51
|
Cui C, Mei L, Wang D, Jia P, Zhou Q, Liu W. A self-stabilized and water-responsive deliverable coenzyme-based polymer binary elastomer adhesive patch for treating oral ulcer. Nat Commun 2023; 14:7707. [PMID: 38001112 PMCID: PMC10673908 DOI: 10.1038/s41467-023-43571-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Oral ulcer can be treated with diverse biomaterials loading drugs or cytokines. However, most patients do not benefit from these materials because of poor adhesion, short-time retention in oral cavity and low drug therapeutic efficacy. Here we report a self-stabilized and water-responsive deliverable coenzyme salt polymer poly(sodium α-lipoate) (PolyLA-Na)/coenzyme polymer poly(α-lipoic acid) (PolyLA) binary synergistic elastomer adhesive patch, where hydrogen bonding cross-links between PolyLA and PolyLA-Na prevents PolyLA depolymerization and slow down the dissociation of PolyLA-Na, thus allowing water-responsive sustainable delivery of bioactive LA-based small molecules and durable adhesion to oral mucosal wound due to the adhesive action of PolyLA. In the model of mice and mini-pig oral ulcer, the adhesive patch accelerates the healing of the ulcer by regulating the damaged tissue inflammatory environment, maintaining the stability of oral microbiota, and promoting faster re-epithelialization and angiogenesis. This binary synergistic patch provided a therapeutic strategy to treat oral ulcer.
Collapse
Affiliation(s)
- Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Li Mei
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Danyang Wang
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Pengfei Jia
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
52
|
Bahng HW, Ertl CD, Yuan J, Wolf MO. Light-Controlled Switching of Perylene Bisimide Assemblies. J Phys Chem Lett 2023; 14:10369-10377. [PMID: 37948746 DOI: 10.1021/acs.jpclett.3c02468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Light-driven changes in supramolecular interactions in perylene bisimides (PBIs) with pendant sulfur-containing functional groups at the bay position are demonstrated. In the ground state, a noncovalent S···X interaction between the σ-hole on sulfur and a heteroatom, X (X = O, N, S), of a neighboring molecule is the main driving force for intermolecular interactions, while in the excited state it is the π-π interaction between PBI scaffolds which drives assembly. The presence of heteroatoms in the solvent results in acceleration of the π-stacking process via the formation of a PBI-solvent complex. The excited-state dynamics involved in the assembly process were revealed via time-resolved fluorescence and transient absorption spectroscopies, while steady-state spectroscopy was used to evaluate the structure of the supramolecular assembly.
Collapse
Affiliation(s)
- Hee-Won Bahng
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Cathrin D Ertl
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Jennifer Yuan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
53
|
Liu J, Li X, Chen K, Li Y, Feng S, Su P, Zou Y, Li Y, Wang W. Super Adhesive Fluorescent Materials for Encrypted Messages, Underwater Leak Repair, and Their Potential Application in Fluorescent Tattoos. Macromol Rapid Commun 2023; 44:e2300282. [PMID: 37461805 DOI: 10.1002/marc.202300282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Indexed: 07/25/2023]
Abstract
Achieving high-performance luminescence for underwater bonding remains a significant challenge in materials science. This study addresses this issue by synthesizing a luminescent material based on an aggregation-induced emission (AIE) monomer and copolymerizing it with lipoic acid (LA) to create an AIE supramolecular polymer. The resulting copolymer exhibits strong fluorescence under ultraviolet (UV) irradiation at 365 nm due to the AIE of TPEE and enables underwater adhesion. The P(LA-TPEE) polymer demonstrates potential for digital encryption and decryption of quick response (QR) codes underwater. Furthermore, it can dissolve well in anhydrous ethanol, producing an environment-friendly and super waterproof adhesive. Most notably, the P(LA-TPEE) solution can be sprayed on human skin, creating an invisible tattoo that only became visible under UV light due to the hydrogen bond (H-bond) and π-π structures. This smart tattoo can be quickly wiped away with alcohol, avoiding the painful and harmful process of tattoo removal. It can also be repeatedly applied to draw the preferred tattoo pattern. This AIE supramolecular polymer shows great potential in underwater adhesion and repair, underwater message encryption, and non-toxic and painless invisible tattooing. Overall, this study provides a valuable approach for material design in the future.
Collapse
Affiliation(s)
- Jianhua Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Xiaolin Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Kangbo Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yaping Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - ShuaiShuai Feng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peipei Su
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Zou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Wei Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
54
|
Huang YS, Zhou Y, Zeng X, Zhang D, Wu S. Reversible Crosslinking of Commodity Polymers via Photocontrolled Metal-Ligand Coordination for High-Performance and Recyclable Thermoset Plastics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305517. [PMID: 37401043 DOI: 10.1002/adma.202305517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Thermoset plastics, highly desired for their stability, durability, and chemical resistance, are currently consumed in over 60 million tons annually across the globe, but they are difficult to recycle due to their crosslinked structures. The development of recyclable thermoset plastics is an important but challenging task. In this work, recyclable thermoset plastics are prepared by crosslinking a commodity polymer, polyacrylonitrile (PAN), with a small percentage of a Ru complex via nitrile-Ru coordination. PAN is obtained from industry and the Ru complex is synthesized in one step, which enables the production of recyclable thermoset plastics in an efficient way. In addition, the thermoset plastics exhibit impressive mechanical performance, boasting a Young's modulus of 6.3 GPa and a tensile strength of 109.8 MPa. Moreover, they can be de-crosslinked when exposed to both light and a solvent and can then be re-crosslinked upon heating. This reversible crosslinking mechanism enables the recycling of thermosets from a mixture of plastic waste. The preparation of recyclable thermosets from other commodity polymers such as poly(styrene-coacrylonitrile) (SAN) resins and polymer composites through reversible crosslinking is also demonstrated. This study shows that reversible crosslinking via metal-ligand coordination is a new strategy for designing recyclable thermosets using commodity polymers.
Collapse
Affiliation(s)
- Yun-Shuai Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolong Zeng
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Dachuan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
55
|
Deng Z, Gillies ER. Emerging Trends in the Chemistry of End-to-End Depolymerization. JACS AU 2023; 3:2436-2450. [PMID: 37772181 PMCID: PMC10523501 DOI: 10.1021/jacsau.3c00345] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023]
Abstract
Over the past couple of decades, polymers that depolymerize end-to-end upon cleavage of their backbone or activation of a terminal functional group, sometimes referred to as "self-immolative" polymers, have been attracting increasing attention. They are of growing interest in the context of enhancing polymer degradability but also in polymer recycling as they allow monomers to be regenerated in a controlled manner under mild conditions. Furthermore, they are highly promising for applications as smart materials due to their ability to provide an amplified response to a specific signal, as a single sensing event is translated into the generation of many small molecules through a cascade of reactions. From a chemistry perspective, end-to-end depolymerization relies on the principles of self-immolative linkers and polymer ceiling temperature (Tc). In this article, we will introduce the key chemical concepts and foundations of the field and then provide our perspective on recent exciting developments. For example, over the past few years, new depolymerizable backbones, including polyacetals, polydisulfides, polyesters, polythioesters, and polyalkenamers, have been developed, while modern approaches to depolymerize conventional backbones such as polymethacrylates have also been introduced. Progress has also been made on the topological evolution of depolymerizable systems, including the introduction of fully depolymerizable block copolymers, hyperbranched polymers, and polymer networks. Furthermore, precision sequence-defined oligomers have been synthesized and studied for data storage and encryption. Finally, our perspectives on future opportunities and challenges in the field will be discussed.
