51
|
Zhang Y, Mao P, Li G, Hu J, Yu Y, An T. Delineation of 3D dose-time-toxicity in human pulmonary epithelial Beas-2B cells induced by decabromodiphenyl ether (BDE209). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:661-669. [PMID: 30228062 DOI: 10.1016/j.envpol.2018.09.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/24/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Due to frequent detection in environment as well as in the human body, the adverse effects of decabromodiphenyl ether (BDE209) have been extensively studied in the past few years. However, information regarding the inhalation toxicity of BDE209 to humans is currently limited. In this study, the cytotoxicity, cell damage, and inflammation markers including IL-6, IL-8, and TNF-α in the Beas-2B cell line induced by BDE209 were measured using a central composite design. Results showed that as BDE209 concentrations (5-65 μg mL-1) and exposure time (6-30 h) were increased, cell viability sharply decreased from 99.7% to 29.7% and LDH activity increased from 0.1% to 13.1%. Furthermore, expression of IL-6, IL-8 and TNF-α transcripts were enhanced from 4.7 to 29.1 fold, 3.4-68.9 fold, and 2.8-47.0 fold, respectively, and the concentration of IL-6 and IL-8 proteins increased from 5.4 to 16.7 pg mL-1 and 71.0-550.0 pg mL-1, respectively. Results indicate that BDE209 exposure can inhibit cell viability, increase LDH leakage, and upregulate the transcript (mRNA) and protein levels of inflammatory markers of IL-6 and IL-8 in Beas-2B cells. Moreover, these effects were both dose- and time-dependent, and dose and time had a synergistic effect - enhancing toxicity when in combination. Cell density affected both LDH activity and IL-8 release but had little effect on cell activity and IL-6 release in the Beas-2B cells. In contrast, TNF-α protein was not detected but its mRNA expression level was upregulated. This study will provide a reference for human health risk assessment, especially for the toxic damage that BDE209 exposure can elicit in the respiratory tract.
Collapse
Affiliation(s)
- Yanan Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Pu Mao
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510182, China
| | - Guiying Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
52
|
El-Alam I, Verdin A, Fontaine J, Laruelle F, Chahine R, Makhlouf H, Sahraoui ALH. Ecotoxicity evaluation and human risk assessment of an agricultural polluted soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:738. [PMID: 30460414 DOI: 10.1007/s10661-018-7077-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
The present study aims to evaluate the nature and level of chemical pollution as well as the potential toxicity and ecotoxicity of an agricultural soil irrigated by the water of Litani River. Our findings showed that the soil was mainly contaminated by alkanes (hentriacontane, octadecane, hexadecane) and metal trace elements (nickel, vanadium, chromium, and manganese). Soil organic extracts showed high cytotoxicity against human hepatic (HepG2) and bronchial epithelial cells (Beas-2B). Soil ecotoxicity was revealed by seed germination inhibition of several plant species (wheat, clover, alfalfa, tall fescue, and ryegrass) ranging from 7 to 30% on the polluted soil compared to non-polluted one. In addition, significant decreases in telluric microbial biomasses (bacterial and fungal biomasses), quantified by phospholipid fatty acids (PLFA) analysis were observed in polluted soil compared to non-contaminated soils. The density of the arbuscular mycorrhizal fungal (AMF) spores isolated from the polluted soil was about 316 spores/100 g. Three main AMF species were identified as Funelliformis mosseae, Septoglomus constrictum, and Claroideoglomus lamellosum. Moreover, 16 indigenous plant species were inventoried with Silybum marianum L. as the dominant one. Plant biodiversity indices (Shannon, Simpson, Menhinick, and Margaleff) were lower than those found in other contaminated soils. Finally, it was found that all the present plant species on this polluted site were mycorrhized, suggesting a possible protection of these plants against encountered pollutants, and the possibility to use AMF-assisted phytoremediation to clean-up such a site.
Collapse
Affiliation(s)
- Imad El-Alam
- Equipe Stress Oxydatif et Antioxydants, Ecole Doctorale des Sciences et de Technologie, Université Libanaise, Campus Universitaire Hariri, Hadath, Lebanon
- Université Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-62228, Calais cedex, France
| | - Anthony Verdin
- Université Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-62228, Calais cedex, France
| | - Joël Fontaine
- Université Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-62228, Calais cedex, France
| | - Frédéric Laruelle
- Université Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-62228, Calais cedex, France
| | - Ramez Chahine
- Equipe Stress Oxydatif et Antioxydants, Ecole Doctorale des Sciences et de Technologie, Université Libanaise, Campus Universitaire Hariri, Hadath, Lebanon
- Université La Sagesse, Faculté de Santé Publique, Beyrouth, Lebanon
| | - Hassane Makhlouf
- Equipe Stress Oxydatif et Antioxydants, Ecole Doctorale des Sciences et de Technologie, Université Libanaise, Campus Universitaire Hariri, Hadath, Lebanon.
- Université Libanaise, Faculté des Sciences, Laboratoire Géo-ressources, Géosciences et Environnement - Equipe Sedre : Sol, Eau, Déchets et Ressources, Beirut, Lebanon.
| | - Anissa Lounès-Hadj Sahraoui
- Université Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-62228, Calais cedex, France
| |
Collapse
|
53
|
Huang D, Zou Y, Abbas A, Dai B. Nuclear magnetic resonance-based metabolomic investigation reveals metabolic perturbations in PM 2.5-treated A549 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31656-31665. [PMID: 30209763 DOI: 10.1007/s11356-018-3111-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Exposure to PM2.5 is associated with an increased risk of lung diseases, and oxidative damage is the main reason for PM2.5-mediated lung injuries. However, little is known about the early molecular events in PM2.5-induced lung toxicity. In the present study, the metabolites in PM2.5-treated A549 cells were examined via a robust and nondestructive nuclear magnetic resonance (NMR)-based metabolic approach to clarify the molecular mechanism of PM2.5-induced toxicity. NMR analysis revealed that 12 metabolites were significantly altered in PM2.5-treated A549 cells, including up-regulation of alanine, valine, lactate, ω-6 fatty acids, and citrate and decreased levels of gamma-aminobutyric acid, acetate, leucine, isoleucine, D-glucose, lysine, and dimethylglycine. Pathway analysis demonstrated that seven metabolic pathways which included alanine, aspartate and glutamate metabolism, aminoacyl-tRNA biosynthesis, taurine and hypotaurine metabolism, arginine and proline metabolism, starch and sucrose metabolism, valine, leucine and isoleucine biosynthesis, and tricarboxylic acid cycle were mostly influenced. Our results indicate that NMR technique turns out to be a simple and reliable method for exploring the toxicity mechanism of air pollutant.
Collapse
Affiliation(s)
- Dacheng Huang
- Engineering Center, Shanghai University of Engineering and Science, Shanghai, 200240, China
| | - Yajuan Zou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Anees Abbas
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bona Dai
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
54
|
Li Q, Zheng J, Xu S, Zhang J, Cao Y, Qin Z, Liu X, Jiang C. The neurotoxicity induced by PM 2.5 might be strongly related to changes of the hippocampal tissue structure and neurotransmitter levels. Toxicol Res (Camb) 2018; 7:1144-1152. [PMID: 30510684 PMCID: PMC6220725 DOI: 10.1039/c8tx00093j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022] Open
Abstract
Objective: The complex components of PM2.5 including metal elements transported through the blood brain barrier could induce nervous system damage. This study discusses the relationship between rats' learning and memory and changes in the hippocampal neuron histomorphology and neurotransmitter levels induced by PM2.5 exposure. Methods: Male rats were treated with different concentrations of PM2.5 by tracheal perfusion once per week for up to 12 weeks. After the rats were sacrificed, the main metal element contents (Al, Pb, Cu, Mn, As, Cr, Cd, and Ni) of the blood and whole hippocampus, levels of neurotransmitters released in the whole hippocampus and relative receptors, and changes in the hippocampal structure were detected. Results: The results showed that PM2.5 significantly reduced the cognitive learning abilities of rats. PM2.5 exposure increased the contents of hippocampal lead, manganese, and aluminum. The level of glutamic acid was increased in the hippocampal tissues of the 20 mg kg-1 group, in combination with the decreased N-methyl-d-aspartate glutamate receptor (NMDAR) and increased metabotropic glutamate receptor type1 (mGluR1) expression. Increased clearance, a mild disorder of arrangement, and mild edema could be observed in the rat hippocampal neurons treated with PM2.5. Conclusion: PM2.5-induced defects in learning and memory may be related to the morphological abnormalities of the hippocampus and the abnormal expression of neurotransmitters and their receptors.
Collapse
Affiliation(s)
- Qingzhao Li
- School of Public Health , North China University of Science and Technology , 57 Jianshe Road , Tangshan 063000 , Hebei , People's Republic of China
| | - Jiali Zheng
- Department of Neurology , The People's Hospital of Pingliang , 79 East street , Pingliang 744000 , Gansu , People's Republic of China
| | - Sheng Xu
- Department of Neurosurgery , Tangshan People's Hospital , 65 Shengli Road , Tangshan 063001 , Hebei , People's Republic of China
| | - Jingshu Zhang
- The Center for Hygienic Analysis and Detection , Nanjing Medical University , 101 LongMian Avenue , Jiangning District , Nanjing 211166 , People's Republic of China
| | - Yanhua Cao
- School of Public Health , North China University of Science and Technology , 57 Jianshe Road , Tangshan 063000 , Hebei , People's Republic of China
| | - Zhenlong Qin
- Department of Anesthesiology , Beijing University of Chinese Medicine Third Affiliated Hospital , No 51 Xiaoguan Street , Anwai , Chaoyang District , Beijing 100029 , People's Republic of China . ; ; Tel: +86 10 52075429
| | - Xiaoqin Liu
- Department of Nephrology , Hongqi Hospital , Mudanjiang Medical College , 5 Tongxiang Road , Aimin District , Mudanjiang 157011 , Heilongjiang , People's Republic of China . ; ; Tel: +86 453 6582800
| | - Chunyang Jiang
- Department of Thoracic Surgery , Tianjin Union Medical Center , 190 Jieyuan Road , Hongqiao District , Tianjin 300121, Tianjin , People's Republic of China . ; ; Tel: +86 22 27557493
| |
Collapse
|
55
|
Influence of aging in the modulation of epigenetic biomarkers of carcinogenesis after exposure to air pollution. Exp Gerontol 2018; 110:125-132. [DOI: 10.1016/j.exger.2018.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/11/2018] [Accepted: 05/25/2018] [Indexed: 11/19/2022]
|
56
|
Billet S, Landkocz Y, Martin PJ, Verdin A, Ledoux F, Lepers C, André V, Cazier F, Sichel F, Shirali P, Gosset P, Courcot D. Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells. J Environ Sci (China) 2018; 71:168-178. [PMID: 30195675 DOI: 10.1016/j.jes.2018.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Particulate matter in ambient air constitutes a complex mixture of fine and ultrafine particles composed of various chemical compounds including metals, ions, and organics. A multidisciplinary approach was developed by studying physico-chemical characteristics and mechanisms involved in the toxicity of particulate atmospheric pollution. PM0.3-2.5 and PM2.5 including ultrafine particles were sampled in Dunkerque, a French industrialized seaside city. PM samples were characterized from a chemical and toxicological point of view. Physico-chemical characterization evidenced that PM2.5 comes from several sources: natural ones, such as soil resuspension and marine sea-salt emissions, as well as anthropogenic ones, such as shipping traffic, road traffic, and industrial activities. Human BEAS-2B lung cells were exposed to PM0.3-2.5, or to the Extractable Organic Matter (EOM) of PM0.3-2.5 and PM2.5. These exposures induced several mechanisms of action implied in the genotoxicity, such as oxidative DNA adducts and DNA Damage Response. The toxicity of PM-EOM was higher for the sample including the ultrafine fraction (PM2.5) containing also higher concentrations of polycyclic aromatic hydrocarbons. These results evidenced the major role of organic compounds in the toxicity of PM.
