51
|
Genaro-Mattos TC, Klingelsmith KB, Allen LB, Anderson A, Tallman KA, Porter NA, Korade Z, Mirnics K. Sterol Biosynthesis Inhibition in Pregnant Women Taking Prescription Medications. ACS Pharmacol Transl Sci 2021; 4:848-857. [PMID: 33860207 DOI: 10.1021/acsptsci.1c00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Sterol biosynthesis is a critical homeostatic mechanism of the body. Sterol biosynthesis begins during early embryonic life and continues throughout life. Many commonly used medications, prescribed >200 million times in the United States annually, have a sterol biosynthesis inhibition side effect. Using our high-throughput LC-MS/MS method, we assessed the levels of post-lanosterol sterol intermediates (lanosterol, desmosterol, and 7-dehydrocholesterol (7-DHC)) and cholesterol in 1312 deidentified serum samples from pregnant women. 302 samples showing elevated 7-DHC were analyzed for the presence of 14 medications known to inhibit the 7-dehydrocholesterol reductase enzyme (DHCR7) and increase 7-DHC. Of the 302 samples showing 7-DHC elevation, 43 had detectable levels of prescription medications with a DHCR7-inhibiting side effect. Taking more than one 7-DHC-elevating medication in specific combinations (polypharmacy) might exacerbate the effect on 7-DHC levels in pregnant women, suggesting a potentially additive or synergistic effect. As 7-DHC and 7-DHC-derived oxysterols are toxic, and as DHCR7-inhibiting medications are considered teratogens, our findings raise potential concerns regarding the use of prescription medication with a DHCR7-inhibiting side effect during pregnancy. The use of prescription medications during pregnancy is sometimes unavoidable, but choosing a medication without a DHCR7-inhibiting side effect might lead to a heathier pregnancy and prevent putatively adverse outcomes for the developing offspring.
Collapse
Affiliation(s)
- Thiago C Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Korinne B Klingelsmith
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Luke B Allen
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States.,Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Allison Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Keri A Tallman
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37221, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37221, United States
| | - Zeljka Korade
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Károly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States.,Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
52
|
Abstract
Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intraretinal sterol transport, metabolism, and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: (a) cholesterol synthesis in the neural retina; (b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); (c) cholesterol efflux from the neural retina and the RPE; and (d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps and opportunities in the field that beg further research in this topic area.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.
| |
Collapse
|
53
|
Genaro-Mattos T, Anderson A, Allen LB, Korade Z, Mirnics K. Altered Cholesterol Biosynthesis Affects Drug Metabolism. ACS OMEGA 2021; 6:5490-5498. [PMID: 33681590 PMCID: PMC7931400 DOI: 10.1021/acsomega.0c05817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The last step of cholesterol biosynthesis is the conversion of 7-dehydrocholesterol (7-DHC) into cholesterol, a reaction catalyzed by dehydrocholesterol reductase 7 (DHCR7). Investigation of the effect of Dhcr7 single-allele mutations on the metabolism of aripiprazole (ARI) and cariprazine (CAR) in maternally exposed transgenic pups revealed that ARI, CAR, and their active metabolites were decreased in the liver and brain of Dhcr7 +/- . This difference in the drug and metabolite levels resulted in an increased turnover of ARI and CAR in tissues from Dhcr7 +/- animals, indicating an enhanced metabolism, which was at least partially due to increased levels of Cyp2d6 in the liver of Dhcr7 +/- mice. Finally, experiments with both WT and DHCR7 +/- human fibroblasts revealed lower drug levels in DHCR7 +/- heterozygous cells. Our findings have potential clinical implications, as DHCR7 heterozygosity is present in 1-3% in the human population, and these individuals might have reduced therapeutic levels of Cyp2d6-metabolized medications and are putatively more susceptible to unwanted side effects.
Collapse
Affiliation(s)
- Thiago
C. Genaro-Mattos
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Allison Anderson
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Luke B. Allen
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Zeljka Korade
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Pediatrics, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Károly Mirnics
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
54
|
Zhang X, Alhasani RH, Zhou X, Reilly J, Zeng Z, Strang N, Shu X. Oxysterols and retinal degeneration. Br J Pharmacol 2021; 178:3205-3219. [PMID: 33501641 DOI: 10.1111/bph.15391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Retinal degeneration, characterised by the progressive death of retinal neurons, is the most common cause of visual impairment. Oxysterols are the cholesterol derivatives produced via enzymatic and/or free radical oxidation that regulate cholesterol homeostasis in the retina. Preclinical and clinical studies have suggested a connection between oxysterols and retinal degeneration. Here, we summarise early and recent work related to retina oxysterol-producing enzymes and the distribution of oxysterols in the retina. We examine the impact of loss of oxysterol-producing enzymes on retinal pathology and explore the molecular mechanisms associated with the toxic or protective roles of individual oxysterols in different types of retinal degeneration. We conclude that increased efforts to better understand the oxysterol-associated pathophysiology will help in the development of effective retinal degeneration therapies. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Reem Hasaballah Alhasani
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.,Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan, China
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow, UK
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.,Department of Vision Science, Glasgow Caledonian University, Glasgow, UK.,School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan, China
| |
Collapse
|
55
|
Transcriptomic Changes Associated with Loss of Cell Viability Induced by Oxysterol Treatment of a Retinal Photoreceptor-Derived Cell Line: An In Vitro Model of Smith-Lemli-Opitz Syndrome. Int J Mol Sci 2021; 22:ijms22052339. [PMID: 33652836 PMCID: PMC7956713 DOI: 10.3390/ijms22052339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
Smith–Lemli–Opitz Syndrome (SLOS) results from mutations in the gene encoding the enzyme DHCR7, which catalyzes conversion of 7-dehydrocholesterol (7DHC) to cholesterol (CHOL). Rats treated with a DHCR7 inhibitor serve as a SLOS animal model, and exhibit progressive photoreceptor-specific cell death, with accumulation of 7DHC and oxidized sterols. To understand the basis of this cell type specificity, we performed transcriptomic analyses on a photoreceptor-derived cell line (661W), treating cells with two 7DHC-derived oxysterols, which accumulate in tissues and bodily fluids of SLOS patients and in the rat SLOS model, as well as with CHOL (negative control), and evaluated differentially expressed genes (DEGs) for each treatment. Gene enrichment analysis and compilation of DEG sets indicated that endoplasmic reticulum stress, oxidative stress, DNA damage and repair, and autophagy were all highly up-regulated pathways in oxysterol-treated cells. Detailed analysis indicated that the two oxysterols exert their effects via different molecular mechanisms. Changes in expression of key genes in highlighted pathways (Hmox1, Ddit3, Trib3, and Herpud1) were validated by immunofluorescence confocal microscopy. The results extend our understanding of the pathobiology of retinal degeneration and SLOS, identifying potential new druggable targets for therapeutic intervention into these and other related orphan diseases.
Collapse
|
56
|
Xue M, Zhu G. Variation in fatty acids of Antarctic krill (
Euphausia superba
) preserved under constant dry conditions: Does storage time and ontogeny matter? J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mei Xue
- College of Marine Sciences Shanghai Ocean University Shanghai China
- Center for Polar Research Shanghai Ocean University Shanghai China
| | - Guoping Zhu
- College of Marine Sciences Shanghai Ocean University Shanghai China
- Center for Polar Research Shanghai Ocean University Shanghai China
- National Engineering Research Center for Oceanic Fisheries Shanghai China
- Polar Marine Ecosystem Group The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources Shanghai Ocean University, Ministry of Education Shanghai China
| |
Collapse
|
57
|
Miyamoto S, Lima RS, Inague A, Viviani LG. Electrophilic oxysterols: generation, measurement and protein modification. Free Radic Res 2021; 55:416-440. [PMID: 33494620 DOI: 10.1080/10715762.2021.1879387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cholesterol is an essential component of mammalian plasma membranes. Alterations in sterol metabolism or oxidation have been linked to various pathological conditions, including cardiovascular diseases, cancer, and neurodegenerative disorders. Unsaturated sterols are vulnerable to oxidation induced by singlet oxygen and other reactive oxygen species. This process yields reactive sterol oxidation products, including hydroperoxides, epoxides as well as aldehydes. These oxysterols, in particular those with high electrophilicity, can modify nucleophilic sites in biomolecules and affect many cellular functions. Here, we review the generation and measurement of reactive sterol oxidation products with emphasis on cholesterol hydroperoxides and aldehyde derivatives (electrophilic oxysterols) and their effects on protein modifications.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo S Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas G Viviani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
58
|
Tallman KA, Allen LB, Klingelsmith KB, Anderson A, Genaro-Mattos TC, Mirnics K, Porter NA, Korade Z. Prescription Medications Alter Neuronal and Glial Cholesterol Synthesis. ACS Chem Neurosci 2021; 12:735-745. [PMID: 33528983 PMCID: PMC7977035 DOI: 10.1021/acschemneuro.0c00765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mouse brain contains over 100 million neuronal, glial, and other support cells. Developing neurons and astrocytes synthesize their own cholesterol, and disruption of this process can occur by both genetic and chemical mechanisms. In this study we have exposed cultured murine neurons and astrocytes to six different prescription medications that cross the placenta and blood-brain barriers and analyzed the effects of these drugs on cholesterol biosynthesis by an LC-MS/MS protocol that assays 14 sterols and 7 oxysterols in a single run. Three antipsychotics (haloperidol, cariprazine, aripiprazole), two antidepressants (trazodone and sertraline), and an antiarhythmic (amiodarone) inhibited one or more sterol synthesis enzymes. The result of the exposures was a dose-dependent increase in levels of various sterol intermediates and a decreased level of cholesterol in the cultured cells. Four prescription medications (haloperidol, aripiprazole, cariprazine, and trazodone) acted primarily on the DHCR7 enzyme. The result of this exposure was an increase in 7-dehydrocholesterol in neurons and astrocytes to levels that were comparable to those found in cultured neurons and astrocytes from transgenic mice that carried a Dhcr7 pathogenic mutation modeling the neurodevelopmental disorder Smith-Lemli-Opitz syndrome.
