51
|
Mohammad Jafari R, Ala M, Goodarzi N, Dehpour AR. Does Pharmacodynamics of Drugs Change After Presenting them as Nanoparticles Like their Pharmacokinetics? Curr Drug Targets 2020; 21:807-818. [DOI: 10.2174/1389450121666200128113547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
:
Nowadays, the breakthrough in different medical branches makes it feasible to designate
new methods of drug delivery to achieve the most cost-effective and the least unpleasant consequenceimposing
solutions to overcome a wide range of diseases.
:
Nanoparticle (NP) drugs entered the therapeutic system, especially in cancer chemotherapy. These
drugs are quite well-known for two traits of being long-acting and less toxic. For a long time, it has
been investigated how NPs will change the kinetics of drugs. However, there are a few studies that inclined
their attention to how NPs affect the dynamics of drugs. In this review, the latter point will
mainly be discussed in an example-based manner. Besides, other particular features of NPs will be
briefly noted.
:
NPs are capable of affecting the biologic system as much as a drug. Moreover, NPs could arise a wide
variety of effects by triggering their own receptors. NPs are able to change a receptor function and
manipulate its downstream signaling cascade.
Collapse
Affiliation(s)
- Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Goodarzi
- Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
52
|
Joseph JF, Gronbach L, García-Miller J, Cruz LM, Wuest B, Keilholz U, Zoschke C, Parr MK. Automated Real-Time Tumor Pharmacokinetic Profiling in 3D Models: A Novel Approach for Personalized Medicine. Pharmaceutics 2020; 12:E413. [PMID: 32366029 PMCID: PMC7284432 DOI: 10.3390/pharmaceutics12050413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer treatment often lacks individual dose adaptation, contributing to insufficient efficacy and severe side effects. Thus, personalized approaches are highly desired. Although various analytical techniques are established to determine drug levels in preclinical models, they are limited in the automated real-time acquisition of pharmacokinetic profiles. Therefore, an online UHPLC-MS/MS system for quantitation of drug concentrations within 3D tumor oral mucosa models was generated. The integration of sampling ports into the 3D tumor models and their culture inside the autosampler allowed for real-time pharmacokinetic profiling without additional sample preparation. Docetaxel quantitation was validated according to EMA guidelines. The tumor models recapitulated the morphology of head-and-neck cancer and the dose-dependent tumor reduction following docetaxel treatment. The administration of four different docetaxel concentrations resulted in comparable courses of concentration versus time curves for 96 h. In conclusion, this proof-of-concept study demonstrated the feasibility of real-time monitoring of drug levels in 3D tumor models without any sample preparation. The inclusion of patient-derived tumor cells into our models may further optimize the pharmacotherapy of cancer patients by efficiently delivering personalized data of the target tissue.
Collapse
Affiliation(s)
- Jan F. Joseph
- Core Facility BioSupraMol, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Leonie Gronbach
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, 14195 Berlin, Germany; (L.G.); (J.G.-M.); (L.M.C.); (C.Z.)
| | - Jill García-Miller
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, 14195 Berlin, Germany; (L.G.); (J.G.-M.); (L.M.C.); (C.Z.)
| | - Leticia M. Cruz
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, 14195 Berlin, Germany; (L.G.); (J.G.-M.); (L.M.C.); (C.Z.)
| | | | - Ulrich Keilholz
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Comprehensive Cancer Center, 10117 Berlin, Germany;
| | - Christian Zoschke
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, 14195 Berlin, Germany; (L.G.); (J.G.-M.); (L.M.C.); (C.Z.)
| | - Maria K. Parr
- Freie Universität Berlin, Institute of Pharmacy (Pharmaceutical and Medicinal Chemistry), 14195 Berlin, Germany
| |
Collapse
|
53
|
Lim M, Dharmaraj V, Gong B, Jung BT, Xu T. Estimating Tumor Vascular Permeability of Nanoparticles Using an Accessible Diffusive Flux Model. ACS Biomater Sci Eng 2020; 6:2879-2892. [DOI: 10.1021/acsbiomaterials.9b01590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Marc Lim
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Vishnu Dharmaraj
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Boying Gong
- Department of Biostatistics, University of California, Berkeley, Berkeley, California 94720, United States
| | - Benson T. Jung
- Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ting Xu
- Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
54
|
Shojaee P, Alinezhad L, Sefidgar M. Spatio-temporal investigation of doxorubicin in a 3D heterogeneous tumor microenvironment. Biomed Phys Eng Express 2020; 6:035008. [PMID: 33438653 DOI: 10.1088/2057-1976/ab7a53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Doxorubicin (Adriamycin) is a type of chemotherapy drugs using to treat diseases such as breast cancer, bladder cancer, Kaposi's sarcoma, and lymphoma. Additionally, it can be first prescribed to reduce tumor size. The ratio of killed cells is varied depending on the clinical dosage regimen. Hence, the exact dosage of the drug must be administered to prevent the toxicity that could impair the immune system or leading to heart failure. In the present study, a 3D heterogeneous geometry with a solid tumor and healthy tissue is modeled for the drug delivery investigation. At the first stage, the physical properties of tumor microenvironment are obtained. Then, a five-compartmental model is used to evaluate the free, bound and internalized drug via the convection-diffusion-reaction (CDR) equation. Results are shown that a percent increase of 37.5% and 47.1% for the 75 mg m-2 to 50 mg m-2 in the AUC of bound drug and free drug concentration, respectively. The free and bound drugs have the same trend in time showing an apex at the earliest time of injection and then drops to the lowest amount about 9 hours after treatment. Moreover, the internalized drug has a different trend in time. It increases and reaches a constant amount of drug concentration in the cells. Besides, the fraction of surviving cells is also evaluated for both tumor and healthy tissues showing a 88.62% and 97.76% of surviving cells with 50 mg m-2 of doxorubicin after the treatment, respectively. This model is developed to predict the heterogenous distribution of doxorubicin in three different drug concentrations for patient-specific drug treatment. This model could be used for different drugs to show the rate of perfusion and the ability to kill cancerous cells regarding their different doses and toxicity effects.