Collapse
Affiliation(s)
- Sylvain Billet
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| | - Yann Landkocz
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Perrine J Martin
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Anthony Verdin
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Frédéric Ledoux
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Capucine Lepers
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | | | - Fabrice Cazier
- University of the Littoral Opal Coast, Common Centre of Measurements, CCM, Dunkerque, France
| | - François Sichel
- Normandy Univ, UNICAEN, ABTE EA4651, Caen, France; Centre François Baclesse, Caen, France
| | - Pirouz Shirali
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Pierre Gosset
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France; Department of Anatomy and Pathological Cytology, Saint-Vincent Hospital, Catholic Hospital, Lille, France
| | - Dominique Courcot
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| |
Collapse
|
57
|
Cho CC, Hsieh WY, Tsai CH, Chen CY, Chang HF, Lin CS. In Vitro and In Vivo Experimental Studies of PM 2.5 on Disease Progression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1380. [PMID: 29966381 PMCID: PMC6068560 DOI: 10.3390/ijerph15071380] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/14/2022]
Abstract
Air pollution is a very critical issue worldwide, particularly in developing countries. Particulate matter (PM) is a type of air pollution that comprises a heterogeneous mixture of different particle sizes and chemical compositions. There are various sources of fine PM (PM2.5), and the components may also have different effects on people. The pathogenesis of PM2.5 in several diseases remains to be clarified. There is a long history of epidemiological research on PM2.5 in several diseases. Numerous studies show that PM2.5 can induce a variety of chronic diseases, such as respiratory system damage, cardiovascular dysfunction, and diabetes mellitus. However, the epidemiological evidence associated with potential mechanisms in the progression of diseases need to be proved precisely through in vitro and in vivo investigations. Suggested mechanisms of PM2.5 that lead to adverse effects and chronic diseases include increasing oxidative stress, inflammatory responses, and genotoxicity. The aim of this review is to provide a brief overview of in vitro and in vivo experimental studies of PM2.5 in the progression of various diseases from the last decade. The summarized research results could provide clear information about the mechanisms and progression of PM2.5-induced disease.
Collapse
Affiliation(s)
- Ching-Chang Cho
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
| | - Wen-Yeh Hsieh
- Division of Chest Medicine, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Chin-Hung Tsai
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, 699 Section 8, Taiwan Blvd., Taichung 435, Taiwan.
| | - Cheng-Yi Chen
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Hui-Fang Chang
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Endocrinology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
| |
Collapse
|
58
|
Lyu Y, Su S, Wang B, Zhu X, Wang X, Zeng EY, Xing B, Tao S. Seasonal and spatial variations in the chemical components and the cellular effects of particulate matter collected in Northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1627-1637. [PMID: 30857121 DOI: 10.1016/j.scitotenv.2018.01.224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 05/23/2023]
Abstract
The health effects of airborne particulate matter (PM) are likely to be strongly influenced by its components. The relationship between the composition of PM and its biological effects has been investigated in vitro/vivo, but more studies are needed to achieve a better understanding of the relationship. Such studies are limited in Northern China, where severe air pollution causes significant health impacts. In this study, we analyzed seasonal PM10 (PM, aerodynamic diameter less than 10μm) samples from five typical cities in Northern China for their physicochemical properties and their in vitro effects on A549 (human lung epithelial cell line) and RAW264.7 (murine monocyte macrophage) cells, including cytotoxicity, oxidative stress and inflammatory effects. Principal component analysis and multiple linear regressions were used to investigate the relationship between the PM components and the cellular responses. The cellular responses of A549 cells were more closely related to the endotoxin content and the levels of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, while the cellular responses of RAW264.7 cells were largely related to PM10-bound metals, and the chalcophile elements (Pb, Cu, Zn, Cd) were more related to the PM-induced oxidative stress, whereas the lithophile and siderophile elements (Al, Fe, Mg, Co, V, Mn, Ca) were more related to PM-induced inflammation and cytotoxicity. As PM compositions changed seasonally, more intense cellular responses were seen when A549 cells were exposed to winter samples that contained higher levels of those components. The autumn and winter samples induced higher levels of oxidative stress in RAW264.7 cells, possibly due to higher contents of chalcophile elements, whereas the spring and/or summer samples were more cytotoxic and proinflammatory, possibly due to higher contents of lithophile and siderophile elements. The study suggests that the evaluation of health impacts induced by air pollution should take into account different physiochemical properties other than the mass concentration, and that public health would benefit greatly from effective, prioritized control of the sources that are the major producers of the central species.
Collapse
Affiliation(s)
- Yan Lyu
- College of Geographic and Environment, Shandong Normal University, Jinan 250014, China
| | - Shu Su
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Peking University, Beijing 100871, China.
| | - Bin Wang
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing 100191, China
| | - Xi Zhu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Xilong Wang
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Eddy Y Zeng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Shu Tao
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Peking University, Beijing 100871, China
| |
Collapse
|
59
|
De Grove KC, Provoost S, Brusselle GG, Joos GF, Maes T. Insights in particulate matter-induced allergic airway inflammation: Focus on the epithelium. Clin Exp Allergy 2018; 48:773-786. [PMID: 29772098 DOI: 10.1111/cea.13178] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
Outdoor air pollution is a major environmental health problem throughout the world. In particular, exposure to particulate matter (PM) has been associated with the development and exacerbation of several respiratory diseases, including asthma. Although the adverse health effects of PM have been demonstrated for many years, the underlying mechanisms have not been fully identified. In this review, we focus on the role of the lung epithelium and specifically highlight multiple cytokines in PM-induced respiratory responses. We describe the available literature on the topic including in vitro studies, findings in humans (ie observations in human cohorts, human controlled exposure and ex vivo studies) and in vivo animal studies. In brief, it has been shown that exposure to PM modulates the airway epithelium and promotes the production of several cytokines, including IL-1, IL-6, IL-8, IL-25, IL-33, TNF-α, TSLP and GM-CSF. Further, we propose that PM-induced type 2-promoting cytokines are important mediators in the acute and aggravating effects of PM on airway inflammation. Targeting these cytokines could therefore be a new approach in the treatment of asthma.
Collapse
Affiliation(s)
- K C De Grove
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - S Provoost
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G G Brusselle
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G F Joos
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - T Maes
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
60
|
Toxicity of Urban PM 10 and Relation with Tracers of Biomass Burning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020320. [PMID: 29439546 PMCID: PMC5858389 DOI: 10.3390/ijerph15020320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 11/26/2022]
Abstract
The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of PM10 in relation to PM-associated chemicals. PM10 was sampled in ambient air at an urban traffic site (Borgerhout) and a rural background location (Houtem) in Flanders (Belgium). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) were exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) and the induction of interleukin-8 (IL-8). The mutagenic capacity was assessed using the Ames II Mutagenicity Test. The endotoxin levels in the collected samples were analyzed and the oxidative potential (OP) of PM10 particles was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 included tracers for biomass burning (levoglucosan, mannosan and galactosan), elemental and organic carbon (EC/OC) and polycyclic aromatic hydrocarbons (PAHs). Most samples displayed dose-dependent cytotoxicity and IL-8 induction. Spatial and temporal differences in PM10 toxicity were seen. PM10 collected at the urban site was characterized by increased pro-inflammatory and mutagenic activity as well as higher OP and elevated endotoxin levels compared to the background area. Reduced cell viability (−0.46 < rs < −0.35, p < 0.01) and IL-8 induction (−0.62 < rs < −0.67, p < 0.01) were associated with all markers for biomass burning, levoglucosan, mannosan and galactosan. Furthermore, direct and indirect mutagenicity were associated with tracers for biomass burning, OC, EC and PAHs. Multiple regression analyses showed levoglucosan to explain 16% and 28% of the variance in direct and indirect mutagenicity, respectively. Markers for biomass burning were associated with altered cellular responses and increased mutagenic activity. These findings may indicate a role of biomass burning in the observed adverse health effect of particulate matter.
Collapse
|
61
|
Zhang Y, Wang S, Zhu J, Li C, Zhang T, Liu H, Xu Q, Ye X, Zhou L, Ye L. Effect of Atmospheric PM2.5 on Expression Levels of NF-κB Genes and Inflammatory Cytokines Regulated by NF-κB in Human Macrophage. Inflammation 2018; 41:784-794. [DOI: 10.1007/s10753-018-0732-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
62
|
Wu J, Shi Y, Asweto CO, Feng L, Yang X, Zhang Y, Hu H, Duan J, Sun Z. Fine particle matters induce DNA damage and G2/M cell cycle arrest in human bronchial epithelial BEAS-2B cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25071-25081. [PMID: 28921051 DOI: 10.1007/s11356-017-0090-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
There is compelling evidence that exposure to particulate matter (PM) is linked to lung tumorigenesis. However, there is not enough experimental evidence to support the specific mechanisms of PM2.5-induced DNA damage and cell cycle arrest in lung tumorigenesis. In this study, we investigated the toxic effects and molecular mechanisms of PM2.5 on bronchial epithelial (BEAS-2B) cells. PM2.5 exposure reduced cell viability and enhanced LDH activity. The cell growth curves of BEAS-2B cells decreased gradually with the increase in PM2.5 dosage. A significant increase in MDA content and a decrease in GSH-Px activity were observed. The generation of ROS was enhanced obviously, while apoptosis increased in BEAS-2B cells exposed to PM2.5 for 24 h. DNA damage was found to be more severe in the exposed groups compared with the control. For in-depth study, we have demonstrated that PM2.5 stimulated the activation of HER2/ErbB2 while significantly upregulating the expression of Ras/GADPH, p-BRAF/BRAF, p-MEK/MEK, p-ERK/ERK, and c-Myc/GADPH in a dose-dependent manner. In summary, we suggested that exposure to PM2.5 sustained the activation of HER2/ErbB2, which in turn promoted the activation of the Ras/Raf/MAPK pathway and the expression of the downstream target c-Myc. The overexpression of c-Myc may lead to G2/M arrest and aggravate the DNA damage and apoptosis in BEAS-2B after exposure to PM2.5.
Collapse
Affiliation(s)
- Jing Wu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Collins Otieno Asweto
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
63
|
Leclercq B, Platel A, Antherieu S, Alleman LY, Hardy EM, Perdrix E, Grova N, Riffault V, Appenzeller BM, Happillon M, Nesslany F, Coddeville P, Lo-Guidice JM, Garçon G. Genetic and epigenetic alterations in normal and sensitive COPD-diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM 2.5. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:163-177. [PMID: 28651088 DOI: 10.1016/j.envpol.2017.06.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/15/2017] [Accepted: 06/12/2017] [Indexed: 05/28/2023]
Abstract
Even though clinical, epidemiological and toxicological studies have progressively provided a better knowledge of the underlying mechanisms by which air pollution-derived particulate matter (PM) exerts its harmful health effects, further in vitro studies on relevant cell systems are still needed. Hence, aiming of getting closer to the human in vivo conditions, primary human bronchial epithelial cells derived from normal subjects (NHBE) or sensitive chronic obstructive pulmonary disease (COPD)-diseased patients (DHBE) were differentiated at the air-liquid interface. Thereafter, they were repeatedly exposed to air pollution-derived PM2.5 to study the occurrence of some relevant genetic and/or epigenetic endpoints. Concentration-, exposure- and season-dependent increases of OH-B[a]P metabolites in NHBE, and to a lesser extent, COPD-DHBE cells were reported; however, there were more tetra-OH-B[a]P and 8-OHdG DNA adducts in COPD-DHBE cells. No increase in primary DNA strand break nor chromosomal aberration was observed in repeatedly exposed cells. Telomere length and telomerase activity were modified in a concentration- and exposure-dependent manner in NHBE and particularly COPD-DHBE cells. There were a global DNA hypomethylation, a P16 gene promoter hypermethylation, and a decreasing DNA methyltransferase activity in NHBE and notably COPD-DHBE cells repeatedly exposed. Changes in site-specific methylation, acetylation, and phosphorylation of histone H3 (i.e., H3K4me3, H3K9ac, H3K27ac, and H3S10ph) and related enzyme activities occurred in a concentration- and exposure-dependent manner in all the repeatedly exposed cells. Collectively, these results highlighted the key role played by genetic and even epigenetic events in NHBE and particularly sensitive COPD-DHBE cells repeatedly exposed to air pollution-derived PM2.5 and their different responsiveness. While these specific epigenetic changes have been already described in COPD and even lung cancer phenotypes, our findings supported that, together with genetic events, these epigenetic events could dramatically contribute to the shift from healthy to diseased phenotypes following repeated exposure to relatively low doses of air pollution-derived PM2.5.