Collapse
Affiliation(s)
- Zhengyu Deng
- Department
of Chemistry, The University of Western
Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R. Gillies
- Department
of Chemistry, The University of Western
Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
56
|
Sun J, He H, Zhao K, Cheng W, Li Y, Zhang P, Wan S, Liu Y, Wang M, Li M, Wei Z, Li B, Zhang Y, Li C, Sun Y, Shen J, Li J, Wang F, Ma C, Tian Y, Su J, Chen D, Fan C, Zhang H, Liu K. Protein fibers with self-recoverable mechanical properties via dynamic imine chemistry. Nat Commun 2023; 14:5348. [PMID: 37660126 PMCID: PMC10475138 DOI: 10.1038/s41467-023-41084-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
The manipulation of internal interactions at the molecular level within biological fibers is of particular importance but challenging, severely limiting their tunability in macroscopic performances and applications. It thus becomes imperative to explore new approaches to enhance biological fibers' stability and environmental tolerance and to impart them with diverse functionalities, such as mechanical recoverability and stimulus-triggered responses. Herein, we develop a dynamic imine fiber chemistry (DIFC) approach to engineer molecular interactions to fabricate strong and tough protein fibers with recoverability and actuating behaviors. The resulting DIF fibers exhibit extraordinary mechanical performances, outperforming many recombinant silks and synthetic polymer fibers. Remarkably, impaired DIF fibers caused by fatigue or strong acid treatment are quickly recovered in water directed by the DIFC strategy. Reproducible mechanical performance is thus observed. The DIF fibers also exhibit exotic mechanical stability at extreme temperatures (e.g., -196 °C and 150 °C). When triggered by humidity, the DIFC endows the protein fibers with diverse actuation behaviors, such as self-folding, self-stretching, and self-contracting. Therefore, the established DIFC represents an alternative strategy to strengthen biological fibers and may pave the way for their high-tech applications.
Collapse
Affiliation(s)
- Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, China
| | - Haonan He
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kelu Zhao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Wenhao Cheng
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Yuanxin Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Peng Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Sikang Wan
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Mengyao Wang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Ming Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Zheng Wei
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Bo Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yi Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Cong Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yao Sun
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jianlei Shen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, China
| | - Juanjuan Su
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dong Chen
- College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
| |
Collapse
|
57
|
Zheng S, Xue H, Yao J, Chen Y, Brook MA, Noman ME, Cao Z. Exploring Lipoic Acid-Mediated Dynamic Bottlebrush Elastomers as a New Platform for the Design of High-Performance Thermally Conductive Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41043-41054. [PMID: 37590910 DOI: 10.1021/acsami.3c09826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The development of high-performance thermally conductive interface materials is the key to unlocking the serious bottleneck of modern microelectronic technology through enhanced heat dispersion. Existing methods that utilize silicone composites rely either on loading large doses of randomly distributed thermal conductive fillers or on filling prealigned thermal conductive scaffolds with liquid silicone precursors. Both approaches suffer from several limitations in terms of physical traits and processability. We describe an alternative approach in which malleable silicone matrices, based on the dynamic cyclic disulfide nature cross-linker (α-lipoic acid), are readily prepared using ring-opening polymerization. The mechanical properties of the resultant dynamic silicone matrix are readily tunable. Stress-dependent depolymerization of the disulfide network demonstrates the ability to reprocess the silicone elastomer matrix, which allows for the fabrication of highly efficient thermal conductive composites with a 3D interconnecting, thermally conductive network (3D-graphite/MxBy composites) via in situ methods. Applications of the composites as thermal dispersion interface materials are demonstrated by LEDs and CPUs, suggesting great potential in advanced electronics.
Collapse
Affiliation(s)
- Sijia Zheng
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haiyan Xue
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Yao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Chen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4M1
| | - Michael A Brook
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4M1
| | - Muhammad Ebad Noman
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4M1
| | - Zhihai Cao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
58
|
Wang J, Lu T, Li Y, Wang J, Spruijt E. Aqueous coordination polymer complexes: From colloidal assemblies to bulk materials. Adv Colloid Interface Sci 2023; 318:102964. [PMID: 37515864 DOI: 10.1016/j.cis.2023.102964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
1-dimensional (1D) coordination polymers refer to the macromolecules that have metal ions incorporated in their pendent groups or main chain through metal-binding ligand groups. They have intrinsic advantages over traditional polymers to regulate the polymer structures and functions owing to the nature of the metal-ligand bond. Consequently, they have great potential for the development of smart and functional structures and materials and therapeutic agents. Water-soluble 1D coordination polymers and assemblies are an important subtype of coordination polymers with distinctive interests for demanding applications in aqueous systems, such as biological and medical applications. This review highlights the recent progress and research achievements in the design and use of water-soluble 1D coordination polymers and assemblies. The overview covers the design and structure control of 1D coordination polymers, their colloidal assemblies, including nanoparticles, nanofibers, micelles and vesicles, and fabricated bulk materials such as membraneless liquid condensates, security ink, hydrogel actuators, and smart fabrics. Finally, we discuss the potential applications of several of these coordination polymeric structures and materials and give an outlook on the field of aqueous coordination polymers.
Collapse
Affiliation(s)
- Jiahua Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Tiemei Lu
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Evan Spruijt
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
59
|
Zhang Y, Zhou C, Lin L, Pei F, Xiao M, Yang X, Yuan G, Zhu C, Chen Y, Chen Q. Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:175. [PMID: 37428245 PMCID: PMC10333165 DOI: 10.1007/s40820-023-01145-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Abstract
To achieve high power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs), a hole transport layer (HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMeTAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound (LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive (thioctic acid, TA) with spiro-OMeTAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMeTAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE (22.52%) with excellent device stability.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Chenxiao Zhou
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Lizhi Lin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Fengtao Pei
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Mengqi Xiao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xiaoyan Yang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Guizhou Yuan
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Cheng Zhu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yu Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Qi Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
60
|
Ghosh A, Kozlowski K, Steele TWJ. Synthesis and Evaluation of Metal Lipoate Adhesives. Polymers (Basel) 2023; 15:2921. [PMID: 37447566 DOI: 10.3390/polym15132921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The development of new bioadhesives with integrated properties remains an unmet clinical need to replace staples or sutures. Current bioadhesives do not allow electronic activation, which would allow expansion into laparoscopic and robotic surgeries. To address this deficiency, voltage-activated adhesives have been developed on both carbene- and catechol-based chemical precursors. Herein, a third platform of voltage-activated adhesive is evaluated based on lipoic acid, a non-toxic dithiolane found in aerobic metabolism and capable of ring-opening polymerization. The electro-rheological and adhesive properties of lithium, sodium, and potassium salts of lipoic acid are applied for wet tissue adhesion. At ambient conditions, potassium lipoate displays higher storage modulus than lithium or sodium salt under similar conditions. Voltage stimulation significantly improves gelation kinetics to Na- and K-lipoates, while Li-lipoate is found to not require voltage stimulation for gelation. Lap shear adhesion strength on wetted collagen substrates reveals that the synthetic metal lipoates have comparable adhesion strength to fibrin sealants without viral or ethical risks.
Collapse
Affiliation(s)
- Animesh Ghosh
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Konrad Kozlowski
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Terry W J Steele
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| |
Collapse
|
61
|
Liu J, Li RS, Zhang L, Wang J, Dong Q, Xu Z, Kang Y, Xue P. Enzyme-Activatable Polypeptide for Plasma Membrane Disruption and Antitumor Immunity Elicitation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206912. [PMID: 36932931 DOI: 10.1002/smll.202206912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/01/2023] [Indexed: 06/15/2023]
Abstract
Enzyme-instructed self-assembly of bioactive molecules into nanobundles inside cells is conceived to potentially disrupt plasma membrane and subcellular structure. Herein, an alkaline phosphatase (ALP)-activatable hybrid of ICG-CF4 KYp is facilely synthesized by conjugating photosensitizer indocyanine green (ICG) with CF4 KYp peptide via classical Michael addition reaction. ALP-induced dephosphorylation of ICG-CF4 KYp enables its transformation from small-molecule precursor into rigid nanofibrils, and such fibrillation in situ causes severe mechanical disruption of cytomembrane. Besides, ICG-mediated photosensitization causes additional oxidative damage of plasma membrane by lipid peroxidation. Hollow MnO2 nanospheres devote to deliver ICG-CF4 KYp into tumorous tissue through tumor-specific acidity/glutathione-triggered degradation of MnO2 , which is monitored by fluorescent probing and magnetic resonance imaging. The burst release of damage-associated molecular patterns and other tumor antigens during therapy effectively triggers immunogenetic cell death and improves immune stimulatory, as demonstrated by the promotion of dendritic cell maturation and CD8+ lymphocyte infiltration, as well as constraint of regulatory T cell population. Taken together, such cytomembrane injury strategy based on peptide fibrillation in situ holds high clinical promise for lesion-specific elimination of primary, abscopal, and metastatic tumors, which may enlighten more bioinspired nanoplatforms for anticancer theranostics.