Collapse
Affiliation(s)
- Pejman Shojaee
- Department of Biomedical Engineering, Division of Biomechanics, Sahand University of Technology, Tabriz, Iran
| | | | | |
Collapse
|
55
|
Padmakumar S, Menon D. Nanofibrous Polydioxanone Depots for Prolonged Intraperitoneal Paclitaxel Delivery. Curr Drug Deliv 2020; 16:654-662. [PMID: 31418659 DOI: 10.2174/1567201816666190816102949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/11/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Prolonged chemodrug delivery to the tumor site is a prerequisite to maintaining its localised therapeutic concentrations for effective treatment of malignant solid tumors. OBJECTIVE The current study aims to develop implantable polymeric depots through conventional electrospinning for sustained drug delivery, specifically to the peritoneum. METHODS Non-woven electrospun mats were fabricated by simple electrospinning of Polydioxanone solution loaded with the chemodrug, Paclitaxel. The implants were subjected to the analysis of morphology, mechanical properties, degradation and drug release in phosphate buffer and patient-derived peritoneal drain fluid samples. In vivo studies were conducted by surgical knotting of these implants to the peritoneal wall of healthy mice. RESULTS Non-woven electrospun mats with a thickness of 0.65±0.07 mm, weighing ~ 20 mg were fabricated by electrospinning 15 w/v% polymer loaded with 10 w/w% drug. These implants possessing good mechanical integrity showed a drug entrapment efficiency of 87.82±2.54 %. In vitro drug release studies in phosphate buffer showed a sustained profile for ~4 weeks with a burst of 10 % of total drug content, whereas this amounted to >60% in patient samples. Mice implanted with these depots remained healthy during the study period. The biphasic drug release profile obtained in vivo showed a slow trend, with peritoneal lavage and tissues retaining good drug concentrations for a sustained period. CONCLUSION The results indicate that non-woven electrospun mats developed from biodegradable Polydioxanone polymer can serve as ideal candidates for easily implantable drug depots to address the challenges of peritoneal metastasis in ovarian cancer.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala-682041, India
| | - Deepthy Menon
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala-682041, India
| |
Collapse
|
56
|
Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials 2020; 240:119902. [PMID: 32105817 DOI: 10.1016/j.biomaterials.2020.119902] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022]
Abstract
Nanotechnology-based drug delivery platforms have been explored for cancer treatments and resulted in several nanomedicines in clinical uses and many in clinical trials. However, current nanomedicines have not met the expected clinical therapeutic efficacy. Thus, improving therapeutic efficacy is the foremost pressing task of nanomedicine research. An effective nanomedicine must overcome biological barriers to go through at least five steps to deliver an effective drug into the cytosol of all the cancer cells in a tumor. Of these barriers, nanomedicine extravasation into and infiltration throughout the tumor are the two main unsolved blockages. Up to now, almost all the nanomedicines are designed to rely on the high permeability of tumor blood vessels to extravasate into tumor interstitium, i.e., the enhanced permeability and retention (EPR) effect or so-called "passive tumor accumulation"; however, the EPR features are not so characteristic in human tumors as in the animal tumor models. Following extravasation, the large size nanomedicines are almost motionless in the densely packed tumor microenvironment, making them restricted in the periphery of tumor blood vessels rather than infiltrating in the tumors and thus inaccessible to the distal but highly malignant cells. Recently, we demonstrated using nanocarriers to induce transcytosis of endothelial and cancer cells to enable nanomedicines to actively extravasate into and infiltrate in solid tumors, which led to radically increased anticancer activity. In this perspective, we make a brief discussion about how active transcytosis can be employed to overcome the difficulties, as mentioned above, and solve the inherent extravasation and infiltration dilemmas of nanomedicines.
Collapse
|
57
|
Mahdavi M, Fattahi A, Tajkhorshid E, Nouranian S. Molecular Insights into the Loading and Dynamics of Doxorubicin on PEGylated Graphene Oxide Nanocarriers. ACS APPLIED BIO MATERIALS 2020; 3:1354-1363. [PMID: 33313482 DOI: 10.1021/acsabm.9b00956] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) simulations were performed to investigate the loading and dynamics of doxorubicin (DOX) anticancer drug on graphene oxide (GO) and poly(ethylene glycol) (PEG) decorated GO (PEGGO) nanocarriers in an aqueous environment at human body temperature (310 K) and physiological pH level of 7.4. Mechanisms of DOX adsorption on PEGGO as a function of PEG chain length were revealed. While the total DOX-nanocarrier interaction energy was the same for the DOX/GO (control), DOX/Sh-PEGGO (short PEG chains consisting of 15 repeat units), and DOX/L-PEGGO (long PEG chains consisting of 30 repeat units) within the margin of error, the PEG-DOX interactions increased with an increase in the PEG chain length. At the same time, the PEG-DOX solvent-accessible contact area almost doubled going from the short to long PEG chains. PEGylation of the GO effectively causes an increase in the average water density around the nanocarrier, which can act as a barrier, leading to the DOX migration to the solvated PEG-free part of the GO surface. This effect is more pronounced for shorter PEG chains. The DOX-DOX solvent-accessible contact area is smaller in the DOX/GO system, which means the drug molecules are less aggregated in this system. However, the level of DOX aggregation is slightly higher for the PEGGO systems. The computational results in this work shed light on the fact that increasing the PEG chain length benefits DOX loading on the nanocarrier, revealing an observation that is difficult to acertain through experiments. Moreover, a detailed picture is provided for the DOX adsorption and retention in PEGGO drug delivery systems, which would enable the researchers to improve the drug's circulation time, as well as its delivery and targeting efficiency.
Collapse
Affiliation(s)
- Mina Mahdavi
- Department of Chemical Engineering, The University of Mississippi, University, MS 38677, United States
| | - Ali Fattahi
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, United States
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Sasan Nouranian
- Department of Chemical Engineering, The University of Mississippi, University, MS 38677, United States
| |
Collapse
|
58
|
Singhvi G, Rapalli VK, Nagpal S, Dubey SK, Saha RN. Nanocarriers as Potential Targeted Drug Delivery for Cancer Therapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2020. [DOI: 10.1007/978-3-030-29207-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
59
|
Wu LP, Wang D, Li Z. Grand challenges in nanomedicine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110302. [PMID: 31753337 DOI: 10.1016/j.msec.2019.110302] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Nanotherapeutics and nanopharmaceuticals could achieve and facilitate earlier and more precise individual diagnosis, improve targeted therapies, reduce side effects, and enhance therapeutic monitoring. These advantages will improve quality of life, support a healthier and more independent aging population, and be instrumental in maximizing the cost-effectiveness of health care. However, the field of nanomedicine is at its early stage, most of the research still stays in the laboratory phase, and few success stories are translated into clinical trials and medical practice. This review will demonstrate the numerous challenges that are encountered during the development of commercial nanoparticle-based therapeutics and the possible solutions.
