51
|
Sheavly JK, Pedersen JA, Van Lehn RC. Curvature-driven adsorption of cationic nanoparticles to phase boundaries in multicomponent lipid bilayers. NANOSCALE 2019; 11:2767-2778. [PMID: 30672546 DOI: 10.1039/c8nr07763k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the interactions between surface-functionalized gold nanoparticles (NPs) and lipid bilayers is necessary to guide the design of NPs for biomedical applications. Recent experiments found that cationic NPs adsorb more strongly to phase-separated multicomponent lipid bilayers than single-component liquid-disordered bilayers, suggesting that phase separation affects NP-bilayer interactions. In this work, we use coarse-grained molecular dynamics simulations to investigate the effect of lipid phase behavior on the adsorption of small cationic NPs. We first determined the free energy change for adsorbing a NP to one-phase liquid-disordered and one-phase liquid-ordered bilayers. The simulations indicate that NP adsorption depends on a competition between favorable NP-lipid interactions and the unfavorable curvature deformation of the bilayer, resulting in stronger interactions with the liquid-disordered bilayer due to its lower bending modulus. We then measured the free energy change associated with moving a NP across the surface of a phase-separated bilayer and identified a free energy minimum at the phase boundary. The free energy minimum is attributed to the thickness gradient between the two phases that enables favorable NP-lipid interactions without necessitating large curvature deformations. The simulation results thus indicate that the intrinsic curvature present at phase boundaries drives preferential interactions with surface-adsorbed NPs, providing new insight into the forces that drive NP behavior at multicomponent, phase-separated lipid bilayers.
Collapse
Affiliation(s)
- Jonathan K Sheavly
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, USA.
| | | | | |
Collapse
|
52
|
Kanwa N, Patnaik A, De SK, Ahamed M, Chakraborty A. Effect of Surface Ligand and Temperature on Lipid Vesicle-Gold Nanoparticle Interaction: A Spectroscopic Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1008-1020. [PMID: 30601000 DOI: 10.1021/acs.langmuir.8b03673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We herein investigate the interactions of differently functionalized anionic and cationic gold nanoparticles (AuNPs) with zwitterionic phosphocholine (PC) as well as inverse phosphocholine (iPC) lipid bilayers via spectroscopic measures. In this study, we used PC lipids with varying phase-transition temperatures, i.e., DMPC ( Tm = 24 °C), DOPC ( Tm = -20 °C), and iPC lipid DOCP ( Tm = -20 °C) to study their interactions with AuNPs functionalized with anionic ligands citrate, 3-mercaptopropionic acid, glutathione, and cationic ligand cysteamine. We studied the interactions by steady-state and time-resolved spectroscopic studies using membrane-sensitive probes 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and 8-anilino-1 naphthalenesulfonate (ANS), as well as by confocal laser scanning microscopy (CLSM) imaging and dynamic light scattering (DLS) measurements. We observe that AuNPs bring in stability to the lipid vesicle, and the extent of interaction differs with the different surface ligands on the AuNPs. We observe that AuNPs functionalized with citrate effectively increase the phase-transition temperature of the vesicles by interacting with them. Our study reveals that the extent of interaction depends on the bulkiness of the ligands attached to the AuNPs. The bulkier ligands exert less van der Waals force, resulting in a weaker interaction. Moreover, we find that the interactions are more strongly pronounced when the vesicles are near the phase-transition temperature of the lipid. The CLSM imaging and DLS measurements demonstrate the surface modifications in the vesicles as a result of these interactions.
Collapse
Affiliation(s)
- Nishu Kanwa
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| | - Ananya Patnaik
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| | - Soumya Kanti De
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| | - Mirajuddin Ahamed
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| | - Anjan Chakraborty
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| |
Collapse
|
53
|
Guilleux C, Campbell PGC, Fortin C. Interactions Between Silver Nanoparticles/Silver Ions and Liposomes: Evaluation of the Potential Passive Diffusion of Silver and Effects of Speciation. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 75:634-646. [PMID: 30238147 DOI: 10.1007/s00244-018-0562-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Silver nanoparticles, used mainly for their antibacterial properties, are among the most common manufactured nanomaterials. How they interact with aquatic organisms, especially how they cross biological membranes, remains uncertain. Free Ag+ ions, released from these nanoparticles, are known to play an important role in their overall bioavailability. In this project, we have studied the uptake of dissolved and nanoparticulate silver by liposomes. These unilamellar vesicles, composed of phospholipids, have long been used as models for natural biological membranes, notably to study the potential uptake of solutes by passive diffusion through the phospholipid bilayer. The liposomes were synthesized using extrusion techniques and were exposed over time to dissolved silver under different conditions where Ag+, AgS2O3-, or AgCl0 were the dominant species. Similar experiments were conducted with the complexes HgCl 2 0 and Cd(DDC) 2 0 , both of which are hydrophobic and known to diffuse passively through biological membranes. The uptake kinetics of Ag+, HgCl 2 0 , and Cd(DDC) 2 0 show no increase in internalized concentrations over time, unlike AgS2O3- and AgCl0, which appear to pass through the phospholipid bilayer. These results are in contradiction with our initial hypothesis that lipophilic Hg and Cd complexes would be able to cross the membrane, whereas silver would not. Encapsulated tritiated water inside the liposomes was shown to rapidly diffuse through the lipid bilayer, suggesting a high permeability. We hypothesize that monovalent anions or complexes as well as small neutral complexes with a strong dipole can diffuse through our model membrane. Finally, liposomes were exposed to 5-nm polyvinylpyrrolidone-coated silver nanoparticles over time. No significant uptake of nanoparticulate silver was observed. Neither disruption of the membrane nor invagination of nanoparticles into the liposomes was observed. This suggests that the main risk caused by AgNPs for nonendocytotic biological cells would be the elevation of the free silver concentration near the membrane surface due to adsorption of AgNPs and subsequent oxidation/dissolution.
Collapse
Affiliation(s)
- Camille Guilleux
- Institut National de la Recherche Scientifique, INRS Eau Terre et Environnement, 490 rue de la Couronne, Quebec, G1K 9A9, Canada
| | - Peter G C Campbell
- Institut National de la Recherche Scientifique, INRS Eau Terre et Environnement, 490 rue de la Couronne, Quebec, G1K 9A9, Canada
| | - Claude Fortin
- Institut National de la Recherche Scientifique, INRS Eau Terre et Environnement, 490 rue de la Couronne, Quebec, G1K 9A9, Canada.
| |
Collapse
|
54
|
Moradi MA, Bomans PH, Jackson AW, van Herk AM, Heuts JP. A quantitative cryoTEM study on crosslinked nanocapsule morphology in RAFT-based vesicle polymerization. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
55
|
Ojha PK, Kar S, Roy K, Leszczynski J. Toward comprehension of multiple human cells uptake of engineered nano metal oxides: quantitative inter cell line uptake specificity (QICLUS) modeling. Nanotoxicology 2018; 13:14-34. [PMID: 30354872 DOI: 10.1080/17435390.2018.1529836] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To address the nanomaterial exposure threat, it is imperative to understand how nanomaterials are recognized, internalized, and distributed within diverse cell systems. Targeting of nanomaterials to a specific cell type is generally attained through the modification of the nanoparticle (NP) surface leading to required cellular uptake. The enhanced cellular uptake to normal cells can direct to the higher interaction of NPs with subcellular organelles resulting the provocation of various signaling pathways. The successes of NPs rely on the prospect for the synthesis of functionalized NPs with necessary properties and their enhanced potential for cellular uptake for specific targeting. In the present study, we have modeled the cellular uptake of 109 surface modifiers of metal oxide nanoparticles (MNPs) for three different cell lines: HUVEC (Human endothelial cells), U937 (human macrophage cells), and PaCa2 (cancer cell lines). Along with the quantitative structure-activity relationship (QSAR) models, for the very first time we have developed and performed quantitative inter cell line uptake specificity (QICLUS) modeling to identify the physicochemical properties, as well as majorly structural fragments responsible for cellular uptake differences between two specific cell lines. The present work provides a comprehensive understanding of the cellular uptake of MNPs and the underlying structural parameters controlling the nano-cellular interactions. This phenomenon has also been analyzed from the QSAR and QICLUS models that concluded the functional groups of surface modifiers like amine, anhydride, halogen atoms, nitro group, acids have the dominating roles for the uptake of MNPs into the cell lines. Thus, the developed models may be used for designing of novel surface modifiers of MNPs of desired characteristics for proper cell-NPs interactions, as well as in the context of virtual screening aspect. Moreover, the MNP-cell interactions can give some idea about the toxicity for target-specific drug delivery treatment as higher cellular uptake is required for specific cells to treat the disease and lower uptake to the neighboring cells for lower toxicity.