Collapse
Affiliation(s)
- Jiahui Liu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Rong Sheng Li
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Chemical Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Lei Zhang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Jie Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Qi Dong
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| |
Collapse
|
62
|
Guo Y, Liu Y, Zhao X, Zhao J, Wang Y, Zhang X, Guo Z, Yan X. Synergistic Covalent-and-Supramolecular Polymers with an Interwoven Topology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25161-25172. [PMID: 35894294 DOI: 10.1021/acsami.2c10404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Network topologies, especially some high-order topologies, are able to furnish cross-linked polymer materials with enhanced properties without altering their chemical composition. However, the fabrication of such topologically intriguing architectures at the macromolecular level and in-depth insights into their structure-property relationship remain a significant challenge. Herein, we relied on synergistic covalent-and-supramolecular polymers (CSPs) as a platform to prepare a range of polymer networks with an interwoven topology. Specifically, through the sequential supramolecular self-assemblies, the covalent polymers (CPs) and metallosupramolecular polymers (MSPs) could be interwoven in our CSPs by [2]pseudorotaxane cross-links. As a result, the obtained CSPs possessed a topological network that could not only promote the synergistic effect between CPs and MSPs to afford mechanically robust yet dynamic materials but also vest polymers with some functions, as manifested by force-induced hierarchical dissociations of supramolecular interactions and superior thermomechanical stability compared to our previously reported CSP systems. Furthermore, our CSPs exhibited tunable mechanical performance toward multiple stimuli including K+ and PPh3, demonstrating abundant stimuli-responsive properties. We hope that these findings could provide novel opportunities toward achieving topological structures at the macromolecular level and also motivate further explorations of polymeric materials via the way of controlling their topological structures.
Collapse
Affiliation(s)
- Yuchen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xinyang Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhewen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
63
|
Gao J, Zhang Q, Wu B, Gao X, Liu Z, Yang H, Yuan J, Huang J. Mussel-Inspired, Underwater Self-Healing Ionoelastomers Based on α-Lipoic Acid for Iontronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207334. [PMID: 36869411 DOI: 10.1002/smll.202207334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/31/2023] [Indexed: 05/25/2023]
Abstract
Weak adhesion and lack of underwater self-healability hinder advancing soft iontronics particularly in wet environments like sweaty skin and biological fluids. Mussel-inspired, liquid-free ionoelastomers are reported based on seminal thermal ring-opening polymerization of a biomass molecule of α-lipoic acid (LA), followed by sequentially incorporating dopamine methacrylamide as a chain extender, N,N'-bis(acryloyl) cystamine, and lithium bis(trifluoromethanesulphonyl) imide (LiTFSI). The ionoelastomers exhibit universal adhesion to 12 substrates in both dry and wet states, superfast self-healing underwater, sensing capability for monitoring human motion, and flame retardancy. The underwater self-repairabilitiy prolongs over three months without deterioration, and sustains even when mechanical properties greatly increase. The unprecedented underwater self-mendability benefits synergistically from the maximized availability of dynamic disulfide bonds and diverse reversible noncovalent interactions endowed by carboxylic groups, catechols, and LiTFSI, along with the prevented depolymerization by LiTFSI and tunability in mechanical strength. The ionic conductivity reaches 1.4 × 10-6 -2.7 × 10-5 S m-1 because of partial dissociation of LiTFSI. The design rationale offers a new route for creating a wide range of LA- and sulfur-derived supramolecular (bio)polymers with superior adhesion, healability, and other functionalities, and thus has technological implications for coatings, adhesives, binders and sealants, biomedical engineering and drug delivery, wearable and flexible electronics, and human-machine interfaces.
Collapse
Affiliation(s)
- Jiaxiang Gao
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Zhang
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bo Wu
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaodan Gao
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhengyuan Liu
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haoyu Yang
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jikang Yuan
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou, Zhejiang, 313000, P. R. China
| | - Jijun Huang
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
64
|
Dikshit KV, Visal AM, Janssen F, Larsen A, Bruns CJ. Pressure-Sensitive Supramolecular Adhesives Based on Lipoic Acid and Biofriendly Dynamic Cyclodextrin and Polyrotaxane Cross-Linkers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17256-17267. [PMID: 36926820 DOI: 10.1021/acsami.3c00927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Slide-ring materials are polymer networks with mobile cross-links that exhibit impressive stress dissipation and fracture resistance owing to the pulley effect. On account of their remarkable ability to dissipate the energy of deformation, these materials have found their way into advanced materials such as abrasion-resistant coatings and elastic battery electrode binders. In this work, we explore the role of mobile cross-links on the properties of a biofriendly pressure-sensitive adhesive made using composites of cyclodextrin-based macromolecules and poly(lipoic acid). We modify cyclodextrin-based hosts and polyrotaxanes with pendant groups of lipoic acid (a commonly ingested antioxidant) to incorporate them as cross-links in poly(lipoic acid) networks obtained by simple heating in open air. By systematically varying the adhesive formulations while probing their mechanical and adhesive properties, we uncover trends in structure-property relationships that enable one to tune network properties and access biofriendly, high-tack adhesives.
Collapse
Affiliation(s)
- Karan Vivek Dikshit
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Aseem Milind Visal
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Femke Janssen
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Alexander Larsen
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Carson J Bruns
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- ATLAS Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
65
|
Zeng X, Xu L, Xia X, Bai X, Zhong C, Fan J, Ren L, Sun R, Zeng X. The Synergy of Hydrogen Bond and Entanglement of Elastomer Captures Unprecedented Flaw Insensitivity Rate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207409. [PMID: 36683211 DOI: 10.1002/smll.202207409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Elastomers are regarded as one of the best candidates for the matrix material of soft electronics, yet they are susceptible to fracture due to the inevitable flaws generated during applications. Introducing microstructures, sacrificial bonds, and sliding cross-linking has been recognized as an effective way to improve the flaw insensitivity rate (Rinsen ). However, these elastomers still prone to failure under tensile loads with the presence of even small flaws. Here, this work reports a polybutadiene elastomer with unprecedented Rinsen via the synergy of hydrogen bond and entanglement. The resulting polybutadiene elastomer exhibits a Rinsen ≈1.075, which is much higher than those of reported elastomers. By molecular chain interaction and molecular chain conformation analysis, this work demonstrates that the synergistic effect of hydrogen bond dissociation and entanglement slip in the polybutadiene elastomers during stretching leads to the high Rinsen . Using polybutadiene elastomer as matrix of thermal interface materials, this work demonstrates effective heat transfer for strain sensor and electronic devices. In addition, cytocompatibility of the elastomers is verified by cell proliferation and live/dead viability assays. The combination of outstanding biocompatible and excellent mechanical properties of the elastomers creates new opportunities for their applications in electronic skin.
Collapse
Affiliation(s)
- Xiangliang Zeng
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, China
| | - Lu Xu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, China
| | - Xue Bai
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Cheng Zhong
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianfeng Fan
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Linlin Ren
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaoliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
66
|
Wang BS, Zhang Q, Wang ZQ, Shi CY, Gong XQ, Tian H, Qu DH. Acid-catalyzed Disulfide-mediated Reversible Polymerization for Recyclable Dynamic Covalent Materials. Angew Chem Int Ed Engl 2023; 62:e202215329. [PMID: 36602285 DOI: 10.1002/anie.202215329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Poly(1,2-dithiolane)s are a family of intrinsically recyclable polymers due to their dynamic covalent disulfide linkages. Despite the common use of thiolate-initiated anionic ring-opening polymerization (ROP) under basic condition, cationic ROP is still not exploited. Here we report that disulfide bond can act as a proton acceptor, being protonated by acids to form sulfonium cations, which can efficiently initiate the ROP of 1,2-dithiolanes and result in high-molecular-weight (over 1000 kDa) poly(disulfide)s. The reaction can be triggered by adding catalytic amounts of acids and non-coordinating anion salts, and completed in few minutes at room temperature. The acidic conditions allow the applicability for acidic monomers. Importantly, the reaction condition can be under open air without inert protection, enabling the nearly quantitative chemical recycling from bulk materials to original monomers.