Collapse
Affiliation(s)
- Lin-Ping Wu
- Drug Discovery Pipeline, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Danyang Wang
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore
| |
Collapse
|
60
|
Egloff-Juras C, Bezdetnaya L, Dolivet G, Lassalle HP. NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green. Int J Nanomedicine 2019; 14:7823-7838. [PMID: 31576126 PMCID: PMC6768149 DOI: 10.2147/ijn.s207486] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/27/2019] [Indexed: 12/15/2022] Open
Abstract
Surgery is the frontline treatment for a large number of cancers. The objective of these excisional surgeries is the complete removal of the primary tumor with sufficient safety margins. Removal of the entire tumor is essential to improve the chances of a full recovery. To help surgeons achieve this objective, near-infrared fluorescence-guided surgical techniques are of great interest. The concomitant use of fluorescence and indocyanine green (ICG) has proved effective in the identification and characterization of tumors. Moreover, ICG is authorized by the Food and Drug Administration and the European Medicines Agency and is therefore the subject of a large number of studies. ICG is one of the most commonly used fluorophores in near-infrared fluorescence-guided techniques. However, it also has some disadvantages, such as limited photostability, a moderate fluorescence quantum yield, a high plasma protein binding rate, and undesired aggregation in aqueous solution. In addition, ICG does not specifically target tumor cells. One way to exploit the capabilities of ICG while offsetting these drawbacks is to develop high-performance near-infrared nanocomplexes formulated with ICG (with high selectivity for tumors, high tumor-to-background ratios, and minimal toxicity). In this review article, we focus on recent developments in ICG complexation strategies to improve near-infrared fluorescence-guided tumor surgery. We describe targeted and nontargeted ICG nanoparticle models and ICG complexation with targeting agents.
Collapse
Affiliation(s)
- Claire Egloff-Juras
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Université de Lorraine, CHRU-Nancy, Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Lina Bezdetnaya
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Gilles Dolivet
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Henri-Pierre Lassalle
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| |
Collapse
|
61
|
Kim DH, Khan H, Ullah H, Hassan STS, Šmejkal K, Efferth T, Mahomoodally MF, Xu S, Habtemariam S, Filosa R, Lagoa R, Rengasamy KR. MicroRNA targeting by quercetin in cancer treatment and chemoprotection. Pharmacol Res 2019; 147:104346. [PMID: 31295570 DOI: 10.1016/j.phrs.2019.104346] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023]
Abstract
A growing number of evidences from clinical and preclinical studies have shown that dysregulation of microRNA (miRNA) function contributes to the progression of cancer and thus miRNA can be an effective target in therapy. Dietary phytochemicals, such as quercetin, are natural products that have potential anti-cancer properties due to their proven antioxidant, anti-inflammatory, and anti-proliferative effects. Available experimental studies indicate that quercetin could modulate multiple cancer-relevant miRNAs including let-7, miR-21, miR-146a and miR-155, thereby inhibiting cancer initiation and development. This paper reviews the data supporting the use of quercetin for miRNA-mediated chemopreventive and therapeutic strategies in various cancers, with the aim to comprehensively understand its health-promoting benefits and pharmacological potential. Integration of technology platforms for miRNAs biomarker and drug discovery is also presented.
Collapse
Affiliation(s)
- Doo Hwan Kim
- Department of Bioresources and Food Science, Konkuk University, Seoul, 05029, South Korea
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Sherif T S Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | | | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services UK, University of Greenwich, UK
| | - Rosanna Filosa
- Institute of Food Sciences, National Research Council, Roma str. 64, Avellino, 83100, Italy; Consorzio Sannio Tech, AMP Biotec, Appia Str, Apollosa, Benevento, 82030, Italy
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Portugal; UCIBIO-Faculty of Science and Technology, University NOVA of Lisbon, Portugal.
| | - Kannan Rr Rengasamy
- Department of Bioresources and Food Science, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
62
|
Dufort S, Appelboom G, Verry C, Barbier EL, Lux F, Bräuer-Krisch E, Sancey L, Chang SD, Zhang M, Roux S, Tillement O, Le Duc G. Ultrasmall theranostic gadolinium-based nanoparticles improve high-grade rat glioma survival. J Clin Neurosci 2019; 67:215-219. [DOI: 10.1016/j.jocn.2019.05.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/28/2019] [Accepted: 05/27/2019] [Indexed: 11/29/2022]
|
63
|
Khalil IA, Sato Y, Harashima H. Recent advances in the targeting of systemically administered non-viral gene delivery systems. Expert Opin Drug Deliv 2019; 16:1037-1050. [PMID: 31432700 DOI: 10.1080/17425247.2019.1656196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Systemically administered non-viral gene delivery systems face multiple biological barriers that decrease their efficiency. These systems are rapidly cleared from the circulation and sufficient concentrations do not accumulate in diseased tissues. A number of targeting strategies can be used to provide for sufficient accumulation in the desired tissues to achieve a therapeutic effect. Areas covered: We discuss recent advances in the targeting of non-viral gene delivery systems to different tissues after systemic administration. We compare passive and active targeting applied for tumor delivery and propose some strategies that can be used to overcome the drawbacks of each case. We also discuss targeting the liver and lungs as two particularly important organs in gene therapy. Expert opinion: There is currently no optimum non-viral gene delivery system for targeting genes to specific tissues. The dose delivered to tumor tissues using passive targeting is low and shows a high patient variation. Although active targeting can enhance binding to specific cells, only a few reports are available to support its value in vivo. The design of smart nanocarriers for promoting active targeting is urgently needed and targeting the endothelium is a promising strategy for gene delivery to tumors as well as other organs.