Collapse
Affiliation(s)
- Probir Kumar Ojha
- a Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - Supratik Kar
- b Interdisciplinary Nanotoxicity Center, Department of Chemistry, Physics and Atmospheric Sciences , Jackson State University , Jackson , MS , USA
| | - Kunal Roy
- a Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - Jerzy Leszczynski
- b Interdisciplinary Nanotoxicity Center, Department of Chemistry, Physics and Atmospheric Sciences , Jackson State University , Jackson , MS , USA
| |
Collapse
|
56
|
Xing X, Ma W, Zhao X, Wang J, Yao L, Jiang X, Wu Z. Interaction between Surface Charge-Modified Gold Nanoparticles and Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12583-12589. [PMID: 30239201 DOI: 10.1021/acs.langmuir.8b01700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This report clarifies the interaction of surface charge-modified gold nanoparticles (AuNPs) with phospholipid membranes, which is helpful to understand the antibacterial mechanism of positive charge-modified AuNPs to Gram-negative bacteria. Although the simulated bacterial cell membranes as a whole are negatively charged, the local electrostatic repulsive interaction between the positive charge-coated AuNPs and the small-sized flexible cationic head group of dioleyl phosphatidylethanolamine molecules induces the phase transformation of the simulated bacterial cell membranes from a lamellar to an inverted hexagonal phase. Transmembrane pores with a diameter of about 3.0 nm in the inverted hexagonal structure would result in the destruction of cell membrane function. Such an interaction of positive charge-modified AuNPs with the membrane mimics provides a promising route to develop new antibacterial agents by modifying positive charges on the surface of nanoparticles.
Collapse
Affiliation(s)
- Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Wanshun Ma
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology , Beijing 100190 , China
| | - Xiaoyi Zhao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jiayi Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Lei Yao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Xingyu Jiang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology , Beijing 100190 , China
| | - Zhonghua Wu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
57
|
Mensch AC, Buchman JT, Haynes CL, Pedersen JA, Hamers RJ. Quaternary Amine-Terminated Quantum Dots Induce Structural Changes to Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12369-12378. [PMID: 30184424 DOI: 10.1021/acs.langmuir.8b02047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cytoplasmic membrane represents an essential barrier between the cytoplasm and the environment external to cells. Interaction with nanomaterials can alter the integrity of the cytoplasmic membrane through the formation of holes and membrane thinning, which can ultimately lead to adverse biological impacts. Here we use supported lipid bilayers as experimental models for the cytoplasmic membrane to investigate the impact of quantum dots functionalized with the cationic polymer poly(diallyldimethylammonium chloride) (PDDA) on membrane structure. Using a quartz crystal microbalance with dissipation monitoring we show that the positively charged quantum dots attach to and induce structural rearrangement to zwitterionic bilayers in solely the liquid-disordered phase and in those containing phase-segregated liquid-ordered domains. Real-time atomic force microscopy imaging revealed that PDDA-coated quantum dots and, to a lesser extent, PDDA itself induced the disappearance of liquid-ordered domains. We hypothesize this effect is due to an increase in energy per unit area caused by collisions between PDDA-coated quantum dots at the membrane surface. This increase in free energy per area exceeds the approximate free-energy change associated with membrane mixing between the liquid-ordered and liquid-disordered phases and results in the destabilization of membrane domains.
Collapse
Affiliation(s)
- Arielle C Mensch
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Joseph T Buchman
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Christy L Haynes
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Joel A Pedersen
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
- Department of Soil Science , University of Wisconsin , Madison , Wisconsin 53706 , United States
- Department of Civil and Environmental Engineering , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Robert J Hamers
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
| |
Collapse
|
58
|
Xing S, Zhang X, Luo L, Cao W, Li L, He Y, An J, Gao D. Doxorubicin/gold nanoparticles coated with liposomes for chemo-photothermal synergetic antitumor therapy. NANOTECHNOLOGY 2018; 29:405101. [PMID: 30004030 DOI: 10.1088/1361-6528/aad358] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hybrid liposome/metal nanoparticles are promising candidate drug-carriers for therapy of various diseases due to their unique photothermal effect. In this study, self-crystallized gold nanoparticles (Au NPs) and doxorubicin (DOX) were co-encapsulated within liposomes (Au/DOX-Lips) by thin film hydration and gel separation technology. The surface plasmon resonance bands of drug-carriers were controllable in the near-infrared (NIR) zone. When the complex liposome/metallic hybrids were irradiated by NIR light, they displayed higher endocytosis efficiency following the fracture of liposomal membranes and the release of Au NPs. Then, the Au NPs penetrated further into deeper tumor tissue to accomplish photothermal treatment. The Au/DOX-Lips showed an excellent antitumor effect, whose inhibition rate for tumor cells was up to 78.28%. In experiments on mice bearing tumors, the Au/DOX-Lips treated mice exhibited superior tumor suppression. This novel drug system provides huge potential for biomedical application.
Collapse
Affiliation(s)
- Shanshan Xing
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China. Hebei Province Asparagus Industry Technology Research Institute, Qinhuangdao, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Karakocak BB, Liang J, Biswas P, Ravi N. Hyaluronate coating enhances the delivery and biocompatibility of gold nanoparticles. Carbohydr Polym 2018; 186:243-251. [PMID: 29455984 DOI: 10.1016/j.carbpol.2018.01.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 01/06/2023]
Abstract
For targeted delivery with nanoparticles (NPs) as drug carriers, it is imperative that the NPs are internalized into the targeted cell. Surface properties of NPs influence their interactions with cells. We examined the responses of retinal pigment epithelial cells, NIH 3T3 fibroblast cells, and Chinese hamster ovary cells to gold nanoparticles (Au NPs) in their nascent form as well as coated with end-thiolated hyaluronate (HS-HA). The grafting density of HS-HA on Au NPs was calculated based on total organic carbon measurements and thermal gravimetric analysis. We imaged the intracellular NPs by 3D confocal microscopy. We quantified viability and generation of reactive oxygen species (ROS) of the cells to Au NPs and monitored cell-surface attachment via electrical cell-substrate impedance sensing. The results confirmed that receptors on cell surfaces, for HA, are critical in internalizing HS-HA-Au NPs, and HA may mitigate ROS pathways known to lead to cell death. The 50- and 100-nm HS-HA-Au NPs were able to enter the cells; however, their nascent forms could not. This study shows that the delivery of larger Au NPs is enhanced with HS-HA coating and illustrates the potential of HA-coated NPs as a drug delivery agent for inflamed, proliferating, and cancer cells that express CD44 receptors.
Collapse
Affiliation(s)
- Bedia Begum Karakocak
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Jue Liang
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA; Veterans Affairs Medical Center, St. Louis, MO 63106, USA
| | - Pratim Biswas
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Nathan Ravi
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, MO 63130, USA; Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA; Veterans Affairs Medical Center, St. Louis, MO 63106, USA.
| |
Collapse
|
60
|
Anders CB, Eixenberger JE, Franco NA, Hermann RJ, Rainey KD, Chess JJ, Punnoose A, Wingett DG. ZnO nanoparticle preparation route influences surface reactivity, dissolution and cytotoxicity. ENVIRONMENTAL SCIENCE. NANO 2018; 5:572-588. [PMID: 29479436 PMCID: PMC5823520 DOI: 10.1039/c7en00888k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
ZnO nanoparticles (nZnO) are commonly used in nanotechnology applications despite their demonstrated cytotoxicity against multiple cell types. This underscores the significant need to determine the physicochemical properties that influence nZnO cytotoxicity. In this study, we analyzed six similarly sized nZnO formulations, along with SiO2-coated nZnO, bulk ZnO and ZnSO4 as controls. Four of the nZnO samples were synthesized using various wet chemical methods, while three employed high-temperature flame spray pyrolysis (FSP) techniques. X-ray diffraction and optical analysis demonstrated the lattice parameters and electron band gap of the seven nZnO formulations were similar. However, electrophoretic mobility measures, hydrodynamic size, photocatalytic rate constants, dissolution potential, reactive oxygen species (ROS) production and, more importantly, the cytotoxicity of the variously synthesized nZnO towards Jurkat leukemic and primary CD4+ T cells displayed major differences. Surface structure analysis using FTIR, X-ray photoelectron spectroscopies (XPS) and dynamic light scattering (DLS) revealed significant differences in the surface-bound chemical groups and the agglomeration tendencies of the samples. The wet chemical nZnO, with higher cationic surface charge, faster photocatalytic rates, increased extracellular dissolution and ROS generation demonstrated greater cytotoxicity towards both cell types than those made with FSP techniques. Furthermore, principal component analysis (PCA) suggests that the synthesis procedure employed influences which physicochemical properties contribute more to the cytotoxic response. These results suggest that the synthesis approach results in unique surface chemistries and can be a determinant of cellular cytotoxicity and oxidative stress responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Denise G. Wingett
- Biomolecular Sciences Graduate Programs, Boise State University, USA
- Department of Biological Sciences, Boise State University, USA
| |
Collapse
|
61
|
Lin N, Berton P, Moraes C, Rogers RD, Tufenkji N. Nanodarts, nanoblades, and nanospikes: Mechano-bactericidal nanostructures and where to find them. Adv Colloid Interface Sci 2018; 252:55-68. [PMID: 29317019 DOI: 10.1016/j.cis.2017.12.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
Over the past ten years, a next-generation approach to combat bacterial contamination has emerged: one which employs nanostructure geometry to deliver lethal mechanical forces causing bacterial cell death. In this review, we first discuss advances in both colloidal and topographical nanostructures shown to exhibit such "mechano-bactericidal" mechanisms of action. Next, we highlight work from pioneering research groups in this area of antibacterials. Finally, we provide suggestions for unexplored research topics that would benefit the field of mechano-bactericidal nanostructures. Traditionally, antibacterial materials are loaded with antibacterial agents with the expectation that these agents will be released in a timely fashion to reach their intended bacterial metabolic target at a sufficient concentration. Such antibacterial approaches, generally categorized as chemical-based, face design drawbacks as compounds diffuse in all directions, leach into the environment, and require replenishing. In contrast, due to their mechanisms of action, mechano-bactericidal nanostructures can benefit from sustainable opportunities. Namely, mechano-bactericidal efficacy needs not replenishing since they are not consumed metabolically, nor are they designed to release or leach compounds. For this same reason, however, their action is limited to the bacterial cells that have made direct contact with mechano-bactericidal nanostructures. As suspended colloids, mechano-bactericidal nanostructures such as carbon nanotubes and graphene nanosheets can pierce or slice bacterial membranes. Alternatively, surface topography such as mechano-bactericidal nanopillars and nanospikes can inflict critical membrane damage to microorganisms perched upon them, leading to subsequent cell lysis and death. Despite the infancy of this area of research, materials constructed from these nanostructures show remarkable antibacterial potential worthy of further investigation.