Collapse
Affiliation(s)
- Bang-Sen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
67
|
Yang X, Zhang B, Li J, Shen M, Liu H, Xu X, Shang S. Self-healing, self-adhesive, and stretchable conductive hydrogel for multifunctional sensor prepared by catechol modified nanocellulose stabilized poly(α-thioctic acid). Carbohydr Polym 2023; 313:120813. [PMID: 37182943 DOI: 10.1016/j.carbpol.2023.120813] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Self-healing, self-adhesive, and stretchable bio-based conductive hydrogels exhibit properties similar to those of biological tissues, making them an urgent requirement for emerging wearable devices. The primary challenge lies in devising straightforward strategies to accomplish all the aforementioned performances and achieve equilibrium among them. This study used the natural compound thioctic acid (TA) and modified cellulose to prepare conductive hydrogels with stretchability, healing, and self-adhesion through a simple one-step strategy. Metastable poly(TA) was obtained through ring-opening polymerization of lithiated TA, followed by the introduction of dopamine-grafted cellulose nanofibers (DCNF) to stabilize poly(TA) and prepare PTALi/DCNF hydrogels with the aforementioned properties. The hydrogels demonstrated remarkable conductivity, attributed to the existence of Li + ions, with a maximum conductivity of 17.36 mS/cm. The self-healing capacity of the hydrogels was achieved owing to the presence of disulfide bond in TA. The introduction of DCNF can effectively stabilize poly(TA), endow the hydrogel with self-adhesion ability, improve the mechanical properties, and further enhance the formability of hydrogels. Generally, bio-based PTALi/DCNF hydrogels with stretchability, self-healing, self-adhesion, and conductivity are obtained through a simple strategy and used as a sensor with a wide response range and high sensitivity. Hydrogels have significant potential for application in wearable electronic devices, electronic skins, and soft robots.
Collapse
Affiliation(s)
- Xinxin Yang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Bowen Zhang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Jingjing Li
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Minggui Shen
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China.
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Xu Xu
- College of Chemical Engineering, Nanjing Forestry University, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, Jiangsu Province, China.
| | - Shibin Shang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| |
Collapse
|
68
|
Ge G, Mandal K, Haghniaz R, Li M, Xiao X, Carlson L, Jucaud V, Dokmeci MR, Ho GW, Khademhosseini A. Deep Eutectic Solvents-based Ionogels with Ultrafast Gelation and High Adhesion in Harsh Environments. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2207388. [PMID: 37090954 PMCID: PMC10118073 DOI: 10.1002/adfm.202207388] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 05/03/2023]
Abstract
Adhesive materials have recently drawn intensive attention due to their excellent sealing ability, thereby stimulating advances in materials science and industrial usage. However, reported adhesives usually exhibit weak adhesion strength, require high pressure for strong bonding, and display severe adhesion deterioration in various harsh environments. In this work, instead of water or organic solvents, a deep eutectic solution (DES) was used as the medium for photopolymerization of zwitterionic and polarized monomers, thus generating a novel ionogel with tunable mechanical properties. Multiple hydrogen bonds and electrostatic interactions between DES and monomers facilitated ultrafast gelation and instant bonding without any external pressure, which was rarely reported previously. Furthermore, high adhesion in different harsh environments (e.g., water, acidic and basic buffers, and saline solutions) and onto hydrophilic (e.g., glass and tissues) and hydrophobic (e.g., polymethyl methacrylate, polystyrene, and polypropylene) adherends was demonstrated. Also, high stretchability of the ionogel at extreme temperatures (-80 and 80 °C) indicated its widespread applications. Furthermore, the biocompatible ionogel showed high burst pressure onto stomach and intestine tissues to prevent liquid leakage, highlighting its potential as an adhesive patch. This ionogel provides unprecedented opportunities in the fields of packaging industry, marine engineering, medical adhesives, and electronic assembly.
Collapse
Affiliation(s)
- Gang Ge
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | | | - Mengchen Li
- Department of Materials Science & Engineering, University of California-Los Angeles, Los Angeles, CA, USA
| | - Xiao Xiao
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Larry Carlson
- Institute for Technology Advancement, University of California-Los Angeles, Los Angeles, CA, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | | | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | | |
Collapse
|
69
|
Jin H, Lin W, Wu Z, Cheng X, Chen X, Fan Y, Xiao W, Huang J, Qian Q, Chen Q, Yan Y. Surface Hydrophobization Provides Hygroscopic Supramolecular Plastics Based on Polysaccharides with Damage-Specific Healability and Room-Temperature Recyclability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207688. [PMID: 36373548 DOI: 10.1002/adma.202207688] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Supramolecular materials with room-temperature healability and recyclability are highly desired because they can extend materials lifetimes and reduce resources consumption. Most approaches toward healing and recycling rely on the dynamically reversible supramolecular interactions, such as hydrogen, ionic and coordinate bonds, which are hygroscopic and vulnerable to water. The general water-induced plasticization facilitates the healing and reprocessing process but cause a troubling problem of random self-adhesion. To address this issue, here it is reported that by modifying the hygroscopic surfaces with hydrophobic alkyl chains of dodecyltrimethoxysilane (DTMS), supramolecular plastic films based on commercial raw materials of sodium alginate (SA) and cetyltrimethylammonium bromide (CTAB) display extraordinary damage-specific healability. Owing to the hydrophobic surfaces, random self-adhesion is eliminated even under humid environment. When damage occurs, the fresh surfaces with ionic groups and hydroxyl groups expose exclusively at the damaged site. Thus, damage-specific healing can be readily facilitated by water-induced plasticization. Moreover, the films display excellent room-temperature recyclability. After multiple times of reprocessing and re-modifying with DTMS, the rejuvenated films exhibit fatigueless mechanical properties. It is anticipated that this approach to damage-specific healing and room-temperature recycling based on surface hydrophobization can be applied to design various of supramolecular plastic polysaccharides materials for building sustainable societies.
Collapse
Affiliation(s)
- Hongjun Jin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Weilin Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Ziyan Wu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Xinyu Cheng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Xinyuan Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Yingjie Fan
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Wangchuan Xiao
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
70
|
Li XL, Ma K, Xu F, Xu TQ. Advances in the Synthesis of Chemically Recyclable Polymers. Chem Asian J 2023; 18:e202201167. [PMID: 36623942 DOI: 10.1002/asia.202201167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Indexed: 01/11/2023]
Abstract
The development of modern society is closely related to polymer materials. However, the accumulation of polymer materials and their evolution in the environment causes not only serious environmental problems, but also waste of resources. Although physical processing can be used to reuse polymers, the properties of the resulting polymers are significantly degraded. Chemically recyclable polymers, a type of polymer that degrades into monomers, can be an effective solution to the degradation of polymer properties caused by physical recycling of polymers. The ideal chemical recycling of polymers, i. e., quantitative conversion of the polymer to monomers at low energy consumption and repolymerization of the formed monomers into polymers with comparable properties to the original, is an attractive research goal. In recent years, significant progress has been made in the design of recyclable polymers, enabling the regulation of the "polymerization-depolymerization" equilibrium and closed-loop recycling under mild conditions. This review will focus on the following aspects of closed-loop recycling of poly(sulfur) esters, polycarbonates, polyacetals, polyolefins, and poly(disulfide) polymer, illustrate the challenges in this area, and provide an outlook on future directions.