Collapse
Affiliation(s)
- Ikramy A Khalil
- Faculty of Pharmaceutical Sciences, Hokkaido University , Sapporo , Japan.,Faculty of Pharmacy, Assiut University , Assiut , Egypt
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University , Sapporo , Japan
| | | |
Collapse
|
64
|
Khan H, Ullah H, Martorell M, Valdes SE, Belwal T, Tejada S, Sureda A, Kamal MA. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin Cancer Biol 2019; 69:200-211. [PMID: 31374244 DOI: 10.1016/j.semcancer.2019.07.023] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/20/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023]
Abstract
The conventional therapies for cancer have a major concern of poor accessibility to tumor tissues. Furthermore, the requirement of higher doses and non-selective nature of therapeutic are associated with a range of adverse drug reactions (ADRs). However, flavonoids are documented to be effective against various types of cancer, but they are not evaluated for their safety profile and tumor site-specific action. Low solubility, rapid metabolism and poor absorption of dietary flavonoids in gastrointestinal tract hinder their pharmacological potential. Some studies have also suggested that flavonoids may act as pro-oxidant in some cases and may interact with other therapeutic agents, especially through biotransformation. Nanocarriers can alter pharmacokinetics and pharmacodynamic profile of incorporating drug. Moreover, nanocarriers are designed for targeted drug delivery, improving the bioavailability of poorly water-soluble drugs, delivery of macromolecules to site of action within the cell, combining therapeutic agents with imaging techniques which may visualize the site of drug delivery and co-delivery of two or more drugs. Combining two or more anti-cancer agents can reduce ADRs and nanotechnology played a pivotal role in this regard. In vitro and in vivo studies have shown the potential of flavonoids nano-formulations, especially quercetin, naringenin, apigenin, catechins and fisetin in the prevention and treatment of several types of cancer. Similarly, clinical trials have been conducted using flavonoids alone or in combination, however, the nano-formulations effect still needs to be elucidated. This review focuses on the impact of flavonoids nano-formulations on the improvement of their bioavailability, therapeutic and safety profile and will open new insights in the field of drug discovery for cancer therapeutics.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan; Novel Global Community Educational Foundation, Australia.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan; Novel Global Community Educational Foundation, Australia
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, 4070386, Chile; Novel Global Community Educational Foundation, Australia
| | - Susana Esteban Valdes
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands, Ctra. Valldemossa, Km 7.5, Balears, Palma, 07122, Spain; Novel Global Community Educational Foundation, Australia
| | - Tarun Belwal
- Centre for Biodiversity Conservation and Management, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, India; Novel Global Community Educational Foundation, Australia
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, and CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Palma de Mallorca, E-07122, Spain; Novel Global Community Educational Foundation, Australia
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, Balearic Islands, E-07122, Spain; Novel Global Community Educational Foundation, Australia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah, 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
65
|
Franke H, Scholl R, Aigner A. Ricin and Ricinus communis in pharmacology and toxicology-from ancient use and "Papyrus Ebers" to modern perspectives and "poisonous plant of the year 2018". Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1181-1208. [PMID: 31359089 DOI: 10.1007/s00210-019-01691-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
While probably originating from Africa, the plant Ricinus communis is found nowadays around the world, grown for industrial use as a source of castor oil production, wildly sprouting in many regions, or used as ornamental plant. As regards its pharmacological utility, a variety of medical purposes of selected parts of the plant, e.g., as a laxative, an anti-infective, or an anti-inflammatory drug, have been described already in the sixteenth century BC in the famous Papyrus Ebers (treasured in the Library of the University of Leipzig). Quite in contrast, on the toxicological side, the native plant has become the "poisonous plant 2018" in Germany. As of today, a number of isolated components of the plant/seeds have been characterized, including, e.g., castor oil, ricin, Ricinus communis agglutinin, ricinin, nudiflorin, and several allergenic compounds. This review mainly focuses on the most toxic protein, ricin D, classified as a type 2 ribosome-inactivating protein (RIP2). Ricin is one of the most potent and lethal substances known. It has been considered as an important bioweapon (categorized as a Category B agent (second-highest priority)) and an attractive agent for bioterroristic activities. On the other hand, ricin presents great potential, e.g., as an anti-cancer agent or in cell-based research, and is even explored in the context of nanoparticle formulations in tumor therapy. This review provides a comprehensive overview of the pharmacology and toxicology-related body of knowledge on ricin. Toxicokinetic/toxicodynamic aspects of ricin poisoning and possibilities for analytical detection and therapeutic use are summarized as well.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| | - Reinhold Scholl
- Department of History, University of Leipzig, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Clinical Pharmacology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
66
|
Sweeney PW, d’Esposito A, Walker-Samuel S, Shipley RJ. Modelling the transport of fluid through heterogeneous, whole tumours in silico. PLoS Comput Biol 2019; 15:e1006751. [PMID: 31226169 PMCID: PMC6588205 DOI: 10.1371/journal.pcbi.1006751] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/12/2019] [Indexed: 11/18/2022] Open
Abstract
Cancers exhibit spatially heterogeneous, unique vascular architectures across individual samples, cell-lines and patients. This inherently disorganised collection of leaky blood vessels contribute significantly to suboptimal treatment efficacy. Preclinical tools are urgently required which incorporate the inherent variability and heterogeneity of tumours to optimise and engineer anti-cancer therapies. In this study, we present a novel computational framework which incorporates whole, realistic tumours extracted ex vivo to efficiently simulate vascular blood flow and interstitial fluid transport in silico for validation against in vivo biomedical imaging. Our model couples Poiseuille and Darcy descriptions of vascular and interstitial flow, respectively, and incorporates spatially heterogeneous blood vessel lumen and interstitial permeabilities to generate accurate predictions of tumour fluid dynamics. Our platform enables highly-controlled experiments to be performed which provide insight into how tumour vascular heterogeneity contributes to tumour fluid transport. We detail the application of our framework to an orthotopic murine glioma (GL261) and a human colorectal carcinoma (LS147T), and perform sensitivity analysis to gain an understanding of the key biological mechanisms which determine tumour fluid transport. Finally we mimic vascular normalization by modifying parameters, such as vascular and interstitial permeabilities, and show that incorporating realistic vasculatures is key to modelling the contrasting fluid dynamic response between tumour samples. Contrary to literature, we show that reducing tumour interstitial fluid pressure is not essential to increase interstitial perfusion and that therapies should seek to develop an interstitial fluid pressure gradient. We also hypothesise that stabilising vessel diameters and permeabilities are not key responses following vascular normalization and that therapy may alter interstitial hydraulic conductivity. Consequently, we suggest that normalizing the interstitial microenvironment may provide a more effective means to increase interstitial perfusion within tumours. The structure of tumours varies widely, with dense and chaotically-formed networks of blood vessels that differ between each individual tumour and even between different regions of the same tumour. This atypical environment can inhibit the delivery of anti-cancer therapies. Computational tools are urgently required which facilitate a deeper understanding of the relationship between blood vessel architectures and therapeutic response. We have developed a computational framework which integrates the complex tumour vascular architecture to predict fluid transport across all lengths scales in whole tumours. We apply our model to two tumour cell-lines and show that differences in their inherent vascular structures influence flow through cancerous tissue. We also use our platform to predict the fluid dynamic response following vascular normalization therapy in realistic, static tumour networks and show that the response is dependent on tumour vascular architecture. We hypothesise that therapy may alter the permeability of interstitial tissue to fluid transport and show that lowering interstitial fluid pressure is not a necessary therapeutic outcome to increase tumour perfusion.