Collapse
|
62
|
Qiu TA, Clement PL, Haynes CL. Linking nanomaterial properties to biological outcomes: analytical chemistry challenges in nanotoxicology for the next decade. Chem Commun (Camb) 2018; 54:12787-12803. [DOI: 10.1039/c8cc06473c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article provides our perspective on the analytical challenges in nanotoxicology as the field is entering its third decade.
Collapse
Affiliation(s)
- Tian A. Qiu
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | | | | |
Collapse
|
63
|
Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc Natl Acad Sci U S A 2017; 114:E9793-E9801. [PMID: 29078354 DOI: 10.1073/pnas.1710996114] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytotoxicity of 2D graphene-based nanomaterials (GBNs) is highly important for engineered applications and environmental health. However, the isotropic orientation of GBNs, most notably graphene oxide (GO), in previous experimental studies obscured the interpretation of cytotoxic contributions of nanosheet edges. Here, we investigate the orientation-dependent interaction of GBNs with bacteria using GO composite films. To produce the films, GO nanosheets are aligned in a magnetic field, immobilized by cross-linking of the surrounding matrix, and exposed on the surface through oxidative etching. Characterization by small-angle X-ray scattering and atomic force microscopy confirms that GO nanosheets align progressively well with increasing magnetic field strength and that the alignment is effectively preserved by cross-linking. When contacted with the model bacterium Escherichia coli, GO nanosheets with vertical orientation exhibit enhanced antibacterial activity compared with random and horizontal orientations. Further characterization is performed to explain the enhanced antibacterial activity of the film with vertically aligned GO. Using phospholipid vesicles as a model system, we observe that GO nanosheets induce physical disruption of the lipid bilayer. Additionally, we find substantial GO-induced oxidation of glutathione, a model intracellular antioxidant, paired with limited generation of reactive oxygen species, suggesting that oxidation occurs through a direct electron-transfer mechanism. These physical and chemical mechanisms both require nanosheet penetration of the cell membrane, suggesting that the enhanced antibacterial activity of the film with vertically aligned GO stems from an increased density of edges with a preferential orientation for membrane disruption. The importance of nanosheet penetration for cytotoxicity has direct implications for the design of engineering surfaces using GBNs.
Collapse
|
64
|
Mensch AC, Hernandez RT, Kuether JE, Torelli MD, Feng ZV, Hamers RJ, Pedersen JA. Natural Organic Matter Concentration Impacts the Interaction of Functionalized Diamond Nanoparticles with Model and Actual Bacterial Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11075-11084. [PMID: 28817268 DOI: 10.1021/acs.est.7b02823] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Changes to nanoparticle surface charge, colloidal stability, and hydrodynamic properties induced by interaction with natural organic matter (NOM) warrant consideration in assessing the potential for these materials to adversely impact organisms in the environment. Here, we show that acquisition of a coating, or "corona", of NOM alters the hydrodynamic and electrokinetic properties of diamond nanoparticles (DNPs) functionalized with the polycation poly(allylamine HCl) in a manner that depends on the NOM-to-DNP concentration ratio. The NOM-induced changes to DNP properties alter subsequent interactions with model biological membranes and the Gram-negative bacterium Shewanella oneidensis MR-1. Suwannee River NOM induces changes to DNP hydrodynamic diameter and apparent ζ-potential in a concentration-dependent manner. At low NOM-to-DNP ratios, DNPs aggregate to a limited extent but retain a positive ζ-potential apparently due to nonuniform adsorption of NOM molecules leading to attractive electrostatic interactions between oppositely charged regions on adjacent DNP surfaces. Diamond nanoparticles at low NOM-to-DNP ratios attach to model membranes to a larger extent than in the absence of NOM (including those incorporating lipopolysaccharide, a major bacterial outer membrane component) and induce a comparable degree of membrane damage and toxicity to S. oneidensis. At higher NOM-to-DNP ratios, DNP charge is reversed, and DNP aggregates remain stable in suspension. This charge reversal eliminates DNP attachment to model membranes containing the highest LPS contents studied due to electrostatic repulsion and abolishes membrane damage to S. oneidensis. Our results demonstrate that the effects of NOM coronas on nanoparticle properties and interactions with biological surfaces can depend on the relative amounts of NOM and nanoparticles.
Collapse
Affiliation(s)
| | | | - Joshua E Kuether
- Chemistry Department, Augsburg University , Minneapolis, Minnesota 55454, United States
| | | | - Z Vivian Feng
- Chemistry Department, Augsburg University , Minneapolis, Minnesota 55454, United States
| | | | | |
Collapse
|
65
|
Malekkhaiat Häffner S, Malmsten M. Membrane interactions and antimicrobial effects of inorganic nanoparticles. Adv Colloid Interface Sci 2017; 248:105-128. [PMID: 28807368 DOI: 10.1016/j.cis.2017.07.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Interactions between nanoparticles and biological membranes are attracting increasing attention in current nanomedicine, and play a key role both for nanotoxicology and for utilizing nanomaterials in diagnostics, drug delivery, functional biomaterials, as well as combinations of these, e.g., in theranostics. In addition, there is considerable current interest in the use of nanomaterials as antimicrobial agents, motivated by increasing resistance development against conventional antibiotics. Here, various nanomaterials offer opportunities for triggered functionalites to combat challenging infections. Although the performance in these diverse applications is governed by a complex interplay between the nanomaterial, the properties of included drugs (if any), and the biological system, nanoparticle-membrane interactions constitute a key initial step and play a key role for the subsequent biological response. In the present overview, the current understanding of inorganic nanomaterials as antimicrobial agents is outlined, with special focus on the interplay between antimicrobial effects and membrane interactions, and how membrane interactions and antimicrobial effects of such materials depend on nanoparticle properties, membrane composition, and external (e.g., light and magnetic) fields.
Collapse
Affiliation(s)
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
66
|
Ivashkov OV, Sybachin AV, Efimova AA, Orlov VN, Pergushov DV, Schmalz H, Yaroslavov AA. Composition and properties of complexes between anionic liposomes and diblock copolymers with cationic and poly(ethylene oxide) blocks. POLYM INT 2017. [DOI: 10.1002/pi.5431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Oleg V Ivashkov
- Department of Chemistry; MV Lomonosov Moscow State University; Moscow Russia
| | - Andrey V Sybachin
- Department of Chemistry; MV Lomonosov Moscow State University; Moscow Russia
| | - Anna A Efimova
- Department of Chemistry; MV Lomonosov Moscow State University; Moscow Russia
| | - Viktor N Orlov
- Research Institute of Physico-Chemical Biology; MV Lomonosov Moscow State University; Moscow Russia
| | - Dmitry V Pergushov
- Department of Chemistry; MV Lomonosov Moscow State University; Moscow Russia
| | - Holger Schmalz
- Makromolekulare Chemie II; Universität Bayreuth; Bayreuth Germany
| | | |
Collapse
|
67
|
Garcia-Cortes M, Sotelo González E, Fernández-Argüelles MT, Encinar JR, Costa-Fernández JM, Sanz-Medel A. Capping of Mn-Doped ZnS Quantum Dots with DHLA for Their Stabilization in Aqueous Media: Determination of the Nanoparticle Number Concentration and Surface Ligand Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6333-6341. [PMID: 28555495 DOI: 10.1021/acs.langmuir.7b00409] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colloidal Mn2+-doped ZnS quantum dots (QDs) were synthesized, surface modified, and thoroughly characterized using a pool of complementary techniques. Cap exchange of the native l-cysteine coating of the QDs with dihydrolipoic acid (DHLA) ligands is proposed as a strategy to produce nanocrystals with a strong phosphorescent-type emission and improved aqueous stability. Moreover, such a stable DHLA coating can facilitate further bioconjugation of these QDs to biomolecules using established reagents such as cross-linker molecules. First, a structural and morphological characterization of the l-cysteine QD core was performed by resorting to complementary techniques, including X-ray powder diffraction (XRD) and microscopy tools. XRD patterns provided information about the local structure of ions within the nanocrystal structure and the number of metal atoms constituting the core of a QD. The judicious combination of the data obtained from these complementary characterization tools with the analysis of the QDs using inductively coupled plasma-mass spectrometry (ICP-MS) allowed us to assess the number concentration of nanoparticles in an aqueous sample, a key parameter when such materials are going to be used in bioanalytical or toxicological studies. Asymmetric flow field-flow fractionation (AF4) coupled online to ICP-MS detection proved to be an invaluable tool to compute the number of DHLA molecules attached to the surface of a single QD, a key feature that is difficult to estimate in nanoparticles and that critically affects the behavior of nanoparticles when entering the biological media (e.g., cellular uptake, biodistribution, or protein corona formation). This hybrid technique also allowed us to demonstrate that the elemental composition of the nanoparticle core remains unaffected after the ligand exchange process. Finally, the photostability and robustness of the DHLA-capped QDs, critical parameters for bioanalytical applications, were assessed by molecular luminescence spectroscopy.