Collapse
Affiliation(s)
- Xin-Lei Li
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kai Ma
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fei Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Tie-Qi Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
71
|
Shi CY, He DD, Wang BS, Zhang Q, Tian H, Qu DH. A Dynamic Supramolecular H-bonding Network with Orthogonally Tunable Clusteroluminescence. Angew Chem Int Ed Engl 2023; 62:e202214422. [PMID: 36378119 DOI: 10.1002/anie.202214422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Enabling dynamically tunable emissive systems offers opportunities for constructing smart materials. Clusteroluminescence, as unconventional luminescence, has attracted increasing attention in both fundamental and applied sciences. Herein, we report a supramolecular poly(disulfides) network with tunable clusteroluminescence. The reticular H-bonds synergize the rigidity and mobility of dynamic networks, and endow the resulting materials with mechanical adaptivity and robustness, simultaneously enabling efficient clusteroluminescence and phosphorescence at 77 K. Orthogonally tunable luminescence are achieved in two manners, i.e., slow backbone disulfide exchange and fast side-chain metal coordination. Further exploration of the reprocessability and chemical closed-loop recycling of intrinsic dynamic networks for sustainable materials is feasible. We foresee that the synergistic strategy of dynamic chemistry offers a novel pathway and potential opportunities for smart emissive materials.
Collapse
Affiliation(s)
- Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Dan-Dan He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Bang-Sen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
72
|
Recyclable polythioesters and polydisulfides with near-equilibrium thermodynamics and dynamic covalent bonds. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
73
|
Chen YF, Hsieh CL, Lee LR, Liu YC, Lee MJ, Chen JT. Photoswitchable and Solvent-Controlled Directional Actuators: Supramolecular Assembly and Crosslinked Polymers. Macromol Rapid Commun 2023; 44:e2200547. [PMID: 36208074 DOI: 10.1002/marc.202200547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/30/2022] [Indexed: 01/26/2023]
Abstract
Untethered small actuators have drawn tremendous interest owing to their reversibility, flexibility, and widespread applications in various fields. For polymer actuators, however, it is still challenging to achieve programmable structural changes under different stimuli caused by the intractability and single-stimulus responses of most polymer materials. Herein, multi-stimuli-responsive polymer actuators that can respond to light and solvent via structural changes are developed. The actuators are based on bilayer films of polydimethylsiloxane (PDMS) and azobenzene chromophore (AAZO)-crosslinked poly(diallyldimethylammonium chloride) (PDAC). Upon UV light irradiation, the AAZO undergoes trans-cis-trans photoisomerization, causing the bending of the bilayer films. When the UV light is off, a shape recovery toward an opposite direction occurs spontaneously. The reversible deformation can be repeated at least 20 cycles. Upon solvent vapor annealing, one of the bilayer films can be selectively swollen, causing the bending of the bilayer films with the directions controlled by the solvent vapors. The effects of different parameters, such as the weight ratios of AAZO and film thicknesses, on the bending angles and curvatures of the polymer films are also analyzed. The results demonstrate that multi-stimuli-responsive actuators with fast responses and high reproducibility can be fulfilled.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chia-Ling Hsieh
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Lin-Ruei Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yu-Chun Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Min-Jie Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
74
|
Chen Z, He Y, Tao X, Ma Y, Jia J, Wang Y. Thermal Nociception of Ionic Skin: TRPV1 Ion Channel-Inspired Heat-Activated Dynamic Ionic Liquid. J Phys Chem Lett 2022; 13:10076-10084. [PMID: 36269047 DOI: 10.1021/acs.jpclett.2c02952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The artificial reproduction of the tactile sensory function of natural skin is crucial for intelligent sensing, human-computer interaction, and medical health. Thermal nociception is an essential human tactile function to avoid noxious thermal stimuli, which depends on the specific heat-activation of the TRPV1 ion channel. Inspired by the TRPV1, a dynamic ionic liquid with heat-activation characteristics is designed and prepared, which can be activated at 45 °C, which is near the physiological noxious temperature, accompanied by a steep rise in electrical response signals. Its electrical behavior can be deemed to be the extreme version of temperature sensation similar to the natural thermal nociceptor. The heat-activation mechanism is confirmed as a feasible strategy to regulate the thermal response behavior of ions, and this reported dynamic ionic liquid has an unprecedented intrinsic temperature response sensitivity of up to 156.79%/°C. In consideration of the similarity between the heat-activated dynamic ionic liquid and the TRPV1 ion channel in terms of heat-activation characteristics, electrical output signal, and ultrathermal sensitivity, an all-liquid ionic skin with the ability of thermal nociception is further fabricated, which shows considerable potential to assist patients with tactile desensitization to avoid noxious thermal stimuli.
Collapse
Affiliation(s)
- Zhiwu Chen
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing100872, China
| | - Yonglin He
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing100872, China
| | - Xinglei Tao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing100872, China
| | - Yingchao Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing100872, China
| | - Jichen Jia
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing100872, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing100872, China
| |
Collapse
|
75
|
Chen B, Shi C, Xiong S, Wu K, Yang Y, Mu W, Li X, Yang Y, Shen X, Peng S. Insights into the spontaneous multi-scale supramolecular assembly in an ionic liquid-based extraction system. Phys Chem Chem Phys 2022; 24:25950-25961. [PMID: 36263674 DOI: 10.1039/d2cp03389e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we report a four-step mechanism for the spontaneous multi-scale supramolecular assembly (MSSA) process in a two-phase system concerning an ionic liquid (IL). The complex ions, elementary building blocks (EBBs), [EBB]n clusters and macroscopic assembly (MA) sphere are formed step by step. The porous large-sized [EBB]n clusters in the glassy state can hardly stay in the IL phase and they transfer to the IL-water interface due to both electroneutrality and amphiphilicity. Then, the clusters undergo random collision in the interface driven by the Marangoni effect and capillary force thereafter. Finally, a single MA sphere can be formed owing to supramolecular interactions. To our knowledge, this is the first example realizing spontaneous whole-process supramolecular assembly covering microscopic, mesoscopic and macroscopic scales in extraction systems. The concept of multi-scale selectivity (MSS) is therefore suggested and its mechanism is revealed. The selective separation and solidification of metal ions can be realized in a MSSA-based extraction system depending on MSS. In addition, insights into the physicochemical characteristics of ILs from microscopic, mesoscopic to macroscopic scales are provided, and especially, the solvation effect of ILs on the large-sized clusters leading to the phase-splitting is examined. It is quite important that the polarization of uranyl in its complex, the growing of uranyl clusters in an IL as well as the glassy material of uranyl are investigated systematically on the basis of both experiment and theoretical calculations in this work.
Collapse
Affiliation(s)
- Baihua Chen
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Ce Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Shijie Xiong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Kaige Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Yanqiu Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Wanjun Mu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Xingliang Li
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Yuchuan Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Xinghai Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Shuming Peng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| |
Collapse
|
76
|
Cai C, Wu S, Zhang Y, Li F, Tan Z, Dong S. Poly(thioctic acid): From Bottom-Up Self-Assembly to 3D-Fused Deposition Modeling Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203630. [PMID: 36220340 PMCID: PMC9685451 DOI: 10.1002/advs.202203630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Inspired by the bottom-up assembly in nature, an artificial self-assembly pattern is introduced into 3D-fused deposition modeling (FDM) printing to achieve additive manufacturing on the macroscopic scale. Thermally activated polymerization of thioctic acid (TA) enabled the bulk construction of poly(TA), and yielded unique time-dependent self-assembly. Freshly prepared poly(TA) can spontaneously and continuously transfer into higher-molecular-weight species and low-molecular-weight TA monomers. Poly(TA) and the newly formed TA further assembled into self-reinforcing materials via microscopic-phase separation. Bottom-up self-assembly patterns on different scales are fully realized by 3D FDM printing of poly(TA): thermally induced polymerization of TA (microscopic-scale assembly) to poly(TA) and 3D printing (macroscopic-scale assembly) of poly(TA) are simultaneously achieved in the 3D-printing process; after 3D printing, the poly(TA) modes show mechanically enhanced features over time, arising from the microscopic self-assembly of poly(TA) and TA. This study clearly demonstrates that micro- and macroscopic bottom-up self-assembly can be applied in 3D additive manufacturing.
