51
|
Mattonai M, Watanabe A, Ribechini E. Characterization of volatile and non-volatile fractions of spices using evolved gas analysis and multi-shot analytical pyrolysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
52
|
The GABA A-Benzodiazepine Receptor Antagonist Flumazenil Abolishes the Anxiolytic Effects of the Active Constituents of Crocus sativus L. Crocins in Rats. Molecules 2020; 25:molecules25235647. [PMID: 33266149 PMCID: PMC7730330 DOI: 10.3390/molecules25235647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 11/28/2022] Open
Abstract
Anxiety is a chronic severe psychiatric disorder. Crocins are among the various bioactive components of the plant Crocus sativus L. (Iridaceae) and their implication in anxiety is well-documented. However, which is the mechanism of action underlying the anti-anxiety effects of crocins remains unknown. In this context, it has been suggested that these beneficial effects might be ascribed to the agonistic properties of these bioactive ingredients of saffron on the GABA type A receptor. The current experimentation was undertaken to clarify this issue in the rat. For this research project, the light/dark and the open field tests were used. A single injection of crocins (50 mg/kg, i.p., 60 min before testing) induces an anti-anxiety-like effect revealed either in the light-dark or open field tests. Acute administration of the GABAA-benzodiazepine receptor antagonist flumazenil (10 mg/kg, i.p., 30 min before testing) abolished the above mentioned anxiolytic effects of crocins. The current findings suggest a functional interaction between crocins and the GABAA receptor allosteric modulator flumazenil on anxiety.
Collapse
|
53
|
Saffron: Chemical Composition and Neuroprotective Activity. Molecules 2020; 25:molecules25235618. [PMID: 33260389 PMCID: PMC7731018 DOI: 10.3390/molecules25235618] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Crocus sativus L. belongs to the Iridaceae family and it is commonly known as saffron. The different cultures together with the geoclimatic characteristics of the territory determine a different chemical composition that characterizes the final product. This is why a complete knowledge of this product is fundamental, from which more than 150 chemical compounds have been extracted from, but only about one third of them have been identified. The chemical composition of saffron has been studied in relation to its efficacy in coping with neurodegenerative retinal diseases. Accordingly, experimental results provide evidence of a strict correlation between chemical composition and neuroprotective capacity. We found that saffron's ability to cope with retinal neurodegeneration is related to: (1) the presence of specific crocins and (2) the contribution of other saffron components. We summarize previous evidence and provide original data showing that results obtained both "in vivo" and "in vitro" lead to the same conclusion.
Collapse
|
54
|
Jiménez-Ortega E, Braza-Boïls A, Burgos M, Moratalla-López N, Vicente M, Alonso GL, Nava E, Llorens S. Crocetin Isolated from the Natural Food Colorant Saffron Reduces Intracellular Fat in 3T3-L1 Adipocytes. Foods 2020; 9:foods9111648. [PMID: 33198073 PMCID: PMC7696798 DOI: 10.3390/foods9111648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Saffron, as a food colorant, has been displaced by low-cost synthetic dyes. These have unhealthy properties; thus, their replacement with natural food colorants is an emerging trend. Obesity is a worldwide health problem due to its associated comorbidities. Crocetin esters (crocins) are responsible for the red saffron color. Crocetin (CCT) exhibits healthful properties. We aimed to broaden the existing knowledge on the health properties of CCT isolated from saffron, to facilitate its consideration as a healthy natural food colorant in the future. We evaluated the ability of CCT (1 and 5 μM) to reduce lipid accumulation during the differentiation of 3T3-L1 preadipocytes. Intracellular fat was quantified by Oil Red O staining. CTT cytotoxicity was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The number and size of lipid droplets were analyzed using WimLipid software. The expression of adipogenic genes (CCAAT/enhancer-binding protein (C/EBPβ, C/EBPδ, C/EBPα), and peroxisome proliferator-activated receptor γ (PPARγ)) was analyzed using quantitative real-time PCR (qRT-PCR). CCT 5 μM decreased intracellular fat by 22.6%, without affecting viability or lipid droplet generation, via a decrease in C/EBPα expression, implicated in lipid accumulation. Thus, CCT is a potential candidate to be included in dietary therapies aimed at reversing adipose tissue accumulation in obesity.
Collapse
Affiliation(s)
- Elena Jiménez-Ortega
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Rocasolano, CSIC, 28006 Madrid, Spain;
| | - Aitana Braza-Boïls
- Unidad de Cardiopatías Familiares, Muerte Súbita y Mecanismos de Enfermedad (CaFaMuSMe), Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
| | - Miguel Burgos
- Translational Research Unit, Albacete University Hospital, 02008 Albacete, Spain;
| | - Natalia Moratalla-López
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (N.M.-L.); (G.L.A.)
| | - Manuel Vicente
- Department of Medical Sciences, Faculty of Medicine of Albacete, Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, 02008 Albacete, Spain; (M.V.); (E.N.)
| | - Gonzalo L. Alonso
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (N.M.-L.); (G.L.A.)
| | - Eduardo Nava
- Department of Medical Sciences, Faculty of Medicine of Albacete, Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, 02008 Albacete, Spain; (M.V.); (E.N.)
| | - Sílvia Llorens
- Department of Medical Sciences, Faculty of Medicine of Albacete, Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, 02008 Albacete, Spain; (M.V.); (E.N.)
- Correspondence:
| |
Collapse
|
55
|
Crocins from Crocus sativus L. in the Management of Hyperglycemia. In Vivo Evidence from Zebrafish. Molecules 2020; 25:molecules25225223. [PMID: 33182581 PMCID: PMC7696463 DOI: 10.3390/molecules25225223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is a disease characterized by persistent high blood glucose levels and accompanied by impaired metabolic pathways. In this study, we used zebrafish to investigate the effect of crocins isolated from Crocus sativus L., on the control of glucose levels and pancreatic β-cells. Embryos were exposed to an aqueous solution of crocins and whole embryo glucose levels were measured at 48 h post-treatment. We showed that the application of crocins reduces zebrafish embryo glucose levels and enhances insulin expression. We also examined whether crocins are implicated in the metabolic pathway of gluconeogenesis. We showed that following a single application of crocins and glucose level reduction, the expression of phosphoenolpyruvate carboxykinase1 (pck1), a key gene involved in glucose metabolism, is increased. We propose a putative role for the crocins in glucose metabolism and insulin management.
Collapse
|
56
|
Liu T, Yu S, Xu Z, Tan J, Wang B, Liu YG, Zhu Q. Prospects and progress on crocin biosynthetic pathway and metabolic engineering. Comput Struct Biotechnol J 2020; 18:3278-3286. [PMID: 33209212 PMCID: PMC7653203 DOI: 10.1016/j.csbj.2020.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/22/2022] Open
Abstract
Crocins are a group of highly valuable apocarotenoid-derived pigments mainly produced in Crocus sativus stigmas and Gardenia jasminoides fruits, which display great pharmacological activities for human health, such as anticancer, reducing the risk of atherosclerosis, and preventing Alzheimer's disease. However, traditional sources of crocins are no longer sufficient to meet current demands. The recent clarification of the crocin biosynthetic pathway opens up the possibility of large-scale production of crocins by synthetic metabolic engineering methods. In this review, we mainly introduce the crocin biosynthetic pathway, subcellular route, related key enzymes, and its synthetic metabolic engineering, as well as its challenges and prospects, with a view to providing useful references for further studies on the synthetic metabolic engineering of crocins.