Collapse
Affiliation(s)
- Marta Garcia-Cortes
- Department of Physical and Analytical Chemistry, University of Oviedo , Avda. Julian Claveria 8, E-33006 Oviedo, Spain
| | - Emma Sotelo González
- Department of Physical and Analytical Chemistry, University of Oviedo , Avda. Julian Claveria 8, E-33006 Oviedo, Spain
| | - María T Fernández-Argüelles
- Life Sciences Department, International Iberian Nanotechnology Laboratory (INL) , Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo , Avda. Julian Claveria 8, E-33006 Oviedo, Spain
| | - José M Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo , Avda. Julian Claveria 8, E-33006 Oviedo, Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo , Avda. Julian Claveria 8, E-33006 Oviedo, Spain
| |
Collapse
|
68
|
Sonkusre P, Cameotra SS. Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. J Nanobiotechnology 2017; 15:43. [PMID: 28592284 PMCID: PMC5463494 DOI: 10.1186/s12951-017-0276-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Selenium is well documented to inhibit cancer at higher doses; however, the mechanism behind this inhibition varies widely depending on the cell type and selenium species. Previously, we have demonstrated that Bacillus licheniformis JS2 derived biogenic selenium nanoparticles (SeNPs) induce non-apoptotic cell death in prostate adenocarcinoma cell line, PC-3, at a minimal concentration of 2 µg Se/ml, without causing toxicity to the primary cells. However, the mechanism behind its anticancer activity was elusive. RESULTS Our results have shown that these SeNPs at a concentration of 2 µg Se/ml were able to induce reactive oxygen species (ROS) mediated necroptosis in PC-3 cells by gaining cellular internalization. Real-time qPCR analysis showed increased expression of necroptosis associated tumor necrotic factor (TNF) and interferon regulatory factor 1 (IRF1). An increased expression of RIP1 protein was also observed at the translational level upon SeNP treatment. Moreover, the cell viability was significantly increased in the presence of necroptosis inhibitor, Necrostatin-1. CONCLUSION Data suggest that our biogenic SeNPs induce cell death in PC-3 cells by the ROS-mediated activation of necroptosis, independent to RIP3 and MLKL, regulated by a RIP1 kinase.
Collapse
Affiliation(s)
- Praveen Sonkusre
- Institute of Microbial Technology, Sector 39 A, Chandigarh, 160036 India
| | | |
Collapse
|
69
|
Lai L, Li SJ, Feng J, Mei P, Ren ZH, Chang YL, Liu Y. Effects of Surface Charges on the Bactericide Activity of CdTe/ZnS Quantum Dots: A Cell Membrane Disruption Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2378-2386. [PMID: 28178781 DOI: 10.1021/acs.langmuir.7b00173] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The inhibitory effects of CdTe/ZnS quantum dots (QDs) modified with 3-mercaptopropionic acid (negatively charged) or cysteamine (positively charged) on the metabolic activity of Escherichia coli were investigated using biological microcalorimetry. Results show that the inhibitory ratio of positive QDs is higher than that of negative QDs. Transmission electron microscopy images indicate that QDs are prone to be adsorbed on the surface of E. coli. This condition disturbs the membrane structure and function of E. coli. Fluorescence anisotropy results demonstrate that positive QDs show a significant increase in the membrane fluidity of E. coli and dipalmitoylphosphatidylcholine (DPPC) model membrane. Furthermore, fluorescence anisotropy values of DPPC membrane in the gel phase decreased upon the addition of positive QDs. By contrast, anisotropy values in the liquid-crystalline phase are almost constant. The change in membrane fluidity is associated with the increased permeability of the membrane. Finally, the kinetics of dye leakage from liposomes demonstrate that the surface charge of QDs is crucial to the interaction between QDs and membrane.
Collapse
Affiliation(s)
- Lu Lai
- College of Chemistry and Environmental Engineering, Yangtze University , Jingzhou, Hubei 434023, P. R. China
| | - Sheng-Jin Li
- College of Chemistry and Environmental Engineering, Yangtze University , Jingzhou, Hubei 434023, P. R. China
| | - Jing Feng
- College of Chemistry and Environmental Engineering, Yangtze University , Jingzhou, Hubei 434023, P. R. China
| | - Ping Mei
- College of Chemistry and Environmental Engineering, Yangtze University , Jingzhou, Hubei 434023, P. R. China
| | - Zhao-Hua Ren
- College of Chemistry and Environmental Engineering, Yangtze University , Jingzhou, Hubei 434023, P. R. China
| | - Yan-Ling Chang
- College of Chemistry and Environmental Engineering, Yangtze University , Jingzhou, Hubei 434023, P. R. China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecule Sciences, Wuhan University , Wuhan 430072, P. R. China
| |
Collapse
|
70
|
Bothun GD, Ganji N, Khan IA, Xi A, Bobba C. Anionic and Cationic Silver Nanoparticle Binding Restructures Net-Anionic PC/PG Monolayers with Saturated or Unsaturated Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:353-360. [PMID: 27966970 DOI: 10.1021/acs.langmuir.6b02003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have examined the interactions between polymer-coated anionic (Ag-COOH) and cationic (Ag-NH) silver nanoparticles, and net-anionic lipid monolayers using dynamic surface pressure measurements. Monolayers composed of saturated or monounsaturated mixtures of anionic phosphatidylglycerol (PG) and zwitterionic phosphatidylcholine (PC) lipids (3:1 molar ratio) were used to determine how lipid packing and monolayer phase state influence the extent of nanoparticle binding and the monolayer response. Anionic Ag-COOH inserted into saturated dipalmitoyl-PC/PG (DPPC/DPPG) and dioleoyl-PC/PG (DOPC/DOPG) monolayers at a low initial surface pressure (10 mN m-1) and caused lipid condensation at high initial surface pressures (20 and 30 mN m-1). Hydrophobic interactions were responsible for insertion, while electrostatic and charge-dipole interactions with PCs were responsible for condensation. In contrast, cationic Ag-NH inserted only into saturated DPPC/DPPG monolayers and otherwise led to lipid condensation. For Ag-NH, adsorption was driven primarily by electrostatic interactions with PGs. Analysis of the subphase Ag and phosphorus concentrations confirmed that Ag-NH had a higher degree binding compared to Ag-COOH, and that the monolayer response was not due to lipid extraction.
Collapse
Affiliation(s)
- G D Bothun
- Department of Chemical Engineering, University of Rhode Island , 16 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - N Ganji
- Department of Chemical Engineering, University of Rhode Island , 16 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - I A Khan
- Department of Chemical Engineering, University of Rhode Island , 16 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - A Xi
- Department of Chemical Engineering, University of Rhode Island , 16 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - C Bobba
- Department of Chemical Engineering, University of Rhode Island , 16 Greenhouse Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
71
|
Jiang W, Wang Q, Qu X, Wang L, Wei X, Zhu D, Yang K. Effects of charge and surface defects of multi-walled carbon nanotubes on the disruption of model cell membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:771-780. [PMID: 27664764 DOI: 10.1016/j.scitotenv.2016.09.150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/17/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
The direct contact between multi-walled carbon nanotubes (MWCNTs) and cell membranes causes membrane disruption, potentially leading to cytotoxicity. However, the role of electrostatic forces and MWCNT properties is still open to debate. In this study, the influences of charge and MWCNT surface defects on membrane disruption were investigated by microscopy and a quartz crystal microbalance with dissipation monitoring (QCM-D). Positively/negatively charged giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) were made as model cell membranes. Negatively charged MWCNTs disrupted the GUVs containing positively charged lipids, which confirmed the electrostatically mediated interaction. However, the mass loss was detected from the negatively charged SLBs after MWCNT exposure, which suggests the extraction of phospholipids. The defect degree of MWCNTs correlated with their adhesion amount on the membranes. Both the oxygenated functional groups and unoxidized dangling carbon bonds were active sites for MWCNT-membrane interactions. The MWCNTs were observed to be engulfed inside the GUVs. The results clearly demonstrate that phospholipid extraction by MWCNTs could occur in electrostatically repulsive conditions, and MWCNT defects were active binding sites whether or not they were oxygenated. Our findings should be helpful in the design and safe applications of carbon nanomaterials.