Collapse
Affiliation(s)
- Paul W. Sweeney
- Mechanical Engineering, University College London, London, United Kingdom
| | - Angela d’Esposito
- Centre for Advanced Biomedical Engineering, University College London, London, United Kingdom
| | - Simon Walker-Samuel
- Centre for Advanced Biomedical Engineering, University College London, London, United Kingdom
| | - Rebecca J. Shipley
- Mechanical Engineering, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
67
|
Nanomechanical Analysis of Extracellular Matrix and Cells in Multicellular Spheroids. Cell Mol Bioeng 2019; 12:203-214. [PMID: 31719910 DOI: 10.1007/s12195-019-00577-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/20/2019] [Indexed: 01/09/2023] Open
Abstract
Introduction Over the last decade, atomic force microscopy (AFM) has played an important role in understanding nanomechanical properties of various cancer cell lines. This study is focused on Lewis lung carcinoma cell tumours as 3D multicellular spheroid (MS). Not much is know about the mechanical properties of the cells and the surrounding extracellular matrix (ECM) in rapidly growing tumours. Methods Depth-dependent indentation measurements were conducted with the AFM. Force-vs.-indentation curves were used to create stiffness profiles as a function of depth. Here studies were focused on the outer most layer, i.e., proliferation zone of the spheroid. Results Both surface and sub-surface stiffness profiles of MS were created. This study revealed three nanomechanical topographies, Type A-high modulus due to collagen fibers, Type B-high stiffness at cell membrane and ECM interface and Type C-increased modulus due to cell lying deep inside matrix at a depth of 1.35 μm. Both Type and Type-B topographies result from collagen-based structures in ECM. Conclusion This study has first time revealed mechanical constitution of an MS. Depth-dependent indentation studies have the revealed role of various molecular and cellular components responsible for providing mechanical stability to MS. Nanomechanical heterogeneities revealed in this investigation can shed new light in developing correct dosage regime for collagenase treatment of tumours and designing better controlled artificial extracellular matrix systems for replicating tissue growth in-vitro.
Collapse
|
68
|
Zhen J, Tian S, Liu Q, Zheng C, Zhang Z, Ding Y, An Y, Liu Y, Shi L. Nanocarriers responsive to a hypoxia gradient facilitate enhanced tumor penetration and improved anti-tumor efficacy. Biomater Sci 2019; 7:2986-2995. [PMID: 31106796 DOI: 10.1039/c9bm00461k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Because of their abnormal vasculature and the dense tumor extra-cellular matrix, solid tumors prevent the deep and uniform penetration of nanocarriers. Numerous studies have shown that nanocarriers with a positively charged surface exhibit enhanced tumor penetration. Therefore, a hypoxia responsive nanocarrier [responsive micelles (RMs)] was developed, which can gradually increase the positive surface charge by responding to hypoxia gradients, and eventually achieve deep penetration in tumors. The nanocarrier was composed of a poly(caprolactone) core and a mixed shell of poly(ethylene glycol) (PEG) and 4-nitrobenzyl chloroformate (NBCF)-modified polylysine (PLL). During the blood circulation, the NBCF-modified PLL was shielded by the PEG, which gave it the ability to inhibit its rapid removal by the immune system. After reaching the tumor, the hypoxia microenvironment triggered partial NBCF degradation that recovered the amine groups of PLL, leading to a remarkable change in the surface to a positively charged one that enabled the penetration of the nanocarrier into the tumor. As the nanocarrier penetrated into the interior of the tumor, the decrease in oxygen concentration led to the further degradation of the NBCF-modified PLL, resulting in the increase of the positive surface charge which further facilitated the deep penetration. The subsequent in vitro and in vivo experiments certified that RM/doxorubicin had a better penetration ability and improved inhibition efficacy on tumor tissues, which demonstrated its potential application in cancer therapy.
Collapse
Affiliation(s)
- Jingru Zhen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Shuang Tian
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Qi Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Chunxiong Zheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Zhanzhan Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Yuxun Ding
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Yingli An
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
69
|
Vendel E, Rottschäfer V, de Lange ECM. The need for mathematical modelling of spatial drug distribution within the brain. Fluids Barriers CNS 2019; 16:12. [PMID: 31092261 PMCID: PMC6521438 DOI: 10.1186/s12987-019-0133-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/19/2019] [Indexed: 12/17/2022] Open
Abstract
The blood brain barrier (BBB) is the main barrier that separates the blood from the brain. Because of the BBB, the drug concentration-time profile in the brain may be substantially different from that in the blood. Within the brain, the drug is subject to distributional and elimination processes: diffusion, bulk flow of the brain extracellular fluid (ECF), extra-intracellular exchange, bulk flow of the cerebrospinal fluid (CSF), binding and metabolism. Drug effects are driven by the concentration of a drug at the site of its target and by drug-target interactions. Therefore, a quantitative understanding is needed of the distribution of a drug within the brain in order to predict its effect. Mathematical models can help in the understanding of drug distribution within the brain. The aim of this review is to provide a comprehensive overview of system-specific and drug-specific properties that affect the local distribution of drugs in the brain and of currently existing mathematical models that describe local drug distribution within the brain. Furthermore, we provide an overview on which processes have been addressed in these models and which have not. Altogether, we conclude that there is a need for a more comprehensive and integrated model that fills the current gaps in predicting the local drug distribution within the brain.
Collapse
Affiliation(s)
- Esmée Vendel
- Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333CA, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333CA, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
70
|
Weng Q, Zhou L, Xia L, Zheng Y, Zhang X, Li F, Li Q. In vitro evaluation of FL118 and 9-Q20 cytotoxicity and cellular uptake in 2D and 3D different cell models. Cancer Chemother Pharmacol 2019; 84:527-537. [DOI: 10.1007/s00280-019-03846-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/22/2019] [Indexed: 12/29/2022]
|
71
|
Au JLS, Abbiati RA, Wientjes MG, Lu Z. Target Site Delivery and Residence of Nanomedicines: Application of Quantitative Systems Pharmacology. Pharmacol Rev 2019; 71:157-169. [PMID: 30846487 DOI: 10.1124/pr.118.016816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Quantitative systems pharmacology (QSP), an emerging field that entails using modeling and computation to interpret, interrogate, and integrate drug effects spanning from the molecule to the whole organism to forecast treatment outcomes, is expected to enhance the efficiency of drug development. Since late 2017, the U.S. Food and Drug Administration has advocated the use of an analogous approach of model-informed drug development. This review focuses on issues pertaining to nanosized medicines (NP) and the potential utility of QSP to determine NP delivery and residence at extracellular or intracellular targets in vivo. The kinetic processes governing NP disposition and transport, interactions with biologic matrix components, binding and internalization in cells, and intracellular trafficking are determined, sometimes jointly, by NP properties (e.g., dimension, materials, surface charge and modifications, shape, and geometry) and target tissue properties (e.g., perfusion status, vessel pore size and wall thickness, vessel and cell density, composition of extracellular matrix, and void volume fraction). These various determinants, together with the heterogeneous tissue structures and microenvironment factors in solid tumors, lead to environment-, spatial-, and time-dependent changes in NP concentrations that are difficult to predict. Adding to the complexity is the recent discovery that NP surface-coating protein corona, whose composition depends on NP properties and which undergoes continuous evolution with time and local protein environments, is yet another unpredictable variable. Examples are provided to demonstrate the potential utility of QSP-based multiscale modeling to capture the physicochemical and biologic processes in equations to enable computational studies of the key kinetic processes in cancer treatments.