Collapse
Affiliation(s)
- Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Suize Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
57
|
Pang Q, Zhang W, Li C, Li H, Zhang Y, Li L, Zang C, Yao X, Zhang D, Yu Y. Antidementia effects, metabolic profiles and pharmacokinetics of GJ-4, a crocin-rich botanical candidate from Gardeniae fructus. Food Funct 2020; 11:8825-8836. [PMID: 32966490 DOI: 10.1039/d0fo01678k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crocins, a series of hydrophilic carotenoids that are either mono- or di-glycosyl polyene esters of crocetin extracted from dried saffron stigma or fruits of gardenia, are attracting much attention due to their wide range of pharmacological effects. In our previous study, GJ-4, a mixture of crocin analogues, was obtained and derived from gardenia fruits. Mainly 18 crocin analogues were identified from GJ-4 and found to exhibit neuroprotective effects in in vitro and in vivo models. In this present study, we continue to investigate the therapeutic effects of GJ-4 on learning and memory impairments in a 2VO-induced VaD model, and the potential mechanism. In addition, the metabolic profiles and pharmacokinetic properties of GJ-4 were determined using liquid chromatography-electrospray ionization-mass spectrometry after single and multiple oral doses. All these findings presented here will serve as a solid basis to develop GJ-4 as a new therapeutic agent for dementia.
Collapse
Affiliation(s)
- Qianqian Pang
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| | - Weiyang Zhang
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Chenyang Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, People' Republic China
| | - Haibo Li
- Kanion Pharmaceutical Co. Ltd, State Key Laboratory of New-tech for Chinese Medicine Pharamaceutical Process, Lianyungang 222001, People' Republic China
| | - Yu Zhang
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| | - Lin Li
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| | - Caixia Zang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xinsheng Yao
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| | - Dan Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yang Yu
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| |
Collapse
|
58
|
Moratalla-López N, Sánchez AM, Lorenzo C, López-Córcoles H, Alonso GL. Quality determination of Crocus sativus L. flower by high-performance liquid chromatography. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
59
|
Moratalla-López N, Parizad S, Habibi MK, Winter S, Kalantari S, Bera S, Lorenzo C, García-Rodríguez MV, Dizadji A, Alonso GL. Impact of two different dehydration methods on saffron quality, concerning the prevalence of Saffron latent virus (SaLV) in Iran. Food Chem 2020; 337:127786. [PMID: 32795861 DOI: 10.1016/j.foodchem.2020.127786] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
The dehydration process is a prerequisite to preserve saffron for a long time. According to this process, saffron shows differences in the main compounds responsible for its quality (colour, taste, aroma, and flavonol content). At present, the freeze-drying method obtains dried products with the highest quality. Viruses can modify the physiology and metabolism of plants, being able to affect the activities of several enzymes. For this reason, the main compounds of saffron have been analyzed under two different dehydrating processes, freeze-drying and dark-drying, considering their infection status with the Saffron latent virus (SaLV). Results showed that the picrocrocin and safranal content enables to differ dark-dried samples from freeze-dried ones. Besides, the kaempferol-3-O-sophoroside-7-O-glucoside content allows differentiating between SaLV-infected (SaLV+) and uninfected (SaLV-) saffron samples. Moreover, our data suggest that the freeze-drying would decrease crocins content, and dark-drying can nullify the adverse effect of SaLV on crocins content.
Collapse
Affiliation(s)
- Natalia Moratalla-López
- Cátedra de Química Agrícola, ETSI Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| | - Shirin Parizad
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran.
| | - Mina Koohi Habibi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran.
| | - Stephan Winter
- German Collection of Microorganisms and Cell Cultures, DSMZ, Braunschweig, Germany.
| | - Siamak Kalantari
- Department of Horticultural Science, College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran.
| | - Sayanta Bera
- School of Integrative Plant Science, Plant-Microbe Biology and Plant Pathology Section, Cornell University, Ithaca, NY 14853, USA.
| | - Candida Lorenzo
- Cátedra de Química Agrícola, ETSI Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| | - M Valle García-Rodríguez
- Cátedra de Química Agrícola, ETSI Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| | - Akbar Dizadji
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran.
| | - Gonzalo L Alonso
- Cátedra de Química Agrícola, ETSI Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| |
Collapse
|
60
|
Biancolillo A, Foschi M, D'Archivio AA. Geographical Classification of Italian Saffron ( Crocus sativus L.) by Multi-Block Treatments of UV-Vis and IR Spectroscopic Data. Molecules 2020; 25:molecules25102332. [PMID: 32429442 PMCID: PMC7287695 DOI: 10.3390/molecules25102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
One-hundred and fourteen samples of saffron harvested in four different Italian areas (three in Central Italy and one in the South) were investigated by IR and UV-Vis spectroscopies. Two different multi-block strategies, Sequential and Orthogonalized Partial Least Squares Linear Discriminant Analysis (SO-PLS-LDA) and Sequential and Orthogonalized Covariance Selection Linear Discriminant Analysis (SO-CovSel-LDA), were used to simultaneously handle the two data blocks and classify samples according to their geographical origin. Both multi-block approaches provided very satisfying results. Each model was investigated in order to understand which spectral variables contribute the most to the discrimination of samples, i.e., to the characterization of saffron harvested in the four different areas. The most accurate solution was provided by SO-PLS-LDA, which only misclassified three test samples over 31 (in external validation).