Collapse
Affiliation(s)
- Keri A Tallman
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Luke B Allen
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Korinne B Klingelsmith
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Allison Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Thiago C Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Károly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, United States
| | | |
Collapse
|
59
|
Matsuoka Y, Yamada KI. Detection and structural analysis of lipid-derived radicals in vitro and in vivo. Free Radic Res 2021; 55:441-449. [PMID: 33504242 DOI: 10.1080/10715762.2021.1881500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lipids can be oxidized by reactive oxygen species, resulting in lipid peroxidation and the formation of reactive metabolites such as lipid-derived electrophiles. These products have been reported to induce inflammation, angiogenesis, and ferroptosis. Lipid peroxidation can produce many different products, each of which performs a different function, and which can be challenging to detect in vivo. The initial products of lipid oxidation are lipid-derived radicals, which can cause extensive chain reactions leading to lipid peroxidation. Hence, the ability to detect lipid radicals may provide information about this important class of molecules and the mechanism by which they cause cellular and tissue damage in a wide range of oxidative conditions. In this review, we report recent scientific advances in the detection of lipid-derived radicals in vitro and in cultured cells. We also introduce the possibility of visualization and structural analysis of lipid-derived radicals generated not only in in cells but also in animal tissue samples from oxidative disease models, using fluorescence-based lipid radicals' detection probes. We anticipate that the various innovative techniques summarized in this paper will be applied and further developed to clarify the role of lipid peroxidation in the pathogenesis of oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Yuta Matsuoka
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
60
|
Ortiz‐Escarza JM, Medina ME, Trigos A. On the peroxyl radical scavenging ability of β‐sitosterol in lipid media: A theoretical study. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Manuel E. Medina
- Centro de Investigación en Micología Aplicada Universidad Veracruzana Xalapa Mexico
| | - Angel Trigos
- Centro de Investigación en Micología Aplicada Universidad Veracruzana Xalapa Mexico
| |
Collapse
|
61
|
Fliesler SJ. EDITOR'S PERSPECTIVE: On the verge of translation: Combined cholesterol-antioxidant supplementation as a potential therapeutic intervention for Smith-Lemli-Opitz syndrome. Exp Eye Res 2020; 202:108390. [PMID: 33307076 DOI: 10.1016/j.exer.2020.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and the Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo- the State University of New York, Buffalo, NY, 14215-1129, USA; Research Service, Western New York Healthcare System, Buffalo, NY, 14215-1129, USA.
| |
Collapse
|
62
|
Do Q, Lee DD, Dinh AN, Seguin RP, Zhang R, Xu L. Development and Application of a Peroxyl Radical Clock Approach for Measuring Both Hydrogen-Atom Transfer and Peroxyl Radical Addition Rate Constants. J Org Chem 2020; 86:153-168. [PMID: 33269585 DOI: 10.1021/acs.joc.0c01920] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rate-determining step in free radical lipid peroxidation is the propagation of the peroxyl radical, where generally two types of reactions occur: (a) hydrogen-atom transfer (HAT) from a donor to the peroxyl radical; (b) peroxyl radical addition (PRA) to a "C═C" double bond. Peroxyl radical clocks have been used to determine the rate constants of HAT reactions (kH), but no radical clock is available to measure the rate constants of PRA reactions (kadd). In this work, we modified the analytical approach on the linoleate-based peroxyl radical clock to enable the simultaneous measurement of both kH and kadd. Compared to the original approach, this new approach involves the use of a strong reducing agent, LiAlH4, to completely reduce both HAT and PRA-derived products and the relative quantitation of total linoleate oxidation products with or without reduction. The new approach was then applied to measuring the kH and kadd values for several series of organic substrates, including para- and meta-substituted styrenes, substituted conjugated dienes, and cyclic alkenes. Furthermore, the kH and kadd values for a variety of biologically important lipids were determined for the first time, including conjugated fatty acids, sterols, coenzyme Q10, and lipophilic vitamins, such as vitamins D3 and A.
Collapse
Affiliation(s)
- Quynh Do
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David D Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew N Dinh
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan P Seguin
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rutan Zhang
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
63
|
Foret MK, Lincoln R, Do Carmo S, Cuello AC, Cosa G. Connecting the "Dots": From Free Radical Lipid Autoxidation to Cell Pathology and Disease. Chem Rev 2020; 120:12757-12787. [PMID: 33211489 DOI: 10.1021/acs.chemrev.0c00761] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our understanding of lipid peroxidation in biology and medicine is rapidly evolving, as it is increasingly implicated in various diseases but also recognized as a key part of normal cell function, signaling, and death (ferroptosis). Not surprisingly, the root and consequences of lipid peroxidation have garnered increasing attention from multiple disciplines in recent years. Here we "connect the dots" between the fundamental chemistry underpinning the cascade reactions of lipid peroxidation (enzymatic or free radical), the reactive nature of the products formed (lipid-derived electrophiles), and the biological targets and mechanisms associated with these products that culminate in cellular responses. We additionally bring light to the use of highly sensitive, fluorescence-based methodologies. Stemming from the foundational concepts in chemistry and biology, these methodologies enable visualizing and quantifying each reaction in the cascade in a cellular and ultimately tissue context, toward deciphering the connections between the chemistry and physiology of lipid peroxidation. The review offers a platform in which the chemistry and biomedical research communities can access a comprehensive summary of fundamental concepts regarding lipid peroxidation, experimental tools for the study of such processes, as well as the recent discoveries by leading investigators with an emphasis on significant open questions.
Collapse
Affiliation(s)
- Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Richard Lincoln
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
64
|
Furan fatty acids in enriched ω-3 fish oil: Oxidation kinetics with and without added monomethyl furan fatty acid as potential natural antioxidant. Food Chem 2020; 327:127087. [PMID: 32454277 DOI: 10.1016/j.foodchem.2020.127087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 11/20/2022]
Abstract
This study investigated the lipid oxidation reactions of furan fatty acids, long-chain ω-3 polyunsaturated fatty acids, and tocopherols in an enriched ω-3 fish oil to better understand their degradation kinetics. Furthermore, the influence of an added monomethyl furan fatty acid 9-(3-methyl-5-pentylfuran-2-yl) nonanoic acid (9M5) at 50-250 µM on the oxidation reactions was evaluated. The results showed that the fish oil was rich in monomethyl and dimethyl furan fatty acids (c = 1.3 g/100 g lipids). Upon oxidation of the fish oil, the dimethyl furan fatty acids degraded faster than the monomethyl ones, but also faster than tocopherols. The addition of 9M5 revealed antioxidant activity: It inhibited the degradation of the ω-3 polyunsaturated fatty acids and the formation of primary and secondary lipid oxidation products, and slowed down the degradation of the furan fatty acids and tocopherols. This research offers new insights into the importance of furan fatty acids in lipid oxidation reactions.
Collapse
Key Words
- 11-(3,4-dimethyl-5-pentylfuran-2-yl) undecanoic acid (PubChem CID: 13963867)
- 11-(3,4-dimethyl-5-propylfuran-2-yl) undecanoic acid (PubChem CID: 13963866)
- 11-(3-methyl-5-pentylfuran-2-yl) undecanoic acid (PubChem CID: 11056824)
- 13-(3,4-dimethyl-5-propylfuran-2-yl) tridecanoic acid (PubChem CID: 71374382)
- 4,7,10,13,16,19-docosahexaenoic acid (PubChem CID: 445580)
- 5,8,11,14,17-eicosapentaenoic acid (PubChem CID: 446284)
- 9-(3,4-dimethyl-5-pentylfuran-2-yl) nonanoic acid (PubChem CID: 13963865)
- 9-(3,4-dimethyl-5-propylfuran-2-yl) nonanoic acid (PubChem CID: 13963864)
- 9-(3-methyl-5-pentylfuran-2-yl) nonanoic acid (PubChem CID: 3085134)
- Fish oil
- Furan fatty acids
- Lipid oxidation
- Natural antioxidants
- Oxidation products
- Propanal (PubChem CID: 527)
- Tocopherol
Collapse
|
65
|
Ogasawara S, Ogawa S, Yamamoto Y, Hara S. Enzymatic Preparation and Oxidative Stability of Human Milk Fat Substitute Containing Polyunsaturated Fatty Acid Located at sn-2 Position. J Oleo Sci 2020; 69:825-835. [PMID: 32641606 DOI: 10.5650/jos.ess19332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of human milk fat substitutes (HMFSs), rich in palmitic acid (16:0) at the sn-2 position of triacylglycerol (TAG) and rich in unsaturated fatty acids (FAs) (oleic acid, 18:1 and linoleic acid, 18:2) at the sn-1(3) positions, has gained popularity. In this study, HMFSs containing polyunsaturated fatty acids (PUFAs) predominantly at the sn-2 position were prepared, and their oxidation stabilities were compared. First, a non-PUFA-containing HMFS (NP-HMFS) was produced by enzymatic reactions using Novozyme® 435 and Lipozyme® RM-IM as the enzymes and lard as the raw material. Second, HMFSs, containing 10 % PUFA at the sn-2 or sn-1(3) position, were individually prepared by enzymatic reactions using lard and fish oil as raw materials. Here, sn-2-PUFA-monoacylglycerol (MAG) was extracted from the reaction solution using a mixture of hexane and ethanol/water (70:30, v/v) to produce high-purity sn-2-PUFA-MAG with 78.1 % yield. For the PUFA-containing HMFS substrates, comparable oxidation stability was confirmed by an auto-oxidation test. Finally, HMFSs containing 10 % or 2 % sn-1,3-18:1-sn-2-PUFA-TAG species were prepared by enzymatic reactions and subsequent physical blending. The oxidative stability of sn-1,3-18:1-sn-2-PUFA-HMFS was two-fold higher than that of 1/2/3-PUFA-HMFS in which each PUFA was located without stereospecific limitations in TAG. The removal of PUFA-TAG molecular species with higher concentrations of unsaturated units had a significant effect. In addition, the oxidation stability increased with the addition of tocopherol as an antioxidant. Thus, the combined use of two strategies, that is, the removal of PUFA-TAG molecular species with high concentrations of unsaturated units and the addition of antioxidants, would provide a PUFA-containing HMFS substrate with high oxidative stability.