Collapse
Affiliation(s)
- B Leclercq
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France; IMT Lille Douai, Univ. Lille, SAGE-Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France
| | - A Platel
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France
| | - S Antherieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France
| | - L Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE-Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France
| | - E M Hardy
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - E Perdrix
- IMT Lille Douai, Univ. Lille, SAGE-Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France
| | - N Grova
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - V Riffault
- IMT Lille Douai, Univ. Lille, SAGE-Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France
| | - B M Appenzeller
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - M Happillon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France
| | - F Nesslany
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France
| | - P Coddeville
- IMT Lille Douai, Univ. Lille, SAGE-Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France
| | - J-M Lo-Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France
| | - G Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France.
| |
Collapse
|
64
|
Leclercq B, Alleman LY, Perdrix E, Riffault V, Happillon M, Strecker A, Lo-Guidice JM, Garçon G, Coddeville P. Particulate metal bioaccessibility in physiological fluids and cell culture media: Toxicological perspectives. ENVIRONMENTAL RESEARCH 2017; 156:148-157. [PMID: 28342961 DOI: 10.1016/j.envres.2017.03.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/21/2017] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
According to the literature, tiny amounts of transition metals in airborne fine particles (PM2.5) may induce proinflammatory cell response through reactive oxygen species production. The solubility of particle-bound metals in physiological fluids, i.e. the metal bioaccessibility is driven by factors such as the solution chemical composition, the contact time with the particles, and the solid-to-liquid phase ratio (S/L). In this work, PM2.5-bound metal bioaccessibility was assessed in various physiological-like solutions including cell culture media in order to evidence the potential impact on normal human bronchial epithelial cells (NHBE) when studying the cytotoxicity and inflammatory responses of PM2.5 towards the target bronchial compartment. Different fluids (H2O, PBS, LHC-9 culture medium, Gamble and human respiratory mucus collected from COPD patients), various S/L conditions (from 1/6000 to 1/100,000) and exposure times (6, 24 and 72h) were tested on urban PM2.5 samples. In addition, metals' total, soluble and insoluble fractions from PM2.5 in LHC-9 were deposited on NHBE cells (BEAS-2B) to measure their cytotoxicity and inflammatory potential (i.e., G6PDH activity, secretion of IL-6 and IL-8). The bioaccessibility is solution-dependent. A higher salinity or organic content may increase or inhibit the bioaccessibiliy according to the element, as observed in the complex mucus matrix. Decreasing the S/L ratio also affect the bioaccessibility depending on the solution tested while the exposure time appears less critical. The LHC-9 culture medium appears to be a good physiological proxy as it induces metal bioaccessibilities close to the mucus values and is little affected by S/L ratios or exposure time. Only the insoluble fraction can be linked to the PM2.5-induced cytotoxicity. By contrast, both soluble and insoluble fractions can be related to the secretion of cytokines. The metal bioaccessibility in LHC-9 of the total, soluble, and insoluble fractions of the PM2.5 under study did not explain alone, the cytotoxicity nor the inflammatory response observed in BEAS-2B cells. These findings confirm the urgent need to perform further toxicological studies to better evaluate the synergistic effect of both bioaccessible particle-bound metals and organic species.
Collapse
Affiliation(s)
- Bérénice Leclercq
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France; Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - Laurent Yves Alleman
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France.
| | - Esperanza Perdrix
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France
| | - Véronique Riffault
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France
| | - Mélanie Happillon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | | | | | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - Patrice Coddeville
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France
| |
Collapse
|
65
|
Jia YY, Wang Q, Liu T. Toxicity Research of PM 2.5 Compositions In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030232. [PMID: 28245639 PMCID: PMC5369068 DOI: 10.3390/ijerph14030232] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/10/2017] [Accepted: 02/23/2017] [Indexed: 12/25/2022]
Abstract
According to the published literature, we surmise that particulate matter (PM) concentration, individually, may be less important than components in explaining health effects. PM2.5 (aerodynamic diameter < 2.5 μm) had similar cytotoxicity (e.g., cell viability reduction, oxidative damage, inflammatory effects and genetic toxicity) on different types of cells. The studies of cells are readily available for detailed mechanistic investigations, which is more appropriate for learning and comparing the mechanism caused by single or mixed ingredients coating a carbon core. No review exists that holistically examines the evidence from all components-based in vitro studies. We reviewed published studies that focus on the cytotoxicity of normal PM2.5. Those studies suggested that the toxicity of mixed compositions differs greatly from the single ingredients in mixed components and the target cells. The cytotoxic responses caused by PM2.5 components have not shown a consistent association with clear, specific health effects. The results may be beneficial for providing new targets for drugs for the treatment of PM2.5-related diseases.
Collapse
Affiliation(s)
- Yi-Yang Jia
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China.
| | - Qi Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China.
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
66
|
Liu J, Yang Y, Zeng X, Bo L, Jiang S, Du X, Xie Y, Jiang R, Zhao J, Song W. Investigation of selenium pretreatment in the attenuation of lung injury in rats induced by fine particulate matters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4008-4017. [PMID: 27921246 DOI: 10.1007/s11356-016-8173-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Selenium (Se) is vital for health because of its antioxidative and anti-inflammation functions. The aim of this study was to determine if dietary selenium could inhibit the rat lung injury induced by ambient fine particulate matter (PM2.5). Sprague-Dawley rats were randomly allocated in seven groups (n = 8). The rats in PM2.5 exposure group were intratracheally instilled with 40 mg/kg of body weight (b.w.) of PM2.5 suspension. The rats in Se prevention groups were pretreated with 17.5, 35, or 70 μg/kg b.w. of Se for 4 weeks, respectively. Then, the rats were exposed to 40 mg/kg b.w. of PM2.5 in the fifth week. The bronchoalveolar lavage fluid (BALF) was collected to count the neutrophil numbers and to analyze the cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), soluble intercellular adhesion molecule-1 (sICAM-1)) related to inflammation, the markers related to oxidative stress (total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA)), and the indicators related to cell damage (lactate dehydrogenase (LDH), total protein (TP), alkaline phosphatase (AKP)). The lung lobe that has not undergone bronchoalveolar lavage was processed for light microscopic examination. The results showed that the proportions of neutrophils in the BALF and the pathologic scores of the lung in PM2.5-exposed groups were higher than that in the control group (P < 0.05). Se pretreatment caused a dose-dependent decrease in TNF-α, IL-1β, sICAM-1, LDH, TP, AKP, and MDA when compared with the PM2.5-only exposure group. Meanwhile, the dose-dependent increase in T-AOC, T-SOD, and GSH-Px activities were observed in rats pretreated with Se. In conclusion, Se pretreatment may protect rat lungs against inflammation and oxidative stress induced by PM2.5, which suggests that Se plays an important role as a kind of potential preventative agent to inhibit the PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Jie Liu
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Yingying Yang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Xuejiao Zeng
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Liang Bo
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Shuo Jiang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Xihao Du
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Yuquan Xie
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200032, China
| | - Rongfang Jiang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China.
| | - Weimin Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China.
| |
Collapse
|
67
|
Héliot A, Landkocz Y, Roy Saint-Georges F, Gosset P, Billet S, Shirali P, Courcot D, Martin PJ. Smoker extracellular vesicles influence status of human bronchial epithelial cells. Int J Hyg Environ Health 2016; 220:445-454. [PMID: 28063900 DOI: 10.1016/j.ijheh.2016.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/09/2016] [Accepted: 12/23/2016] [Indexed: 12/17/2022]
Abstract
Cigarette smoking is a habit that has spread all over the world and is a significant risk factor for many diseases including cardiovascular disease, chronic obstructive pulmonary disease (COPD), asthma and lung cancer. Evaluation and understanding of tobacco health effects are of major interest worldwide and answer to important societal concerns. Identification of new biomarkers of exposure to tobacco smoke potentially implicated in COPD or lung carcinogenesis would allow a better observation of tobacco exposed population, thanks to screening establishment at reversible stages of pathological processes. In this study, we questioned whether cigarette smoking alters miRNA profiles of Extracellular Vesicles (EVs) present in human Broncho Alveolar Lavages (BALs), which could affect surrounding normal bronchial epithelial cells status. To this aim, BALs were carried out on 10 Smokers and 10 Non-Smokers, and EVs were isolated from the supernatants and characterized. We then compared the amount of 10 microRNAs (miRNAs) present in Smokers versus Non-Smokers BAL EVs and performed statistical analysis to discuss the biological significance by the smoking status and to evaluate BAL EV miRNAs as potential biomarkers of tobacco exposure. Finally, we tested the effects of smokers versus non-smokers EVs on human bronchial epithelial cells (BEAS-2B) to compare their influence on the cells status. Our study shows for the first time in human samples that smoking can alter lung EV profile that can influence surrounding bronchial epithelial cells.
Collapse
Affiliation(s)
- Amélie Héliot
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Université du Littoral Côte d'Opale (ULCO), Dunkerque, France.
| | - Yann Landkocz
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Université du Littoral Côte d'Opale (ULCO), Dunkerque, France.
| | | | - Pierre Gosset
- Anatomo-pathology service, Groupement des Hôpitaux de l'Institut Catholique de Lille, Lille, France.
| | - Sylvain Billet
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Université du Littoral Côte d'Opale (ULCO), Dunkerque, France.
| | - Pirouz Shirali
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Université du Littoral Côte d'Opale (ULCO), Dunkerque, France.
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Université du Littoral Côte d'Opale (ULCO), Dunkerque, France.
| | - Perrine J Martin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Université du Littoral Côte d'Opale (ULCO), Dunkerque, France.
| |
Collapse
|
68
|
Weight-of-evidence evaluation of associations between particulate matter exposure and biomarkers of lung cancer. Regul Toxicol Pharmacol 2016; 82:53-93. [DOI: 10.1016/j.yrtph.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/10/2016] [Accepted: 10/16/2016] [Indexed: 12/16/2022]
|
69
|
Thomson EM, Breznan D, Karthikeyan S, MacKinnon-Roy C, Vuong NQ, Dabek-Zlotorzynska E, Celo V, Charland JP, Kumarathasan P, Brook JR, Vincent R. Contrasting biological potency of particulate matter collected at sites impacted by distinct industrial sources. Part Fibre Toxicol 2016; 13:65. [PMID: 27906031 PMCID: PMC5134226 DOI: 10.1186/s12989-016-0176-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Industrial sources contribute a significant proportion of anthropogenic particulate matter (PM) emissions, producing particles of varying composition that may differentially impact health. This study investigated the in vitro toxicity of ambient PM collected near industrial sites in relation to particle size and composition. METHODS Size-fractionated particles (ultrafine, PM0.1-2.5, PM2.5-10, PM>10) were collected in the vicinity of steel, copper, aluminium, and petrochemical industrial sites. Human lung epithelial-like A549 and murine macrophage-like J774A.1 cells were exposed for 24 h to particle suspensions (0, 30, 100, 300 μg/cm2). Particle potency was assessed using cytotoxic (resazurin reduction, lactate dehydrogenase (LDH) release) and inflammatory (cytokine release) assays, and regressed against composition (metals, polycyclic aromatic hydrocarbons (PAHs), endotoxin). RESULTS Coarse (PM2.5-10, PM>10) particle fractions were composed primarily of iron and aluminium; in contrast, ultrafine and fine (PM0.1-2.5) fractions displayed considerable variability in metal composition (especially water-soluble metals) across collection sites consistent with source contributions. Semi-volatile and PM-associated PAHs were enriched in the fine and coarse fractions collected near metal industry. Cell responses to exposure at equivalent mass concentrations displayed striking differences among sites (SITE x SIZE and SITE x DOSE interactions, p < 0.05), suggesting that particle composition, in addition to size, impacted particle toxicity. While both J774A.1 and A549 cells exhibited clear particle size-dependent effects, site-dependent differences were more pronounced in J774A.1 cells, suggesting greater sensitivity to particle composition. Plotting particle potency according to cytotoxic and inflammatory response grouped particles by size and site, and showed that particles of similar composition tended to cluster together. Cytotoxic effects in J774A.1 cells correlated with metal and PAH content, while inflammatory responses were associated primarily with endotoxin content in coarse particles. CONCLUSIONS Industrial sources produce particulate emissions with varying chemical composition that differ in their in vitro potency in relation to particle size and the levels of specific constituents.