Collapse
Affiliation(s)
- Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| | - Martina Foschi
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| | - Angelo Antonio D'Archivio
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| |
Collapse
|
61
|
Stability assessment of crocetin and crocetin derivatives in Gardenia yellow pigment and Gardenia fruit pomace in presence of different cooking methods. Food Chem 2020; 312:126031. [DOI: 10.1016/j.foodchem.2019.126031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
|
62
|
Biancolillo A, Maggi MA, De Martino A, Marini F, Ruggieri F, D'Archivio AA. Authentication of PDO saffron of L'Aquila (Crocus sativus L.) by HPLC-DAD coupled with a discriminant multi-way approach. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
63
|
Aiello D, Siciliano C, Mazzotti F, Di Donna L, Athanassopoulos CM, Napoli A. A rapid MALDI MS/MS based method for assessing saffron (Crocus sativus L.) adulteration. Food Chem 2020; 307:125527. [DOI: 10.1016/j.foodchem.2019.125527] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/02/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023]
|
64
|
Bioaccessibility and Pharmacokinetics of a Commercial Saffron ( Crocus sativus L.) Extract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1575730. [PMID: 32089715 PMCID: PMC7013346 DOI: 10.1155/2020/1575730] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/04/2020] [Indexed: 01/06/2023]
Abstract
There are few studies about the pharmacokinetics of the low-molecular mass carotenoids crocetin or crocin isomers from saffron (Crocus sativus L.). None has been performed with a galenic preparation of a standardised saffron extract. The aim of the present research work was to study the effect of in vitro digestion process on the main bioactive components of saffron extract tablets and the corresponding pharmacokinetic parameters in humans. Pharmacokinetics were calculated collecting blood samples every 30 min during the first 3 h and at 24 h after administration of two different concentrations (56 and 84 mg of the saffron extract) to 13 healthy human volunteers. Additionally, an in vitro digestion process was performed in order to determine the bioaccessibility of saffron main bioactive compounds. Identification and quantification analysis were performed by HPLC-PAD/MS. Digestion resulted in 40% of bioaccesibility for crocin isomers, whereas, safranal content followed an opposite trend increasing about 2 folds its initial concentration after the digestion process. Crocetin in plasma was detected in a maximum concentration (C max) in blood between 60 and 90 min after oral consumption with dose-dependent response kinetics, showing that crocin isomers from galenic preparation of saffron extract are rapidly transformed into crocetin. The results showed that this tested galenic form is an efficient way to administer a saffron extract, since the observed crocetin C max was similar and more quickly bioavailable than those obtained by other studies with much higher concentrations of crocetin.
Collapse
|
65
|
Pandey DK, Nandy S, Mukherjee A, Dey A. Advances in bioactive compounds from Crocus sativus (saffron): Structure, bioactivity and biotechnology. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-12-817907-9.00010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
66
|
Hatziagapiou K, Kakouri E, Lambrou GI, Koniari E, Kanakis C, Nikola OA, Theodorakidou M, Bethanis K, Tarantilis PA. Crocins: The Active Constituents of Crocus Sativus L. Stigmas, Exert Significant Cytotoxicity on Tumor Cells In Vitro. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666181029120446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::Tumors of the childhood are considered to be grave and devastating pathologies, with high mortality rates. Current therapeutic options like cytotoxic drugs and radiotherapy target both healthy and malignant cells, thus resulting in long-term neurological and intellectual sequelae and endocrinological disorders.Objectives::In this study, we focused on the anticancer potency of crocins, the main constituents of Crocus sativus L, stigmas. Crocins were first extracted using organic solvents from the dried stigmas and then were identified using the HPLC analysis.Materials and Methods::TE-671 cells were treated with the extract of crocins using a range of concentrations between 0.25-mg/ mL and 16 mg/mL. Viability of the cells was measured at 24h, 48h, 72h and 96h. In addition, we have examined the expression levels of the p53 gene using Real-Time Reverse Transcription PCR.Results::Results showed that crocins exerted significant cytotoxic and anti-proliferative effects in a concentration and time - dependent-manner on TE-671 cells. Furthermore, p53 manifested similar expression pattern as the anti-proliferative effect of crocin.Conclusion::Our data demonstrate that crocins could be a novel promising agent for the improvement of tumor treatment.
Collapse
Affiliation(s)
- Kyriaki Hatziagapiou
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Kakouri
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George I. Lambrou
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Koniari
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalabos Kanakis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Olti A. Nikola
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Margarita Theodorakidou
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Bethanis
- Laboratory of Physics, Department of Biotechnology, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Petros A. Tarantilis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
67
|
Geographical classification of Iranian and Italian saffron sources based on HPLC analysis and UV–Vis spectra of aqueous extracts. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03352-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
68
|
Moratalla-López N, Bagur MJ, Lorenzo C, Salinas MEMNR, Alonso GL. Bioactivity and Bioavailability of the Major Metabolites of Crocus sativus L. Flower. Molecules 2019; 24:molecules24152827. [PMID: 31382514 PMCID: PMC6696252 DOI: 10.3390/molecules24152827] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/12/2023] Open
Abstract
Crocus sativus L. has been cultivated throughout history to obtain its flowers, whose dried stigmas give rise to the spice known as saffron. Crocetin esters, picrocrocin, and safranal are the main metabolites of this spice, which possess a great bioactivity, although the mechanisms of action and its bioavailability are still to be solved. The rest of the flower is composed by style, tepals, and stamens that have other compounds, such as kaempferol and delphinidin, which have an important antioxidant capacity, and these can be applied in foods, phytopharmaceuticals, and cosmetics. The aim of this work was to provide an updated and critical review of the research on the main compounds of Crocus sativus L. flower, including the adequate analytical methods for their identification and quantification, with a focus on their bioactivity and bioavailability.
Collapse
Affiliation(s)
- Natalia Moratalla-López
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | - María José Bagur
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | - Cándida Lorenzo
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | | | - Gonzalo L Alonso
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| |
Collapse
|
69
|
Geographical discrimination of saffron (Crocus sativus L.) using ICP-MS elemental data and class modeling of PDO Zafferano dell’Aquila produced in Abruzzo (Italy). FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01610-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
70
|
Meléndez-Martínez AJ. An Overview of Carotenoids, Apocarotenoids, and Vitamin A in Agro-Food, Nutrition, Health, and Disease. Mol Nutr Food Res 2019; 63:e1801045. [PMID: 31189216 DOI: 10.1002/mnfr.201801045] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/14/2019] [Indexed: 01/05/2023]
Abstract
Carotenoids are fascinating compounds that can be converted into many others, including retinoids that also play key roles in many processes. Although carotenoids are largely known in the context of food science, nutrition, and health as natural colorants and precursors of vitamin A (VA), evidence has accumulated that even those that cannot be converted to VA may be involved in health-promoting biological actions. It is not surprising that carotenoids (most notably lutein) are among the bioactives for which the need to establish recommended dietary intakes have been recently discussed. In this review, the importance of carotenoids (including apocarotenoids) and key derivatives (retinoids with VA activity) in agro-food with relevance to health is summarized. Furthermore, the European Network to Advance Carotenoid Research and Applications in Agro-Food and Health (EUROCAROTEN) is introduced. EUROCAROTEN originated from the Ibero-American Network for the Study of Carotenoids as Functional Food Ingredients (IBERCAROT).
