. Transmission electron microscopy analysis, along with different experiments, have been carried out in order to elucidate these findings.
Collapse
Affiliation(s)
- Anthony Morena
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.M.); (V.C.)
- Laboratory of Applied Material Chemistry (CMA), Department of Chemistry, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Vincenzo Campisciano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.M.); (V.C.)
| | - Adrien Comès
- Laboratory of Applied Material Chemistry (CMA), Department of Chemistry, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Leonarda Francesca Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR, via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Michelangelo Gruttadauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.M.); (V.C.)
| | - Carmela Aprile
- Laboratory of Applied Material Chemistry (CMA), Department of Chemistry, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Francesco Giacalone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.M.); (V.C.)
| |
Collapse
|
92
|
Williams CD, Siperstein FR, Carbone P. High-throughput molecular simulations reveal the origin of ion free energy barriers in graphene oxide membranes. NANOSCALE 2021; 13:13693-13702. [PMID: 34477644 DOI: 10.1039/d1nr02169a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene oxide (GO) membranes are highly touted as materials for contemporary separation challenges including desalination, yet understanding of the interplay between their structure and salt rejection is limited. K+ ion permeation through hydrated GO membranes was investigated by combining structurally realistic molecular models and high-throughput molecular dynamics simulations. We show that it is essential to consider the complex GO microstructure to quantitatively reproduce experimentally-derived free energy barriers to K+ permeation for membranes with various interlayer distances less than 1.3 nm. This finding confirms the non-uniformity of GO nanopores and the necessity of the high-throughput approach for this class of material. The large barriers arise due to significant dehydration of K+ inside the membrane, which can have as few as 3 coordinated water molecules, compared to 7 in bulk solution. Thus, even if the membranes have an average pore size larger than the ion's hydrated diameter, the significant presence of pores whose size is smaller than the hydrated diameter creates bottlenecks for the permeation process.
Collapse
Affiliation(s)
- Christopher D Williams
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Manchester, UK.
| | | | | |
Collapse
|
93
|
Song G, Li A, Shi Y, Li W, Wang H, Wang C, Li R, Ding G. Sorptive removal of methylene blue from water by magnetic multi-walled carbon nanotube composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41268-41282. [PMID: 33779907 DOI: 10.1007/s11356-021-13543-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
In the present study, five magnetic multi-walled carbon nanotubes (MMWCNTs) with different diameters were prepared and their performance on the sorptive removal of methylene blue (MB) from water was investigated. Transmission electron microscope, scanning electron microscope, Fourier transform infrared spectrometer, X-ray diffraction, and vibrating sample magnetometer confirm that the surface of these MMWCNTs has been decorated by Fe3O4 nanoparticles, which renders the MMWCNTs superparamagnetic. Thus, these MMWCNTs can be easily separated from water after the adsorption. During the adsorption process, pH slightly affected the removal efficiency of MB and the adsorption performed better under weak alkaline conditions. Adsorption kinetics followed the pseudo-second-order kinetic model well, and the Dubinin-Radushkevich model fitted the isotherms best. The maximum adsorption capacity for MB reached 204.2 mg/g, and the values decreased with increasing diameters of MMWCNTs due to decreasing specific surface areas. The thermodynamics parameters indicated the spontaneous and exothermic nature of the adsorption. The reusability test showed that MMWCNTs could be used for 6 cycles without significant loss of the adsorption capacity. And common ions (K+, Na+, Ca2+ and Al3+) and SDS in water did not show greatly effects on the removal efficiency of MB. Hence, MMWCNTs prepared in this study could be promising adsorbents for dyes removal from wastewater.
Collapse
Affiliation(s)
- Guobin Song
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Anqi Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Wanran Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Haonan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Chunchao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Ruijuan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China.