Collapse
Affiliation(s)
- Errol M Thomson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | - Dalibor Breznan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Subramanian Karthikeyan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Christine MacKinnon-Roy
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Ngoc Q Vuong
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Ewa Dabek-Zlotorzynska
- Analysis and Air Quality Section, Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Valbona Celo
- Analysis and Air Quality Section, Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Jean-Pierre Charland
- Analysis and Air Quality Section, Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Prem Kumarathasan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Jeffrey R Brook
- Air Quality Processes Research Section, Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Renaud Vincent
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| |
Collapse
|
70
|
Leclercq B, Happillon M, Antherieu S, Hardy EM, Alleman LY, Grova N, Perdrix E, Appenzeller BM, Lo Guidice JM, Coddeville P, Garçon G. Differential responses of healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM 4. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:1074-1088. [PMID: 27593349 DOI: 10.1016/j.envpol.2016.08.059] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/24/2016] [Accepted: 08/24/2016] [Indexed: 05/25/2023]
Abstract
While the knowledge of the underlying mechanisms by which air pollution-derived particulate matter (PM) exerts its harmful health effects is still incomplete, detailed in vitro studies are highly needed. With the aim of getting closer to the human in vivo conditions and better integrating a number of factors related to pre-existing chronic pulmonary inflammatory, we sought to develop primary cultures of normal human bronchial epithelial (NHBE) cells and chronic obstructive pulmonary disease (COPD)-diseased human bronchial epithelial (DHBE) cells, grown at the air-liquid interface. Pan-cytokeratin and MUC5AC immunostaining confirmed the specific cell-types of both these healthy and diseased cell models and showed they are closed to human bronchial epithelia. Thereafter, healthy and diseased cells were repeatedly exposed to air pollution-derived PM4 at the non-cytotoxic concentration of 5 μg/cm2. The differences between the oxidative and inflammatory states in non-exposed NHBE and COPD-DHBE cells indicated that diseased cells conserved their specific physiopathological characteristics. Increases in both oxidative damage and cytokine secretion were reported in repeatedly exposed NHBE cells and particularly in COPD-DHBE cells. Diseased cells repeatedly exposed had lower capacities to metabolize the organic chemicals-coated onto the air-pollution-derived PM4, such as benzo[a]pyrene (B[a]P), but showed higher sensibility to the formation of OH-B[a]P DNA adducts, because their diseased state possibly affected their defenses. Differential profiles of epigenetic hallmarks (i.e., global DNA hypomethylation, P16 promoter hypermethylation, telomere length shortening, telomerase activation, and histone H3 modifications) occurred in repeatedly exposed NHBE and particularly in COPD-DHBE cells. Taken together, these results closely supported the highest responsiveness of COPD-DHBE cells to a repeated exposure to air pollution-derived PM4. The use of these innovative in vitro exposure systems such as NHBE and COPD-DHBE cells could therefore be consider as a very useful and powerful promising tool in the field of the respiratory toxicology, taking into account sensitive individuals.
Collapse
Affiliation(s)
- B Leclercq
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - M Happillon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - S Antherieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - E M Hardy
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - L Y Alleman
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - N Grova
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - E Perdrix
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - B M Appenzeller
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - P Coddeville
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - G Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France.
| |
Collapse
|
71
|
Abstract
AbstractBackground: Pathophysiological mechanisms that contribute to neurodegeneration in Amyotrophic Lateral Sclerosis (ALS) include oxidative stress and inflammation. We conducted a preliminary study to explore these mechanisms, to discuss their link in ALS, and to determine the feasibility of incorporating this combined analysis into current biomarkers research. Methods: We enrolled 10 ALS patients and 10 controls. We measured the activities of glutathione peroxidase, glutathione reductase, superoxyde dismutase (SOD), and the levels of serum total antioxidant status (TAS), malondialdehyde (MDA), 8-hydroxy-2’-deoxyguanosine (8-OHdG), and glutathione status (e.g. glutathione disulfide, GSSG/reduced glutathione, GSH). We analysed the concentrations of homocysteine, several cytokines, vitamins and metals by standard methods used in routine practice. Results: There was a significant decrease in TAS levels (p=0.027) and increase in 8-OHdG (p=0.014) and MDA (p=0.011) levels in ALS patients. We also observed a significantly higher GSSG/GSH ratio (p=0.022), and IL-6 (p=0.0079) and IL-8 (p=0.009) concentrations in ALS patients. Correlations were found between biological and clinical markers (homosysteine vs. clinical status at diagnosis, p=0.02) and between some biological markers such as IL-6 vs. GSSG/GSH (p=0.045) or SOD activity (p=0.017). Conclusion: We confirmed the systemic alteration of both the redox and the inflammation status in ALS patients, and we observed a link with some clinical parameters. These promising results encourage us to pursue this study with collection of combined oxidative stress and inflammatory markers.
Collapse
|
72
|
Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:67-74. [PMID: 26896893 DOI: 10.1016/j.ecoenv.2016.01.030] [Citation(s) in RCA: 511] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 05/18/2023]
Abstract
The impacts of ambient PM2.5 on public health have become great concerns worldwide, especially in the developing countries. Epidemiological and toxicological studies have shown that PM2.5 does not only induce cardiopulmonary disorders and/or impairments, but also contributes to a variety of other adverse health effects, such as driving the initiation and progression of diabetes mellitus and eliciting adverse birth outcomes. Of note, recent findings have demonstrated that PM2.5 may still pose a hazard to public health even at very low levels (far below national standards) of exposure. The proposed underlying mechanisms whereby PM2.5 causes adverse effects to public health include inducing intracellular oxidative stress, mutagenicity/genotoxicity and inflammatory responses. The present review aims to provide an brief overview of new insights into the molecular mechanisms linking ambient PM2.5 exposure and health effects, which were explored with new technologies in recent years.
Collapse
Affiliation(s)
- Shaolong Feng
- The School of Public Health, University of South China, Hengyang 421001, China.
| | - Dan Gao
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Fen Liao
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Furong Zhou
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Xinming Wang
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
73
|
Cazier F, Genevray P, Dewaele D, Nouali H, Verdin A, Ledoux F, Hachimi A, Courcot L, Billet S, Bouhsina S, Shirali P, Garçon G, Courcot D. Characterisation and seasonal variations of particles in the atmosphere of rural, urban and industrial areas: Organic compounds. J Environ Sci (China) 2016; 44:45-56. [PMID: 27266301 DOI: 10.1016/j.jes.2016.01.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 12/22/2015] [Accepted: 01/22/2016] [Indexed: 06/06/2023]
Abstract
Atmospheric aerosol samples (PM2.5-0.3, i.e., atmospheric particles ranging from 0.3 to 2.5μm) were collected during two periods: spring-summer 2008 and autumn-winter 2008-2009, using high volume samplers equipped with cascade impactors. Two sites located in the Northern France were compared in this study: a highly industrialised city (Dunkirk) and a rural site (Rubrouck). Physicochemical analysis of particulate matter (PM) was undertaken to propose parameters that could be used to distinguish the various sources and to exhibit seasonal variations but also to provide knowledge of chemical element composition for the interpretation of future toxicological studies. The study showed that PM2.5-0.3 concentration in the atmosphere of the rural area remains stable along the year and was significantly lower than in the urban or industrial ones, for which concentrations increase during winter. High concentrations of polycyclic aromatic hydrocarbons (PAHs), dioxins, furans and dioxin like polychlorinated biphenyls (DL-PCBs), generated by industrial activities, traffic and municipal wastes incineration were detected in the samples. Specific criteria like Carbon Preference Index (CPI) and Combustion PAHs/Total PAHs ratio (CPAHs/TPAHs) were used to identify the possible sources of atmospheric pollution. They revealed that paraffins are mainly emitted by biogenic sources in spring-summer whereas as in the case of PAHs, they have numerous anthropogenic emission sources in autumn-winter (mainly from traffic and domestic heating).
Collapse
Affiliation(s)
- Fabrice Cazier
- Common Center of Measurements (CCM), Univ. Littoral Côte d'Opale, F-59140 Dunkirk, France.
| | - Paul Genevray
- Common Center of Measurements (CCM), Univ. Littoral Côte d'Opale, F-59140 Dunkirk, France
| | - Dorothée Dewaele
- Common Center of Measurements (CCM), Univ. Littoral Côte d'Opale, F-59140 Dunkirk, France
| | - Habiba Nouali
- Common Center of Measurements (CCM), Univ. Littoral Côte d'Opale, F-59140 Dunkirk, France
| | - Anthony Verdin
- Unit of Environmental Chemistry and Interactions with Life, UCEIV-EA4492, Univ. Littoral Côte d'Opale, F-59140 Dunkirk, France
| | - Frédéric Ledoux
- Unit of Environmental Chemistry and Interactions with Life, UCEIV-EA4492, Univ. Littoral Côte d'Opale, F-59140 Dunkirk, France
| | - Adam Hachimi
- MicroPolluants Technologie SA, 4 Rue de Bort Les Orgues, F-57070 Saint Julien Les Metz, France
| | - Lucie Courcot
- Oceanology and Geosciences Laboratory, LOG UMR 8187, Univ. Littoral Côte d'Opale, F-62230 Wimereux, France
| | - Sylvain Billet
- Unit of Environmental Chemistry and Interactions with Life, UCEIV-EA4492, Univ. Littoral Côte d'Opale, F-59140 Dunkirk, France
| | - Saâd Bouhsina
- Unit of Environmental Chemistry and Interactions with Life, UCEIV-EA4492, Univ. Littoral Côte d'Opale, F-59140 Dunkirk, France
| | - Pirouz Shirali
- Unit of Environmental Chemistry and Interactions with Life, UCEIV-EA4492, Univ. Littoral Côte d'Opale, F-59140 Dunkirk, France
| | - Guillaume Garçon
- Unit of Environmental Chemistry and Interactions with Life, UCEIV-EA4492, Univ. Littoral Côte d'Opale, F-59140 Dunkirk, France; Impact of Chemical Environment on Human Health, Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, 59000 LILLE, France
| | - Dominique Courcot
- Unit of Environmental Chemistry and Interactions with Life, UCEIV-EA4492, Univ. Littoral Côte d'Opale, F-59140 Dunkirk, France
| |
Collapse
|
74
|
Revealing the role of oxidation state in interaction between nitro/amino-derived particulate matter and blood proteins. Sci Rep 2016; 6:25909. [PMID: 27181651 PMCID: PMC4867627 DOI: 10.1038/srep25909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
Surface oxidation states of ultrafine particulate matter can influence the proinflammatory responses and reactive oxygen species levels in tissue. Surface active species of vehicle-emission soot can serve as electron transfer-mediators in mitochondrion. Revealing the role of surface oxidation state in particles-proteins interaction will promote the understanding on metabolism and toxicity. Here, the surface oxidation state was modeled by nitro/amino ligands on nanoparticles, the interaction with blood proteins were evaluated by capillary electrophoresis quantitatively. The nitro shown larger affinity than amino. On the other hand, the affinity to hemoglobin is 10(3) times larger than that to BSA. Further, molecular docking indicated the difference of binding intensity were mainly determined by hydrophobic forces and hydrogen bonds. These will deepen the quantitative understanding of protein-nanoparticles interaction from the perspective of surface chemical state.
Collapse
|
75
|
Abbas I, Verdin A, Escande F, Saint-Georges F, Cazier F, Mulliez P, Courcot D, Shirali P, Gosset P, Garçon G. In vitro short-term exposure to air pollution PM2.5-0.3 induced cell cycle alterations and genetic instability in a human lung cell coculture model. ENVIRONMENTAL RESEARCH 2016; 147:146-158. [PMID: 26874047 DOI: 10.1016/j.envres.2016.01.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Although its adverse health effects of air pollution particulate matter (PM2.5) are well-documented and often related to oxidative stress and pro-inflammatory response, recent evidence support the role of the remodeling of the airway epithelium involving the regulation of cell death processes. Hence, the overarching goals of the present study were to use an in vitro coculture model, based on human AM and L132 cells to study the possible alteration of TP53-RB gene signaling pathways (i.e. cell cycle phases, gene expression of TP53, BCL2, BAX, P21, CCND1, and RB, and protein concentrations of their active forms), and genetic instability (i.e. LOH and/or MSI) in the PM2.5-0.3-exposed coculture model. PM2.5-0.3 exposure of human AM from the coculture model induced marked cell cycle alterations after 24h, as shown by increased numbers of L132 cells in subG1 and S+G2 cell cycle phases, indicating apoptosis and proliferation. Accordingly, activation of the TP53-RB gene signaling pathways after the coculture model exposure to PM2.5-0.3 was reported in the L132 cells. Exposure of human AM from the coculture model to PM2.5-0.3 resulted in MS alterations in 3p chromosome multiple critical regions in L132 cell population. Hence, in vitro short-term exposure of the coculture model to PM2.5-0.3 induced cell cycle alterations relying on the sequential occurrence of molecular abnormalities from TP53-RB gene signaling pathway activation and genetic instability.