Collapse
Affiliation(s)
- Antonio J Meléndez-Martínez
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012, Seville, Spain
| |
Collapse
|
71
|
Mykhailenko O, Kovalyov V, Goryacha O, Ivanauskas L, Georgiyants V. Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. PHYTOCHEMISTRY 2019; 162:56-89. [PMID: 30856530 DOI: 10.1016/j.phytochem.2019.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
The present article is the first comprehensive review on the chemical composition and pharmacological activities of the raw materials of Crocus species. In the present review, data on chemical constituents and pharmacological profile of Crocus sativus stigmas, as well as of other plant parts (perianth, stamens, leaves, corms) of different Crocus spp. are given. This review discusses all the classes of compounds (carotenoids, flavonoids, anthocyanins, terpenoids, phenol carboxylic acids, etc.) detected in raw materials of Crocus plants providing information on the current state of knowledge on phytochemicals of Crocus species. Almost all structural formulas of the compounds identified and isolated from Crocus species are given; all compounds are presented in accordance with the types of the studied raw materials. The latest hypotheses relating to the biosynthesis pathways of the main biologically active compounds of saffron (crocin, picrocrocin, safranal), as well as chemotaxonomy of Crocus genus are briefly summarized. The present review discusses the most thoroughly studied pharmacological activities (namely, antioxidant, antiparasitic, hypolipidemic, antihypertensive, immunomodulatory, antimicrobial, antitumor, cytotoxic, antidepressant) of saffron stigmas extracts, of its individual phytochemicals (safranal, crocin, crocetin), as well as pharmacological activities of raw materials of other Crocus species. This comprehensive review will be informative for scientists searching for new properties of saffron stigmas, as well as for saffron producers, since the present review highlights the prospects for the use of waste products in the production of the expensive spice. In addition, the present review provides information on pharmacological properties and composition of other Crocus species as promising medicinal and food plants. In the present review the emphasis will be put on the chemical constituents of Crocus species and the intraspecies variation in phytochemicals and pharmacological activities.
Collapse
Affiliation(s)
- Olga Mykhailenko
- Department of Botany, National University of Pharmacy, 61168, Kharkiv, str. Valentynivska, 4, Ukraine.
| | - Volodymyr Kovalyov
- Department of Pharmacognosy, National University of Pharmacy, 61168, Kharkiv, str. Valentynivska, 4, Ukraine.
| | - Olga Goryacha
- Department of Pharmacognosy, National University of Pharmacy, 61168, Kharkiv, str. Valentynivska, 4, Ukraine.
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT 44307, Kaunas, Lithuania.
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 61168, Kharkiv, str. Valentynivska, 4, Ukraine.
| |
Collapse
|
72
|
Parizad S, Dizadji A, Habibi MK, Winter S, Kalantari S, Movi S, Lorenzo Tendero C, Alonso GL, Moratalla-Lopez N. The effects of geographical origin and virus infection on the saffron (Crocus sativus L.) quality. Food Chem 2019; 295:387-394. [PMID: 31174773 DOI: 10.1016/j.foodchem.2019.05.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 11/18/2022]
Abstract
Saffron is appreciated by its colour, taste, and aroma. To examine the effect of abiotic and biotic stress on these main properties, in the span of 2014-2016, saffron stigmas were collected from major different saffron cultivation areas of Iran and saffron quality was estimated. The quality of saffron was assessed by ultraviolet-visible spectroscopy following the ISO3632:2011 standard. However, the composition and concentration of crocetin esters, picrocrocin, safranal, and kaempferols, the most critical compounds determining the properties and quality of saffron can vary with the geographical origin and virus effects, being more accurate High-Performance Liquid Chromatography and Diode Array Detection (HPLC-DAD) methods were used to analyze saffron quality. Using HPLC-DAD we analyzed saffron plants grown at various conditions (considering altitude, temperature, and precipitation/rainfall) and in presence/absence of virus infections; we found that edaphoclimatic and cultivation conditions significantly determine the quality of the spice and the presence of virus modifies the content of its metabolites.
Collapse
Affiliation(s)
- Shirin Parizad
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran.
| | - Akbar Dizadji
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran.
| | - Mina Koohi Habibi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran.
| | - Stephan Winter
- German Collection of Microorganisms and Cell Cultures, DSMZ, Braunschweig, Germany.
| | - Siamak Kalantari
- Department of Horticultural Science, College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran.
| | - Shahrbanoo Movi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran
| | - Candida Lorenzo Tendero
- Cátedra de Química Agrícola, ETSI Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| | - Gonzalo L Alonso
- Cátedra de Química Agrícola, ETSI Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| | - Natalia Moratalla-Lopez
- Cátedra de Química Agrícola, ETSI Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| |
Collapse
|
73
|
Hashemi M, Hosseinzadeh H. A comprehensive review on biological activities and toxicology of crocetin. Food Chem Toxicol 2019; 130:44-60. [PMID: 31100302 DOI: 10.1016/j.fct.2019.05.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Natural products with high pharmacological potential and low toxicity have been considered as the novel therapeutic agents. Crocetin is an active constituent of saffron (Crocus sativus L.) stigma, which in its free-acid form is insoluble in water and most organic solvents. Crocetin exhibits various health-promoting properties including anti-tumor, neuroprotective effects, anti-diabetics, anti-inflammatory, anti-hyperlipidemia, etc. These therapeutic effects can be achieved with different mechanisms such as improvement of oxygenation in hypoxic tissues, antioxidant effects, inhibition of pro-inflammatory mediators, anti-proliferative activity and stimulation of apoptosis in cancer cells. It is also worth considering that crocetin could be tolerated without major toxicity at therapeutic dosage in experimental models. In the present review, we discuss the biosynthesis, pharmacokinetic properties of crocetin and provide a comprehensive study on the biological activities and toxicity along with the mechanism of actions and clinical trials data of crocetin.
Collapse
Affiliation(s)
- Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
74
|
Ordoudi SA, Pástor‐Férriz MT, Kyriakoudi A, Molina RV, De‐Los‐Mozos‐Pascual M, Tsimidou MZ. Physicochemical Characterization of
Crocus serotinus
Stigmas Indicates Their Potential as a Source of the Bioactive Apocarotenoid Crocetin. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stella A. Ordoudi
- Laboratory of Food Chemistry and Technology (LFCT)School of ChemistryAristotle University of Thessaloniki (AUTH)54124 ThessalonikiGreece
| | - Maria Teresa Pástor‐Férriz
- Laboratory of Food Chemistry and Technology (LFCT)School of ChemistryAristotle University of Thessaloniki (AUTH)54124 ThessalonikiGreece
- Departamento de Biologı́a VegetalUniversidad Politécnica de Valencia46071 ValenciaSpain
| | - Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Technology (LFCT)School of ChemistryAristotle University of Thessaloniki (AUTH)54124 ThessalonikiGreece
| | - Rosa Victoria Molina
- Departamento de Biologı́a VegetalUniversidad Politécnica de Valencia46071 ValenciaSpain
| | - Marcelino De‐Los‐Mozos‐Pascual
- Centro de Investigación Agroforestal de Albaladejito (CIAA)Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla − La Mancha16194 CuencaSpain
| | - Maria Z. Tsimidou
- Laboratory of Food Chemistry and Technology (LFCT)School of ChemistryAristotle University of Thessaloniki (AUTH)54124 ThessalonikiGreece
| |
Collapse
|
75
|
Pittenauer E, Rados E, Tsarbopoulos A, Allmaier G. In-depth analysis of crocetin ester glycosides from dried/processed stigmas of Crocus sativus L. by HPLC-ESI-MS n (n = 2, 3). PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:346-356. [PMID: 30644146 DOI: 10.1002/pca.2817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Saffron stigmas from Crocus sativus L. (Iridaceae) are used as a drug in folk medicine, as a food additive and as a dying agent for at least 3500 years. Despite this long-term use the chemical composition of saffron seems still to be not fully known. OBJECTIVE An analytical strategy for detailed investigations of aqueous saffron extract is developed based on reverse-phase high-performance liquid chromatography electrospray ionisation (HPLC-ESI) multistage mass spectrometry (MSn ) for crocins. METHODS Commercially available stigmas are analysed by reverse-phase HPLC in combination with ESI/three-dimensional (3D)-ion trap mass spectrometry (MS) and MSn (n = 2 and 3). Sodium chloride is added to the analyte solution ready for injection to promote abundant [M + Na]+ adduct ions of crocins, being ideal precursor ions for low-energy collision-induced dissociation (CID)-MS2/3 . RESULTS This strategy allows the detailed structural elucidation of known as well as previously unknown crocin derivatives (molecular mass of the aglycon, oligosaccharide chain length and linkage determination). The two isomeric trisaccharide substituents neapolitanose and gentiotriose are distinguished based on linkage-specific cross-ring cleavage for the first time. Furthermore, crocins containing up to six hexose units are also observed. Five novel crocin ester glycosides shifted by a mass difference of -40 Da indicate the presence of the here newly described C17 -aglycon, termed norcrocetin (crocetin = C20 ). CONCLUSIONS These findings indicate the action of at least two different carotenoid cleavage dioxygenases (CCD2 and tentatively CCD4) during biosynthesis of this new bis-apocarotenoid aglycon (norcrocetin) and the existence of even higher glycosylated crocin derivatives at trace level.