Collapse
Affiliation(s)
- Shin Ogasawara
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University
| | - Shigesaburo Ogawa
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University
| | - Yukihiro Yamamoto
- Department of Life Sciences, Faculty of Science and Technology, Prefectural University of Hiroshima
| | - Setsuko Hara
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University
| |
Collapse
|
66
|
Skóra B, Szychowski KA, Gmiński J. A concise review of metallic nanoparticles encapsulation methods and their potential use in anticancer therapy and medicine. Eur J Pharm Biopharm 2020; 154:153-165. [PMID: 32681962 DOI: 10.1016/j.ejpb.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Interest in the use of metallic nanoparticles (NPs) in medicine is constantly increasing. The key challenge to the introduction of NPs into anticancer treatment is to limit the contact of their surface with healthy cells and to enable specific targeting of certain tissues, for example, cancerous cells. These aspects have raised a question whether the recent methods of drug delivery allow restricting the contact of NPs with healthy and/or nontarget cells. NPs can be restricted by encapsulation, which involves entrapping them into organic layers. This review is the first to present the different approaches for the encapsulation of metallic NPs, using liposomes, dendrimers, and proteins. The types and methods of entrapping are shown in an accessible way, enriched with graphics, and the pros and cons of these methods are disputable. Furthermore, the potential uses of NP complexes in medicine are described.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| |
Collapse
|
67
|
Ory L, Gentil E, Kumla D, Kijjoa A, Nazih EH, Roullier C. Detection of ergosterol using liquid chromatography/electrospray ionization mass spectrometry: Investigation of unusual in-source reactions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8780. [PMID: 32154942 DOI: 10.1002/rcm.8780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/18/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE In the field of natural products, de-replication of complex mixtures has become a usual practice to annotate known compounds and avoid their re-isolation. For this purpose, many groups rely on liquid chromatography coupled to high-resolution mass spectrometry (HPLC/MS) to deduce molecular formulae of compounds allowing comparison with public or in-house databases. Electrospray ionization (ESI) is usually considered as the method of choice for investigating a large panel of compounds but, in some cases, it may lead to unusual results as described in this article for ergosterol. METHODS Ergosterol and other fungal sterols in methanolic solution were analysed using various chromatographic gradients with HPLC/MS using both ion trap time-of-flight MS and Orbitrap MS instruments fitted with an ESI source. Further flow injection analyses were performed to investigate the influence of the solvent composition. MS/MS fragmentation data were acquired to annotate the various ions observed. RESULTS Contrary to other fungal sterols, ergosterol was found to be highly sensitive to oxidation during ESI. Putative structures were proposed based on MS/MS studies and known oxidation mechanisms of ergosterol by reactive oxygen species that could be formed in the ESI process. The proportion of acetonitrile in the eluent was found to influence this in-source oxidation, with an increased proportion of oxidized sodium adducts with higher proportions of acetonitrile. CONCLUSIONS While ergosterol is a major sterol found in fungi, this study investigates its ionization by electrospray for the first time. The results reported here will help further detection and annotation of this compound in fungal extracts after HPLC/ESI-MS analyses.
Collapse
Affiliation(s)
- Lucie Ory
- EA2160 - MMS, Nantes University, 9 rue Bias, Nantes, 44035, France
| | - Emmanuel Gentil
- EA2160 - MMS, Nantes University, 9 rue Bias, Nantes, 44035, France
- Corsaire - ThalassOMICS, Biogenouest, Université de Nantes, Nantes, 44000, France
| | - Decha Kumla
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Universidade do Porto, Porto, 4050-313, Portugal
| | - Anake Kijjoa
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Universidade do Porto, Porto, 4050-313, Portugal
| | - El-Hassane Nazih
- EA2160 - MMS, Nantes University, 9 rue Bias, Nantes, 44035, France
| | - Catherine Roullier
- EA2160 - MMS, Nantes University, 9 rue Bias, Nantes, 44035, France
- Corsaire - ThalassOMICS, Biogenouest, Université de Nantes, Nantes, 44000, France
| |
Collapse
|
68
|
Reactive Sterol Electrophiles: Mechanisms of Formation and Reactions with Proteins and Amino Acid Nucleophiles. CHEMISTRY (BASEL, SWITZERLAND) 2020; 2:390-417. [PMID: 35372835 PMCID: PMC8976181 DOI: 10.3390/chemistry2020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radical-mediated lipid oxidation and the formation of lipid hydroperoxides has been a focal point in the investigation of a number of human pathologies. Lipid peroxidation has long been linked to the inflammatory response and more recently, has been identified as the central tenet of the oxidative cell death mechanism known as ferroptosis. The formation of lipid electrophile-protein adducts has been associated with many of the disorders that involve perturbations of the cellular redox status, but the identities of adducted proteins and the effects of adduction on protein function are mostly unknown. Both cholesterol and 7-dehydrocholesterol (7-DHC), which is the immediate biosynthetic precursor to cholesterol, are oxidizable by species such as ozone and oxygen-centered free radicals. Product mixtures from radical chain processes are particularly complex, with recent studies having expanded the sets of electrophilic compounds formed. Here, we describe recent developments related to the formation of sterol-derived electrophiles and the adduction of these electrophiles to proteins. A framework for understanding sterol peroxidation mechanisms, which has significantly advanced in recent years, as well as the methods for the study of sterol electrophile-protein adduction, are presented in this review.
Collapse
|
69
|
Kagan VE, Tyurina YY, Sun WY, Vlasova II, Dar H, Tyurin VA, Amoscato AA, Mallampalli R, van der Wel PCA, He RR, Shvedova AA, Gabrilovich DI, Bayir H. Redox phospholipidomics of enzymatically generated oxygenated phospholipids as specific signals of programmed cell death. Free Radic Biol Med 2020; 147:231-241. [PMID: 31883467 PMCID: PMC7037592 DOI: 10.1016/j.freeradbiomed.2019.12.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 01/16/2023]
Abstract
High fidelity and effective adaptive changes of the cell and tissue metabolism to changing environments require strict coordination of numerous biological processes. Multicellular organisms developed sophisticated signaling systems of monitoring and responding to these different contexts. Among these systems, oxygenated lipids play a significant role realized via a variety of re-programming mechanisms. Some of them are enacted as a part of pro-survival pathways that eliminate harmful or unnecessary molecules or organelles by a variety of degradation/hydrolytic reactions or specialized autophageal processes. When these "partial" intracellular measures are insufficient, the programs of cells death are triggered with the aim to remove irreparably damaged members of the multicellular community. These regulated cell death mechanisms are believed to heavily rely on signaling by a highly diversified group of molecules, oxygenated phospholipids (PLox). Out of thousands of detectable individual PLox species, redox phospholipidomics deciphered several specific molecules that seem to be diagnostic of specialized death programs. Oxygenated cardiolipins (CLs) and phosphatidylethanolamines (PEs) have been identified as predictive biomarkers of apoptosis and ferroptosis, respectively. This has led to decoding of the enzymatic mechanisms of their formation involving mitochondrial oxidation of CLs by cytochrome c and endoplasmic reticulum-associated oxidation of PE by lipoxygenases. Understanding of the specific biochemical radical-mediated mechanisms of these oxidative reactions opens new avenues for the design and search of highly specific regulators of cell death programs. This review emphasizes the usefulness of such selective lipid peroxidation mechanisms in contrast to the concept of random poorly controlled free radical reactions as instruments of non-specific damage of cells and their membranes. Detailed analysis of two specific examples of phospholipid oxidative signaling in apoptosis and ferroptosis along with their molecular mechanisms and roles in reprogramming has been presented.
Collapse
Affiliation(s)
- V E Kagan
- Center for Free Radical and Antioxidant Heath, USA; Department of Environmental and Occupational Health, University of Pittsburgh, USA; Department of Chemistry, University of Pittsburgh, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Department of Radiation Oncology, University of Pittsburgh, USA; Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russian Federation.
| | - Y Y Tyurina
- Center for Free Radical and Antioxidant Heath, USA; Department of Environmental and Occupational Health, University of Pittsburgh, USA
| | - W Y Sun
- Center for Free Radical and Antioxidant Heath, USA; Department of Environmental and Occupational Health, University of Pittsburgh, USA; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - I I Vlasova
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russian Federation
| | - H Dar
- Center for Free Radical and Antioxidant Heath, USA; Department of Environmental and Occupational Health, University of Pittsburgh, USA
| | - V A Tyurin
- Center for Free Radical and Antioxidant Heath, USA; Department of Environmental and Occupational Health, University of Pittsburgh, USA
| | - A A Amoscato
- Center for Free Radical and Antioxidant Heath, USA; Department of Environmental and Occupational Health, University of Pittsburgh, USA
| | | | - P C A van der Wel
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - R R He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - A A Shvedova
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, WV, USA
| | | | - H Bayir
- Center for Free Radical and Antioxidant Heath, USA; Department of Critical Care Medicine, University of Pittsburgh, USA.