Collapse
Affiliation(s)
- Imane Abbas
- Université de Lille, Lille, France; EA4492-UCEIV, Université du Littoral-Côte d'Opale, Dunkerque, France; Lebanese Atomic Energy Commission - CNRS, Beirut, Lebanon
| | - Anthony Verdin
- Université de Lille, Lille, France; EA4492-UCEIV, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Fabienne Escande
- Centre de Biologie Pathologie, Centre Hospitalier Régional et Universitaire, Lille, France
| | - Françoise Saint-Georges
- Université de Lille, Lille, France; Groupement Hospitalier de l'Institut Catholique de Lille, Lille, France
| | - Fabrice Cazier
- Université de Lille, Lille, France; Centre Commun de Mesures, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Philippe Mulliez
- Université de Lille, Lille, France; Groupement Hospitalier de l'Institut Catholique de Lille, Lille, France
| | - Dominique Courcot
- Université de Lille, Lille, France; EA4492-UCEIV, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Pirouz Shirali
- Université de Lille, Lille, France; EA4492-UCEIV, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Pierre Gosset
- Université de Lille, Lille, France; Groupement Hospitalier de l'Institut Catholique de Lille, Lille, France
| | - Guillaume Garçon
- Université de Lille, Lille, France; EA4492-UCEIV, Université du Littoral-Côte d'Opale, Dunkerque, France; EA4483-IMPECS, Université de Lille 2, Lille, France.
| |
Collapse
|
76
|
Manzano-León N, Serrano-Lomelin J, Sánchez BN, Quintana-Belmares R, Vega E, Vázquez-López I, Rojas-Bracho L, López-Villegas MT, Vadillo-Ortega F, De Vizcaya-Ruiz A, Perez IR, O’Neill MS, Osornio-Vargas AR. TNFα and IL-6 Responses to Particulate Matter in Vitro: Variation According to PM Size, Season, and Polycyclic Aromatic Hydrocarbon and Soil Content. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:406-12. [PMID: 26372663 PMCID: PMC4829995 DOI: 10.1289/ehp.1409287] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 09/10/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Observed seasonal differences in particulate matter (PM) associations with human health may be due to their composition and to toxicity-related seasonal interactions. OBJECTIVES We assessed seasonality in PM composition and in vitro PM pro-inflammatory potential using multiple PM samples. METHODS We collected 90 weekly PM10 and PM2.5 samples during the rainy-warm and dry-cold seasons in five urban areas with different pollution sources. The elements, polycyclic aromatic hydrocarbons (PAHs), and endotoxins identified in the samples were subjected to principal component analysis (PCA). We tested the potential of the PM to induce tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) secretion in cultured human monocytes (THP-1), and we modeled pro-inflammatory responses using the component scores. RESULTS PM composition varied by size and by season. PCA identified two main components that varied by season. Combustion-related constituents (e.g., vanadium, benzo[a]pyrene, benzo[a]anthracene) mainly comprised component 1 (C1). Soil-related constituents (e.g., endotoxins, silicon, aluminum) mainly comprised component 2 (C2). PM from the rainy-warm season was high in C2. PM (particularly PM2.5) from the dry-cold season was rich in C1. Elevated levels of cytokine production were associated with PM10 and C2 (rainy-warm season), whereas reduced levels of cytokine production were associated with PM2.5 and C1 (dry-cold season). TNFα secretion was increased following exposure to PM with high (vs. low) C2 content, but TNFα secretion in response to PM was decreased following exposure to samples containing ≥ 0.1% of C1-related PAHs, regardless of C2 content. The results of the IL-6 assays suggested more complex interactions between PM components and particle size. CONCLUSIONS Variations in PM soil and PAH content underlie seasonal and PM size-related patterns in TNFα secretion. These results suggest that the mixture of components in PM explains some seasonal differences in associations between health outcomes and PM in epidemiologic studies. CITATION Manzano-León N, Serrano-Lomelin J, Sánchez BN, Quintana-Belmares R, Vega E, Vázquez-López I, Rojas-Bracho L, López-Villegas MT, Vadillo-Ortega F, De Vizcaya-Ruiz A, Rosas Perez I, O'Neill MS, Osornio-Vargas AR. 2016. TNFα and IL-6 responses to particulate matter in vitro: variation according to PM size, season, and polycyclic aromatic hydrocarbon and soil content. Environ Health Perspect 124:406-412; http://dx.doi.org/10.1289/ehp.1409287.
Collapse
Affiliation(s)
- Natalia Manzano-León
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, México, DF, México
| | | | - Brisa N. Sánchez
- Department of Environmental Health Sciences, and
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Raúl Quintana-Belmares
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, México, DF, México
| | - Elizabeth Vega
- Dirección de Investigación y Posgrado, Instituto Mexicano del Petróleo, México, DF, México
- Gerencia de Ciencias Ambientales, Instituto Nacional de Investigaciones Nucleares, La Marquesa, Ocoyoacac, Estado de México, México
| | - Inés Vázquez-López
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, México, DF, México
| | | | | | - Felipe Vadillo-Ortega
- National Autonomous University of Mexico (UNAM) at the National Institute of Genomic Medicine, México, DF, México
| | | | | | | | - Alvaro R. Osornio-Vargas
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, México, DF, México
- Department of Paediatrics, University of Alberta, Edmonton, Alberta, Canada
- Address correspondence to A.R. Osornio-Vargas, Department of Paediatrics, University of Alberta, 3-591 ECHA, 11405 87th Ave., Edmonton, T6G1C9, Canada. Telephone (780) 492-7092. E-mail:
| |
Collapse
|
77
|
Diallyl trisulfide inhibits naphthalene-induced oxidative injury and the production of inflammatory responses in A549 cells and mice. Int Immunopharmacol 2015; 29:326-333. [DOI: 10.1016/j.intimp.2015.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 12/24/2022]
|
78
|
Li Q, Liu H, Alattar M, Jiang S, Han J, Ma Y, Jiang C. The preferential accumulation of heavy metals in different tissues following frequent respiratory exposure to PM2.5 in rats. Sci Rep 2015; 5:16936. [PMID: 26582271 PMCID: PMC4652264 DOI: 10.1038/srep16936] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/21/2015] [Indexed: 01/10/2023] Open
Abstract
This study aimed to explore the pattern of accumulation of some of main heavy metals in blood and various organs of rats after exposed to the atmospheric fine particulate matter (PM2.5). Rats were randomly divided into control and three treatment groups (tracheal perfusion with 10 mg/kg, 20 mg/kg and 40 mg/kg of PM2.5 suspension liquid, respectively). Whole blood and the lung, liver, kidney, and cerebral cortex were harvested after rats were treated and sacrificed. The used heavy metals were detected using inductively coupled plasma-mass spectrometry (ICP-MS) instrument. As results, Lead was increased in the liver, lung and cerebral cortex and the level of manganese was significantly elevated in the liver and cerebral cortex in PM2.5 treated rats. Besides, arsenic was prominently enriched both in cerebral cortex and in blood, and so did the aluminum in the cerebral cortex and the copper in the liver. However, cadmium, chromium and nickel have shown no difference between the control group and the three PM2.5 treated groups. Following the exposure of PM2.5, different heavy metals are preferentially accumulated in different body tissues.
Collapse
Affiliation(s)
- Qingzhao Li
- School of Public Health, North China University of Science and Technology, Jianshe Road 57, Tangshan 063001, Hebei, People’s Republic of China
| | - Huibin Liu
- Office of Clinical Drug Trial Institution, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, People’s Republic of China
| | - Mohamed Alattar
- Department of Cardiothoracic surgery, Zagazig University hospital, faculty of medicine, Zagazig University, Sharkia 44519, Egypt
| | - Shoufang Jiang
- School of Public Health, North China University of Science and Technology, Jianshe Road 57, Tangshan 063001, Hebei, People’s Republic of China
| | - Jing Han
- Office of Clinical Drug Trial Institution, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, People’s Republic of China
| | - Yujiao Ma
- Office of Clinical Drug Trial Institution, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, People’s Republic of China
| | - Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medicine Centre, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, People’s Republic of China
| |
Collapse
|
79
|
Fougère B, Vellas B, Billet S, Martin PJ, Gallucci M, Cesari M. Air Pollution modifies the association between successful and pathological aging throughout the frailty condition. Ageing Res Rev 2015; 24:299-303. [PMID: 26462883 DOI: 10.1016/j.arr.2015.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 01/27/2023]
Abstract
The rapid growth in the number of older adults has many implications for public health, including the need to better understand the risks posed by environmental exposures. Aging leads to a decline and deterioration of functional properties at the cellular, tissue and organ level. This loss of functional properties yields to a loss of homeostasis and decreased adaptability to internal and external stress. Frailty is a geriatric syndrome characterized by weakness, weight loss, and low activity that is associated with adverse health outcomes. Frailty manifests as an age-related, biological vulnerability to stressors and decreased physiological reserves. Ambient air pollution exposure affects human health, and elderly people appear to be particularly susceptible to its adverse effects. The aim of this paper is to discuss the role of air pollution in the modulation of several biological mechanisms involved in aging. Evidence is presented on how air pollution can modify the bidirectional association between successful and pathological aging throughout the frailty conditions.
Collapse
Affiliation(s)
- Bertrand Fougère
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France.
| | - Bruno Vellas
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Sylvain Billet
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA4492), Université du Littoral Côte d'Opale, Dunkerque, France
| | - Perrine J Martin
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA4492), Université du Littoral Côte d'Opale, Dunkerque, France
| | - Maurizio Gallucci
- Cognitive Impairment Centre, General Hospital of Treviso, Piazza Ospedale, 1, I-31100 Treviso, Italy; FORGEI, Interdisciplinary Geriatric Research Foundation, Viale Trento Trieste 19, I-31100 Treviso, Italy
| | - Matteo Cesari
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
80
|
Samara C, Kouras A, Kaidoglou K, Emmanouil-Nikoloussi EN, Simou C, Bousnaki M, Kelessis A. Ultrastructural alterations in the mouse lung caused by real-life ambient PM10 at urban traffic sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 532:327-336. [PMID: 26081735 DOI: 10.1016/j.scitotenv.2015.05.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/19/2015] [Accepted: 05/31/2015] [Indexed: 06/04/2023]
Abstract
Current levels of ambient air particulate matter (PM) are associated with mortality and morbidity in urban populations worldwide. Nevertheless, current knowledge does not allow precise quantification or definitive ranking of the health effects of individual PM components and indeed, associations may be the result of multiple components acting on different physiological mechanisms. In this paper, healthy Balb/c mice were exposed to ambient PM10 at a traffic site of a large city (Thessaloniki, northern Greece), in parallel to control mice that were exposed to filtered air. Structural damages were examined in ultrafine sections of lung tissues by Transmission Electronic Microscopy (TEM). Ambient PM10 samples were also collected during the exposure experiment and characterized with respect to chemical composition and oxidative potential. Severe ultrastructural alterations in the lung tissue after a 10-week exposure of mice at PM10 levels often exceeding the daily limit of Directive 2008/50/EC were revealed mainly implying PM-induced oxidative stress. The DTT-based redox activity of PM10 was found within the range of values reported for traffic sites being correlated with traffic-related constituents. Although linkage of the observed lung damage with specific chemical components or sources need further elucidation, the magnitude of biological responses highlight the necessity for national and local strategies for mitigation of particle emissions from combustion sources.