Collapse
Affiliation(s)
- Ernst Pittenauer
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Edita Rados
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Anthony Tsarbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Bioanalytical Department, GAIA Research Centre, The Goulandris Natural History Museum, Kifissia, Greece
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| |
Collapse
|
76
|
Mi J, Jia KP, Balakrishna A, Wang JY, Al-Babili S. An LC-MS profiling method reveals a route for apocarotene glycosylation and shows its induction by high light stress in Arabidopsis. Analyst 2019; 144:1197-1204. [DOI: 10.1039/c8an02143k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Apocarotenoid glycosylation serves as a valve regulating carotenoid homeostasis in plants and may contribute to their response to photo-oxidative stress.
Collapse
Affiliation(s)
- Jianing Mi
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Kun-Peng Jia
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Aparna Balakrishna
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Jian You Wang
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| |
Collapse
|
77
|
Bhat NA, Hamdani AM, Masoodi FA. Development of functional cookies using saffron extract. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:4918-4927. [PMID: 30482987 PMCID: PMC6233447 DOI: 10.1007/s13197-018-3426-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 11/27/2022]
Abstract
Saffron extracts of two different concentrations were prepared and used as a source of natural antioxidants in whole wheat flour cookies. The effect on the color, texture and sensory properties of the product was also studied over a storage period of 9 months. Results revealed that spread ratio and hardness of cookies reduced non-significantly with the addition of saffron extract (SE). Color values 'L' and 'b' of cookies increased significantly from 50.7 to 53.9 and 36.5 to 47.0, respectively with the addition of SE while 'a' value decreased non-significantly (p > 0.05). DPPH radical scavenging activity, reducing power and inhibition of lipid peroxidation of dough and cookie samples containing SE were enhanced in comparison to control. The concentration of crocins, safranal and picrocrocin in DS50 and DS100 dough samples was found as 28.30, 48.30, 104.6 µg/g and 35.14, 62.38, 118.2 µg/g, respectively. Sensory scores of cookies containing SE were high as compared to control. All the quality parameters of cookies reduced during the storage period (0-9 months). However, the cookies with added SE revealed significantly higher quality attributes up to 6 months of storage without any significant loss in quality.
Collapse
Affiliation(s)
- Naseer Ahmad Bhat
- Department of Food Science and Technology, University of Kashmir, Srinagar, 190 006 India
| | - Afshan Mumtaz Hamdani
- Department of Food Science and Technology, University of Kashmir, Srinagar, 190 006 India
| | - F. A. Masoodi
- Department of Food Science and Technology, University of Kashmir, Srinagar, 190 006 India
| |
Collapse
|
78
|
Aiello D, Siciliano C, Mazzotti F, Di Donna L, Athanassopoulos CM, Napoli A. Molecular species fingerprinting and quantitative analysis of saffron ( Crocus sativus L.) for quality control by MALDI mass spectrometry. RSC Adv 2018; 8:36104-36113. [PMID: 35558493 PMCID: PMC9088749 DOI: 10.1039/c8ra07484d] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022] Open
Abstract
Herein we describe a rapid, simple, and reliable method for the quantitative analysis and molecular species fingerprinting of saffron (Crocus sativus L.) by direct MS and MS/MS analysis. Experimentally, powdered saffron was subjected to a brief treatment with a 0.3% TFA water/acetonitrile solution, and the resulting mixture was directly placed on the MALDI plate for analysis. This approach allowed the detection of the commonly observed crocins C-1-C-6 and flavonols, together with the identification of the unknown highly glycosylated crocins C-7, C-8 and C-9, and carotenoid-derived metabolites. The strategy endorsed the simultaneous detection and characterization of saffron and adulterant markers using crude extracts of the adulterant itself and synthetic sets of adulterated authentic saffron samples. The implementation of the strategy was to measure the amount of an unknown adulterant from the crude extract using curcumin as a non-isotopic isobaric internal standard. The relationship between the saffron and curcumin molar ratios were established with a correlation coefficient of 0.9942. The ANOVA regression model was significant, F(1, 72) = 13 595.82, p < 0.001, y = (0.0116 ± 0.0001)x + (-0.1214 ± 0.0086). No matrix effects were observed and good results were obtained with respect to instrumental repeatability (*RSD% < 2%) and LOD (1.1%). The analysis of commercial samples of saffron using the proposed approach showed the suitability of the method for routine analysis (minimal sample preparation and very short measuring time per sample).