| |
Collapse
|
94
|
Politowski I, Regnery P, Hennig MP, Siebers N, Ottermanns R, Schäffer A. Fate of weathered multi-walled carbon nanotubes in an aquatic sediment system. CHEMOSPHERE 2021; 277:130319. [PMID: 34384182 DOI: 10.1016/j.chemosphere.2021.130319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 06/13/2023]
Abstract
The widespread application of carbon nanotubes (CNT) in various consumer products leads to their inevitable release into aquatic systems. But only little is known about their distribution among aquatic compartments. In this study, we investigated the partitioning of radiolabeled, weathered multi-walled CNT (14C-wMWCNT) in an aquatic sediment system over a period of 180 days (d). The applied nanomaterial concentration in water phase was 100 μg L-1. Over time, the wMWCNT disappeared exponentially from the water phase and simultaneously accumulated in the sediment phase. After 2 h incubation just 77%, after seven days 30% and after 180 d only 0.03% of applied radioactivity (AR) remained in the water phase. The respective values for the disappearance times DT50 and DT90 were 3.2 d and 10.7 d. Further, minor mineralization of 14C-wMWCNT to 14CO2 was observed with values below 0.06% of AR. In addition, a study was carried out to estimate the deposition of wMWCNT in the water phase with and without sediment in the test system for 28 d. We found no influence of a sediment phase on the sedimentation behavior of wMWCNT in the water phase: After 6.5 d and 7.3 d 50% of the applied wMWCNT subsided in the presence and absence of sediment, respectively. The slow removal of wMWCNT from the water body by deposition into sediment implies that in addition to sediment-dwelling organisms, pelagic organisms are also at risk of exposure to nanomaterials and prone for their take-up.
Collapse
Affiliation(s)
- Irina Politowski
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Philipp Regnery
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Michael Patrick Hennig
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nina Siebers
- Forschungszentrum Jülich GmbH, Agrosphere (IBG-3) Institute of Bio- and Geosciences, Wilhelm- Johnen-Straße, 52425, Jülich, Germany; Forschungszentrum Jülich GmbH, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Richard Ottermanns
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
95
|
Hussain I, Jalil AA, Hamid MYS, Hassan NS. Recent advances in catalytic systems in the prism of physicochemical properties to remediate toxic CO pollutants: A state-of-the-art review. CHEMOSPHERE 2021; 277:130285. [PMID: 33794437 DOI: 10.1016/j.chemosphere.2021.130285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Carbon monoxide (CO) is the most harmful pollutant in the air, causing environmental issues and adversely affecting humans and the vegetation and then raises global warming indirectly. CO oxidation is one of the most effective methods of reducing CO by converting it into carbon dioxide (CO2) using a suitable catalytic system, due to its simplicity and great value for pollution control. The CO oxidation reaction has been widely studied in various applications, including proton-exchange membrane fuel cell technology and catalytic converters. CO oxidation has also been of great academic interest over the last few decades as a model reaction. Many review studies have been produced on catalysts development for CO oxidation, emphasizing noble metal catalysts, the configuration of catalysts, process parameter influence, and the deactivation of catalysts. Nevertheless, there is still some gap in a state of the art knowledge devoted exclusively to synergistic interactions between catalytic activity and physicochemical properties. In an effort to fill this gap, this analysis updates and clarifies innovations for various latest developed catalytic CO oxidation systems with contemporary evaluation and the synergistic relationship between oxygen vacancies, strong metal-support interaction, particle size, metal dispersion, chemical composition acidity/basicity, reducibility, porosity, and surface area. This review study is useful for environmentalists, scientists, and experts working on mitigating the harmful effects of CO on both academic and commercial levels in the research and development sectors.
Collapse
Affiliation(s)
- I Hussain
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia.
| | - M Y S Hamid
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| |
Collapse
|
96
|
Yu Q, Feng J, Li J, He A, Sheng GD. Mechanisms of aromatic molecule - Oxygen-containing functional group interactions on carbonaceous material surfaces. CHEMOSPHERE 2021; 275:130021. [PMID: 33647678 DOI: 10.1016/j.chemosphere.2021.130021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Surface oxygen-containing functional groups (OFGs) at different sites of carbonaceous materials showed different effects on the normalized monolayer adsorption capacity (QBET/A) obtained from the modified BET model. The OFGs on mesoporous surfaces inhibited the adsorption via the water competition, whereas those on the external surface promoted the adsorption due to the enhanced hydrophobic driving force and electrostatic forces, as analyzed from the adsorption molar free energy. Multiple linear relationships were established between the monolayer adsorption capacity QBET/A and the amounts of OFGs on mesoporous and the external surfaces ([O]meso and [O]external, respectively). The properties of aromatic adsorbate compounds, the polar area radio of aromatic molecule to water (PAad/w), and the log Kow together influenced the inhibition or promotion effects of OFGs. These results would allow predictions of adsorption behavior of aromatic compounds on carbonaceous materials on the basis of OFGs parameters. Theoretical calculations and simulations projected the configuration of aromatic molecules being parallel to the graphene sheets of carbonaceous materials. The symmetry-adapted perturbation theory (SAPT) energy decomposition showed that the electrostatic forces intensified with the increase of adsorbate polarity. These analyses revealed that the electrostatic forces were enhanced in the presence of OFGs and that the π-π EDA (electron donor-acceptor) was the main force.