Collapse
Affiliation(s)
- Wei Jiang
- Environment Research Institute, Shandong University, Jinan 250100, China.
| | - Qi Wang
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Lixin Wang
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Xiaoran Wei
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Dongqiang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
72
|
Gao J, Li Z, Zhang O, Wu C, Zhao Y. Tunable accessibility of dye-doped liposomes towards gold nanoparticles for fluorescence sensing of lipopolysaccharide. Analyst 2017; 142:1084-1090. [DOI: 10.1039/c7an00019g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We developed a new fluorescence sensing strategy for LPS on the basis of its primitive role on the surface of bacteria.
Collapse
Affiliation(s)
- Jinhong Gao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Zhuoru Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Ouyang Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
73
|
Bhat A, Edwards LW, Fu X, Badman DL, Huo S, Jin AJ, Lu Q. Effects of gold nanoparticles on lipid packing and membrane pore formation. APPLIED PHYSICS LETTERS 2016; 109:263106. [PMID: 28104921 PMCID: PMC5201603 DOI: 10.1063/1.4972868] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/07/2016] [Indexed: 06/01/2023]
Abstract
Gold nanoparticles (AuNPs) have been increasingly integrated in biological systems, making it imperative to understand their interactions with cell membranes, the first barriers to be crossed to enter cells. Herein, liposomes composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) as a model membrane system were treated with citrate stabilized AuNPs from 5 to 30 nm at various concentrations. The fluorescence shifts of Laurdan probes reveal that AuNPs in general made liposomes more fluidic. The increased fluidity is expected to result in an increased surface area, and thus liposome shape changes from circular to less circular, which was further confirmed with fluorescence microscopy. The localized stress in lipids induced by electrostatically adsorbed AuNPs was hypothesized to cause the dominant long-range effect of fluidization of unbound lipid membranes. A secondary effect of the AuNP-induced lateral pressure is the membrane rupture or formation of pores, which was probed by AFM under fluid. We found in this study a nanoparticle-mediated approach of modulating the stiffness of lipid membranes: by adsorption of AuNPs, lipids at the binding sites are stiffened whereas lipids afar are fluidized. Understanding the factors that modulate lipid packing is important for the discovery of alternative therapeutic methods for diseases linked to membrane integrity such as high blood pressure and cancer metastasis.
Collapse
Affiliation(s)
- Anupama Bhat
- Department of Physics and Engineering, Delaware State University , Dover, Delaware 19901, USA
| | - Lance W Edwards
- Department of Biological Sciences, Delaware State University , Dover, Delaware 19901, USA
| | | | - Dillon L Badman
- Department of Physics and Engineering, Delaware State University , Dover, Delaware 19901, USA
| | - Samuel Huo
- Wilmington Friends School , Wilmington, Delaware 19803, USA
| | - Albert J Jin
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, USA
| | - Qi Lu
- Department of Physics and Engineering, Delaware State University , Dover, Delaware 19901, USA
| |
Collapse
|
74
|
Lee JH, Shin Y, Lee W, Whang K, Kim D, Lee LP, Choi JW, Kang T. General and programmable synthesis of hybrid liposome/metal nanoparticles. SCIENCE ADVANCES 2016; 2:e1601838. [PMID: 28028544 PMCID: PMC5161430 DOI: 10.1126/sciadv.1601838] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/15/2016] [Indexed: 05/27/2023]
Abstract
Hybrid liposome/metal nanoparticles are promising candidate materials for biomedical applications. However, the poor selectivity and low yield of the desired hybrid during synthesis pose a challenge. We designed a programmable liposome by selective encoding of a reducing agent, which allows self-crystallization of metal nanoparticles within the liposome to produce stable liposome/metal nanoparticles alone. We synthesized seven types of liposome/monometallic and more complex liposome/bimetallic hybrids. The resulting nanoparticles are tunable in size and metal composition, and their surface plasmon resonance bands are controllable in visible and near infrared. Owing to outer lipid bilayer, our liposome/Au nanoparticle shows better colloidal stability in biologically relevant solutions as well as higher endocytosis efficiency than gold nanoparticles without the liposome. We used this hybrid in intracellular imaging of living cells via surface-enhanced Raman spectroscopy, taking advantage of its improved physicochemical properties. We believe that our method greatly increases the utility of metal nanoparticles in in vivo applications.
Collapse
Affiliation(s)
- Jin-Ho Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea
- Biomolecular Nanotechnology Center, Berkeley Sensor and Actuator Center, Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea
| | - Wooju Lee
- Department of Mechanical Engineering, Sogang University, Seoul 121-742, Korea
| | - Keumrai Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, Seoul 121-742, Korea
| | - Luke P. Lee
- Biomolecular Nanotechnology Center, Berkeley Sensor and Actuator Center, Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea
| |
Collapse
|
75
|
Hurdles in selection process of nanodelivery systems for multidrug-resistant cancer. J Cancer Res Clin Oncol 2016; 142:2073-106. [PMID: 27116692 DOI: 10.1007/s00432-016-2167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Most of the nanomedicines for treatment of multidrug-resistant cancer do not reach Phase III trials and many are terminated or withdrawn or are in an indeterminate state since long without any study results being presented. Extensive perusal of nanomedicine development research revealed that one of the critical aspects influencing clinical outcomes and which requires diligent scrutiny is selection process of nanodelivery system. METHODS Research papers and articles published on development of nanodelivery systems for treatment of multidrug-resistant cancer were analyzed. Observations and conclusions noted by these researchers which might shed some light on poor clinical performance of nanocarriers were collated and summarized under observation section. Further research articles were studied to find possible solutions which may be applied to these particular problems for resolving them. The inferences of these findings were composed in Result section. RESULT Plausible solutions for the observed obstacles were noted as examples of novel formulations that can yield the following: better in vivo imaging, precise targeting and dosing of a specific site and specific cell type in a particular cancer, modulation of tumor surroundings, intonation of systemic effects and high reproducibility. CONCLUSION The angle of approach to the development of best nanosystem for a specific type of tumor needs to be spun around. Some of these changes can be brought about by individual scientists, some need to be established by collated efforts of scientists globally and some await advent of better technologies. Regardless of the stratagem, it can be said decisively that the schematics of development phase need rethinking.
Collapse
|
76
|
Gilbertson LM, Albalghiti EM, Fishman ZS, Perreault F, Corredor C, Posner JD, Elimelech M, Pfefferle LD, Zimmerman JB. Shape-Dependent Surface Reactivity and Antimicrobial Activity of Nano-Cupric Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3975-3984. [PMID: 26943499 DOI: 10.1021/acs.est.5b05734] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Shape of engineered nanomaterials (ENMs) can be used as a design handle to achieve controlled manipulation of physicochemical properties. This tailored material property approach necessitates the establishment of relationships between specific ENM properties that result from such manipulations (e.g., surface area, reactivity, or charge) and the observed trend in behavior, from both a functional performance and hazard perspective. In this study, these structure-property-function (SPF) and structure-property-hazard (SPH) relationships are established for nano-cupric oxide (n-CuO) as a function of shape, including nanospheres and nanosheets. In addition to comparing these shapes at the nanoscale, bulk CuO is studied to compare across length scales. The results from comprehensive material characterization revealed correlations between CuO surface reactivity and bacterial toxicity with CuO nanosheets having the highest surface reactivity, electrochemical activity, and antimicrobial activity. While less active than the nanosheets, CuO nanoparticles (sphere-like shape) demonstrated enhanced reactivity compared to the bulk CuO. This is in agreement with previous studies investigating differences across length-scales. To elucidate the underlying mechanisms of action to further explain the shape-dependent behavior, kinetic models applied to the toxicity data. In addition to revealing different CuO material kinetics, trends in observed response cannot be explained by surface area alone. The compiled results contribute to further elucidate pathways toward controlled design of ENMs.
Collapse
Affiliation(s)
- Leanne M Gilbertson
- Department of Civil and Environmental Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | | | | | - François Perreault
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | |
Collapse
|
77
|
Rascol E, Devoisselle JM, Chopineau J. The relevance of membrane models to understand nanoparticles-cell membrane interactions. NANOSCALE 2016; 8:4780-98. [PMID: 26868717 DOI: 10.1039/c5nr07954c] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Over the past two decades, numerous types of nanoparticles (NPs) have been developed for medical applications; however only a few nanomedicines are actually available on the market. One reason is the lack of understanding and data concerning the NP fate and their behavior upon contact with biological media and cell membranes. Biomimetic membrane models are interesting tools to approach and understand NPs-cell membrane interactions. The use of these models permits one to control physical and chemical parameters and to rapidly compare membrane types and the influence of different media conditions. The interactions between NPs and cell membranes can be qualified and quantified using analytical and modeling methods. In this review, the major studies concerning NPs-cell membrane models and associated methods are described. The advantages and drawbacks for each method are compared for the different models. The key mechanisms of interactions between NPs and cell membranes are revealed using cell membrane models and are interrogated in comparison with the NP behavior in cellulo or in vivo. Investigating the interactions between NPs and cell membrane models is now proposed as an intermediate step between physicochemical characterization of NPs and biological assays.