Collapse
Affiliation(s)
- Changyong Cai
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Shuanggen Wu
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Yunfei Zhang
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Fenfang Li
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083China
| | - Zhijian Tan
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangsha410205China
| | - Shengyi Dong
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| |
Collapse
|
77
|
Preparation and application of recyclable multifunctional self-healing thioctic acid-based materials. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
78
|
Zhang K, Chen S, Chen Y, Jia L, Cheng C, Dong S, Hao J. Elastomeric Liquid-Free Conductor for Iontronic Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11994-12004. [PMID: 36137186 DOI: 10.1021/acs.langmuir.2c01749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For a long time, the potential application of gel-based ionic devices was limited by the problem of liquid leakage or evaporation. Here, we utilized amorphous, irreversible and reversible cross-linked polyTA (PTA) as a matrix and lithium bis(trifluoromethane sulfonamide) (LiTFSI) as an electrolyte to prepare a stretchable (495%) and self-healing (94%) solvent-free elastomeric ionic conductor. The liquid-free ionic elastomer can be used as a stable strain sensor to monitor human activities sensitively under extreme temperatures. Moreover, the prepared elastic conductor (TEOA0.10-PTA@LiTFSI) was also considered an electrode to assemble with self-designed repairable dielectric organosilicon layers (RD-PDMS) to develop a sustainable triboelectric nanogenerator (SU-TENG) with outstanding performance. SU-TENG maintained good working ability under extreme conditions (-20 °C, 60 °C, and 200% strain). This work provided a low-cost and simple idea for the development of reliable iontronic equipment for human-computer interaction, motion sensing, and sustainable energy.
Collapse
Affiliation(s)
- Kaiming Zhang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Yanglei Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Liangying Jia
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Can Cheng
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| |
Collapse
|
79
|
Mechanical reinforcement of isoprene rubbers via metal-coordinated crosslink of carboxyl-terminated telechelic polymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
80
|
Deng Y, Zhang Q, Qu DH, Tian H, Feringa BL. A Chemically Recyclable Crosslinked Polymer Network Enabled by Orthogonal Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202209100. [PMID: 35922379 DOI: 10.1002/anie.202209100] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/07/2023]
Abstract
Chemical recycling of synthetic polymers offers a solution for developing sustainable plastics and materials. Here we show that two types of dynamic covalent chemistry can be orthogonalized in a solvent-free polymer network and thus enable a chemically recyclable crosslinked material. Using a simple acylhydrazine-based 1,2-dithiolane as the starting material, the disulfide-mediated reversible polymerization and acylhydrazone-based dynamic covalent crosslinking can be combined in a one-pot solvent-free reaction, resulting in mechanically robust, tough, and processable crosslinked materials. The dynamic covalent bonds in both backbones and crosslinkers endow the network with depolymerization capability under mild conditions and, importantly, virgin-quality monomers can be recovered and separated. This proof-of-concept study show opportunities to design chemically recyclable materials based on the dynamic chemistry toolbox.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Qi Zhang
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
81
|
Zheng J, Song X, Yang Z, Yin C, Luo W, Yin C, Ni Y, Wang Y, Zhang Y. Self-assembly hydrogels of therapeutic agents for local drug delivery. J Control Release 2022; 350:898-921. [PMID: 36089171 DOI: 10.1016/j.jconrel.2022.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Advanced drug delivery systems are of vital importance to enhance therapeutic efficacy. Among various recently developed formulations, self-assembling hydrogels composed of therapeutic agents have shown promising potential for local drug delivery owing to their excellent biocompatibility, high drug-loading efficiency, low systemic toxicity, and sustained drug release behavior. In particular, therapeutic agents self-assembling hydrogels with well-defined nanostructures are beneficial for direct delivery to the target site via injection, not only improving drug availability, but also extending their retention time and promoting cellular uptake. In brief, the self-assembly approach offers better opportunities to improve the precision of pharmaceutical treatment and achieve superior treatment efficacies. In this review, we intend to cover the recent developments in therapeutic agent self-assembling hydrogels. First, the molecular structures, self-assembly mechanisms, and application of self-assembling hydrogels are systematically outlined. Then, we summarize the various self-assembly strategies, including the single therapeutic agent, metal-coordination, enzyme-instruction, and co-assembly of multiple therapeutic agents. Finally, the potential challenges and future perspectives are discussed. We hope that this review will provide useful insights into the design and preparation of therapeutic agent self-assembling hydrogels.
Collapse
Affiliation(s)
- Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyang Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
82
|
Lv SY, He S, Ling XL, Wang YQ, Huang C, Long JR, Wang JQ, Qin Y, Wei H, Yu CY. Review of lipoic acid: From a clinical therapeutic agent to various emerging biomaterials. Int J Pharm 2022; 627:122201. [PMID: 36115465 DOI: 10.1016/j.ijpharm.2022.122201] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023]
Abstract
Lipoic acid (LA), an endogenous small molecule in organisms, has been extensively used for the highly efficient clinical treatment of malignant diseases, which include diabetes, Alzheimer's disease, and cancer over the past seven decades. Tremendous progresses have been made on the use of LA in nanomedicine for the development of various biomaterials because of its unique biological properties and highly adaptable structure since the first discovery. However, there are few reviews thus far, to our knowledge, summarizing this hot subject of research of LA and its derived biomaterials. For this purpose, we present herein the first comprehensive summary on the design and development of LA and its derived materials for biomedical applications. This review first discusses the therapeutic use of LA followed by the description of synthesis and preclinical study of LA-derived-small molecules. The applications of various LA and poly (lipoic acid) (PLA)-derived-biomaterials are next summarized in detail with an emphasis on the use of LA for the design of biomaterials and the diverse properties. This review describes the development of LA from a clinical therapeutic agent to a building unit of various biomaterials field, which will promote the further discovery of new therapeutic uses of LA as therapeutic agents and facile development of LA-based derivates with greater performance for biomedical applications.
Collapse
Affiliation(s)
- Shao-Yang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Suisui He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiao-Li Ling
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue-Qin Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Cong Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jin-Rong Long
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jia-Qi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
83
|
Kumar R, Chen ZF, Choudhary MI, Yousuf S. Insight into structural features and supramolecular architecture of synthesized quinoxaline derivatives with anti-leishmanial activity, in vitro. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
84
|
Lu J, Xu Z, Fu H, Lin Y, Wang H, Lu H. Room-Temperature Grafting from Synthesis of Protein-Polydisulfide Conjugates via Aggregation-Induced Polymerization. J Am Chem Soc 2022; 144:15709-15717. [PMID: 35976716 DOI: 10.1021/jacs.2c05997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reversible modification of proteins with lipoic acid (LPA)-derived polydisulfides (PDS) is an important approach toward the transient regulation and on-demand recovery of protein functions. The in situ growth of PDS from the cysteine (Cys) residue of a protein, however, has been challenging due to the near-equilibrium thermodynamics of the ring-opening polymerization of LPA. Here, we report the protein-mediated, aggregation-induced polymerization (AIP) of amphiphilic LPA-derived monomers at room temperature, which can be performed at a concentration as low as ∼2% of the equilibrium monomer concentration normally needed. The aggregation of monomers increases the effective monomer concentration in aqueous solutions to the degree that the polymerizations behave similarly to those in bulk. The PDS conjugation enhances the thermostability, protease resistance, and tolerance to freeze-thaw treatments of the target proteins. Moreover, the PDS conjugation allows rapid and convenient purification of Cys-bearing proteins by taking advantage of the liquid-liquid phase separation of the protein-PDS conjugates and the full recovery of native proteins under mild reducing conditions. This AIP effect may shed light on facilitating other polymerizations with a similar near-equilibrium character. The PDS conjugation can open up new avenues to protein delivery, dynamic and reversible protein engineering, enzyme preservation, and recycling.