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jingyi Feng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jie Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Anfei He
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - G Daniel Sheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
97
|
Gao M, Xu Y, Chang X, Song Z. Combined effects of carbon nanotubes and cadmium on the photosynthetic capacity and antioxidant response of wheat seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34344-34354. [PMID: 33644839 DOI: 10.1007/s11356-021-13024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
A detailed study of nanomaterials has revealed their broad application prospects. However, the presence of carbon nanotubes (CNTs) in the environment has been increasing and has aroused concerns regarding their toxicity to crops when combined with heavy metals. In the present study, the effects of Cd on the photosynthetic capacity and antioxidant activity of wheat seedlings in the presence of single-walled CNTs (SW) and multi-walled CNTs (MW) were investigated. Our results indicated that SW (5-40 mg L-1) and MW (10-40 mg L-1) significantly increased the oxidative stress response of wheat seedlings to Cd. Compared with Cd alone, CNTs combined with Cd decreased net photosynthetic rate, stomatal conductance, transpiration rate, primary maximum photochemical efficiency of photosystem II, actual quantum yield, photosynthetic electron transport rate, root canal protein, and ribulose-1,5-bisphosphate carboxylase/oxygenase content. Moreover, combined treatments increased the content of superoxide anion, superoxide dismutase, guaiacol peroxidase, cytochrome, and malondialdehyde in wheat seedlings. Moreover, membrane lipid peroxidation was aggravated, causing serious damage to the wheat membrane system. In addition, the toxicity of the SW treatment and the combined treatment with SW and Cd was higher than that of the MW treatment.
Collapse
Affiliation(s)
- Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, 515063, China
| | - Yalei Xu
- School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Xipeng Chang
- School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, 515063, China.
| |
Collapse
|
98
|
Jain N, Gupta E, Kanu NJ. Plethora of Carbon Nanotubes Applications in Various Fields – A State-of-the-Art-Review. SMART SCIENCE 2021. [DOI: 10.1080/23080477.2021.1940752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nidhi Jain
- Department of Engineering Science, Bharati Vidyapeeth College of Engineering, Lavale, Pune, India
| | - Eva Gupta
- Department of Electrical Engineering, ASET, Amity University, Noida, India
- Department of Electrical Engineering, TSSM’s Bhivrabai Sawant College of Engineering and Research, Pune, Maharashtra, India
| | - Nand Jee Kanu
- Department of Mechanical Engineering, S. V. National Institute of Technology, Surat, India
- Department of Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India
| |
Collapse
|
99
|
Pt Nanoparticles Anchored on NH2-MIL-101 with Efficient Peroxidase-Like Activity for Colorimetric Detection of Dopamine. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dopamine (DA) is an important catecholamine neurotransmitter that plays a highly relevant role in regulating the central nervous system, and abnormal DA content can cause many immune-related diseases. Hence, it is of significance to sensitively and specifically identify DA for clinical medicine. In this work, Pt/NH2-MIL-101 hybrid nanozymes with bimetallic catalytic centers were fabricated by forming coordinate bonds between Pt nanoparticles (Pt NPs) and –NH2 on metal–organic frameworks (MOF). The catalytic activity of Pt/NH2-MIL-101 was increased by 1.5 times via enlarging the exposure of more active sites and improving the activity of the active sites through the strategy of forming bimetallic catalytic centers. In the presence of DA, competing with 3, 3′, 5, 5′-tetramethylbenzidine (TMB) for the generated hydroxyl radicals (•OH), the blue oxidation state TMB (Ox-TMB) is reduced to colorless TMB, showing dramatic color changes. The Pt/NH2-MIL-101-based colorimetric assay enables the sensitive and robust detection of DA molecules with a detection limit of only 0.42 μM and has an observable potential in clinical applications.
Collapse
|
100
|
Ishag A, Sun Y. Recent Advances in Two-Dimensional MoS 2 Nanosheets for Environmental Application. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alhadi Ishag
- College of Environmental Science and Technology, North China Electric Power University, Beijing, 102206, People’s Republic of China
| | - Yubing Sun
- College of Environmental Science and Technology, North China Electric Power University, Beijing, 102206, People’s Republic of China
| |
Collapse
|