Collapse
Affiliation(s)
- Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thesaloniki, Greece.
| | - Athanasios Kouras
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thesaloniki, Greece
| | - Katerina Kaidoglou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thesaloniki, Greece
| | - Elpida-Niki Emmanouil-Nikoloussi
- Laboratory of Histology-Embryology and Anthropology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thesaloniki, Greece
| | - Chrysanthi Simou
- Laboratory of Histology-Embryology and Anthropology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thesaloniki, Greece
| | - Maria Bousnaki
- Laboratory of Histology-Embryology and Anthropology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thesaloniki, Greece
| | - Apostolos Kelessis
- Environmental Department, Municipality of Thessaloniki, Kleanthous 18, 54 642 Thessaloniki, Greece
| |
Collapse
|
81
|
Mesquita SR, van Drooge BL, Oliveira E, Grimalt JO, Barata C, Vieira N, Guimarães L, Piña B. Differential embryotoxicity of the organic pollutants in rural and urban air particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:535-542. [PMID: 26298234 DOI: 10.1016/j.envpol.2015.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
Airborne particulate matter (PM) is a recognized risk factor for human populations. Here we assessed the toxic potential of the organic constituents from PM collected in urban and rural sites during warm and cold periods of 2012/2013, and fractionated into 6 size fractions. The finest PM fraction (<0.5 μm) showed the highest biological activity (dioxin-like activity and fish embryotoxicity) in all samples, and the maximal activity was observed in rural samples from the cold period. Zebrafish embryo transcriptome analysis showed a strong induction of the AhR signaling pathway correlated to PAH concentrations. Oxidative stress-related genes and pancreatic and eye-lens gene markers appeared de-regulated in embryos exposed to urban extracts, whereas exposure to rural extracts affected genes implicated in basic cellular functions. The observed effects can be directly related to air pollution-related human disorders, suggesting different potential adverse outcomes for human populations exposed to air pollution from specific sources.
Collapse
Affiliation(s)
- Sofia R Mesquita
- Institute of Environmental Assessment and Water Research, Barcelona, Spain; Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | | | - Eva Oliveira
- Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Natividade Vieira
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Laura Guimarães
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, Barcelona, Spain.
| |
Collapse
|
82
|
Ni L, Chuang CC, Zuo L. Fine particulate matter in acute exacerbation of COPD. Front Physiol 2015; 6:294. [PMID: 26557095 PMCID: PMC4617054 DOI: 10.3389/fphys.2015.00294] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD) can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM) in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM) in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress (OS), immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden.
Collapse
Affiliation(s)
- Lei Ni
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center Columbus, OH, USA ; Department of Pulmonary Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China ; Shanghai Key Laboratory of Meteorology and Health, Pudong Meteorological Service Shanghai, China
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center Columbus, OH, USA ; Interdisciplinary Biophysics Program, The Ohio State University Columbus, OH, USA
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center Columbus, OH, USA ; Interdisciplinary Biophysics Program, The Ohio State University Columbus, OH, USA
| |
Collapse
|
83
|
Borgie M, Dagher Z, Ledoux F, Verdin A, Cazier F, Martin P, Hachimi A, Shirali P, Greige-Gerges H, Courcot D. Comparison between ultrafine and fine particulate matter collected in Lebanon: Chemical characterization, in vitro cytotoxic effects and metabolizing enzymes gene expression in human bronchial epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 205:250-260. [PMID: 26093079 DOI: 10.1016/j.envpol.2015.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
During the last few years, the induction of toxicological mechanisms by atmospheric ultrafine particles (UFP) has become one of the most studied topics in toxicology and a subject of huge debates. Fine particles (FP) and UFP collected at urban and rural sites in Lebanon were studied for their chemical composition and toxicological effects. UFP were found more enriched in trace elements, secondary inorganic ions, total carbon and organic compounds than FP. For toxicological analysis, BEAS-2B cells were exposed for 24, 48 and 72 h to increasing concentrations of FP, water-UFP suspension (UFPw) and UFP organic extract (UFPorg). Our findings showed that UFP caused earlier alterations of mitochondrial metabolism and membrane integrity from the lowest concentrations. Moreover, a significant induction of CYP1A1, CYP1B1 and AhRR genes expression was showed after cells exposure to UFPorg and to a lesser extent to UFPw and FP samples.
Collapse
Affiliation(s)
- Mireille Borgie
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Lebanese University, Beirut, Lebanon
| | - Zeina Dagher
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Lebanese University, Beirut, Lebanon; Department of Biology, Faculty of Sciences-2, Lebanese University, Beirut, Lebanon
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Fabrice Cazier
- Centre Commun de Mesures, Maison de la Recherche en Environnement Industriel 1, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Perrine Martin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Adam Hachimi
- Micropolluants Technologie, 4 Rue de Bort Les Orgues, 57070 Saint Julien Les Metz, France
| | - Pirouz Shirali
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Lebanese University, Beirut, Lebanon; Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Beirut, Lebanon
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France.
| |
Collapse
|
84
|
Zhou Z, Liu Y, Duan F, Qin M, Wu F, Sheng W, Yang L, Liu J, He K. Transcriptomic Analyses of the Biological Effects of Airborne PM2.5 Exposure on Human Bronchial Epithelial Cells. PLoS One 2015; 10:e0138267. [PMID: 26382838 PMCID: PMC4575100 DOI: 10.1371/journal.pone.0138267] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022] Open
Abstract
Epidemiological studies have associated high levels of airborne particulate matter (PM) with increased respiratory diseases. In order to investigate the mechanisms of air pollution-induced lung toxicity in humans, human bronchial epithelial cells (16HBE) were exposed to various concentrations of particles smaller than 2.5 μm (PM2.5) collected from Beijing, China. After observing that PM2.5 decreased cell viability in a dose-dependent manner, we first used Illumina RNA-seq to identify genes and pathways that may contribute to PM2.5-induced toxicity to 16HBE cells. A total of 539 genes, 283 up-regulated and 256 down-regulated, were identified to be significantly differentially expressed after exposure to 25 μg/cm2 PM2.5. PM2.5 induced a large number of genes involved in responses to xenobtiotic stimuli, metabolic response, and inflammatory and immune response pathways such as MAPK signaling and cytokine-cytokine receptor interaction, which might contribute to PM2.5-related pulmonary diseases. We then confirmed our RNA-seq results by qPCR and by analysis of IL-6, CYP1A1, and IL-8 protein expression. Finally, ELISA assay demonstrated a significant association between exposure to PM2.5 and secretion of IL-6. This research provides a new insight into the mechanisms underlying PM2.5-induced respiratory diseases in Beijing.
Collapse
Affiliation(s)
- Zhixiang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
- * E-mail: (ZXZ); (KBH)
| | - Yanghua Liu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Mengnan Qin
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wang Sheng
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jianguo Liu
- Key Laboratory in Environmental Optics & Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
- * E-mail: (ZXZ); (KBH)
| |
Collapse
|
85
|
Zhu WJ, Ma HX, Cui HY, Lu X, Shao MJ, Li S, Luo YQ, Wang Q, Xu CY, Xu DQ, Liu CH, Chen YZ. Prevalence and Treatment of Children's Asthma in Rural Areas Compared with Urban Areas in Beijing. Chin Med J (Engl) 2015; 128:2273-7. [PMID: 26315071 PMCID: PMC4733796 DOI: 10.4103/0366-6999.163381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The prevalence of childhood asthma has been increasing in China. This study aimed to compare the prevalence, diagnosis, and treatment of asthmatic children from urban and rural areas in Beijing, China. METHODS Schools, communities, and kindergartens were randomly selected by cluster random sampling from urban and rural areas in Beijing. Parents were surveyed by the same screening questionnaires. On-the-spot inquiries, physical examinations, medical records, and previous test results were used to diagnose asthmatic children. Information on previous diagnoses, treatments, and control of symptoms was obtained. RESULTS From 7209 children in rural areas and 13,513 children in urban areas who completed screening questionnaires, 587 children were diagnosed as asthma. The prevalence of asthma in rural areas was lower than in urban areas (1.25% vs. 3.68%, χ2 = 100.80, P < 0.001). The diagnosis of asthma in rural areas was lower than in urban areas (48.9% vs. 73.9%, χ2 = 34.6, P < 0.001). Compared with urban asthmatic children (56.5%), only 35.6% of rural asthmatic children received inhaled corticosteroids (P < 0.05). The use of bronchodilators was also lower in rural areas than in urban areas (56.5% vs. 66.4%, χ2 = 14.2, P < 0.01). CONCLUSION The prevalence of asthma in children was lower in rural areas compared with children in the urban area of Beijing. A considerable number of children were not diagnosed and inadequately treated in rural areas.
Collapse
Affiliation(s)
- Wen-Jing Zhu
- Center for Asthma Prevention and Education, Capital Institute of Pediatrics, Beijing 100020, China
| | - Hai-Xia Ma
- Department of Pediatrics, Liangxiang Hospital, Fangshan District, Beijing 102401, China
| | - Hui-Ying Cui
- Department of Pediatrics, Tongzhou Maternal and Child Health Hospital, Beijing 101199, China
| | - Xu Lu
- Department of Pediatrics, Tongzhou Maternal and Child Health Hospital, Beijing 101199, China
| | - Ming-Jun Shao
- Center for Asthma Prevention and Education, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shuo Li
- Center for Asthma Prevention and Education, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yan-Qing Luo
- Center for Asthma Prevention and Education, Capital Institute of Pediatrics, Beijing 100020, China
| | - Qiang Wang
- Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chun-Yu Xu
- Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Dong-Qun Xu
- Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chuan-He Liu
- Center for Asthma Prevention and Education, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yu-Zhi Chen
- Center for Asthma Prevention and Education, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
86
|
Thomson EM, Breznan D, Karthikeyan S, MacKinnon-Roy C, Charland JP, Dabek-Zlotorzynska E, Celo V, Kumarathasan P, Brook JR, Vincent R. Cytotoxic and inflammatory potential of size-fractionated particulate matter collected repeatedly within a small urban area. Part Fibre Toxicol 2015; 12:24. [PMID: 26178321 PMCID: PMC4502610 DOI: 10.1186/s12989-015-0099-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/02/2015] [Indexed: 01/08/2023] Open
Abstract
Background Exposure to coarse, fine, and ultrafine particles is associated with adverse population health impacts. We investigated whether size-fractionated particles collected repeatedly in the vicinity of industrial (steel mills and associated coking operations, wastewater treatment), high traffic, and residential areas display systematic differences in biological potency. Methods Particulate matter (PM<0.1, PM0.1–0.5, PM0.5–2.5, PM2.5–10, PM>10) samples collected at sites within Windsor, Ontario, were screened for biological potency in human A549 lung epithelial and murine J774A.1 macrophage-like cells using cytotoxicity bioassays (cellular ATP, resazurin reduction, lactate dehydrogenase (LDH) release), cytokine production, and transcript profiles. Potency was determined from the slope of each dose-effect relationship. Results Cytotoxic potency varied across size fractions and within a fraction across sites and sampling periods, suggesting that particle composition, in addition to size and mass, affected particle toxicity. While ATP and LDH profiles showed some similarity, resazurin reduction (a measure of metabolic activity) exhibited a unique pattern of response, indicating that the cytotoxicity assays were sensitive to distinct particle characteristics. Chemical speciation varied in relation to prevailing winds, consistent with enrichment of source emissions (e.g. higher metal and polycyclic aromatic hydrocarbon content downwind of the industrial site). Notwithstanding this variability, site-dependent differences in particle toxicity were evident, including greater potency of coarse fractions at the industrial site and of ultrafine particles at the traffic site (Site × Size interactions, p < 0.05). Regression of potency against particle constituents revealed correlations between resazurin reduction, induction of metal-responsive genes, and metal content, which were particularly strong for the coarse fraction, and between cytokine release and endotoxin, suggesting that these factors were important drivers of biological effects that explain, at least in part, the contrasting potencies of particles compared on an equivalent mass basis. Conclusions The data show that 1) particle potency and composition can exhibit significant temporal variation in relation to source contributions; 2) sources may differentially impact the potency of specific size fractions; and 3) particle constituents, notably metals and endotoxin, may elicit distinct biological responses. Together, the data are consistent with the notion that sources and composition, in addition to size and mass concentration, are relevant to particle toxicity. Electronic supplementary material The online version of this article (doi:10.1186/s12989-015-0099-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Errol M Thomson
- Inhalation Toxicology Laboratory, Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, 0802B Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada.
| | - Dalibor Breznan
- Inhalation Toxicology Laboratory, Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, 0802B Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada.
| | - Subramanian Karthikeyan
- Inhalation Toxicology Laboratory, Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, 0802B Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada.