Collapse
Affiliation(s)
- Estelle Rascol
- Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM, 8 rue de l'Ecole Normale, 34296, Cedex 5 Montpellier, France
| | - Jean-Marie Devoisselle
- Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM, 8 rue de l'Ecole Normale, 34296, Cedex 5 Montpellier, France
| | - Joël Chopineau
- Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM, 8 rue de l'Ecole Normale, 34296, Cedex 5 Montpellier, France and Université de Nimes Rue Georges Salan, 30000 Nimes, France.
| |
Collapse
|
78
|
Gao J, Zhang O, Ren J, Wu C, Zhao Y. Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1601-1610. [PMID: 26794292 DOI: 10.1021/acs.langmuir.6b00035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The presence of large hydrophobic aromatic residues in cell-penetrating peptides or proteins has been demonstrated to be advantageous for their cell penetration. This phenomenon has also been observed when AuNPs were modified with peptides containing aromatic amino acids. However, it is still not clear how the presence of hydrophobic and aromatic groups on the surface of anionic AuNPs affects their interaction with lipid bilayers. Here, we studied the interaction of a range of anionic amphiphilic AuNPs coated by different combinations of hydrophobic and anionic ligands with four different types of synthetic lipid vesicles. Our results demonstrated the important role of the surface aromatic or bulky groups, relative to the hydrocarbon chains, in the interaction of anionic AuNPs with lipid bilayers. Hydrophobic interaction itself arising from the insertion of aromatic/bulky ligands on the surface of AuNPs into lipid bilayers is sufficiently strong to cause overt disruption of lipid vesicles and cell membranes. Moreover, by comparing the results obtained from AuNPs coated with aromatic ligands and cyclohexyl ligands lacking aromaticity respectively, we demonstrated that the bulkiness of the terminal groups in hydrophobic ligands instead of the aromatic character might be more important to the interaction of AuNPs with lipid bilayers. Finally, we further correlated the observation on model liposomes with that on cell membranes, demonstrating that AuNPs that are more disruptive to the more negatively charged liposomes are also substantially more disruptive to cell membranes. In addition, our results revealed that certain cellular membrane domains that are more susceptible to disruption caused by hydrophobic interactions with nanoparticle surfaces might determine the threshold of AuNP-mediated cytotoxicity.
Collapse
Affiliation(s)
- Jinhong Gao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| | - Ouyang Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| | - Jing Ren
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| |
Collapse
|
79
|
Raliya R, Singh Chadha T, Haddad K, Biswas P. Perspective on Nanoparticle Technology for Biomedical Use. Curr Pharm Des 2016; 22:2481-90. [PMID: 26951098 PMCID: PMC4930863 DOI: 10.2174/1381612822666160307151409] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/04/2016] [Indexed: 12/20/2022]
Abstract
This review gives a short overview on the widespread use of nanostructured and nanocomposite materials for disease diagnostics, drug delivery, imaging and biomedical sensing applications. Nanoparticle interaction with a biological matrix/entity is greatly influenced by its morphology, crystal phase, surface chemistry, functionalization, physicochemical and electronic properties of the particle. Various nanoparticle synthesis routes, characterization, and functionalization methodologies to be used for biomedical applications ranging from drug delivery to molecular probing of underlying mechanisms and concepts are described with several examples (150 references).
Collapse
Affiliation(s)
| | | | | | - Pratim Biswas
- School of Engineering and Applied Science, Washington University in St. Louis, St. Louis, MO-63130, USA.
| |
Collapse
|
80
|
SU MANMAN, CHANG WEIQIN, ZHANG KUN, CUI MANHUA, WU SHUYING, XU TIANMIN. Expression and purification of recombinant ATF-mellitin, a new type fusion protein targeting ovarian cancer cells, in P. pastoris. Oncol Rep 2015; 35:1179-85. [DOI: 10.3892/or.2015.4448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/22/2015] [Indexed: 11/05/2022] Open
|
81
|
Recent developments in methodology employed to study the interactions between nanomaterials and model lipid membranes. Anal Bioanal Chem 2015; 408:2743-58. [PMID: 26603178 DOI: 10.1007/s00216-015-9157-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022]
Abstract
With the boom of nanotechnology, nanomaterials (NMs) have been widely utilized in diverse applications, especially in biological and biomedical fields. Understanding how NMs interact with biomolecules, including proteins, DNA, and lipids, is of great importance for revealing the limitations posed and opportunities offered. Model lipid membrane, as a simplified cell membrane model, has been widely used to study the nanomaterial-lipid membrane interactions. In this article, current and emerging techniques, both experimental and theoretical, to investigate the interactions between NMs and model lipid membrane are summarized with each tool's capacities and limitations, along with future directions and challenges in this exciting area. This critical information will provide methodological guidance for researchers in this field.
Collapse
|
82
|
Liu X, Chen KL. Interactions of Graphene Oxide with Model Cell Membranes: Probing Nanoparticle Attachment and Lipid Bilayer Disruption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12076-12086. [PMID: 26466194 DOI: 10.1021/acs.langmuir.5b02414] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
With the rapid growth in the application of graphene oxide (GO) in diverse fields, the toxicity of GO toward bacterial and mammalian cells has recently attracted extensive research attention. While several mechanisms have been proposed for the cytotoxicity of GO, the attachment of GO to cell membranes is expected to be the key initial process that precedes these mechanisms. In this study, we investigate the propensity for GO to attach to and disrupt model cell membranes using supported lipid bilayers (SLBs) and supported vesicular layers (SVLs) that are composed of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The deposition kinetics of GO on SLBs were determined using quartz crystal microbalance with dissipation monitoring and were observed to increase with increasing electrolyte (NaCl and CaCl2) concentrations, indicating that GO attachment to SLBs was controlled by electrostatic interactions. The GO deposition kinetics measured at elevated electrolyte concentrations were lower than mass-transfer-limited kinetics, likely due to the presence of hydration forces between GO and SLBs. Upon the attachment of GO to supported vesicles that were encapsulated with a fluorescent dye, dye leakage was detected, thus indicating that the lipid vesicles were disrupted. When the exposure of the SVL to the GO suspension was terminated, the leakage of dye decreased significantly, demonstrating that the pores on the lipid bilayers have a self-healing ability.
Collapse
Affiliation(s)
- Xitong Liu
- Department of Geography and Environmental Engineering, Johns Hopkins University , Baltimore, Maryland 21218-2686, United States
| | - Kai Loon Chen
- Department of Geography and Environmental Engineering, Johns Hopkins University , Baltimore, Maryland 21218-2686, United States
| |
Collapse
|
83
|
Wang F, Liu J. Self-healable and reversible liposome leakage by citrate-capped gold nanoparticles: probing the initial adsorption/desorption induced lipid phase transition. NANOSCALE 2015; 7:15599-604. [PMID: 26372064 DOI: 10.1039/c5nr04805b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We herein report that the adsorption/desorption of citrate-capped gold nanoparticles (AuNPs) transiently causes leakage in fluid phase DOPC liposomes, while the liposomes do not leak with AuNPs capped with mercaptopropionic acid (MPA). Leakage also fails to occur for gel phase DPPC liposomes. Citrate-capped (but not MPA-capped) AuNPs raise the phase transition temperature of DPPC. We conclude that citrate-capped AuNPs interact with the PC liposomes very strongly, inducing a local fluid-to-gel lipid phase transition for DOPC. Leakage takes place during this transition, and the membrane integrity is resumed after the transition. Citrate-capped AuNPs allow stronger van der Waals forces than MPA-capped AuNPs with PC liposomes, since the latter are separated from the liposome surface by the ∼0.3 nm MPA layer.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | |
Collapse
|
84
|
Zhang N, Chen H, Liu AY, Shen JJ, Shah V, Zhang C, Hong J, Ding Y. Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy. Biomaterials 2015; 74:280-91. [PMID: 26461120 DOI: 10.1016/j.biomaterials.2015.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 01/06/2023]
Abstract
Hybrid drug delivery system containing both organic and inorganic nanocarriers is expected to achieve its complementary advantages for the aim of improving the performance of antineoplastic drugs in tumor therapy. Here we report the use of liposomes and gold nanoparticles to construct a liposome with a hybrid Cluster Bomb structure and discuss its unique multi-order drug release property for liver tumor treatment. A very simple method is used for the hybrid liposome preparation and involves mixing two solutions containing liposomes loaded with either non-covalent or covalent Paclitaxel (PTX, namely free PTX or PTX-conjugated GNPs, respectively) by different ratio of volume (25:75, 50:50, 25:75, v/v). Various mixed liposomes were tested to determine the optimal conditions for maximum drug delivery. The optimized liposome was then tested using xenograft Heps tumor-bearing mice and showed the best efficacy for chemotherapeutic inhibition of tumor at PTX liposome: PTX-conjugated GNP liposome of 25:75 ratio (v/v). This system allows for simple and easy preparation while providing a more accurate site- and time-release mode for tumor treatment using antitumor drugs.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Huan Chen
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ai-Yun Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Jia-Jia Shen
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Vishva Shah
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Can Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Jin Hong
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
85
|
Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study. Biophys Chem 2015; 203-204:51-61. [DOI: 10.1016/j.bpc.2015.05.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/18/2015] [Accepted: 05/06/2015] [Indexed: 11/17/2022]
|
86
|
Murphy CJ, Vartanian A. Biological Responses to Engineered Nanomaterials: Needs for the Next Decade. ACS CENTRAL SCIENCE 2015; 1:117-23. [PMID: 27162961 PMCID: PMC4827556 DOI: 10.1021/acscentsci.5b00182] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 05/20/2023]
Abstract
The interaction of nanomaterials with biomolecules, cells, and organisms is an enormously vital area of current research, with applications in nanoenabled diagnostics, imaging agents, therapeutics, and contaminant removal technologies. Yet the potential for adverse biological and environmental impacts of nanomaterial exposure is considerable and needs to be addressed to ensure sustainable development of nanomaterials. In this Outlook four research needs for the next decade are outlined: (i) measurement of the chemical nature of nanomaterials in dynamic, complex aqueous environments; (ii) real-time measurements of nanomaterial-biological interactions with chemical specificity; (iii) delineation of molecular modes of action for nanomaterial effects on living systems as functions of nanomaterial properties; and (iv) an integrated systems approach that includes computation and simulation across orders of magnitude in time and space.