| |
Collapse
|
70
|
Laguerre M, Tenon M, Bily A, Birtić S. Toward a Spatiotemporal Model of Oxidation in Lipid Dispersions: A Hypothesis‐Driven Review. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900209] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mickaël Laguerre
- Naturex SA, Science and Technology DepartmentGivaudan Flavour Division 250 rue Pierre Bayle, BP 81218 F‐84911 Avignon Cedex 9 France
| | - Mathieu Tenon
- Naturex SA, Science and Technology DepartmentGivaudan Flavour Division 250 rue Pierre Bayle, BP 81218 F‐84911 Avignon Cedex 9 France
| | - Antoine Bily
- Naturex SA, Science and Technology DepartmentGivaudan Flavour Division 250 rue Pierre Bayle, BP 81218 F‐84911 Avignon Cedex 9 France
| | - Simona Birtić
- Naturex SA, Science and Technology DepartmentGivaudan Flavour Division 250 rue Pierre Bayle, BP 81218 F‐84911 Avignon Cedex 9 France
| |
Collapse
|
71
|
Genaro-Mattos TC, Anderson A, Allen LB, Tallman KA, Porter NA, Korade Z, Mirnics K. Maternal cariprazine exposure inhibits embryonic and postnatal brain cholesterol biosynthesis. Mol Psychiatry 2020; 25:2685-2694. [PMID: 32504050 PMCID: PMC7577905 DOI: 10.1038/s41380-020-0801-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 11/15/2022]
Abstract
Cariprazine (CAR) is a strong inhibitor of the Dhcr7 enzyme, the last enzyme in the cholesterol biosynthesis pathway. We assessed the effects of CAR on maternally exposed Dhcr7+/- and wild-type mouse offspring, and tested the biochemical effects of CAR in human serum samples. Dhcr7+/- and wild-type time-pregnant mice were exposed to vehicle or 0.2 mg/kg CAR from E12 to E19. Levels of CAR, CAR metabolites, sterols, and oxysterols were measured in the brain of maternally exposed offspring at various time points using LC-MS/MS. Embryonic exposure to CAR significantly increased levels of 7-DHC in all organs of exposed embryos, with a particularly strong effect in the brain. Detectable levels of CAR and elevated 7-DHC were observed in the brain of newborn pups 14 days after drug exposure. In addition, CAR altered sterol metabolism in all animals analyzed, with the strongest effect on the brain of Dhcr7+/- pups born to Dhcr7+/- dams. Furthermore, CAR elevated toxic oxysterols in the brain of maternally exposed Dhcr7+/- offspring to levels approaching those seen in a mouse model of Smith-Lemli-Opitz syndrome. Finally, we observed that patients taking CAR have elevated 7-DHC in their serum. In summary, maternal DHCR7 heterozygosity, combined with offspring DHCR7 heterozygosity might represent a vulnerability factor to medications that interfere with sterol biosynthesis. Due to the conserved sterol biosynthesis between mice and humans, we suggest that the 1-3% of patient population with single-allele DHCR7 mutations might not be ideal candidates for CAR use, especially if they are nursing, pregnant or plan to become pregnant.
Collapse
Affiliation(s)
- Thiago C. Genaro-Mattos
- grid.266813.80000 0001 0666 4105Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105 USA
| | - Allison Anderson
- grid.266813.80000 0001 0666 4105Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105 USA
| | - Luke B. Allen
- grid.266813.80000 0001 0666 4105Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Keri A. Tallman
- grid.152326.10000 0001 2264 7217Department of Chemistry, Vanderbilt University, Nashville, TN 37235 USA
| | - Ned A. Porter
- grid.152326.10000 0001 2264 7217Department of Chemistry, Vanderbilt University, Nashville, TN 37235 USA
| | - Zeljka Korade
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Károly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| |
Collapse
|
72
|
Speen AM, Hoffman JR, Kim HYH, Escobar YN, Nipp GE, Rebuli ME, Porter NA, Jaspers I. Small Molecule Antipsychotic Aripiprazole Potentiates Ozone-Induced Inflammation in Airway Epithelium. Chem Res Toxicol 2019; 32:1997-2005. [PMID: 31476115 DOI: 10.1021/acs.chemrestox.9b00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inhaled ground level ozone (O3) has well described adverse health effects, which may be augmented in susceptible populations. While conditions, such as pre-existing respiratory disease, have been identified as factors enhancing susceptibility to O3-induced health effects, the potential for chemical interactions in the lung to sensitize populations to pollutant-induced responses has not yet been studied. In the airways, inhaled O3 reacts with lipids, such as cholesterol, to generate reactive and electrophilic oxysterol species, capable of causing cellular dysfunction and inflammation. The enzyme regulating the final step of cholesterol biosynthesis, 7-dehydrocholesterol reductase (DHCR7), converts 7-dehydrocholesterol (7-DHC) to cholesterol. Inhibition of DHCR7 increases the levels of 7-DHC, which is much more susceptible to oxidation than cholesterol. Chemical analysis established the capacity for a variety of small molecule antipsychotic drugs, like Aripiprazole (APZ), to inhibit DHCR7 and elevate circulating 7-DHC. Our results show that APZ and the known DHCR7 inhibitor, AY9944, increase 7-DHC levels in airway epithelial cells and potentiate O3-induced IL-6 and IL-8 expression and cytokine release. Targeted immune-related gene array analysis demonstrates that APZ significantly modified O3-induced expression of 16 genes, causing dysregulation in expression of genes associated with leukocyte recruitment and inflammatory response. Additionally, we find that APZ increases O3-induced IL-6 and IL-8 expression in human nasal epithelial cells from male but not female donors. Overall, the evidence we provide describes a novel molecular mechanism by which chemicals, such as APZ, that perturb cholesterol biosynthesis affect O3-induced biological responses.
Collapse
Affiliation(s)
| | | | - Hye-Young H Kim
- Department of Chemistry and Center for Molecular Toxicology , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | | | | | | | - Ned A Porter
- Department of Chemistry and Center for Molecular Toxicology , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | | |
Collapse
|
73
|
Affiliation(s)
- Jan Honzíček
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| |
Collapse
|
74
|
Baschieri A, Pizzol R, Guo Y, Amorati R, Valgimigli L. Calibration of Squalene, p-Cymene, and Sunflower Oil as Standard Oxidizable Substrates for Quantitative Antioxidant Testing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6902-6910. [PMID: 31132263 DOI: 10.1021/acs.jafc.9b01400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The autoxidation kinetics of stripped sunflower oil (SSO), squalene (SQ), and p-cymene ( p-C) initiated by 2,2'-azobis(isobutyronitrile) at 303 K were investigated under controlled conditions by differential oximetry in order to build reference model systems that are representative of the natural variability of oxidizable materials, for quantitative antioxidant testing. Rate constants for oxidative chain propagation ( kp) and chain termination (2 kt) and the oxidizability ( kp/√2 kt) were measured using 2,6-di- tert-butyl-4-methoxyphenol, 2,2,5,7,8-pentamethyl-6-chromanol, BHT, and 4-methoxyphenol as reference antioxidants. Measured values of kp (M-1 s-1)/2 kt (M-1 s-1)/oxidizability (M-1/2 s-1/2) at 303 K in chlorobenzene were 66.9/3.45 × 106/3.6 × 10-2, 68.0/7.40 × 106/2.5 × 10-2, and 0.83/2.87 × 106/4.9 × 10-4, respectively, for SSO, SQ, and p-C. Quercetin, magnolol, caffeic acid phenethyl ester, and 2,4,6-trimethylphenol were investigated to validate calibrations. The distinctive usefulness of the three substrates in testing antioxidants is discussed.
Collapse
Affiliation(s)
- Andrea Baschieri
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| | - Romeo Pizzol
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| | - Yafang Guo
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| | - Luca Valgimigli
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| |
Collapse
|
75
|
Formation of trans-epoxy fatty acids correlates with formation of isoprostanes and could serve as biomarker of oxidative stress. Prostaglandins Other Lipid Mediat 2019; 144:106334. [PMID: 31009766 DOI: 10.1016/j.prostaglandins.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/05/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Abstract
In mammals, epoxy-polyunsaturated fatty acids (epoxy-PUFA) are enzymatically formed from naturally occurring all-cis PUFA by cytochrome P450 monooxygenases leading to the generation of cis-epoxy-PUFA (mixture of R,S- and S,R-enantiomers). In addition, also non-enzymatic chemical peroxidation gives rise to epoxy-PUFA leading to both, cis- and trans-epoxy-PUFA (mixture of R,R- and S,S-enantiomers). Here, we investigated for the first time trans-epoxy-PUFA and the trans/cis-epoxy-PUFA ratio as potential new biomarker of lipid peroxidation. Their formation was analyzed in correlation with the formation of isoprostanes (IsoP), which are commonly used as biomarkers of oxidative stress. Five oxidative stress models were investigated including incubations of three human cell lines as well as the in vivo model Caenorhabditis elegans with tert-butyl hydroperoxide (t-BOOH) and analysis of murine kidney tissue after renal ischemia reperfusion injury (IRI). A comprehensive set of IsoP and epoxy-PUFA derived from biologically relevant PUFA (ARA, EPA and DHA) was simultaneously quantified by LC-ESI(-)-MS/MS. Following renal IRI only a moderate increase in the kidney levels of IsoP and no relevant change in the trans/cis-epoxy-PUFA ratio was observed. In all investigated cell lines (HCT-116, HepG2 and Caki-2) as well as C. elegans a dose dependent increase of both, IsoP and the trans/cis-epoxy-PUFA ratio in response to the applied t-BOOH was observed. The different cell lines showed a distinct time dependent pattern consistent for both classes of autoxidatively formed oxylipins. Clear and highly significant correlations of the trans/cis-epoxy-PUFA ratios with the IsoP levels were found in all investigated cell lines and C. elegans. Based on this, we suggest the trans/cis-epoxy-PUFA ratio as potential new biomarker of oxidative stress, which warrants further investigation.
Collapse
|
76
|
Firsov AM, Fomich MA, Bekish AV, Sharko OL, Kotova EA, Saal HJ, Vidovic D, Shmanai VV, Pratt DA, Antonenko YN, Shchepinov MS. Threshold protective effect of deuterated polyunsaturated fatty acids on peroxidation of lipid bilayers. FEBS J 2019; 286:2099-2117. [PMID: 30851224 DOI: 10.1111/febs.14807] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/06/2019] [Indexed: 01/08/2023]
Abstract
Autoxidation of polyunsaturated fatty acids (PUFAs) damages lipid membranes and generates numerous toxic by-products implicated in neurodegeneration, aging, and other pathologies. Abstraction of bis-allylic hydrogen atoms is the rate-limiting step of PUFA autoxidation, which is inhibited by replacing bis-allylic hydrogens with deuterium atoms (D-PUFAs). In cells, the presence of a relatively small fraction of D-PUFAs among natural PUFAs is sufficient to effectively inhibit lipid peroxidation (LPO). Here, we investigate the effect of various D-PUFAs on the stability of liposomes under oxidative stress conditions. The permeability of vesicle membranes to fluorescent dyes was measured as a proxy for bilayer integrity, and the formation of conjugated dienes was monitored as a proxy for LPO. Remarkably, both approaches reveal a similar threshold for the protective effect of D-PUFAs in liposomes. We show that protection rendered by D-PUFAs depends on the structure of the deuterated fatty acid. Our findings suggest that protection of PUFAs against autoxidation depends on the total level of deuterated bi-sallylic (CD2 ) groups present in the lipid bilayer. However, the phospholipid containing 6,6,9,9,12,12,15,15,18,18-d10 -docosahexaenoic acid exerts a stronger protective effect than should be expected from its deuteration level. These findings further support the application of D-PUFAs as preventive/therapeutic agents in numerous pathologies that involve LPO.