| | - Christine MacKinnon-Roy
- Inhalation Toxicology Laboratory, Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, 0802B Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada.
| | - Jean-Pierre Charland
- Analysis and Air Quality Section, Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment Canada, Ottawa, ON, K1A 0H3, Canada.
| | - Ewa Dabek-Zlotorzynska
- Analysis and Air Quality Section, Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment Canada, Ottawa, ON, K1A 0H3, Canada.
| | - Valbona Celo
- Analysis and Air Quality Section, Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment Canada, Ottawa, ON, K1A 0H3, Canada.
| | - Prem Kumarathasan
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada.
| | - Jeffrey R Brook
- Air Quality Processes Research Section, Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment Canada, Toronto, ON, M3H 5T4, Canada.
| | - Renaud Vincent
- Inhalation Toxicology Laboratory, Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, 0802B Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
87
|
Watanabe M, Kurai J, Sano H, Yamasaki A, Shimizu E. Difference in Pro-Inflammatory Cytokine Responses Induced in THP1 Cells by Particulate Matter Collected on Days with and without ASIAN Dust Storms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:7725-37. [PMID: 26184251 PMCID: PMC4515687 DOI: 10.3390/ijerph120707725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/25/2015] [Accepted: 07/02/2015] [Indexed: 01/06/2023]
Abstract
The associations between particulate matter from Asian dust storms (ADS) and health disorders differ among studies, and the underlying mechanisms remain unclear. In this study, ADS and non-ADS particles were tested for their potential to induce pro-inflammatory cytokines associated with adverse respiratory effects. Particulate matter was collected in Japan during four periods in 2013 (2 × ADS periods; 2 × non-ADS). THP1 cells were exposed to this particulate matter, and the levels of various interleukins (ILs), and tumor necrosis factor (TNF)-α were measured. Levels of IL-2 increased significantly following exposure to all particulate matter samples (compared to levels in a solvent control). Increased levels of IL-10 and TNF-α were also observed following exposure to particles collected during three (one ADS and two non-ADS) and two (one ADS and one non-ADS) collection periods, respectively. Thus, the effects of particulate matter on cytokine responses differed according to collection period, and the effects of ADS particles differed for each ADS event. Additionally, the levels of pro-inflammatory cytokines induced by ADS particles were not always higher than those induced by non-ADS particles.
Collapse
Affiliation(s)
- Masanari Watanabe
- Department of Respiratory Medicine and Rheumatology, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago 683-8504, Japan.
| | - Jun Kurai
- Department of Respiratory Medicine and Rheumatology, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago 683-8504, Japan.
| | - Hiroyuki Sano
- Department of Respiratory Medicine and Allergology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama 589-0014, Japan.
| | - Akira Yamasaki
- Department of Respiratory Medicine and Rheumatology, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago 683-8504, Japan.
| | - Eiji Shimizu
- Department of Respiratory Medicine and Rheumatology, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago 683-8504, Japan.
| |
Collapse
|
88
|
Li J. Environmental fine particular matter and airway epithelium cell stress. CURRENT PULMONOLOGY REPORTS 2015. [DOI: 10.1007/s13665-015-0116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
89
|
Tsao SM, Yin MC. Antioxidative and antiinflammatory activities of asiatic acid, glycyrrhizic acid, and oleanolic acid in human bronchial epithelial cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3196-3204. [PMID: 25779760 DOI: 10.1021/acs.jafc.5b00102] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protective effects of triterpenic acids, asiatic acid (AA), glycyrrhizic acid (GA), or oleanolic acid (OA), for two human bronchial epithelial cells, 16HBE and BEAS-2B cells, against hydrogen peroxide (H2O2) induced injury were examined. Cells were pretreated by triterpenic acid at 4 or 8 μmol/L and followed by H2O2 treatment. Results showed that H2O2 significantly upregulated both Bax and cleaved caspase-3 expression, and also downregulated Bcl-2 expression in test cells. AA at these doses retained Bcl-2 expression, but GA and OA only at 8 μmol/L reserved Bcl-2 expression. Test triterpenic acids lowered cleaved caspase-3 expression dose-dependently. H2O2 treatment lowered Na(+)-K(+)-ATPase activity and mitochondrial membrane potential in cells. Triterpenic acid pretreatments significantly maintained mitochondrial membrane potential and Na(+)-K(+)-ATPase activity. H2O2 enhanced reactive oxygen species, interleukin-6, tumor necrosis factor-α, and prostaglandin E2 levels in test cells. Three triterpenic acid treatments dose-dependently reversed these changes. H2O2 promoted the protein expression of p47(phox), gp91(phox), cyclooxygenase-2 (COX-2), mitogen-activated protein kinase, and nuclear factor-κB (NF-κB). AA, GA, or OA pretreatments dose-dependently downregulated the expression of p47(phox), COX-2, NF-κB p65, and p-p38 but only at 8 μmol/L decreased gp91(phox) expression. These results support that these triterpenic acids could protect bronchial epithelial cells to attenuate apoptotic, oxidative, and inflammatory stress.
Collapse
Affiliation(s)
- Shih-Ming Tsao
- †Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- ‡Sections of Infectious Diseases and Chest Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Mei-Chin Yin
- §Department of Health and Nutrition Biotechnology, Asia University, Taichung City, Taiwan
- ∥Department of Nutrition, China Medical University, Taichung City, Taiwan
| |
Collapse
|
90
|
Nozière B, Kalberer M, Claeys M, Allan J, D'Anna B, Decesari S, Finessi E, Glasius M, Grgić I, Hamilton JF, Hoffmann T, Iinuma Y, Jaoui M, Kahnt A, Kampf CJ, Kourtchev I, Maenhaut W, Marsden N, Saarikoski S, Schnelle-Kreis J, Surratt JD, Szidat S, Szmigielski R, Wisthaler A. The molecular identification of organic compounds in the atmosphere: state of the art and challenges. Chem Rev 2015; 115:3919-83. [PMID: 25647604 DOI: 10.1021/cr5003485] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Barbara Nozière
- †Ircelyon/CNRS and Université Lyon 1, 69626 Villeurbanne Cedex, France
| | | | | | | | - Barbara D'Anna
- †Ircelyon/CNRS and Université Lyon 1, 69626 Villeurbanne Cedex, France
| | | | | | | | - Irena Grgić
- ○National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | | | | | - Yoshiteru Iinuma
- ¶Leibniz-Institut für Troposphärenforschung, 04318 Leipzig, Germany
| | | | | | | | - Ivan Kourtchev
- ‡University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Willy Maenhaut
- §University of Antwerp, 2000 Antwerp, Belgium.,□Ghent University, 9000 Gent, Belgium
| | | | | | | | - Jason D Surratt
- ▼University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | |
Collapse
|
91
|
Dergham M, Lepers C, Verdin A, Cazier F, Billet S, Courcot D, Shirali P, Garçon G. Temporal-spatial variations of the physicochemical characteristics of air pollution Particulate Matter (PM2.5-0.3) and toxicological effects in human bronchial epithelial cells (BEAS-2B). ENVIRONMENTAL RESEARCH 2015; 137:256-267. [PMID: 25601727 DOI: 10.1016/j.envres.2014.12.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
While the evidence for the health adverse effects of air pollution Particulate Matter (PM) has been growing, there is still uncertainty as to which constituents within PM are most harmful. Hence, to contribute to fulfill this gap of knowledge, some physicochemical characteristics and toxicological endpoints (i.e. cytotoxicity, oxidative damage, cytokine secretion) of PM2.5-0.3 samples produced during two different seasons (i.e. spring/summer or autumn/winter) in three different surroundings (i.e. rural, urban, or industrial) were studied, thereby expecting to differentiate their respective adverse effects in human bronchial epithelial cells (BEAS-2B). Physicochemical characteristics were closely related to respective origins and seasons of the six PM2.5-0.3 samples, highlighting the respective contributions of industrial and heavy motor vehicle traffic sources. Space- and season-dependent differences in cytotoxicity of the six PM2.5-0.3 samples could only be supported by considering both the physicochemical properties and the variance in air PM concentrations. Whatever spaces and seasons, dose- and even time-dependent increases in oxidative damage and cytokine secretion were reported in PM2.5-0.3-exposed BEAS-2B cells. However, the relationship between the chemical composition of each of the six PM2.5-0.3 samples and their oxidative or inflammatory potentials seemed to be very complex. These results supported the role of inorganic, ionic and organic components as exogenous source of Reactive Oxygen Species and, thereafter, cytokine secretion. Nevertheless, one of the most striking observation was that some inorganic, ionic and organic chemical components were preferentially associated with early oxidative events whereas others in the later oxidative damage and/or cytokine secretion. Taken together, these results indicated that PM mass concentration alone might not be able to explain the health outcomes, because PM is chemically nonspecific, and supported growing evidence that PM-size, composition and emission source, together with sampling season, interact in a complex manner to produce PM2.5-0.3-induced human adverse health effects.
Collapse
Affiliation(s)
- Mona Dergham
- Université Lille Nord de France, Lille, France; EA 4492, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Capucine Lepers
- Université Lille Nord de France, Lille, France; EA 4492, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Anthony Verdin
- Université Lille Nord de France, Lille, France; EA 4492, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Fabrice Cazier
- Université Lille Nord de France, Lille, France; Centre Commun de Mesures, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Sylvain Billet
- Université Lille Nord de France, Lille, France; EA 4492, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Dominique Courcot
- Université Lille Nord de France, Lille, France; EA 4492, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Pirouz Shirali
- Université Lille Nord de France, Lille, France; EA 4492, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Guillaume Garçon
- Université Lille Nord de France, Lille, France; EA 4492, Université du Littoral-Côte d'Opale, Dunkerque, France; EA4483, Université de Lille 2, Lille, France.
| |
Collapse
|
92
|
Borgie M, Ledoux F, Verdin A, Cazier F, Greige H, Shirali P, Courcot D, Dagher Z. Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells. ENVIRONMENTAL RESEARCH 2015; 136:352-362. [PMID: 25460656 DOI: 10.1016/j.envres.2014.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/21/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Assessment of air pollution by particulate matter (PM) is strongly required in Lebanon in the absence of an air quality law including updated air quality standards. Using two different PM2.5-0.3 samples collected at an urban and a rural site, we examined genotoxic/epigenotoxic effects of PM exposure within a human bronchial epithelial cell line (BEAS-2B). Inorganic and organic contents evidence the major contribution of traffic and generating sets in the PM2.5-0.3 composition. Urban PM2.5-0.3 sample increased the phosphorylation of H2AX, the telomerase activity and the miR-21 up-regulation in BEAS-2B cells in a dose-dependent manner. Furthermore, urban PM2.5-0.3 induced a significant increase in CYP1A1, CYP1B1 and AhRR genes expression. The variable concentrations of transition metals and organic compounds detected in the collected PM2.5-0.3 samples might be the active agents leading to a cumulative DNA damage, critical for carcinogenesis.
Collapse
Affiliation(s)
- Mireille Borgie
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Groupe de Recherche Molécules Bioactives, Ecole Doctorale des Sciences et Technologies, Université Libanaise, Liban; Université Lille Nord de France, Lille, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France
| | - Fabrice Cazier
- Centre Commun de Mesures, Maison de la Recherche en Environnement Industriel 1, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France
| | - Hélène Greige
- Groupe de Recherche Molécules Bioactives, Ecole Doctorale des Sciences et Technologies, Université Libanaise, Liban; Département de Chimie et de Biochimie, Faculté des Sciences, Université Libanaise, Liban
| | - Pirouz Shirali
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France.
| | - Zeina Dagher
- Groupe de Recherche Molécules Bioactives, Ecole Doctorale des Sciences et Technologies, Université Libanaise, Liban; Département de Biologie, Faculté des Sciences, Université Libanaise, Liban
| |
Collapse
|
93
|
Leung PY, Wan HT, Billah MB, Cao JJ, Ho KF, Wong CKC. Chemical and biological characterization of air particulate matter 2.5, collected from five cities in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 194:188-195. [PMID: 25150452 DOI: 10.1016/j.envpol.2014.07.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
Fifteen polycyclic aromatic hydrocarbons (PAHs) in PM2.5 samples collected in five different cities (Hong Kong (HK), Guangzhou (GZ), Xiamen (XM), Xi'an (XA) and Beijing (BJ)) in China in the winter 2012-13 [corrected] were analyzed by gas chromatography-mass spectrometry. The biological effects of organic extracts were assayed using the human bronchial epithelial cells BEAS-2B. All sixteen priority PAHs can be found in the PM2.5 samples of XA and BJ, but not in HK, GZ and XM, demonstrating the differential spatial source and distribution of PAHs. Our results showed that the total PAHs ranged from 3.35 to 80.45 ng/m(3) air, leading by BJ, followed by XA, XM, GZ and HK. In the cell culture study, transcript levels of pro-inflammatory cytokine interleukin-6 (IL-6), CYP1A1 and CYP1B1 were found to be induced in the treatment. The cells exposed to extracts from XA and BJ demonstrated significant migratory activities, indicating a sign of increase of tumorigenicity.