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria Italy
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Italy
| | - Fabio Mazzotti
- Department of Chemistry and Chemical Technologies, University of Calabria Italy
| | - Leonardo Di Donna
- Department of Chemistry and Chemical Technologies, University of Calabria Italy
| | | | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria Italy
| |
Collapse
|
79
|
Crocins pattern in saffron detected by UHPLC-MS/MS as marker of quality, process and traceability. Food Chem 2018; 264:241-249. [DOI: 10.1016/j.foodchem.2018.04.111] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/28/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
|
80
|
Aktypis A, Christodoulou ED, Manolopoulou E, Georgala A, Daferera D, Polysiou M. Fresh ovine cheese supplemented with saffron (Crocus sativus L.): Impact on microbiological, physicochemical, antioxidant, color and sensory characteristics during storage. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
81
|
|
82
|
Anti-TMV and Insecticidal Potential of Four Iridoid Glycosides from Gardenia Jasminoides Fruit. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
83
|
Cusano E, Consonni R, Petrakis EA, Astraka K, Cagliani LR, Polissiou MG. Integrated analytical methodology to investigate bioactive compounds in Crocus sativus L. flowers. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:476-486. [PMID: 29484754 DOI: 10.1002/pca.2753] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/27/2017] [Accepted: 01/06/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION The increasing interest on Crocus sativus L. over the last decades is caused by its potential employment as a source of biologically active molecules, endowed with antioxidant and nutraceutical properties. These molecules are present mainly in stigmas and tepals, these last generally considered as byproducts. OBJECTIVE To characterise bioactive compounds in stigmas, stamens, and tepals of Crocus sativus L. for quality, cross-contamination of tissues or fraudulent addition, joining spectroscopic and chromatographic techniques. METHODOLOGY Fourier transform infrared (FT-IR) and Raman spectroscopies were initially employed, being very rapid in response; volatiles were more appropriately investigated by gas chromatography with mass spectrometry (GC-MS), while finally nuclear magnetic resonance (NMR) and high-performance liquid chromatography with a diode array detector (HPLC-DAD) were adopted for a more thorough characterisation of secondary metabolites. NMR was also used to investigate the anthocyanins content in tepals upon acid extraction. RESULTS The results obtained highlighted the drying method as the dominant factor affecting the content of volatile constituents and contributing to the quality of saffron, while only slight differences were observed in the most abundant metabolites of stigmas, as well as in the anthocyanin content of tepals. In particular, for the first time, delphinidin and petunidin were detected by NMR in this latter tissue. CONCLUSION The integrated analytical methodology here proposed, allowed to achieve a deeper level of compositional and structural details of secondary metabolites in Crocus sativus L. flowers.
Collapse
Affiliation(s)
- Erica Cusano
- Institute for Macromolecular Studies, NMR Laboratory, National Research Council, Milan, Italy
| | - Roberto Consonni
- Institute for Macromolecular Studies, NMR Laboratory, National Research Council, Milan, Italy
| | - Eleftherios A Petrakis
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Konstantina Astraka
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Laura R Cagliani
- Institute for Macromolecular Studies, NMR Laboratory, National Research Council, Milan, Italy
| | - Moschos G Polissiou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
84
|
Bharate S, Kumar V, Singh G, Singh A, Gupta M, Singh D, Kumar A, Vishwakarma RA, Bharate SB. Preclinical Development of Crocus sativus-Based Botanical Lead IIIM-141 for Alzheimer's Disease: Chemical Standardization, Efficacy, Formulation Development, Pharmacokinetics, and Safety Pharmacology. ACS OMEGA 2018; 3:9572-9585. [PMID: 31459089 PMCID: PMC6644748 DOI: 10.1021/acsomega.8b00841] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/03/2018] [Indexed: 05/03/2023]
Abstract
Crocus sativus L. (family: Iridaceae) has been documented in traditional medicine with numerous medicinal properties. Recently, we have shown that C. sativus extract (IIIM-141) displays promising efficacy in a genetic mice (5XFAD) model of Alzheimer's disease (AD) (ACS Chem. Neurosci. 2017, 16, 1756). To translate the available traditional knowledge and the scientifically validated results into modern medicine, herein we aimed to carry out its preclinical development. IIIM-141 is primarily a mixture of crocins containing trans-4-GG-crocin (36 % w/w) as the principal component. The in vitro studies show that IIIM-141 has protective as well as therapeutic properties in assays related to AD. It induces the expression of P-gp, thereby enhancing the amyloid-β clearance from an AD brain. It also inhibits NLRP3 inflammasome and protects SH-SY5Y cells against amyloid-β- and glutamate-induced neurotoxicities. In behavioral models, it decreased the streptozotocin-induced memory impairment in rats and recovered the scopolamine-induced memory deficit in Swiss albino mice at 100 mg/kg dose. The acute oral toxicity study shows that IIIM-141 is safe up to the dose of 2000 mg/kg, with no effect on the body weight and on the biochemical/hematological parameters of the rats. The repeated oral administration of IIIM-141 for 28 days at 100 mg/kg dose did not cause any preterminal deaths and abnormalities in Wistar rats. The pharmacokinetic analysis indicated that after oral administration of IIIM-141, the majority of crocin gets hydrolyzed to its aglycone crocetin. The sustained release (SR) capsule formulation was developed, which showed an improved in vitro dissolution profile and a significantly enhanced plasma exposure in the pharmacokinetic study. The SR formulation resulted in 3.3-fold enhancement in the area under the curve of crocetin and doubling of the crocetin/crocin ratio in plasma compared with the extract. The data presented herein will serve as the benchmark for further research on this botanical candidate.
Collapse
Affiliation(s)
- Sonali
S. Bharate
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Vikas Kumar
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Gurdarshan Singh
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Amarinder Singh
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Mehak Gupta
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Deepika Singh
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Ajay Kumar
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Ram A. Vishwakarma
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
- E-mail: . Phone: +91 191 2569111. Fax: +91 191 2569333 (R.A.V.)
| | - Sandip B. Bharate
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
- E-mail: . Phone: +91 191 2569006. Fax: +91 191 2569333 (S.B.B.)
| |
Collapse
|
85
|
Sereshti H, Poursorkh Z, Aliakbarzadeh G, Zarre S. Quality control of saffron and evaluation of potential adulteration by means of thin layer chromatography-image analysis and chemometrics methods. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
86
|
Shinwari KJ, Rao PS. Thermal-assisted high hydrostatic pressure extraction of nutraceuticals from saffron (Crocus sativus): Process optimization and cytotoxicity evaluation against cancer cells. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
87
|
D'Archivio AA, Di Donato F, Foschi M, Maggi MA, Ruggieri F. UHPLC Analysis of Saffron ( Crocus sativus L.): Optimization of Separation Using Chemometrics and Detection of Minor Crocetin Esters. Molecules 2018; 23:molecules23081851. [PMID: 30044436 PMCID: PMC6222919 DOI: 10.3390/molecules23081851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 02/06/2023] Open
Abstract
Ultra-high performance liquid chromatography (UHPLC) coupled with diode array detection (DAD) was applied to improve separation and detection of mono- and bis-glucosyl esters of crocetin (crocins), the main red-colored constituents of saffron (Crocus sativus L.), and other polar components. Response surface methodology (RSM) was used to optimise the chromatographic resolution on the Kinetex C18 (Phenomenex) column taking into account of the combined effect of the column temperature, the eluent flow rate and the slope of a linear eluent concentration gradient. A three-level full-factorial design of experiments was adopted to identify suitable combinations of the above factors. The influence of the separation conditions on the resolutions of 22 adjacent peaks was simultaneously modelled by a multi-layer artificial neural network (ANN) in which a bit string representation was used to identify the target analytes. The chromatogram collected under the optimal separation conditions revealed a higher number of crocetin esters than those already characterised by means of mass-spectrometry data and usually detected by HPLC. Ultra-high performance liquid chromatography analyses carried out on the novel Luna Omega Polar C18 (Phenomenex) column confirmed the large number of crocetin derivatives. Further work is in progress to acquire mass-spectrometry data and to clarify the chemical structure to the newly found saffron components.