Collapse
Affiliation(s)
- Alexander M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Maksim A Fomich
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - Andrei V Bekish
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - Olga L Sharko
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | - Dragoslav Vidovic
- School of Chemistry, Monash University, Clayton, Melbourne, Australia
| | - Vadim V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Science, University of Ottawa, Canada
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | |
Collapse
|
77
|
The Effectiveness of Vitamin E Treatment in Alzheimer's Disease. Int J Mol Sci 2019; 20:ijms20040879. [PMID: 30781638 PMCID: PMC6412423 DOI: 10.3390/ijms20040879] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Vitamin E was proposed as treatment for Alzheimer’s disease many years ago. However, the effectiveness of the drug is not clear. Vitamin E is an antioxidant and neuroprotector and it has anti-inflammatory and hypocholesterolemic properties, driving to its importance for brain health. Moreover, the levels of vitamin E in Alzheimer’s disease patients are lower than in non-demented controls. Thus, vitamin E could be a good candidate to have beneficial effects against Alzheimer’s. However, evidence is consistent with a limited effectiveness of vitamin E in slowing progression of dementia; the information is mixed and inconclusive. The question is why does vitamin E fail to treat Alzheimer’s disease? In this paper we review the studies with and without positive results in Alzheimer’s disease and we discuss the reasons why vitamin E as treatment sometimes has positive results on cognition but at others, it does not.
Collapse
|
78
|
Zielinski ZAM, Pratt DA. H-Atom Abstraction vs Addition: Accounting for the Diverse Product Distribution in the Autoxidation of Cholesterol and Its Esters. J Am Chem Soc 2019; 141:3037-3051. [DOI: 10.1021/jacs.8b11524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zosia A. M. Zielinski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
79
|
Derogis PBMC, Chaves-Fillho AB, Miyamoto S. Characterization of Hydroxy and Hydroperoxy Polyunsaturated Fatty Acids by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:21-35. [DOI: 10.1007/978-3-030-11488-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
80
|
Genaro-Mattos TC, Allen LB, Anderson A, Tallman KA, Porter NA, Korade Z, Mirnics K. Maternal aripiprazole exposure interacts with 7-dehydrocholesterol reductase mutations and alters embryonic neurodevelopment. Mol Psychiatry 2019; 24:491-500. [PMID: 30742019 PMCID: PMC6477890 DOI: 10.1038/s41380-019-0368-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/10/2018] [Accepted: 01/23/2019] [Indexed: 12/13/2022]
Abstract
Mutations in both copies in the gene encoding 7-dehydrocholesterol reductase (DHCR7) cause Smith-Lemli-Opitz Syndrome (SLOS), which is characterized by a toxic elevation in 7-dehydrocholesterol (7-DHC). Aripiprazole (ARI) exposure, independent of genetic mutations, also leads to elevation of 7-DHC. We investigated the combined effect of a single-copy Dhcr7+/- mutation and maternal ARI exposure on the developing offspring brain. We generated a time-pregnant mouse model where WT and Dhcr7+/- embryos were maternally exposed to ARI or vehicle (VEH) from E12 to E19 (5 mg/kg). Levels of cholesterol, its precursors, ARI and its metabolites were measured at P0. We found that ARI and its metabolites were transported across the placenta and reached the brain of offspring. Maternal ARI exposure led to decreased viability of embryos and increased 7-DHC levels, regardless of maternal or offspring Dhcr7 genotype. In addition, Dhcr7+/- pups were more vulnerable to maternal ARI exposure than their WT littermates, and maternal Dhcr7+/- genotype also exacerbated offspring response to ARI treatment. Finally, both 7-DHC levels and 7-DHC/cholesterol ratio is the highest in Dhcr7+/- pups from Dhcr7+/- mothers exposed to ARI, underscoring a potentially dangerous interaction between maternal genotype×embryonic genotype×treatment. Our findings have important clinical implications. SLOS patients should avoid drugs that increase 7-DHC levels such as ARI, trazodone and haloperidol. In addition, treatment with 7-DHC elevating substances might be potentially unsafe for the 1-1.5% of population with single-allele disruptions of the DHCR7 gene. Finally, prenatal and parental genetic testing for DHCR7 should be considered before prescribing sterol-interfering medications during pregnancy.
Collapse
Affiliation(s)
- Thiago C. Genaro-Mattos
- 0000 0001 0666 4105grid.266813.8Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA
| | - Luke B. Allen
- 0000 0001 0666 4105grid.266813.8Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE USA
| | - Allison Anderson
- 0000 0001 0666 4105grid.266813.8Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA
| | - Keri A. Tallman
- 0000 0001 2264 7217grid.152326.1Department of Chemistry, Vanderbilt University, Nashville, TN USA
| | - Ned A. Porter
- 0000 0001 2264 7217grid.152326.1Department of Chemistry, Vanderbilt University, Nashville, TN USA
| | - Zeljka Korade
- 0000 0001 0666 4105grid.266813.8Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE USA
| | - Károly Mirnics
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
81
|
Fliesler SJ, Xu L. Oxysterols and Retinal Degeneration in a Rat Model of Smith-Lemli-Opitz Syndrome: Implications for an Improved Therapeutic Intervention. Molecules 2018; 23:E2720. [PMID: 30360379 PMCID: PMC6222618 DOI: 10.3390/molecules23102720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 01/31/2023] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive human disease caused by mutations in the gene encoding 7-dehydrocholesterol (7DHC) reductase (DHCR7), resulting in abnormal accumulation of 7DHC and reduced levels of cholesterol in bodily tissues and fluids. A rat model of the disease has been created by treating normal rats with the DHCR7 inhibitor, AY9944, which causes progressive, irreversible retinal degeneration. Herein, we review the features of this disease model and the evidence linking 7DHC-derived oxysterols to the pathobiology of the disease, with particular emphasis on the associated retinal degeneration. A recent study has shown that treating the rat model with cholesterol plus suitable antioxidants completely prevents the retinal degeneration. These findings are discussed with regard to their translational implications for developing an improved therapeutic intervention for SLOS over the current standard of care.
Collapse
Affiliation(s)
- Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
- Research Service, VA Western NY Healthcare System, Buffalo, NY 14260, USA.
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
82
|
Wages PA, Kim HYH, Korade Z, Porter NA. Identification and characterization of prescription drugs that change levels of 7-dehydrocholesterol and desmosterol. J Lipid Res 2018; 59:1916-1926. [PMID: 30087204 PMCID: PMC6168312 DOI: 10.1194/jlr.m086991] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/26/2018] [Indexed: 12/18/2022] Open
Abstract
Regulating blood cholesterol (Chol) levels by pharmacotherapy has successfully improved cardiovascular health. There is growing interest in the role of Chol precursors in the treatment of diseases. One sterol precursor, desmosterol (Des), is a potential pharmacological target for inflammatory and neurodegenerative disorders. However, elevating levels of the precursor 7-dehydrocholesterol (7-DHC) by inhibiting the enzyme 7-dehydrocholesterol reductase is linked to teratogenic outcomes. Thus, altering the sterol profile may either increase risk toward an adverse outcome or confer therapeutic benefit depending on the metabolite affected by the pharmacophore. In order to characterize any unknown activity of drugs on Chol biosynthesis, a chemical library of Food and Drug Administration-approved drugs was screened for the potential to modulate 7-DHC or Des levels in a neural cell line. Over 20% of the collection was shown to impact Chol biosynthesis, including 75 compounds that alter 7-DHC levels and 49 that modulate Des levels. Evidence is provided that three tyrosine kinase inhibitors, imatinib, ponatinib, and masitinib, elevate Des levels as well as other substrates of 24-dehydrocholesterol reductase, the enzyme responsible for converting Des to Chol. Additionally, the mechanism of action for ponatinib and masitinib was explored, demonstrating that protein levels are decreased as a result of treatment with these drugs.
Collapse
Affiliation(s)
- Phillip A Wages
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Hye-Young H Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Zeljka Korade
- Department of Pediatrics, Biochemistry, and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
83
|
Kapphahn RJ, Richards MJ, Ferrington DA, Fliesler SJ. Lipid-derived and other oxidative modifications of retinal proteins in a rat model of Smith-Lemli-Opitz syndrome. Exp Eye Res 2018; 178:247-254. [PMID: 30114413 DOI: 10.1016/j.exer.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022]
Abstract
Oxidative modification of proteins can perturb their structure and function, often compromising cellular viability. Such modifications include lipid-derived adducts (e.g., 4-hydroxynonenal (HNE) and carboxyethylpyrrole (CEP)) as well as nitrotyrosine (NTyr). We compared the retinal proteome and levels of such modifications in the AY9944-treated rat model of Smith-Lemli-Opitz syndrome (SLOS), in comparison to age-matched controls. Retinas harvested at 3 months of age were either subjected to proteomic analysis or to immuno-slot blot analysis, the latter probing blots with antibodies raised against HNE, CEP, and NTyr, followed by quantitative densitometry. HNE modification of retinal proteins was markedly (>9-fold) higher in AY9944-treated rats compared to controls, whereas CEP modification was only modestly (≤2-fold) greater, and NTyr modification was minimal and exhibited no difference as a function of AY9944 treatment. Anti-HNE immunoreactivity was greatest in the plexiform and ganglion cell layers, but also present in the RPE, choroid, and photoreceptor outer segment layer in AY9944-treated rats; control retinas showed minimal HNE labeling. 1D-PAGE/Western blot analysis of rod outer segment (ROS) membranes revealed HNE modification of both opsin and β-transducin. Proteomic analysis revealed the differential expression of several retinal proteins as a consequence of AY9944 treatment. Upregulated proteins included those involved in chaperone/protein folding, oxidative and cellular stress responses, transcriptional regulation, and energy production. βA3/A1 Crystallin, which has a role in regulation of lysosomal acidification, was down-regulated. Hence, oxidative modification of retinal proteins occurs in the SLOS rat model, in addition to the previously described oxidation of lipids. The results are discussed in the context of the histological and physiological changes that occur in the retina in the SLOS rat model.