Collapse
Affiliation(s)
- P Y Leung
- Croucher Institute for Environmental Sciences, Partner State Key Laboratory of Environmental and Biological Analysis, Department of Biology, 200 Waterloo Road, Kowloon Tong, Hong Kong Baptist University, Hong Kong, China.
| | - H T Wan
- Croucher Institute for Environmental Sciences, Partner State Key Laboratory of Environmental and Biological Analysis, Department of Biology, 200 Waterloo Road, Kowloon Tong, Hong Kong Baptist University, Hong Kong, China.
| | - M B Billah
- Croucher Institute for Environmental Sciences, Partner State Key Laboratory of Environmental and Biological Analysis, Department of Biology, 200 Waterloo Road, Kowloon Tong, Hong Kong Baptist University, Hong Kong, China.
| | - J J Cao
- Key Lab of Aerosol Science & Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China.
| | - K F Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Tai Po Road, Shatin, Hong Kong, China.
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Partner State Key Laboratory of Environmental and Biological Analysis, Department of Biology, 200 Waterloo Road, Kowloon Tong, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
94
|
Health risk assessment for air pollutants: alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter (PM2.5). PLoS One 2014; 9:e109685. [PMID: 25296036 PMCID: PMC4190364 DOI: 10.1371/journal.pone.0109685] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress, pulmonary and systemic inflammation, endothelial cell dysfunction, atherosclerosis and cardiac autonomic dysfunction have been linked to urban particulate matter exposure. The chemical composition of airborne pollutants in Milano is similar to those of other European cities though with a higher PM2.5 fraction. Milano winter fine particles (PM2.5win) are characterized by the presence of nitrate, organic carbon fraction, with high amount of polycyclic aromatic hydrocarbons and elements such as Pb, Al, Zn, V, Fe, Cr and others, with a negligible endotoxin presence. In BALB/c mice, we examined, at biochemical and transcriptomic levels, the adverse effects of repeated Milano PM2.5win exposure in lung and heart. We found that ET-1, Hsp70, Cyp1A1, Cyp1B1 and Hsp-70, HO-1, MPO respectively increased within lung and heart of PM2.5win-treated mice. The PM2.5win exposure had a strong impact on global gene expression of heart tissue (181 up-regulated and 178 down-regulated genes) but a lesser impact on lung tissue (14 up-regulated genes and 43 down-regulated genes). Focusing on modulated genes, in lung we found two- to three-fold changes of those genes related to polycyclic aromatic hydrocarbons exposure and calcium signalling. Within heart the most striking aspect is the twofold to threefold increase in collagen and laminin related genes as well as in genes involved in calcium signaling. The current study extends our previous findings, showing that repeated instillations of PM2.5win trigger systemic adverse effects. PM2.5win thus likely poses an acute threat primarily to susceptible people, such as the elderly and those with unrecognized coronary artery or structural heart disease. The study of genomic responses will improve understanding of disease mechanisms and enable future clinical testing of interventions against the toxic effects of air pollutant.
Collapse
|
95
|
Mesquita SR, van Drooge BL, Barata C, Vieira N, Guimarães L, Piña B. Toxicity of atmospheric particle-bound PAHs: an environmental perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11623-11633. [PMID: 24595747 DOI: 10.1007/s11356-014-2628-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Atmospheric polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that represent a risk not only to humans, but to all living organisms. High-molecular weight PAHs are more toxic than lighter relatives, and also have a higher tendency to bind onto air particles (i.e., particle matter, PM). PM is a major constituent of air pollution. Adequate assessment of the biological impact of PM requires the analysis, not only of the effects on human health, but also on the environment. Since the aquatic systems work as a natural sink to these air pollutants, assessing the effects of particle-bound PAHs on aquatic organisms may further characterize its potential aquatic toxicity, also providing simple and low-cost alternative assays to investigate PM biological effects in vivo. We review the current scientific literature, addressing the atmospheric PAHs fate, transformation and deposition, pertinent particle-bound PAHs toxicity data, and the potential aquatic toxic burden. Conceptual and experimental procedures that could improve future investigations and risk assessments are also considered.
Collapse
Affiliation(s)
- Sofia Raquel Mesquita
- IDAEA-CSIC-Institute of Environmental Assessment and Water Research, Jordi Girona 18, 08034, Barcelona, Spain,
| | | | | | | | | | | |
Collapse
|
96
|
Kumar RK, Shadie AM, Bucknall MP, Rutlidge H, Garthwaite L, Herbert C, Halliburton B, Parsons KS, Wark PAB. Differential injurious effects of ambient and traffic-derived particulate matter on airway epithelial cells. Respirology 2014; 20:73-9. [PMID: 25219656 DOI: 10.1111/resp.12381] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/15/2014] [Accepted: 07/08/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Exposure to airborne particulate matter (PM) may promote development of childhood asthma and trigger acute exacerbations of existing asthma via injury to airway epithelial cells (AEC). METHODS We compared the response of AEC to ambient particulates with median aerodynamic diameters of <10 μm or <2.5 μm from the Sydney metropolitan region (Sydney PM10 or PM2.5), to traffic-derived particulates from the exhaust stack of a motorway tunnel or to inert carbon black as a control. RESULTS Sydney PM10 strongly stimulated messenger RNA expression and secretion of the pro-inflammatory cytokines interleukin 6 (IL-6) and chemokine (C-X-C motif) ligand 1 (CXCL1) by mouse tracheal AEC. In contrast, traffic-derived particulates did not. Similarly, PM10 stimulated expression of IL6, IL8 and IL1B by human AEC. Mass spectrometric analysis showed that PM10 contained much higher levels of elements associated with dusts of geological origin. In contrast, tunnel soot contained much higher levels of various organic compounds, notably including long straight-chain alkanes and diesel-derived polycyclic aromatic hydrocarbons. Sydney PM2.5, as well as PM10 collected during a period including a major dust storm, both of which contained relatively lower levels of iron but similar levels of other crustal elements, did not stimulate expression or secretion of CXCL1 by mouse AEC. CONCLUSIONS Ambient PM10 is likely to be more important than traffic-derived PM in causing injury to AEC leading to production of pro-inflammatory cytokines. The injurious effects may be related to the presence of iron in the coarse fraction of airborne PM. These findings are likely to be relevant to the pathogenesis of asthma.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Mutagenicity and clastogenicity of native airborne particulate matter samples collected under industrial, urban or rural influence. Toxicol In Vitro 2014; 28:866-74. [DOI: 10.1016/j.tiv.2014.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 12/12/2013] [Accepted: 03/19/2014] [Indexed: 01/18/2023]
|
98
|
Koike E, Yanagisawa R, Takigami H, Takano H. Penta- and octa-bromodiphenyl ethers promote proinflammatory protein expression in human bronchial epithelial cells in vitro. Toxicol In Vitro 2014; 28:327-33. [DOI: 10.1016/j.tiv.2013.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/24/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
|
99
|
Cachon BF, Firmin S, Verdin A, Ayi-Fanou L, Billet S, Cazier F, Martin PJ, Aissi F, Courcot D, Sanni A, Shirali P. Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM(2.5) and PM(>2.5)) collected from Cotonou, Benin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 185:340-51. [PMID: 24333687 DOI: 10.1016/j.envpol.2013.10.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/15/2013] [Accepted: 10/31/2013] [Indexed: 05/17/2023]
Abstract
After particulate matter (PM) collection in Cotonou (Benin), a complete physicochemical characterization of PM2.5 and PM>2.5 was led. Then, their adverse health effects were evaluated by using in vitro culture of human lung cells. BEAS-2B (bronchial epithelial cells) were intoxicated during short-term exposure at increasing PM concentrations (1.5-96 μg/cm(2)) to determine global cytotoxicity. Hence, cells were exposed to 3 and 12 μg/cm(2) to investigate the potential biological imbalance generated by PM toxicity. Our findings showed the ability of both PM to induce oxidative stress and to cause inflammatory cytokines/chemokines gene expression and secretion. Furthermore, PM were able to induce gene expression of enzymes involved in the xenobiotic metabolism pathway. Strong correlations between gene expression of metabolizing enzymes, proinflammatory responses and cell cycle alteration were found, as well as between proinflammatory responses and cell viability. Stress oxidant parameters were highly correlated with expression and protein secretion of inflammatory mediators.
Collapse
Affiliation(s)
- Boris Fresnel Cachon
- Université Lille Nord de France, Lille, France; Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, Maison de la Recherche en Environnement Industriel 2, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque, France; Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, 04 BP 0320, Cotonou, Benin
| | - Stéphane Firmin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, Maison de la Recherche en Environnement Industriel 2, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque, France; UPSP-EGEAL, Institut Polytechnique LaSalle Beauvais, 60026 Beauvais Cedex, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, Maison de la Recherche en Environnement Industriel 2, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque, France.
| | - Lucie Ayi-Fanou
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, 04 BP 0320, Cotonou, Benin
| | - Sylvain Billet
- Université Lille Nord de France, Lille, France; Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, Maison de la Recherche en Environnement Industriel 2, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Fabrice Cazier
- Université Lille Nord de France, Lille, France; Centre Commun de Mesures, Maison de la Recherche en Environnement Industriel 1, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Perrine J Martin
- Université Lille Nord de France, Lille, France; Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, Maison de la Recherche en Environnement Industriel 2, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque, France
| | | | - Dominique Courcot
- Université Lille Nord de France, Lille, France; Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, Maison de la Recherche en Environnement Industriel 2, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Ambaliou Sanni
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, 04 BP 0320, Cotonou, Benin
| | - Pirouz Shirali
- Université Lille Nord de France, Lille, France; Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, Maison de la Recherche en Environnement Industriel 2, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque, France
| |
Collapse
|
100
|
Totlandsdal AI, Øvrevik J, Cochran RE, Herseth JI, Bølling AK, Låg M, Schwarze P, Lilleaas E, Holme JA, Kubátová A. The occurrence of polycyclic aromatic hydrocarbons and their derivatives and the proinflammatory potential of fractionated extracts of diesel exhaust and wood smoke particles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:383-96. [PMID: 24345236 DOI: 10.1080/10934529.2014.854586] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Exposure to combustion emissions, including diesel engine exhaust and wood smoke particles (DEPs and WSPs), has been associated with inflammatory responses. To investigate the possible role of polycyclic aromatic hydrocarbons (PAHs) and PAH-derivatives, the DEPs and WSPs methanol extracts were fractionated by solid phase extraction (SPE), and the fractions were analyzed for more than ∼120 compounds. The pro-inflammatory effects of the fractionated extracts were characterized by exposure of bronchial epithelial lung cells (BEAS-2B). Both native DEPs and WSPs caused a concentration-dependent increase in IL-6 and IL-8 release and cytotoxicity. This is consistent with the finding of a rather similar total content of PAHs and PAH-derivatives. Yet, the samples differed in specific components, suggesting that different species contribute to the toxicological response in these two types of particles. The majority of the IL-6 release and cytotoxicity was induced upon exposure to the most polar (methanol) SPE fraction of extracts from both samples. In these fractions hydroxy-PAHs, carboxy-PAHs were observed along with nitro-amino-PAHs in DEP. However, the biological effects induced by the polar fractions could not be attributed only to the occurrence of PAH-derivatives. The present findings indicate a need for further characterization of organic extracts, beyond an extensive analysis of commonly suspected PAH and PAH-derivatives. Supplemental materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part A, to view the supplemental file.
Collapse
Affiliation(s)
- Annike I Totlandsdal
- a Department of Air Pollution and Noise, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|