Collapse
Affiliation(s)
- Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ariane
M. Vartanian
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
87
|
Møller P, Lykkesfeldt J. Positive charge, negative effect: the impact of cationic nanoparticles in the brain. Nanomedicine (Lond) 2015; 9:1441-3. [PMID: 25253492 DOI: 10.2217/nnm.14.91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | | |
Collapse
|
88
|
Wei X, Jiang W, Yu J, Ding L, Hu J, Jiang G. Effects of SiO2 nanoparticles on phospholipid membrane integrity and fluidity. JOURNAL OF HAZARDOUS MATERIALS 2015; 287:217-224. [PMID: 25661168 DOI: 10.1016/j.jhazmat.2015.01.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 01/03/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
Silicon nanoparticles (NPs) are widely used nanomaterials and reported to have pathogenicity. Effects of five different SiO2 NPs on the membrane integrity and fluidity were studied using giant unilamellar vesicles (GUVs) as model cell membranes. GUVs were made from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) by gentle hydration method, and adjusted to be positively- or negatively-charged by adding charged lipids into vesicles. SiO2 NPs caused more serious damage to oppositely-charged membrane because electrostatic attraction favored the hydrogen bonding to the phospholipids. Increase in NP exposure dose/time and NP sedimentation process aggravated the membrane damage. The membrane phases were evaluated applying the fluorescent probe Laurdan and the calculated generalized polarization (GP) values. Anionic SiO2 NPs increased the GP value and induced membrane gelation. Cationic SiO2 NPs did not change the phase of positively-charged GUV and pure DOPC vesicles, but induced the gelation of negatively-charged GUV. Break of membrane integrity and change in membrane phase are possible mechanisms of cytotoxicity because cellular physiological activities require a separated intracellular environment and a fluid membrane phase to support proteins and regulate molecular transport.
Collapse
Affiliation(s)
- Xiaoran Wei
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Jinan 250100, China.
| | - Junchao Yu
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Lei Ding
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Jingtian Hu
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
89
|
Arts JHE, Hadi M, Irfan MA, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Petry T, Sauer UG, Warheit D, Wiench K, Wohlleben W, Landsiedel R. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharmacol 2015; 71:S1-27. [PMID: 25818068 DOI: 10.1016/j.yrtph.2015.03.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/22/2022]
Abstract
The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) that consists of 3 tiers to assign nanomaterials to 4 main groups, to perform sub-grouping within the main groups and to determine and refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways, i.e. intrinsic material and system-dependent properties, biopersistence, uptake and biodistribution, cellular and apical toxic effects. Use (including manufacture), release and route of exposure are applied as 'qualifiers' within the DF4nanoGrouping to determine if, e.g. nanomaterials cannot be released from a product matrix, which may justify the waiving of testing. The four main groups encompass (1) soluble nanomaterials, (2) biopersistent high aspect ratio nanomaterials, (3) passive nanomaterials, and (4) active nanomaterials. The DF4nanoGrouping aims to group nanomaterials by their specific mode-of-action that results in an apical toxic effect. This is eventually directed by a nanomaterial's intrinsic properties. However, since the exact correlation of intrinsic material properties and apical toxic effect is not yet established, the DF4nanoGrouping uses the 'functionality' of nanomaterials for grouping rather than relying on intrinsic material properties alone. Such functionalities include system-dependent material properties (such as dissolution rate in biologically relevant media), bio-physical interactions, in vitro effects and release and exposure. The DF4nanoGrouping is a hazard and risk assessment tool that applies modern toxicology and contributes to the sustainable development of nanotechnological products. It ensures that no studies are performed that do not provide crucial data and therefore saves animals and resources.
Collapse
Affiliation(s)
- Josje H E Arts
- AkzoNobel, Technology and Engineering, Arnhem, Netherlands
| | - Mackenzie Hadi
- Shell Health, Shell International B.V., The Hague, Netherlands
| | | | | | | | - Delina Lyon
- Shell Health, Shell Oil Company, Houston, TX, USA
| | | | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | - David Warheit
- DuPont Haskell Global Centers for HES, Newark, DE, USA
| | | | | | | |
Collapse
|
90
|
Rezvantalab H, Drazer G, Shojaei-Zadeh S. Molecular simulation of translational and rotational diffusion of Janus nanoparticles at liquid interfaces. J Chem Phys 2015; 142:014701. [DOI: 10.1063/1.4904549] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
91
|
Djurišić AB, Leung YH, Ng AMC, Xu XY, Lee PKH, Degger N, Wu RSS. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:26-44. [PMID: 25303765 DOI: 10.1002/smll.201303947] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 08/20/2014] [Indexed: 05/22/2023]
Abstract
Metal oxide nanomaterials are widely used in practical applications and represent a class of nanomaterials with the highest global annual production. Many of those, such as TiO2 and ZnO, are generally considered non-toxic due to the lack of toxicity of the bulk material. However, these materials typically exhibit toxicity to bacteria and fungi, and there have been emerging concerns about their ecotoxicity effects. The understanding of the toxicity mechanisms is incomplete, with different studies often reporting contradictory results. The relationship between the material properties and toxicity appears to be complex and diifficult to understand, which is partly due to incomplete characterization of the nanomaterial, and possibly due to experimental artefacts in the characterization of the nanomaterial and/or its interactions with living organisms. This review discusses the comprehensive characterization of metal oxide nanomaterials and the mechanisms of their toxicity.
Collapse
|
92
|
Alkhammash HI, Li N, Berthier R, de Planque MRR. Native silica nanoparticles are powerful membrane disruptors. Phys Chem Chem Phys 2015; 17:15547-60. [DOI: 10.1039/c4cp05882h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silica nanoparticles permeabilize liposomal membranes as a function of nanoparticle size, surface chemistry and biocoating as well as membrane charge.
Collapse
Affiliation(s)
- Hend I. Alkhammash
- Electronics and Computer Science & Institute for Life Sciences
- University of Southampton
- Southampton
- UK
- Department of Physics
| | - Nan Li
- Electronics and Computer Science & Institute for Life Sciences
- University of Southampton
- Southampton
- UK
| | - Rémy Berthier
- Electronics and Computer Science & Institute for Life Sciences
- University of Southampton
- Southampton
- UK
| | - Maurits R. R. de Planque
- Electronics and Computer Science & Institute for Life Sciences
- University of Southampton
- Southampton
- UK
| |
Collapse
|
93
|
Biswas N, Bhattacharya R, Saha A, Jana NR, Basu JK. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes. Phys Chem Chem Phys 2015; 17:24238-47. [DOI: 10.1039/c5cp04002g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cationic nanoparticles show larger penetration within well-packed zwitterionic lipid bilayer.
Collapse
Affiliation(s)
- Nupur Biswas
- Department of Physics
- Indian Institute of Science
- Bangalore 560012
- India
| | | | - Arindam Saha
- Centre for Advanced Materials
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Nikhil R. Jana
- Centre for Advanced Materials
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Jaydeep K. Basu
- Department of Physics
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
94
|
|
95
|
Rehbock C, Jakobi J, Gamrad L, van der Meer S, Tiedemann D, Taylor U, Kues W, Rath D, Barcikowski S. Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1523-41. [PMID: 25247135 PMCID: PMC4168911 DOI: 10.3762/bjnano.5.165] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/07/2014] [Indexed: 05/15/2023]
Abstract
Due to the abundance of nanomaterials in medical devices and everyday products, toxicological effects related to nanoparticles released from these materials, e.g., by mechanical wear, are a growing matter of concern. Unfortunately, appropriate nanoparticles required for systematic toxicological evaluation of these materials are still lacking. Here, the ubiquitous presence of surface ligands, remaining from chemical synthesis are a major drawback as these organic residues may cause cross-contaminations in toxicological studies. Nanoparticles synthesized by pulsed laser ablation in liquid are a promising alternative as this synthesis route provides totally ligand-free nanoparticles. The first part of this article reviews recent methods that allow the size control of laser-fabricated nanoparticles, focusing on laser post irradiation, delayed bioconjugation and in situ size quenching by low salinity electrolytes. Subsequent or parallel applications of these methods enable precise tuning of the particle diameters in a regime from 4-400 nm without utilization of any artificial surface ligands. The second paragraph of this article highlights the recent progress concerning the synthesis of composition controlled alloy nanoparticles by laser ablation in liquids. Here, binary and ternary alloy nanoparticles with totally homogeneous elemental distribution could be fabricated and the composition of these particles closely resembled bulk implant material. Finally, the model AuAg was used to systematically evaluate composition related toxicological effects of alloy nanoparticles. Here Ag(+) ion release is identified as the most probable mechanism of toxicity when recent toxicological studies with gametes, mammalian cells and bacteria are considered.