Collapse
Affiliation(s)
- Rebecca J Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Michael J Richards
- Department of Ophthalmology, Saint Louis University, School of Medicine, St. Louis, MO, USA
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Steven J Fliesler
- Department of Ophthalmology, Saint Louis University, School of Medicine, St. Louis, MO, USA; Departments of Ophthalmology and Biochemistry and the Neuroscience Graduate Program, The State University of New York (SUNY)- University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Administration Western New York Healthcare System (VAWNYHS), Buffalo, NY, USA.
| |
Collapse
|
84
|
Genaro-Mattos TC, Tallman KA, Allen LB, Anderson A, Mirnics K, Korade Z, Porter NA. Dichlorophenyl piperazines, including a recently-approved atypical antipsychotic, are potent inhibitors of DHCR7, the last enzyme in cholesterol biosynthesis. Toxicol Appl Pharmacol 2018; 349:21-28. [PMID: 29698737 DOI: 10.1016/j.taap.2018.04.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/21/2022]
Abstract
While antipsychotic medications provide important relief from debilitating psychotic symptoms, they also have significant adverse side effects, which might have relevant impact on human health. Several research studies, including ours, have shown that commonly used antipsychotics such as haloperidol and aripiprazole affect cholesterol biosynthesis at the conversion of 7-dehydrocholesterol (7-DHC) to cholesterol. This transformation is promoted by the enzyme DHCR7 and its inhibition causes increases in plasma and tissue levels of 7-DHC. The inhibition of this enzymatic step by mutations in the Dhcr7 gene leads to Smith-Lemli-Opitz syndrome, a devastating human condition that can be replicated in rats by small molecule inhibitors of DHCR7. The fact that two compounds, brexpiprazole and cariprazine, that were recently approved by the FDA have substructural elements in common with the DHCR7 inhibitor aripiprazole, prompted us to evaluate the effect of brexpiprazole and cariprazine on cholesterol biosynthesis. We report that cariprazine affects levels of 7-DHC and cholesterol in cell culture incubations at concentrations as low as 5 nM. Furthermore, a common metabolite of cariprazine and aripiprazole, 2,3-(dichlorophenyl) piperazine, inhibits DHCR7 activity at concentrations comparable to those of the potent teratogen AY9944. The cell culture experiments were corroborated in mice in studies showing that treatment with cariprazine elevated 7-DHC in brain and serum. The consequences of sterol inhibition by antipsychotics in the developing nervous system and the safety of their use during pregnancy remains to be established.
Collapse
Affiliation(s)
- Thiago C Genaro-Mattos
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Nashville, TN, United States
| | - Keri A Tallman
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Nashville, TN, United States
| | - Luke B Allen
- Department of Pediatrics and Biochemistry, Molecular Biology, UNMC, Omaha, NE 68198, United States
| | - Allison Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, Omaha, NE 68198, United States
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, Omaha, NE 68198, United States
| | - Zeljka Korade
- Department of Pediatrics and Biochemistry, Molecular Biology, UNMC, Omaha, NE 68198, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Nashville, TN, United States; Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN, United States.
| |
Collapse
|
85
|
Oemer G, Lackner K, Muigg K, Krumschnabel G, Watschinger K, Sailer S, Lindner H, Gnaiger E, Wortmann SB, Werner ER, Zschocke J, Keller MA. Molecular structural diversity of mitochondrial cardiolipins. Proc Natl Acad Sci U S A 2018; 115:4158-4163. [PMID: 29618609 PMCID: PMC5910844 DOI: 10.1073/pnas.1719407115] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Current strategies used to quantitatively describe the biological diversity of lipids by mass spectrometry are often limited in assessing the exact structural variability of individual molecular species in detail. A major challenge is represented by the extensive isobaric overlap present among lipids, hampering their accurate identification. This is especially true for cardiolipins, a mitochondria-specific class of phospholipids, which are functionally involved in many cellular functions, including energy metabolism, cristae structure, and apoptosis. Substituted with four fatty acyl side chains, cardiolipins offer a particularly high potential to achieve complex mixtures of molecular species. Here, we demonstrate how systematically generated high-performance liquid chromatography-mass spectral data can be utilized in a mathematical structural modeling approach, to comprehensively analyze and characterize the molecular diversity of mitochondrial cardiolipin compositions in cell culture and disease models, cardiolipin modulation experiments, and a broad variety of frequently studied model organisms.
Collapse
Affiliation(s)
- Gregor Oemer
- Division of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Katharina Lackner
- Division of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Katharina Muigg
- Division of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Katrin Watschinger
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sabrina Sailer
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Erich Gnaiger
- Oroboros Instruments Corporation, 6020 Innsbruck, Austria
| | - Saskia B Wortmann
- Department of Paediatrics, Salzburger Landeskliniken, Paracelsus Medical University, 5020 Salzburg, Austria
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Ernst R Werner
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Zschocke
- Division of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus A Keller
- Division of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
86
|
Petty HR. Frontiers of Complex Disease Mechanisms: Membrane Surface Tension May Link Genotype to Phenotype in Glaucoma. Front Cell Dev Biol 2018; 6:32. [PMID: 29682502 PMCID: PMC5897435 DOI: 10.3389/fcell.2018.00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Although many monogenic diseases are understood based upon structural changes of gene products, less progress has been made concerning polygenic disease mechanisms. This article presents a new interdisciplinary approach to understand complex diseases, especially their genetic polymorphisms. I focus upon primary open angle glaucoma (POAG). Although elevated intraocular pressure (IOP) and oxidative stress are glaucoma hallmarks, the linkages between these factors and cell death are obscure. Reactive oxygen species (ROS) promote the formation of oxidatively truncated phosphoglycerides (OTP), free fatty acids, lysophosphoglycerides, oxysterols, and other chemical species that promote membrane disruption and decrease membrane surface tension. Several POAG-linked gene polymorphisms identify proteins that manage damaged lipids and/or influence membrane surface tension. POAG-related genes expected to participate in these processes include: ELOVL5, ABCA1, APOE4, GST, CYP46A1, MYOC, and CAV. POAG-related gene products are expected to influence membrane surface tension, strength, and repair. I propose that heightened IOP overcomes retinal ganglion cell (RGC) membrane compressive strength, weakened by damaged lipid accumulation, to form pores. The ensuing structural failure promotes apoptosis and blindness. The linkage between glaucoma genotype and phenotype is mediated by physical events. Force balancing between the IOP and compressive strength regulates pore nucleation; force balancing between pore line tension and membrane surface tension regulates pore growth. Similar events may contribute to traumatic brain injury, Alzheimer's disease, and macular degeneration.
Collapse
Affiliation(s)
- Howard R Petty
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
87
|
Fliesler SJ, Peachey NS, Herron J, Hines KM, Weinstock NI, Ramachandra Rao S, Xu L. Prevention of Retinal Degeneration in a Rat Model of Smith-Lemli-Opitz Syndrome. Sci Rep 2018; 8:1286. [PMID: 29352199 PMCID: PMC5775248 DOI: 10.1038/s41598-018-19592-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Smith-Lemli-Opitz Syndrome (SLOS) is a recessive human disease caused by defective cholesterol (CHOL) synthesis at the level of DHCR7 (7-dehydrocholesterol reductase), which normally catalyzes the conversion of 7-dehydrocholesterol (7DHC) to CHOL. Formation and abnormal accumulation of 7DHC and 7DHC-derived oxysterols occur in SLOS patients and in rats treated with the DHCR7 inhibitor AY9944. The rat SLOS model exhibits progressive and irreversible retinal dysfunction and degeneration, which is only partially ameliorated by dietary CHOL supplementation. We hypothesized that 7DHC-derived oxysterols are causally involved in this retinal degeneration, and that blocking or reducing their formation should minimize the phenotype. Here, using the SLOS rat model, we demonstrate that combined dietary supplementation with CHOL plus antioxidants (vitamins E and C, plus sodium selenite) provides better outcomes than dietary CHOL supplementation alone with regard to preservation of retinal structure and function and lowering 7DHC-derived oxysterol formation. These proof-of-principle findings provide a translational, pre-clinical framework for designing clinical trials using CHOL-antioxidant combination therapy as an improved therapeutic intervention over the current standard of care for the treatment of SLOS.
Collapse
Affiliation(s)
- Steven J Fliesler
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA.
- Departments of Ophthalmology and Biochemistry, and Neuroscience Program, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo- The State University of New York (SUNY), Buffalo, NY, USA.
- SUNY Eye Institute, Buffalo, NY, USA.
| | - Neal S Peachey
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Josi Herron
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kelly M Hines
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Nadav I Weinstock
- Hunter James Kelly Research Institute, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo- The State University of New York (SUNY), Buffalo, NY, USA
| | - Sriganesh Ramachandra Rao
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA
- Departments of Ophthalmology and Biochemistry, and Neuroscience Program, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo- The State University of New York (SUNY), Buffalo, NY, USA
- SUNY Eye Institute, Buffalo, NY, USA
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA.
| |
Collapse
|
88
|
Tu J, Yin Y, Xu M, Wang R, Zhu ZJ. Absolute quantitative lipidomics reveals lipidome-wide alterations in aging brain. Metabolomics 2017; 14:5. [PMID: 30830317 DOI: 10.1007/s11306-017-1304-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/22/2017] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The absolute quantitation of lipids at the lipidome-wide scale is a challenge but plays an important role in the comprehensive study of lipid metabolism. OBJECTIVES We aim to develop a high-throughput quantitative lipidomics approach to enable the simultaneous identification and absolute quantification of hundreds of lipids in a single experiment. Then, we will systematically characterize lipidome-wide changes in the aging mouse brain and provide a link between aging and disordered lipid homeostasis. METHODS We created an in-house lipid spectral library, containing 76,361 lipids and 181,300 MS/MS spectra in total, to support accurate lipid identification. Then, we developed a response factor-based approach for the large-scale absolute quantifications of lipids. RESULTS Using the lipidomics approach, we absolutely quantified 1212 and 864 lipids in human cells and mouse brains, respectively. The quantification accuracy was validated using the traditional approach with a median relative error of 12.6%. We further characterized the lipidome-wide changes in aging mouse brains, and dramatic changes were observed in both glycerophospholipids and sphingolipids. Sphingolipids with longer acyl chains tend to accumulate in aging brains. Membrane-esterified fatty acids demonstrated diverse changes with aging, while most polyunsaturated fatty acids consistently decreased. CONCLUSION We developed a high-throughput quantitative lipidomics approach and systematically characterized the lipidome-wide changes in aging mouse brains. The results proved a link between aging and disordered lipid homeostasis.