Collapse
Affiliation(s)
- Angelo Antonio D'Archivio
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Francesca Di Donato
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Martina Foschi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | | | - Fabrizio Ruggieri
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| |
Collapse
|
88
|
Armellini R, Peinado I, Pittia P, Scampicchio M, Heredia A, Andres A. Effect of saffron (Crocus sativus L.) enrichment on antioxidant and sensorial properties of wheat flour pasta. Food Chem 2018; 254:55-63. [DOI: 10.1016/j.foodchem.2018.01.174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/06/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
|
89
|
Wang YN, Gao L, Wu SY, Qin S. Low-Dose 4-Hydroxy-2-Nonenal (HNE) Reperfusion Therapy Displays Cardioprotective Effects in Mice After Myocardial Infarction That Are Abrogated by Genipin. Med Sci Monit 2018; 24:3702-3709. [PMID: 29858912 PMCID: PMC6014150 DOI: 10.12659/msm.910494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Revascularization is a successful therapeutic strategy for myocardial infarction. However, restoring coronary blood flow can lead to ischemia-reperfusion (I/R) injury. Low-dose 4-hydroxy-2-nonenal (HNE) therapy appears to play a key role in myocardial tolerance to I/R injury. We hypothesized that the positive effects of HNE on myocardial I/R injury may be UCP3-dependent. Material/Methods Adult male wild-type (WT) or UCP3 knockout (UCP3−/−) mice were pre-treated with the UCP inhibitor genipin or saline 1 h before ischemia and underwent 30-min coronary artery ligation followed by 24-h reperfusion. Mice were treated with intravenous HNE (4 mg/kg) or saline 5 min before reperfusion. Echocardiography was conducted to measure left ventricular end-diastolic posterior wall thickness (LVPWd), end-diastolic diameter (LVEDD), and fractional shortening (FS). Infarct size was measured by TTC staining. qRT-PCR and Western blotting were used to assess the expression of UCP3, UCP2, and the apoptosis markers cytochrome C and cleaved caspase-3. Results HNE improved survival at 24 h post-MI in wild-type mice (p<0.05) but not in UCP3−/− mice. HNE preserved LVEDD and FS in WT mice (p<0.05) but not in UCP3−/− mice. HNE reduced infarct size in WT mice (p<0.05) but not in UCP3−/− mice. HNE upregulated UCP3 expression (p<0.05) but did not affect UCP2 expression. HNE reduced apoptosis marker expression in WT mice (p<0.05) but not in UCP3−/− mice. HNE’s positive effects were abrogated by genipin in an UCP3-dependent manner. Conclusions Low-dose HNE reperfusion therapy attenuates murine myocardial I/R injury in an UCP3-dependent manner. These effects are abrogated by genipin in an UCP3-dependent manner.
Collapse
Affiliation(s)
- Ying-Nan Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Lei Gao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Shi-Yong Wu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Shu Qin
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
90
|
D’Archivio AA, Di Pietro L, Maggi MA, Rossi L. Optimization using chemometrics of HS-SPME/GC–MS profiling of saffron aroma and identification of geographical volatile markers. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3073-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
91
|
Isolation and characterization of microorganisms and volatiles associated with Moroccan saffron during different processing treatments. Int J Food Microbiol 2018; 273:43-49. [PMID: 29574333 DOI: 10.1016/j.ijfoodmicro.2018.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/17/2018] [Accepted: 03/19/2018] [Indexed: 11/22/2022]
Abstract
Saffron may be spoiled by a variety of microorganisms during cultivation, harvesting, and post harvesting. As saffron can be dried and stored in different ways, this preliminary study explored the natural microbiota present in Moroccan saffron when subjected to different drying techniques. An analysis of the carotenoid-derived volatiles present in the saffron was also carried out. The culturable microbiota of the saffron samples dried using different methods, namely in the shade (also called natural), in the sun, or in the oven, were studied using classical and molecular approaches. The effect of the drying methods on head-space chemical volatiles was also determined. Eighty-two isolates grown in the different culture media were chosen from the colonies, and genotype analysis grouped the microorganisms into 58 clusters, revealing a wide diversity. Out of the 82 isolates, 75 belonged to the Bacillaceae family. The other isolates were distributed within the Dietziaceae, Paenibacillaceae and Carnobacteriaceae families. The dominant species was Bacillus simplex, which was detected in all samples, regardless of the drying method used. Lysinibacillus macroides was dominant in the sun-dried saffron. No pathogens were isolated, but an isolate belonging to Dietzia maris, a potential human pathogenic species, was detected. The biodiversity indexes were linked to the drying method and generally decreased as the intensity of the treatment increased. The results of this preliminary work show that the different drying methods strongly influenced the microbiota and affect the saffron volatile profile. Further analysis will be needed to determine possible effects of selected microbiota on saffron volatiles.
Collapse
|
92
|
Quality assessment of saffron (Crocus sativus L.) extracts via UHPLC-DAD-MS analysis and detection of adulteration using gardenia fruit extract (Gardenia jasminoides Ellis). Food Chem 2018; 257:325-332. [PMID: 29622218 DOI: 10.1016/j.foodchem.2018.03.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 11/22/2022]
Abstract
A new UHPLC-DAD-MS method based on a Core-Shell particles column was developed to realize the rapid separation of saffron stigma metabolites (Crocus sativus L.). A single separation of 35 compounds included cis and trans-crocetin esters (crocins), cis-crocetin, trans-crocetin, kaempferol derivatives, safranal, and picrocrocin from pure saffron stigmas. This method permitted the detection of 11 picrocrocin derivatives as the typical group of compounds from saffron as well as the detection of gardenia-specific compounds as typical adulterant markers. The metabolite concentration in a Standardized Saffron Extract (SSE) was determined using the method described herein and by comparison to the ISO3632 conventional method. The safranal content was 5-150 times lower than the value of 2% that was expected via ISO3632 analyses. Using the same Core-Shell separation, geniposide detection appeared to be a relevant approach for detecting the adulteration of saffron by using gardenia.
Collapse
|
93
|
Zhou Y, Men L, Pi Z, Wei M, Song F, Zhao C, Liu Z. Fecal Metabolomics of Type 2 Diabetic Rats and Treatment with Gardenia jasminoides Ellis Based on Mass Spectrometry Technique. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1591-1599. [PMID: 29363305 DOI: 10.1021/acs.jafc.7b06082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Modern studies have indicated Gardenia jasminoides Ellis (G. jasminoides) showed positive effect in treating type 2 diabetes mellitus (T2DM). In this study, 60 streptozotocin-induced T2DM rats were divided into four groups: type 2 diabetes control group, geniposide-treated group, total iridoid glycosides-treated group, and crude extraction of gardenlae fructus-treated group. The other ten healthy rats were the healthy control group. During 12 weeks of treatment, rat's feces samples were collected for the metabolomics study based on mass spectrometry technique. On the basis of the fecal metabolomics method, 19 potential biomarkers were screened and their relative intensities in each group were compared. The results revealed G. jasminoides mainly regulated dysfunctions in phenylalanine metabolism, tryptophan metabolism, and secondary bile acid biosynthesis pathways induced by diabetes. The current study provides new insight for metabonomics methodology toward T2DM, and the results show that feces can preferably reflect the liver and intestines disorders.