Collapse
Affiliation(s)
- Jessie L-S Au
- Institute of Quantitative Systems Pharmacology, Carlsbad, California (J.L.-S.A., R.A.A., M.G.W., Z.L.); Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, Oklahoma (J.L.-S.A., R.A.A.); Optimum Therapeutics LLC, Carlsbad, California (J.L.-S.A., M.G.W., Z.L.); and College of Pharmacy, Taipei Medical University, Taipei, Taiwan, Republic of China (J.L.-S.A.)
| | - Roberto A Abbiati
- Institute of Quantitative Systems Pharmacology, Carlsbad, California (J.L.-S.A., R.A.A., M.G.W., Z.L.); Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, Oklahoma (J.L.-S.A., R.A.A.); Optimum Therapeutics LLC, Carlsbad, California (J.L.-S.A., M.G.W., Z.L.); and College of Pharmacy, Taipei Medical University, Taipei, Taiwan, Republic of China (J.L.-S.A.)
| | - M Guillaume Wientjes
- Institute of Quantitative Systems Pharmacology, Carlsbad, California (J.L.-S.A., R.A.A., M.G.W., Z.L.); Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, Oklahoma (J.L.-S.A., R.A.A.); Optimum Therapeutics LLC, Carlsbad, California (J.L.-S.A., M.G.W., Z.L.); and College of Pharmacy, Taipei Medical University, Taipei, Taiwan, Republic of China (J.L.-S.A.)
| | - Ze Lu
- Institute of Quantitative Systems Pharmacology, Carlsbad, California (J.L.-S.A., R.A.A., M.G.W., Z.L.); Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, Oklahoma (J.L.-S.A., R.A.A.); Optimum Therapeutics LLC, Carlsbad, California (J.L.-S.A., M.G.W., Z.L.); and College of Pharmacy, Taipei Medical University, Taipei, Taiwan, Republic of China (J.L.-S.A.)
| |
Collapse
|
72
|
Singh S, Maurya PK. Nanomaterials-Based siRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers. NANOTECHNOLOGY IN MODERN ANIMAL BIOTECHNOLOGY 2019. [PMCID: PMC7121101 DOI: 10.1007/978-981-13-6004-6_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Ribonucleic acid interference (RNAi) is a potential alternative therapeutic approach to knock down the overexpression of genes in several disorders especially cancers with underlying genetic dysfunctions. For silencing of specific genes involved in cell cycle, small/short interfering ribonucleic acids (siRNAs) are being used clinically. The siRNA-based RNAi is more efficient, specific and safe antisense technology than other RNAi approaches. The route of siRNA administration for siRNA therapy depends on the targeted site. However, certain hurdles like poor stability of siRNA, saturation, off-target effect, immunogenicity, anatomical barriers and non-targeted delivery restrict the successful siRNA therapy. Thus, advancement of an effective, secure, and long-term delivery system is prerequisite to the medical utilization of siRNA. Polycationic nanocarriers mediated targeted delivery system is an ideal system to remove these hurdles and to increase the blood retention time and rate of intracellular permeability. In this chapter, we will mainly discuss the different biocompatible, biodegradable, non-toxic (organic, inorganic and hybrid) nanocarriers that encapsulate and shield the siRNA from the different harsh environment and provides the increased systemic siRNA delivery.
Collapse
Affiliation(s)
- Sanjay Singh
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, Gujarat India
| | | |
Collapse
|
73
|
PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv Transl Res 2019; 9:721-734. [DOI: 10.1007/s13346-019-00631-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
74
|
Cheng X, Zeng X, Zheng Y, Wang X, Tang R. Surface-fluorinated and pH-sensitive carboxymethyl chitosan nanoparticles to overcome biological barriers for improved drug delivery in vivo. Carbohydr Polym 2019; 208:59-69. [PMID: 30658832 DOI: 10.1016/j.carbpol.2018.12.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 01/01/2023]
|
75
|
Suh S, Jo A, Traore MA, Zhan Y, Coutermarsh‐Ott SL, Ringel‐Scaia VM, Allen IC, Davis RM, Behkam B. Nanoscale Bacteria-Enabled Autonomous Drug Delivery System (NanoBEADS) Enhances Intratumoral Transport of Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801309. [PMID: 30775227 PMCID: PMC6364498 DOI: 10.1002/advs.201801309] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/28/2018] [Indexed: 05/04/2023]
Abstract
Cancer drug delivery remains a formidable challenge due to systemic toxicity and inadequate extravascular transport of nanotherapeutics to cells distal from blood vessels. It is hypothesized that, in absence of an external driving force, the Salmonella enterica serovar Typhimurium could be exploited for autonomous targeted delivery of nanotherapeutics to currently unreachable sites. To test the hypothesis, a nanoscale bacteria-enabled autonomous drug delivery system (NanoBEADS) is developed in which the functional capabilities of the tumor-targeting S. Typhimurium VNP20009 are interfaced with poly(lactic-co-glycolic acid) nanoparticles. The impact of nanoparticle conjugation is evaluated on NanoBEADS' invasion of cancer cells and intratumoral transport in 3D tumor spheroids in vitro, and biodistribution in a mammary tumor model in vivo. It is found that intercellular (between cells) self-replication and translocation are the dominant mechanisms of bacteria intratumoral penetration and that nanoparticle conjugation does not impede bacteria's intratumoral transport performance. Through the development of new transport metrics, it is demonstrated that NanoBEADS enhance nanoparticle retention and distribution in solid tumors by up to a remarkable 100-fold without requiring any externally applied driving force or control input. Such autonomous biohybrid systems could unlock a powerful new paradigm in cancer treatment by improving the therapeutic index of chemotherapeutic drugs and minimizing systemic side effects.
Collapse
Affiliation(s)
- SeungBeum Suh
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Ami Jo
- Department of Chemical EngineeringMacromolecules Innovation InstituteVirginia TechBlacksburgVA24061USA
| | - Mahama A. Traore
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Ying Zhan
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | | | | | - Irving C. Allen
- Department of Biomedical Sciences and PathobiologyVirginia TechBlacksburgVA24061USA
| | - Richey M. Davis
- Department of Chemical EngineeringMacromolecules Innovation InstituteVirginia TechBlacksburgVA24061USA
| | - Bahareh Behkam
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
- Macromolecules Innovation InstituteSchool of Biomedical Engineering & SciencesVirginia TechBlacksburgVA24061USA
| |
Collapse
|
76
|
Au JLS, Lu Z, Abbiati RA, Wientjes MG. Systemic Bioequivalence Is Unlikely to Equal Target Site Bioequivalence for Nanotechnology Oncologic Products. AAPS J 2019; 21:24. [PMID: 30710324 PMCID: PMC6432930 DOI: 10.1208/s12248-019-0296-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 11/30/2022] Open
Abstract
Approval of generic drugs by the US Food and Drug Administration (FDA) requires the product to be pharmaceutically equivalent to the reference listed drug (RLD) and demonstrate bioequivalence (BE) in effectiveness when administered to patients under the conditions in the RLD product labeling. Effectiveness is determined by drug exposure at the target sites. However, since such measurement is usually unavailable, systemic exposure is assumed to equal target site exposure and systemic BE to equal target site BE. This assumption, while it often applies to small molecule drug products that are readily dissolved in biological fluids and systemically absorbed, is unlikely to apply to nanotechnology products (NP) that exist as heterogeneous systems and are subjected to dimension- and material-dependent changes. This commentary provides an overview of the intersecting and spatial-dependent processes and variables governing the delivery and residence of oncologic NP in solid tumors. In order to provide a quantitative perspective of the collective effects of these processes, we used quantitative systems pharmacology (QSP) multi-scale modeling to capture the physicochemical and biological events on several scales (whole-body, organ/suborgan, cell/subcellular, spatial locations, time). QSP is an emerging field that entails using modeling and computation to facilitate drug development; an analogous approach (i.e., model-informed drug development) is advocated by to FDA. The QSP model-based simulations illustrated that small changes in NP attributes (e.g., size variations during manufacturing, interactions with proteins in biological milieu) could lead to disproportionately large differences in target site exposure, rending systemic BE unlikely to equal target site BE.