Collapse
Affiliation(s)
- Jia Tu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yandong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
| | - Meimei Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ruohong Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
89
|
Aliwarga T, Raccor BS, Lemaitre RN, Sotoodehnia N, Gharib SA, Xu L, Totah RA. Enzymatic and free radical formation of cis- and trans- epoxyeicosatrienoic acids in vitro and in vivo. Free Radic Biol Med 2017; 112:131-140. [PMID: 28734877 PMCID: PMC5623104 DOI: 10.1016/j.freeradbiomed.2017.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/01/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid (AA) oxidation that have important cardioprotective and signaling properties. AA is an ω-6 polyunsaturated fatty acid (PUFA) that is prone to autoxidation. Although hydroperoxides and isoprostanes are major autoxidation products of AA, EETs are also formed from the largely overlooked peroxyl radical addition mechanism. While autoxidation yields both cis- and trans-EETs, cytochrome P450 (CYP) epoxygenases have been shown to exclusively catalyze the formation of all regioisomer cis-EETs, on each of the double bonds. In plasma and red blood cell (RBC) membranes, cis- and trans-EETs have been observed, and both have multiple physiological functions. We developed a sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay that separates cis- and trans- isomers of EETs and applied it to determine the relative distribution of cis- vs. trans-EETs in reaction mixtures of AA subjected to free radical oxidation in benzene and liposomes in vitro. We also determined the in vivo distribution of EETs in several tissues, including human and mouse heart, and RBC membranes. We then measured EET levels in heart and RBC of young mice compared to old. Formation of EETs in free radical reactions of AA in benzene and in liposomes exhibited time- and AA concentration-dependent increase and trans-EET levels were higher than cis-EETs under both conditions. In contrast, cis-EET levels were overall higher in biological samples. In general, trans-EETs increased with mouse age more than cis-EETs. We propose a mechanism for the non-enzymatic formation of cis- and trans-EETs involving addition of the peroxyl radical to one of AA's double bonds followed by bond rotation and intramolecular homolytic substitution (SHi). Enzymatic formation of cis-EETs by cytochrome P450 most likely occurs via a one-step concerted mechanism that does not allow bond rotation. The ability to accurately measure circulating EETs resulting from autoxidation or enzymatic reactions in plasma and RBC membranes will allow for future studies investigating how these important signaling lipids correlate with heart disease outcomes.
Collapse
Affiliation(s)
- Theresa Aliwarga
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, USA.
| | - Brianne S Raccor
- Department of Pharmaceutical Sciences, Campbell University, PO Box 1090, Buies Creek, NC 27506, USA.
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA.
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA; Division of Cardiology, University of Washington, Box 356422, Seattle, WA 98195, USA.
| | - Sina A Gharib
- Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Washington, S376- 815 Mercer, Box 385052, Seattle, WA, USA.
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, USA.
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, USA.
| |
Collapse
|
90
|
Korade Z, Genaro-Mattos TC, Tallman KA, Liu W, Garbett KA, Koczok K, Balogh I, Mirnics K, Porter NA. Vulnerability of DHCR7+/- mutation carriers to aripiprazole and trazodone exposure. J Lipid Res 2017; 58:2139-2146. [PMID: 28972118 DOI: 10.1194/jlr.m079475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Indexed: 12/20/2022] Open
Abstract
Smith-Lemli-Opitz syndrome is a recessive disorder caused by mutations in 7-dehydrocholesterol reductase (DHCR)7 with a heterozygous (HET) carrier frequency of 1-3%. A defective DHCR7 causes accumulation of 7-dehydrocholesterol (DHC), which is a highly oxidizable and toxic compound. Recent studies suggest that several antipsychotics, including the highly prescribed pharmaceuticals, aripiprazole (ARI) and trazodone (TRZ), increase 7-DHC levels in vitro and in humans. Our investigation was designed to compare the effects of ARI and TRZ on cholesterol (Chol) synthesis in fibroblasts from DHCR7+/- human carriers and controls (CTRs). Six matched pairs of fibroblasts were treated and their sterol profile analyzed by LC-MS. Significantly, upon treatment with ARI and TRZ, the total accumulation of 7-DHC was higher in DHCR7-HET cells than in CTR fibroblasts. The same set of experiments was repeated in the presence of 13C-lanosterol to determine residual Chol synthesis, revealing that ARI and TRZ strongly inhibit de novo Chol biosynthesis. The results suggest that DHCR7 carriers have increased vulnerability to both ARI and TRZ exposure compared with CTRs. Thus, the 1-3% of the population who are DHCR7 carriers may be more likely to sustain deleterious health consequences on exposure to compounds like ARI and TRZ that increase levels of 7-DHC, especially during brain development.
Collapse
Affiliation(s)
- Zeljka Korade
- Departments of Pediatrics and Biochemistry and Molecular Biology University of Nebraska Medical Center, Omaha, NE 68198
| | - Thiago C Genaro-Mattos
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| | - Keri A Tallman
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| | - Wei Liu
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| | | | - Katalin Koczok
- Department of Laboratory Medicine, Division of Clinical Genetics, University of Debrecen, Debrecen 4032, Hungary
| | - Istvan Balogh
- Department of Laboratory Medicine, Division of Clinical Genetics, University of Debrecen, Debrecen 4032, Hungary
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
91
|
Korade Ž, Liu W, Warren EB, Armstrong K, Porter NA, Konradi C. Effect of psychotropic drug treatment on sterol metabolism. Schizophr Res 2017; 187:74-81. [PMID: 28202290 PMCID: PMC5554466 DOI: 10.1016/j.schres.2017.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/08/2023]
Abstract
Cholesterol metabolism is vital for brain function. Previous work in cultured cells has shown that a number of psychotropic drugs inhibit the activity of 7-dehydrocholesterol reductase (DHCR7), an enzyme that catalyzes the final steps in cholesterol biosynthesis. This leads to the accumulation of 7-dehydrocholesterol (7DHC), a molecule that gives rise to oxysterols, vitamin D, and atypical neurosteroids. We examined levels of cholesterol and the cholesterol precursors desmosterol, lanosterol, 7DHC and its isomer 8-dehydrocholesterol (8DHC), in blood samples of 123 psychiatric patients on various antipsychotic and antidepressant drugs, and 85 healthy controls, to see if the observations in cell lines hold true for patients as well. Three drugs, aripiprazole, haloperidol and trazodone increased circulating 7DHC and 8DHC levels, while five other drugs, clozapine, escitalopram/citalopram, lamotrigine, olanzapine, and risperidone, did not. Studies in rat brain verified that haloperidol dose-dependently increased 7DHC and 8DHC levels, while clozapine had no effect. We conclude that further studies should investigate the role of 7DHC and 8DHC metabolites, such as oxysterols, vitamin D, and atypical neurosteroids, in the deleterious and therapeutic effects of psychotropic drugs. Finally, we recommend that drugs that increase 7DHC levels should not be prescribed during pregnancy, as children born with DHCR7 deficiency have multiple congenital malformations.
Collapse
Affiliation(s)
- Željka Korade
- Department of Pediatrics and Department of Biochemistry and Molecular Biology, UNMC, Omaha, NE 68198, United States
| | - Wei Liu
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Nashville, TN 37235, United States
| | - Emily B Warren
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, United States
| | - Kristan Armstrong
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37212, United States
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Nashville, TN 37235, United States
| | - Christine Konradi
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, United States; Department of Psychiatry, Vanderbilt University, Nashville, TN 37212, United States.
| |
Collapse
|
92
|
Akondi RN, Trexler RV, Pfiffner SM, Mouser PJ, Sharma S. Modified Lipid Extraction Methods for Deep Subsurface Shale. Front Microbiol 2017; 8:1408. [PMID: 28790998 PMCID: PMC5524817 DOI: 10.3389/fmicb.2017.01408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/11/2017] [Indexed: 01/12/2023] Open
Abstract
Growing interest in the utilization of black shales for hydrocarbon development and environmental applications has spurred investigations of microbial functional diversity in the deep subsurface shale ecosystem. Lipid biomarker analyses including phospholipid fatty acids (PLFAs) and diglyceride fatty acids (DGFAs) represent sensitive tools for estimating biomass and characterizing the diversity of microbial communities. However, complex shale matrix properties create immense challenges for microbial lipid extraction procedures. Here, we test three different lipid extraction methods: modified Bligh and Dyer (mBD), Folch (FOL), and microwave assisted extraction (MAE), to examine their ability in the recovery and reproducibility of lipid biomarkers in deeply buried shales. The lipid biomarkers were analyzed as fatty acid methyl esters (FAMEs) with the GC-MS, and the average PL-FAME yield ranged from 67 to 400 pmol/g, while the average DG-FAME yield ranged from 600 to 3,000 pmol/g. The biomarker yields in the intact phospholipid Bligh and Dyer treatment (mBD + Phos + POPC), the Folch, the Bligh and Dyer citrate buffer (mBD-Cit), and the MAE treatments were all relatively higher and statistically similar compared to the other extraction treatments for both PLFAs and DGFAs. The biomarker yields were however highly variable within replicates for most extraction treatments, although the mBD + Phos + POPC treatment had relatively better reproducibility in the consistent fatty acid profiles. This variability across treatments which is associated with the highly complex nature of deeply buried shale matrix, further necessitates customized methodological developments for the improvement of lipid biomarker recovery.