Collapse
Affiliation(s)
- Christoph Rehbock
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| | - Jurij Jakobi
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| | - Lisa Gamrad
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| | - Selina van der Meer
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| | - Daniela Tiedemann
- Institute for Farm Animal Genetics, Friedrich-Loeffler-Institut, Höltystr. 10, 31535 Neustadt, Germany
| | - Ulrike Taylor
- Institute for Farm Animal Genetics, Friedrich-Loeffler-Institut, Höltystr. 10, 31535 Neustadt, Germany
| | - Wilfried Kues
- Institute for Farm Animal Genetics, Friedrich-Loeffler-Institut, Höltystr. 10, 31535 Neustadt, Germany
| | - Detlef Rath
- Institute for Farm Animal Genetics, Friedrich-Loeffler-Institut, Höltystr. 10, 31535 Neustadt, Germany
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| |
Collapse
|
96
|
Hoppens MA, Sylvester CB, Qureshi AT, Scherr T, Czapski DR, Duran RS, Savage PB, Hayes D. Ceragenin mediated selectivity of antimicrobial silver nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:13900-13908. [PMID: 25054867 DOI: 10.1021/am504640f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The understanding that common broad-spectrum antimicrobials disrupt natural microbial flora important in acquiring nutrients and preventing infection has resulted in a paradigm shift favoring more selective antimicrobials. This work explores silver nanoparticles conjugated with ceragenin, or cationic antimicrobials (CSA-SNPs), as a potential Gram-positive selective antimicrobial. Herein, CSA-SNPs are characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, and high-performance liquid chromatography-electrospray time-of-flight mass spectrometry (HPLC-ESI-TOF-MS). The antimicrobial properties are determined through minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) and time-kill studies. Spatial selectivity of the conjugate nanoparticle was evaluated using confocal imaging, MATLAB statistical analysis, and video monitored interactions between bacteria and CSA-SNPs via laser trapping techniques. Cytotoxicity was also determined by live/dead staining and flow cytometry. Average particle size, as determined through TEM analysis, and hydrodynamic diameter, as determined via DLS, are 63.5 ± 38.8 and 102.23 ± 2.3 nm, respectively. The zeta potential of the SNP before and after CSA attachment is -18.23 and -8.34 mV, respectively. MIC/MBC data suggest that CSA-SNPs are 8 times more effective against Staphylococcus aureus than SNPs alone. Furthermore, MATLAB analysis of confocal imaging found that 70% of CSA-SNPs are within 2 μm of S. aureus, whereas this percentage falls to below 40% with respect to Escherichia coli. These results are bolstered further by laser trapping experiments demonstrating selective adherence of CSA-SNPs conjugates with bacterial strains. Cytotoxicity studies of CSA-SNPs against 3T3 fibroblasts indicate 50% cell viability at 50 ppm.
Collapse
Affiliation(s)
- Mark A Hoppens
- Department of Biological and Agricultural Engineering, Louisiana State University and LSU Agcenter , 149 E. B. Doran Building, Baton Rouge, Louisiana 70803, United States
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Fernandes MM, Francesko A, Torrent-Burgués J, Carrión-Fité FJ, Heinze T, Tzanov T. Sonochemically Processed Cationic Nanocapsules: Efficient Antimicrobials with Membrane Disturbing Capacity. Biomacromolecules 2014; 15:1365-74. [DOI: 10.1021/bm4018947] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margarida M. Fernandes
- Grup
de Biotecnologia Molecular i Industrial, Department d’Enginyeria
Química, Universitat Politècnica de Catalunya, Rambla
Sant Nebridi 22, 08222 Terrassa, Spain
| | - Antonio Francesko
- Grup
de Biotecnologia Molecular i Industrial, Department d’Enginyeria
Química, Universitat Politècnica de Catalunya, Rambla
Sant Nebridi 22, 08222 Terrassa, Spain
| | - Juan Torrent-Burgués
- Grup
de Biotecnologia Molecular i Industrial, Department d’Enginyeria
Química, Universitat Politècnica de Catalunya, Rambla
Sant Nebridi 22, 08222 Terrassa, Spain
| | - F. Javier Carrión-Fité
- Instituto
de Investigación Textil y C.I. de Terrassa Laboratorio de Tensioactivos
y Detergencia, Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de Catalunya, Colom 1508222 Terrassa, Spain
| | - Thomas Heinze
- Center
of Excellence for Polysaccharide Research, Institute of Organic Chemistry
and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Tzanko Tzanov
- Grup
de Biotecnologia Molecular i Industrial, Department d’Enginyeria
Química, Universitat Politècnica de Catalunya, Rambla
Sant Nebridi 22, 08222 Terrassa, Spain
| |
Collapse
|
98
|
Kettler K, Veltman K, van de Meent D, van Wezel A, Hendriks AJ. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:481-92. [PMID: 24273100 DOI: 10.1002/etc.2470] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/03/2013] [Accepted: 11/14/2013] [Indexed: 05/19/2023]
Abstract
The increased application of nanoparticles (NPs) is increasing the risk of their release into the environment. Although many toxicity studies have been conducted, the environmental risk is difficult to estimate, because uptake mechanisms are often not determined in toxicity studies. In the present study, the authors review dominant uptake mechanisms of NPs in cells, as well as the effect of NP properties, experimental conditions, and cell type on NP uptake. Knowledge of NP uptake is crucial for risk assessment and is essential to predict the behavior of NPs based on their physical-chemical properties. Important uptake mechanisms for eukaryotic cells are macropinocytosis, receptor-mediated endocytosis, and phagocytosis in specialized mammalian cells. The studies reviewed demonstrate that uptake into nonphagocytic cells depends strongly on NP size, with an uptake optimum at an NP diameter of approximately 50 nm. Increasing surface charges, either positive or negative, have been shown to increase particle uptake in comparison with uncharged NPs. Another important factor is the degree of (homo-) aggregation. Results regarding shape have been ambiguous. Difficulties in the production of NPs, with 1 property changed at a time, call for a full characterization of NP properties. Only then will it be possible to draw conclusions as to which property affected the uptake.
Collapse
Affiliation(s)
- Katja Kettler
- Department of Environmental Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
99
|
Łukasiewicz S, Szczepanowicz K. In vitro interaction of polyelectrolyte nanocapsules with model cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1100-1107. [PMID: 24410319 DOI: 10.1021/la403610y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The nanocapsules based on a liquid core with polyelectrolyte shells prepared by the technique of sequential adsorption of polyelectrolytes (LbL) were investigated to verify capsules bioacceptance. Using AOT (docusate sodium salt) as emulsifier, we obtained liquid cores, stabilized by the interfacial complex AOT/PLL (poly-l-lysine hydrobromide). These liquid cores were encapsulated by sequential adsorption of polyelectrolytes using biocompatible polyanion PGA (poly-l-glutamic acid sodium salt) and biocompatible polycation PLL. The average size of the formed capsules was 60-80 nm. The influence of a number of polyelectrolytes layer in the shell (thickness of polyelectrolytes shell), surface charge, and capsule doses on cell viability was studied in a cellular coculture assay. In order to improve nanocapsules biocompatibility, the PEG-ylated external layers were prepared using PGA-g-PEG (PGA grafted by PEG poly(ethylene glycol)). For the most toxic nanocapsules (with only one polycation layer) about 90% of cells could survive when the concentration of nanocapsules was below 0.2 × 10(6) per one cell. That suggests that they use as a delivery vehicles is quite safe for living cells. Analysis of internalization of AOT(PLL/PGA)4-g-PEG in HEK 293 cells indicates that tested nanocapsules can easily penetrate cells membrane.
Collapse
Affiliation(s)
- Sylwia Łukasiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , 30-348 Krakow, Poland
| | | |
Collapse
|
100
|
Collin B, Oostveen E, Tsyusko OV, Unrine JM. Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1280-9. [PMID: 24372151 DOI: 10.1021/es404503c] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The objective of this study was to investigate the role of the CeO2 nanoparticle (NP) surface charge and the presence of natural organic matter (NOM) in determining bioavailability and toxicity to the model soil organism Caenorhabditis elegans. We synthesized CeO2-NPs functionalized with positively charged, negatively charged, and neutral coatings. The positively charged CeO2-NPs were significantly more toxic to C. elegans and bioaccumulated to a greater extent than the neutral and negatively charged CeO2-NPs. Surface charge also affected the oxidation state of Ce in C. elegans tissues after uptake. Greater reduction of Ce from Ce (IV) to Ce (III) was found in C. elegans, when exposed to the neutral and negatively charged relative to positively charged CeO2-NPs. The addition of humic acid (HA) to the exposure media significantly decreased the toxicity of CeO2-NPs, and the ratio of CeO2-NPs to HA influenced Ce bioaccumulation. When the concentration of HA was higher than the CeO2-NP concentration, Ce bioaccumulation decreased. These results suggest that the nature of the pristine coatings as a determinant of hazard may be greatly reduced once CeO2-NPs enter the environment and are coated with NOM.
Collapse
Affiliation(s)
- Blanche Collin
- University of Kentucky , Department of Plant and Soil Sciences, Lexington Kentucky 40546, United States
| | | | | | | |
Collapse
|