Collapse
Affiliation(s)
- Yuan Zhou
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, China
| | - Lihui Men
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
| | - Zifeng Pi
- National Center for Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Mengying Wei
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
| | - Fengrui Song
- National Center for Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Chunfang Zhao
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
| | - Zhiqiang Liu
- National Center for Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| |
Collapse
|
94
|
Kyriakoudi A, Z Tsimidou M. Latest advances in the extraction and determination of saffron apocarotenoids. Electrophoresis 2018; 39:1846-1859. [PMID: 29392745 DOI: 10.1002/elps.201700455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/09/2018] [Accepted: 01/22/2018] [Indexed: 11/09/2022]
Abstract
Saffron, the dried red stigmas of Crocus sativus L. plant, is the most expensive spice in the world. It is highly valued not only for the color and flavor that exerts to various foods and drinks but also for its functional properties. Various classes of apocarotenoids such as crocetin sugar esters, picrocrocin and safranal are responsible for these characteristics. In the present review, the evolution of the methods proposed by the ISO standard for extraction and determination of saffron apocarotenoids since 1980 is presented in parallel to other approaches proposed by various scientists to overcome limitations of the standard. Moreover, the latest advances regarding applications of novel extraction techniques and powerful analytical tools that require limited or no sample preparation are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Technology (LFCT), School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Z Tsimidou
- Laboratory of Food Chemistry and Technology (LFCT), School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
95
|
José Bagur M, Alonso Salinas GL, Jiménez-Monreal AM, Chaouqi S, Llorens S, Martínez-Tomé M, Alonso GL. Saffron: An Old Medicinal Plant and a Potential Novel Functional Food. Molecules 2017; 23:E30. [PMID: 29295497 PMCID: PMC5943931 DOI: 10.3390/molecules23010030] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
The spice saffron is made from the dried stigmas of the plant Crocus sativus L. The main use of saffron is in cooking, due to its ability to impart colour, flavour and aroma to foods and beverages. However, from time immemorial it has also been considered a medicinal plant because it possesses therapeutic properties, as illustrated in paintings found on the island of Santorini, dated 1627 BC. It is included in Catalogues of Medicinal Plants and in the European Pharmacopoeias, being part of a great number of compounded formulas from the 16th to the 20th centuries. The medicinal and pharmaceutical uses of this plant largely disappeared with the advent of synthetic chemistry-produced drugs. However, in recent years there has been growing interest in demonstrating saffron's already known bioactivity, which is attributed to the main components-crocetin and its glycosidic esters, called crocins, and safranal-and to the synergy between the compounds present in the spice. The objective of this work was to provide an updated and critical review of the research on the therapeutic properties of saffron, including activity on the nervous and cardiovascular systems, in the liver, its antidepressant, anxiolytic and antineoplastic properties, as well as its potential use as a functional food or nutraceutical.
Collapse
Affiliation(s)
- María José Bagur
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | | | - Antonia M. Jiménez-Monreal
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | - Soukaina Chaouqi
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
- Laboratory of Materials, Environment and Electrochemistry, Faculty of Science, Ibn Tofaïl University, P.O. Box 242, 14000 Kénitra, Morocco
| | - Silvia Llorens
- Department of Medical Sciences, School of Medicine and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 02008 Albacete, Spain;
| | - Magdalena Martínez-Tomé
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | - Gonzalo L. Alonso
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
| |
Collapse
|
96
|
|
97
|
García-Rodríguez M, López-Córcoles H, Alonso G. Effect of the hydroponic growing of forcedCrocus sativusL. on the saffron quality. ACTA ACUST UNITED AC 2017. [DOI: 10.17660/actahortic.2017.1184.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
98
|
Gresta F, Napoli E, Ceravolo G, Santonoceto C, Strano T, Ruberto G. Stigmas yield and volatile compounds of saffron (Crocus sativus) in a late sowing under greenhouse with two nitrogen rates. ACTA ACUST UNITED AC 2017. [DOI: 10.17660/actahortic.2017.1184.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
99
|
Batarseh YS, Bharate SS, Kumar V, Kumar A, Vishwakarma RA, Bharate SB, Kaddoumi A. Crocus sativus Extract Tightens the Blood-Brain Barrier, Reduces Amyloid β Load and Related Toxicity in 5XFAD Mice. ACS Chem Neurosci 2017; 8:1756-1766. [PMID: 28471166 DOI: 10.1021/acschemneuro.7b00101] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Crocus sativus, commonly known as saffron or Kesar, is used in Ayurveda and other folk medicines for various purposes as an aphrodisiac, antispasmodic, and expectorant. Previous evidence suggested that Crocus sativus is linked to improving cognitive function in Alzheimer's disease (AD) patients. The aim of this study was to in vitro and in vivo investigate the mechanism(s) by which Crocus sativus exerts its positive effect against AD. The effect of Crocus sativus extract on Aβ load and related toxicity was evaluated. In vitro results showed that Crocus sativus extract increases the tightness of a cell-based blood-brain barrier (BBB) model and enhances transport of Aβ. Further in vivo studies confirmed the effect of Crocus sativus extract (50 mg/kg/day, added to mice diet) on the BBB tightness and function that was associated with reduced Aβ load and related pathological changes in 5XFAD mice used as an AD model. Reduced Aβ load could be explained, at least in part, by Crocus sativus extract effect to enhance Aβ clearance pathways including BBB clearance, enzymatic degradation and ApoE clearance pathway. Furthermore, Crocus sativus extract upregulated synaptic proteins and reduced neuroinflammation associated with Aβ pathology in the brains of 5XFAD mice. Crocin, a major active constituent of Crocus sativus and known for its antioxidant and anti-inflammatory effect, was also tested separately in vivo in 5XFAD mice. Crocin (10 mg/kg/day) was able to reduce Aβ load but to a lesser extent when compared to Crocus sativus extract. Collectively, findings from this study support the positive effect of Crocus sativus against AD by reducing Aβ pathological manifestations.
Collapse
Affiliation(s)
- Yazan S. Batarseh
- Department
of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Sonali S. Bharate
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Vikas Kumar
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Ajay Kumar
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Ram A. Vishwakarma
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Sandip B. Bharate
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Amal Kaddoumi
- Department
of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| |
Collapse
|
100
|
Guijarro-Díez M, Castro-Puyana M, Crego AL, Marina ML. A novel method for the quality control of saffron through the simultaneous analysis of authenticity and adulteration markers by liquid chromatography-(quadrupole-time of flight)-mass spectrometry. Food Chem 2017; 228:403-410. [DOI: 10.1016/j.foodchem.2017.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/13/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
|