Collapse
Affiliation(s)
- Rawlings N Akondi
- Department of Geology and Geography, West Virginia UniversityMorgantown, WV, United States
| | - Ryan V Trexler
- Civil, Environmental and Geodetic Engineering, The Ohio State UniversityColumbus, OH, United States
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of TennesseeKnoxville, TN, United States
| | - Paula J Mouser
- Civil, Environmental and Geodetic Engineering, The Ohio State UniversityColumbus, OH, United States
| | - Shikha Sharma
- Department of Geology and Geography, West Virginia UniversityMorgantown, WV, United States
| |
Collapse
|
93
|
|
94
|
Sharif NF, Korade Z, Porter NA, Harrison FE. Oxidative stress, serotonergic changes and decreased ultrasonic vocalizations in a mouse model of Smith-Lemli-Opitz syndrome. GENES BRAIN AND BEHAVIOR 2017; 16:619-626. [PMID: 28220990 DOI: 10.1111/gbb.12376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 12/25/2022]
Abstract
Smith-Lemli-Opitz syndrome is an inherited monogenic disorder in which mutations to the 7-dehydrocholesterol (7-DHC) reductase (Dhcr7) gene lead to deficits in cholesterol synthesis. As a result, many patients suffer from gross physiological and neurological deficits. The purpose of this study was to identify a potential abnormal behavioral phenotype in a compound mutant mouse model for Smith-Lemli-Opitz disease (Dhcr7 Δ3-5/T93M ) to further validate the model and to provide potential targets for future therapeutic interventions. We also sought to identify some of the underlying changes in brain function that may be responsible for behavioral differences among groups. The Dhcr7 compound mutant mice were smaller than their single mutant littermates. Both single and compound heterozygous mice made fewer ultrasonic vocalizations when separated from the dam, which may suggest a communication deficit in these animals. Striking increases of the highly oxidizable 7-DHC were observed in the compound mutant mice. 7-Dehydrocholesterol is the precursor to cholesterol and builds up because of decreased function of the mutated Dhcr7 enzyme. Additionally, several differences were noted in the serotonergic system including increased expression of the serotonin transporter and increased uptake of serotonin by isolated synaptosomes. We propose that changes to the oxidative environment during development can have a significant impact on the development of serotonergic function and that this contributes to behavioral differences observed in the mutant mice.
Collapse
Affiliation(s)
- N F Sharif
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Z Korade
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA.,Present address: Department of Pediatrics, Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - N A Porter
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - F E Harrison
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
95
|
Griffiths WJ, Wang Y. Sterolomics: State of the art, developments, limitations and challenges. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:771-773. [PMID: 28302589 PMCID: PMC5482426 DOI: 10.1016/j.bbalip.2017.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/05/2023]
Abstract
Sterolomics can be thought of as the quantitative determination of the entire complement of molecules based on the cyclopentanoperhydrophenanthrene skeleton in a system. Mass spectrometry is the dominant analytical technology employed. In this article we highlight some pitfalls in analysis, data interpretation and annotation. We give our opinion on how some of these pitfalls can best be avoided. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein. Pitfalls in sterolomic analysis and data interpretation Care needed to avoid ex vivo oxidation Dangers with databases and purity of authentic standards
Collapse
Affiliation(s)
| | - Yuqin Wang
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
96
|
Abstract
Recent advances in our understanding of lipid peroxidation, a degenerative process that is believed to play a key role in the pathogenesis of many diseases, are highlighted. In particular, the factors that control the kinetics and regio-/stereochemical outcomes of the autoxidation of both polyunsaturated fatty acids and sterols and the subsequent decomposition of the hydroperoxide products to cytotoxic derivatives are discussed. These advances promise to help clarify the role of lipid peroxidation in cell death and human disease.
Collapse
Affiliation(s)
- Zosia A M Zielinski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , Ottawa, Ontario, Canada K1N 6N5
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
97
|
Tallman KA, Kim HYH, Korade Z, Genaro-Mattos TC, Wages PA, Liu W, Porter NA. Probes for protein adduction in cholesterol biosynthesis disorders: Alkynyl lanosterol as a viable sterol precursor. Redox Biol 2017; 12:182-190. [PMID: 28258022 PMCID: PMC5333532 DOI: 10.1016/j.redox.2017.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Indexed: 01/13/2023] Open
Abstract
The formation of lipid electrophile-protein adducts is associated with many disorders that involve perturbations of cellular redox status. The identities of adducted proteins and the effects of adduction on protein function are mostly unknown and an increased understanding of these factors may help to define the pathogenesis of various human disorders involving oxidative stress. 7-Dehydrocholesterol (7-DHC), the immediate biosynthetic precursor to cholesterol, is highly oxidizable and gives electrophilic oxysterols that adduct proteins readily, a sequence of events proposed to occur in Smith-Lemli-Opitz syndrome (SLOS), a human disorder resulting from an error in cholesterol biosynthesis. Alkynyl lanosterol (a-Lan) was synthesized and studied in Neuro2a cells, Dhcr7-deficient Neuro2a cells and human fibroblasts. When incubated in control Neuro2a cells and control human fibroblasts, a-Lan completed the sequence of steps involved in cholesterol biosynthesis and alkynyl-cholesterol (a-Chol) was the major product formed. In Dhcr7-deficient Neuro2a cells or fibroblasts from SLOS patients, the biosynthetic transformation was interrupted at the penultimate step and alkynyl-7-DHC (a-7-DHC) was the major product formed. When a-Lan was incubated in Dhcr7-deficient Neuro2a cells and the alkynyl tag was used to ligate a biotin group to alkyne-containing products, protein-sterol adducts were isolated and identified. In parallel experiments with a-Lan and a-7-DHC in Dhcr7-deficient Neuro2a cells, a-7-DHC was found to adduct to a larger set of proteins (799) than a-Lan (457) with most of the a-Lan protein adducts (423) being common to the larger a-7-DHC set. Of the 423 proteins found common to both experiments, those formed from a-7-DHC were more highly enriched compared to a DMSO control than were those derived from a-Lan. The 423 common proteins were ranked according to the enrichment determined for each protein in the a-Lan and a-7-DHC experiments and there was a very strong correlation of protein ranks for the adducts formed in the parallel experiments.
Collapse
Affiliation(s)
- Keri A Tallman
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Hye-Young H Kim
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Zeljka Korade
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, United States; Department of Psychiatry, Vanderbilt University, Nashville, TN 37235, United States
| | - Thiago C Genaro-Mattos
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Phillip A Wages
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Wei Liu
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|
98
|
Lamberson CR, Muchalski H, McDuffee KB, Tallman KA, Xu L, Porter NA. Propagation rate constants for the peroxidation of sterols on the biosynthetic pathway to cholesterol. Chem Phys Lipids 2017; 207:51-58. [PMID: 28174017 DOI: 10.1016/j.chemphyslip.2017.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/30/2017] [Indexed: 02/05/2023]
Abstract
The free radical chain autoxidation of cholesterol and the oxidation products formed, i.e. oxysterols, have been the focus of intensive study for decades. The peroxidation of sterol precursors to cholesterol such as 7-dehydrocholesterol (7-DHC) and desmosterol as well as their oxysterols has received less attention. The peroxidation of these sterol precursors can become important under circumstances in which genetic conditions or exposures to small molecules leads to an increase of these biosynthetic intermediates in tissues and fluids. 7-DHC, for example, has a propagation rate constant for peroxidation some 200 times that of cholesterol and this sterol is found at elevated levels in a devastating human genetic condition, Smith-Lemli-Opitz syndrome (SLOS). The propagation rate constants for peroxidation of sterol intermediates on the biosynthetic pathway to cholesterol were determined by a competition kinetic method, i.e. a peroxyl radical clock. In this work, propagation rate constants for lathosterol, zymostenol, desmosterol, 7-dehydrodesmosterol and other sterols in the Bloch and Kandutsch-Russell pathways are assigned and these rate constants are related to sterol structural features. Furthermore, potential oxysterols products are proposed for sterols whose oxysterol products have not been determined.
Collapse
Affiliation(s)
- Connor R Lamberson
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Hubert Muchalski
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Kari B McDuffee
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Keri A Tallman
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Libin Xu
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Ned A Porter
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
99
|
A comparison of PC oxidation products as detected by MALDI-TOF and ESI-IT mass spectrometry. Chem Phys Lipids 2017; 203:33-45. [PMID: 28063839 DOI: 10.1016/j.chemphyslip.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 11/10/2016] [Accepted: 12/30/2016] [Indexed: 11/20/2022]
Abstract
Oxidized (phospho)lipids are of paramount interest for different reasons: besides their in vivo relevance as markers of inflammatory diseases, they are often needed in the laboratory to study the response of selected cells to oxidized lipids. Mass spectrometry (MS) is nowadays one of the most powerful methods to identify lipid oxidation products. Although MALDI and ESI MS are both widely used, it is so far not clear whether all potential phospholipid oxidation products can be detected by both methods This aspect will be studied here using NaMnO4-oxidized phosphatidylcholine 16:0/18:1 and 16:0/18:2 as simple, but reliable model systems. We will show that chain-shortened products such as aldehydes and carboxylic acids (generated by cleavage at the double bond position) can be easily detected by both ionization methods: without the need of any derivatization. However, primary oxidation products such as hydroperoxides can be predominantly detected by ESI MS while MALDI-TOF MS detects secondary oxidation products derived thereof more sensitively. Potential reasons for these differences will be discussed and put in the context of biological mixture analysis.
Collapse
|
100
|
Barnaba C, Rodríguez-Estrada MT, Lercker G, García HS, Medina-Meza IG. Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling. Steroids 2016; 116:52-59. [PMID: 27756542 DOI: 10.1016/j.steroids.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 09/05/2016] [Accepted: 10/06/2016] [Indexed: 11/20/2022]
Abstract
In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs.
Collapse
Affiliation(s)
- Carlo Barnaba
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| | - Maria Teresa Rodríguez-Estrada
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Giovanni Lercker
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Hugo Sergio García
- UNIDA, Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Veracruz, Ver. 91897, Mexico
| | | |
Collapse
|