Collapse
Affiliation(s)
- Jianhua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zhun Xu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Hailin Fu
- Institute of Materials Science & Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yao Lin
- Institute of Materials Science & Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
85
|
Deng Y, Zhang Q, Qu DH, Tian H, Feringa BL. A Chemically Recyclable Crosslinked Polymer Network Enabled by Orthogonal Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuanxin Deng
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - Qi Zhang
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Da-Hui Qu
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
86
|
Regenerative antibacterial hydrogels from medicinal molecule for diabetic wound repair. Bioact Mater 2022; 25:541-554. [PMID: 37056262 PMCID: PMC10087079 DOI: 10.1016/j.bioactmat.2022.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Hydrogel products for chronic diabetic wounds, a serious and prevalent complication of diabetes, show limited effects on disability and remain nonspecific. Thus, improvements in the usage of pharmaceutical molecule in the hydrogels are highly desirable to increase the therapeutic effect of hydrogels. In this study, thioctic acid (a common medicine molecule in diabetes treatment) is used for preparing regenerative antibacterial hydrogels (RAH) which contains in situ synthesized silver nanoparticles (AgNPs). The RAH shows regenerative, self-healing and injectable ability, because of the reversible hydrogen and coordination bonds. With good regenerative capacity, RAH can be stored as powder to avoid the water loss and facilitate storage availability. Owing to the antioxidant properties of thioctic acid, the RAH can decrease the oxidative damage and retain cell proliferation efficiency. Due to the in situ synthesized AgNPs, the RAH also exhibits extraordinary antimicrobial capacities against MDR bacteria. All of these superiorities enable RAH to be a promising therapy for chronic diabetic wounds.
Collapse
|
87
|
Zhou W, Ren S, Zhang F, Gao X, Song K, Fang H, Ding Y. Reinforcement of boron–nitrogen coordinated polyurethane elastomers with silica nanoparticles. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
88
|
Liu R, Wang P, Tian Y, Luo Z. Preparation and properties of diolefin rubber based on dynamically reversible bonding crosslinking. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ran Liu
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy Guizhou University Guiyang China
- Guizhou Province Engineering Laboratory for Rubber Composites, College of Materials and Metallurgy Guizhou University Guiyang PR China
| | - Pingyin Wang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy Guizhou University Guiyang China
| | - Yaozhu Tian
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy Guizhou University Guiyang China
| | - Zhu Luo
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy Guizhou University Guiyang China
| |
Collapse
|
89
|
Liu S, Xu J, Liu Y, You Y, Xie L, Tong S, Chen Y, Liang K, Zhou S, Li F, Tang Z, Mei N, Lu H, Wang X, Gao X, Chen J. Neutrophil-Biomimetic "Nanobuffer" for Remodeling the Microenvironment in the Infarct Core and Protecting Neurons in the Penumbra via Neutralization of Detrimental Factors to Treat Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27743-27761. [PMID: 35695238 DOI: 10.1021/acsami.2c09020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High level of detrimental factors including reactive oxygen species (ROS) and inflammatory cytokines accumulated in the infarct core and their erosion to salvageable penumbra are key pathological cascades of ischemia-reperfusion injury in stroke. Few neuroprotectants can remodel the hostile microenvironment of the infarct core for the failure to interfere with dead or biofunctionally inactive dying cells. Even ischemia-reperfusion injury is temporarily attenuated in the penumbra by medications; insults of detrimental factors from the core still erode the penumbra continuously along with drug metabolism and clearance. Herein, a strategy named "nanobuffer" is proposed to neutralize detrimental factors and buffer destructive erosion to the penumbra. Inspired by neutrophils' tropism to the infarct core and affinity to inflammatory cytokines, poly(lactic-co-glycolic acid) (PLGA) nanoparticles are coated with neutrophil membrane to target the infarct core and absorb inflammatory cytokines; α-lipoic acid is decorated on the surface and cannabidiol is loaded for ROS scavenging and neuroprotection, respectively, to construct the basic unit of the nanobuffer. Such a nanobuffer exerts a comprehensive effect on the infarct area via detrimental factor neutralization and cannabidiol-induced neuroprotection. Besides, the nanobuffer can possibly be enhanced by dynamic ROP (ring-opening-polymerization)-induced membrane cross-fusion among closely adjacent units in vivo. Systematic evaluations show significant decrease of detrimental factors in the core and the penumbra, reduced infarct volume, and improved neurological recovery compared to the untreated group of stroke rats.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Jianpei Xu
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yipu Liu
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yang You
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Laozhi Xie
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Shiqiang Tong
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yu Chen
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Kaifan Liang
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Songlei Zhou
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Fengan Li
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Zhuang Tang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China
| | - Ni Mei
- Shanghai Center for Drug Evaluation and Inspection, Lane 781, Cailun Road, Shanghai 201203, China
| | - Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, 2800 Gongwei Road, Shanghai 201399, China
| | - Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jun Chen
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
90
|
Dang C, Zhang F, Li Y, Jin Z, Cheng Y, Feng Y, Wang X, Zhang C, Chen Y, Shao C, Zheng Q, Qi H. Lithium Bonds Enable Small Biomass Molecule-Based Ionoelastomers with Multiple Functions for Soft Intelligent Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200421. [PMID: 35426235 DOI: 10.1002/smll.202200421] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Lipoic acid (LA), which originates from animals and plants, is a small biomass molecule and has recently shown great application value in soft conductors. However, the severe depolymerization of LA places a significant limitation on its utilization. A strategy of using Li-bonds as both depolymerization quenchers and dynamic mediators to melt transform LA into high-performance ionoelastomers (IEs) is proposed. They feature dry networks while simultaneously combining transparency, stretchability, conductivity, self-healing ability, non-corrosive property, re-mouldability, strain-sensitivity, recyclability, and degradability. Most of the existing soft conductors' drawbacks, such as the tedious synthesis, non-renewable polymer networks, limited functions, and single-use only, are successfully solved. In addition, the multi-functions allow IEs to be used as soft sensors in human-computer interactive games and wireless remote sports assistants. Notably, the recycled IE also provides an efficient conductive filler for transparent ionic papers, which can be used to design soft transparent triboelectric nanogenerators for energy harvesting and multidirectional motion sensing. This work creates a new direction for future research involving intelligent soft electronics.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Fei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175, P. R. China
| | - Yuehu Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Zixian Jin
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175, P. R. China
| | - Yabin Cheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175, P. R. China
| | - Yufan Feng
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034, P. R. China
| | - Xijun Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Cunzhi Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Yian Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Changyou Shao
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034, P. R. China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175, P. R. China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| |
Collapse
|
91
|
Dunning TJ, Bosch E, Groeneman RH. Halogen-bonded zigzag mol-ecular network based upon 1,2-di-iodo-perchloro-benzene and the photoproduct rctt-1,3-bis-(pyridin-4-yl)-2,4-di-phenyl-cyclo-butane. Acta Crystallogr E Crystallogr Commun 2022; 78:506-509. [PMID: 35547802 PMCID: PMC9069512 DOI: 10.1107/s2056989022004200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
The formation and crystal structure of a zigzag mol-ecular network held together by I⋯N halogen bonds is reported. In particular, the halogen-bond donor is 1,2-di-iodo-perchloro-benzene (1,2-C6I2Cl4 ) while the acceptor is a head-to-tail photoproduct, namely rctt-1,3-bis-(pyridin-4-yl)-2,4-di-phenyl-cyclo-butane ( ht -PP). In this co-crystal (1,2-C6I2Cl4 )·( ht-PP), the donor acts as a bent two-connected node while the acceptor behaves as a linear linker to form the extended solid. Neighbouring chains pack in a tongue-and-groove-like pattern that engage in various Cl⋯π inter-actions to both the phenyl and pyridyl rings resulting in a supra-molecular two-dimensional sheet.