Collapse
Affiliation(s)
- Jessie L-S Au
- Institute of Quantitative Systems Pharmacology, 1815 Aston Avenue, suite 107, Carlsbad, California, 92008, USA.
- Optimum Therapeutics LLC, Carlsbad, California, 92008, USA.
- Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, Oklahoma, 73117, USA.
- College of Pharmacy, Taipei Medical University, Taipei, Taiwan, Republic of China.
| | - Ze Lu
- Institute of Quantitative Systems Pharmacology, 1815 Aston Avenue, suite 107, Carlsbad, California, 92008, USA
- Optimum Therapeutics LLC, Carlsbad, California, 92008, USA
| | - Roberto A Abbiati
- Institute of Quantitative Systems Pharmacology, 1815 Aston Avenue, suite 107, Carlsbad, California, 92008, USA
- Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, Oklahoma, 73117, USA
| | - M Guillaume Wientjes
- Institute of Quantitative Systems Pharmacology, 1815 Aston Avenue, suite 107, Carlsbad, California, 92008, USA
- Optimum Therapeutics LLC, Carlsbad, California, 92008, USA
| |
Collapse
|
77
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
78
|
Katti KV, Khoobchandani M, Thipe VC, Al-Yasiri AY, Katti KK, Loyalka SK, Sakr TM, Lugão AB. Prostate tumor therapy advances in nuclear medicine: green nanotechnology toward the design of tumor specific radioactive gold nanoparticles. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6320-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
79
|
Mathematical modelling of liposomal drug release to tumour. Math Biosci 2018; 306:82-96. [PMID: 30391313 DOI: 10.1016/j.mbs.2018.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/31/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022]
Abstract
The primary aim of liposomal drug delivery is to wisely modulate the drug delivery system in order to target diseased tissues. Temperature-sensitive liposomes function as a prospective weapon to combat toxic side effects corresponding to direct infusion of anticancer drugs. The main objective of the present study is to model liposomal drug release, subsequent drug transport in solid tumour along with integrated actions of tumour cell surface and endosomal events. Generalized mathematical model for liposomal drug delivery is proposed in which vital physical phenomena, such as kinetics of liposome-encapsulated drug, free drug release from liposomes, transport of both liposomal drug and free drug into the tumour compartment, plasma clearance, protein-drug interactions, drug-tumour cell receptor interactions, internalization of drug through endocytosis along with corresponding endosomal events. The model is expressed through a system of coupled partial differential equations along with appropriate set of initial, interface and boundary conditions which is solved numerically. Simulated results are compared with respective existing experimental data to demonstrate the potency and reliability of the proposed model. Graphical representations of time variant concentration profiles are illustrated to understand the underlying phenomena in details. Moreover, the model speaks for the sensitivity of important drug kinetic parameters, such as advection coefficients, drug release coefficient, plasma clearance rate and internalization parameters through graphical portrayals. The proposed model and the simulated results act as a tool in designing a more effective drug delivery system for cancerous tumours.
Collapse
|
80
|
Jo Y, Choi N, Kim K, Koo HJ, Choi J, Kim HN. Chemoresistance of Cancer Cells: Requirements of Tumor Microenvironment-mimicking In Vitro Models in Anti-Cancer Drug Development. Am J Cancer Res 2018; 8:5259-5275. [PMID: 30555545 PMCID: PMC6276092 DOI: 10.7150/thno.29098] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/04/2018] [Indexed: 01/09/2023] Open
Abstract
For decades, scientists have been using two-dimensional cell culture platforms for high-throughput drug screening of anticancer drugs. Growing evidence indicates that the results of anti-cancer drug screening vary with the cell culture microenvironment, and this variation has been proposed as a reason for the high failure rate of clinical trials. Since the culture condition-dependent drug sensitivity of anti-cancer drugs may negatively impact the identification of clinically effective drug candidates, more reliable in vitro cancer platforms are urgently needed. In this review article, we provide an overview of how cell culture conditions can alter drug efficacy and highlight the importance of developing more reliable cancer drug testing platforms for use in the drug discovery process. The environmental factors that can alter drug delivery and efficacy are reviewed. Based on these observations of chemoresistant tumor physiology, we summarize the recent advances in the fabrication of in vitro cancer models and the model-dependent cytotoxicity of anti-cancer drugs, with a particular focus on engineered environmental factors in these platforms. It is believed that more physiologically relevant cancer models can revolutionize the drug discovery process.
Collapse
|
81
|
Di Martino A, Trusova ME, Postnikov PS, Sedlarik V. Folic acid-chitosan-alginate nanocomplexes for multiple delivery of chemotherapeutic agents. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
82
|
Michna R, Gadde M, Ozkan A, DeWitt M, Rylander M. Vascularized microfluidic platforms to mimic the tumor microenvironment. Biotechnol Bioeng 2018; 115:2793-2806. [PMID: 29940072 DOI: 10.1002/bit.26778] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/20/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Microfluidic technology has led to the development of advanced in vitro tumor platforms that overcome the challenges of in vivo animal and in vitro two dimensional models. This paper presents platform designs and methods used to develop complex vascularized in vitro models to mimic the tumor microenvironment. Features of these platforms include a continuous, aligned endothelium that allows for cell-cell interactions between vasculature and tumor cells. A novel platform for fabrication of a single endothelialized microchannel encased within a collagen platform hosting breast cancer cells was developed and utilized to study the influence of cellular interaction on transport phenomenon through vasculature in a hyperpermeable tumor microenvironment. This platform relies on subtractive tissue engineering fabrication techniques. Through confocal imaging we have demonstrated that the platform produces enhanced vessel leakiness recapitulating physiological features of the tumor microenvironment. The influence of tumor endothelial interactions on transport of particles was also demonstrated. Additionally, we designed two more complex and intricate endothelialized microfluidic networks by combining lithographic techniques with additive tissue engineering methods. We created a network platform consisting of interconnected microchannels to model a highly vascularized system and successfully perfused the system with fluorescent particles. Finally, we developed a physiologically representative in vitro microfluidic platform with vasculature patterned from in vivo data showing the versatility of these systems to replicate the complex geometries of tumor microvasculature and dynamically measured particle transport. Overall, we have shown the ability to develop functional microfluidic vascular tumor platforms of varying complexities and demonstrated their utility for studying spatial particle transport within these systems.