Collapse
Affiliation(s)
- Taylor J. Dunning
- Department of Biological Sciences, Webster University, St. Louis, MO 63119, USA
| | - Eric Bosch
- Department of Chemistry, Missouri State University, Springfield, MO 65897, USA
| | - Ryan H. Groeneman
- Department of Biological Sciences, Webster University, St. Louis, MO 63119, USA
| |
Collapse
|
92
|
Liu J, Liu R, Li H, Zhang F, Yao Q, Wei J, Yang Z. Diversifying Nanoparticle Superstructures and Functions Enabled by Translative Templating from Supramolecular Polymerization. Angew Chem Int Ed Engl 2022; 61:e202201426. [PMID: 35179293 DOI: 10.1002/anie.202201426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Biology exploits a transcription-translation approach to deliver structural information from DNA to the protein-building machines with high precision. Here, we show how the structural information of small synthetic molecules could be used to guide the assembly of inorganic nanoparticles into diversified yet long-range ordered superstructures, enabling the information transfer across four or five orders of magnitude in length scale. We designed three perylene diimide (PDI) based isomers differing by their site-specific substitutions of the methyl group, which were able to supramolecularly polymerize into diverse structures. Importantly, coassembly of these PDI isomers with nanoparticles (NPs) could produce diverse long-range ordered nanoparticle superstructures, including one-dimensional NPs chains, double helical NPs assemblies and two-dimensional NPs superlattices. Equally important, we demonstrate that the information originated from small molecules could diversify the functions of the self-assembled nanocomposites.
Collapse
Affiliation(s)
- Jiaming Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Hui Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Fenghua Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qingyuan Yao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
93
|
Zhao F, Liu H, Li H, Cao Y, Hua X, Ge S, He Y, Jiang C, He D. Cogel Strategy for the Preparation of a "Thorn"-Like Porous Halloysite/Gelatin Composite Aerogel with Excellent Mechanical Properties and Thermal Insulation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17763-17773. [PMID: 35384643 DOI: 10.1021/acsami.1c23647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work presents the preparation and property characterization of a biomass gelatin (GA)-based aerogel. Halloysite nanotubes (HNTs) were used to improve the mechanical strength, pore size distribution, and thermal stability of the aerogel. Polyethyleneimine (PEI) and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) were utilized to increase the interfacial interaction between HNTs and GA through chemical cross-linking. Green, sustainable, and low-cost composite aerogels were prepared by "cogel" and freeze-drying techniques. The experimental results show that the HNTs/GA composite aerogel has a low density (31.98-57.48 mg/cm3), a high porosity (>95%), a low thermal conductivity (31.85-40.16 mW m-1 K-1), and superior moldability. In addition, the mechanical strength and thermal insulation properties of the HNTs/GA composite aerogels with a "thorn"-like lamellar porous network structure are different in the axial direction versus the radial direction. The maximum compressive strength, maximum compressive modulus, and corresponding specific modulus in the axial direction were 1.81 MPa, 5.45 MPa, and 94.8 kN m kg-1, respectively. Therefore, the biomass/clay composite aerogel will be a sustainable and renewable functional material with high mechanical strength and thermal insulation properties, which is expected to further promote biomass and clay for high value utilization.
Collapse
Affiliation(s)
- Fuxing Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hanxin Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yixin Cao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xuyu Hua
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Shengzhuo Ge
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yu He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Chongwen Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, China
| | - Dewen He
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
94
|
Li Y, Zhang D, Li J, Lu J, Zhang X, Gao L. Application of hierarchical bonds for construction an anti-corrosion coating with superior intrinsic self-healing function. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
95
|
Xu H, Liu Y, Xie XM. Stretchable alkaline quasi-solid-state electrolytes created by super-tough, fatigue-resistant and alkali-resistant multi-bond network hydrogels. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
96
|
Zhou SW, Tong F, Chen M, Gu R, Shi CY, Yu CY, Zhang Q, Qu DH. Self-Evolution of High Mechanical Strength Dry-Network Polythiourethane Thermosets into Neat Macroscopic Hollow Structures. Angew Chem Int Ed Engl 2022; 61:e202117195. [PMID: 35106884 DOI: 10.1002/anie.202117195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 12/13/2022]
Abstract
Organism-inspired hollow structures are attracting increasing interest for the construction of various bionic functional hollow materials. Next-generation self-evolution hollow materials tend to combine simple synthesis, high mechanical strength, and regular shape. In this study, we designed and synthesized a novel dry-network polythiourethane thermoset with excellent mechanical performance. The polymer film could evolve into a neat and well-organized object with a macroscopic hollow interior structure after being immersed in an aqueous NaOH solution. The self-evolution hollow structure originated from a hydrogen-bonded polymer network, which was later transformed into a network bearing both hydrogen bonds and ionic bonds. The swelling and thickness growth of this material could be controlled by the NaOH concentration and the immersion time. This unique self-evolution behavior was further utilized to produce a series of macroscopic 3D hollow-containing molds, which could be potentially applied in the production of smart materials.
Collapse
Affiliation(s)
- Shang-Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Fei Tong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Meng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Ruirui Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Cheng-Yuan Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|
97
|
Wang Y, Zhang Y, Zhang Z, Li T, Jiang J, Zhang X, Liu T, Qiao J, Huang J, Dong W. Pistachio-Inspired Bulk Graphene Oxide-Based Materials with Shapeability and Recyclability. ACS NANO 2022; 16:3394-3403. [PMID: 35129948 DOI: 10.1021/acsnano.2c00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nowadays, despite the fact that recent progress has been reported to mimic natural structural materials (especially nacre), designing bioinspired ultrastrong composites in a universal, viable, and scalable manner still remains a long-standing challenge. In particular, pistachio shells show high tissue strength attributed to the cellulose sheet laminated microstructures. Compared with nacre, pistachio shells own interlocking mortise-tenon joints in their structure, which offer higher energy dissipation and deformability. Here we present a strategy to produce nanocomposites with pistachio-mimetic structures through repeated kneading of graphene oxide (GO) in a dynamic covalent and supramolecular poly(sodium thioctic) (pST) system. The dynamic nature of the polymeric backbones endows the resultant GO-based composite with full recyclability and three-dimensional shapeability. The superior mechanical properties of the pistachio-mimetic composite can be attributed to the mortise-tenon joints design in the structure, which has not been achieved in the nacre-mimetic composite. The resulting composite also exhibits high thermal conductivity (15.6 W/(m·K)), yielding an alternative approach to design in engineered and thermal management materials.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zheng Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ting Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jie Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xuhui Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jinliang Qiao
- SINOPEC, Beijing Research Institute of Chemical Industry, Beijing, 100013, P. R. China
| | - Jing Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
98
|
Liu J, Liu R, Li H, Zhang F, Yao Q, Wei J, Yang Z. Diversifying Nanoparticle Superstructures and Functions Enabled by Translative Templating from Supramolecular Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jiaming Liu
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Rongjuan Liu
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Hui Li
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Fenghua Zhang
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Qingyuan Yao
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Jingjing Wei
- Shandong University School of Chemistry and Chemical Engineering 27 Shanda Nanlu 250100 Jinan CHINA
| | - Zhijie Yang
- Shandong University School of Chemistry and Chemical Engineering 27 Shanda Nanlu 250100 Jinan CHINA
| |
Collapse
|
99
|
Zhou S, Tong F, Chen M, Gu R, Shi C, Yu C, Zhang Q, Qu D. Self‐Evolution of High Mechanical Strength Dry‐Network Polythiourethane Thermosets into Neat Macroscopic Hollow Structures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| | - Fei Tong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| | - Meng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| | - Ruirui Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| | - Chen‐Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| | - Cheng‐Yuan Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| |
Collapse
|
100
|
Zhang Q, Qu DH, Feringa BL, Tian H. Disulfide-Mediated Reversible Polymerization toward Intrinsically Dynamic Smart Materials. J Am Chem Soc 2022; 144:2022-2033. [PMID: 34990126 DOI: 10.1021/jacs.1c10359] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of a dynamic chemistry toolbox to endow materials dynamic behavior has been key to the rational design of future smart materials. The rise of supramolecular and dynamic covalent chemistry offers many approaches to the construction of dynamic polymers and materials that can adapt, respond, repair, and recycle. Within this toolbox, the building blocks based on 1,2-dithiolanes have become an important scaffold, featuring their reversible polymerization mediated by dynamic covalent disulfide bonds, which enables a unique class of dynamic materials at the intersection of supramolecular polymers and adaptable covalent networks. This Perspective aims to explore the dynamic chemistry of 1,2-dithiolanes as a versatile structural unit for the design of smart materials by summarizing the state of the art as well as providing an overview of the fundamental challenges involved in this research area and its potential future directions.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.,Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.,Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|