Collapse
Affiliation(s)
- Rhys Michna
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas
| | - Manasa Gadde
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Alican Ozkan
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas
| | - Matthew DeWitt
- School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, Virginia
| | - Marissa Rylander
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas.,Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
83
|
Dey B, Sekhar GPR, Mukhopadhyay SK. In vivo mimicking model for solid tumor towards hydromechanics of tissue deformation and creation of necrosis. J Biol Phys 2018; 44:361-400. [PMID: 29808371 PMCID: PMC6082797 DOI: 10.1007/s10867-018-9496-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 04/13/2018] [Indexed: 01/17/2023] Open
Abstract
The present work addresses transvascular and interstitial fluid transport inside a solid tumor surrounded by normal tissue (close to an in vivo mimicking setup). In general, biological tissues behave like a soft porous material and show mechanical behavior towards the fluid motion through the interstitial space. In general, forces like viscous drag that are associated with the fluid flow may compress the tissue material. On the macroscopic level, we try to model the motion of fluids and macromolecules through the interstitial space of solid tumor and the normal tissue layer. The transvascular fluid transport is assumed to be governed by modified Starling's law. The poroelastohydrodynamics (interstitial hydrodynamics and the deformation of tissue material) inside the tumor and normal tissue regions is modeled using linearized biphasic mixture theory. Correspondingly, the velocity distribution of fluid is coupled to the displacement field of the solid phase (mainly cellular phase and extracellular matrix) in both the normal and tumor tissue regions. The corresponding velocity field is used within the transport reaction equation for fluids and macromolecules through interstitial space to get the overall solute (e.g., nutrients, drug, and other macromolecules) distribution. This study justifies that the presence of the normal tissue layer plays a significant role in delaying/assisting necrosis inside the tumor tissue. It is observed that the exchange process of fluids and macromolecules across the interface of the tumor and normal tissue affects the effectiveness factor corresponding to the tumor tissue.
Collapse
Affiliation(s)
- Bibaswan Dey
- SRM Research Institute, Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, 603203, Tamil Nadu, India.
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India.
| | - G P Raja Sekhar
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| | - Sourav Kanti Mukhopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| |
Collapse
|
84
|
Maniglio D, Benetti F, Minati L, Jovicich J, Valentini A, Speranza G, Migliaresi C. Theranostic gold-magnetite hybrid nanoparticles for MRI-guided radiosensitization. NANOTECHNOLOGY 2018; 29:315101. [PMID: 29762138 DOI: 10.1088/1361-6528/aac4ce] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The main limitation of drug-enhanced radiotherapy concerns the difficulty to evaluate the effectiveness of cancer targeting after drug administration hindering the standardization of therapies based on current radiosensitizing compounds. The challenge regards the development of systems able to combine imaging and radiotherapy enhancement in order to perform highly reliable cancer theragnosis. For these reasons, gold-magnetite hybrid nanoparticles (H-NPs) are proposed as innovative theranostic nanotools for imaging-guided radiosensitization in cancer treatment. In this work we propose a novel method for the synthesis of hydrophilic and superparamagnetic Tween20-stabilized gold-magnetite H-NPs. Morphology and chemical composition of nanoparticles were assessed by transmission electron microscopy, x-ray diffraction analysis and ion-coupled plasma optical emission spectroscopy. Colloidal stability and magnetic properties of nanoparticles were determined by dynamic light scattering and magnetometry. The potentialities of H-NPs for magnetic resonance imaging were studied using a human 4T-MRI scanner. Nanoparticles were proven to induce concentration-dependent contrast enhancement in T2*-weighted MR-images. The cytotoxicity, the cellular uptake and the radiosensitization activity of H-NPs were investigated in human osteosarcoma MG63 cell cultures and murine 3T3 fibroblasts, using specific bioassays and laser scanning confocal microscopy. H-NPs did not exhibit significant toxicity and were demonstrated to be internalized by cells. A significant x-ray enhancement at specific H-NPs exposure concentrations was evidenced on MG63 cell line.
Collapse
Affiliation(s)
- D Maniglio
- Department of Industrial Engineering and BIOtech Research Center, Via delle Regole 101, University of Trento, I-38123 Trento, Italy
| | | | | | | | | | | | | |
Collapse
|
85
|
Micellar Iron Oxide Nanoparticles Coated with Anti-Tumor Glycosides. NANOMATERIALS 2018; 8:nano8080567. [PMID: 30044386 PMCID: PMC6116232 DOI: 10.3390/nano8080567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
The synthesis procedure of nanoparticles based on thermal degradation produces organic solvent dispersible iron oxide nanoparticles (OA-IONP) with oleic acid coating and unique physicochemical properties of the core. Some glycosides with hydrophilic sugar moieties bound to oleyl hydrophobic chains have antimitotic activity on cancer cells but reduced in vivo applications because of the intrinsic low solubility in physiological media, and are prone to enzymatic hydrolysis. In this manuscript, we have synthetized and characterized OA-IONP-based micelles encapsulated within amphiphilic bioactive glycosides. The glycoside-coated IONP micelles were tested as Magnetic Resonance Imaging (MRI) contrast agents as well as antimitotics on rat glioma (C6) and human lung carcinoma (A549) cell lines. Micelle antimitotic activity was compared with the activity of the corresponding free glycosides. In general, all OA-IONP-based micellar formulations of these glycosides maintained their anti-tumor effects, and, in one case, showed an unusual therapeutic improvement. Finally, the micelles presented optimal relaxometric properties for their use as T2-weighed MRI contrast agents. Our results suggest that these bioactive hydrophilic nano-formulations are theranostic agents with synergistic properties obtained from two entities, which separately are not ready for in vivo applications, and strengthen the possibility of using biomolecules as both a coating for OA-IONP micellar stabilization and as drugs for therapy.
Collapse
|
86
|
Zhang H, Zhu Y, Shen Y. Microfluidics for Cancer Nanomedicine: From Fabrication to Evaluation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800360. [PMID: 29806174 DOI: 10.1002/smll.201800360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/12/2018] [Indexed: 05/22/2023]
Abstract
Self-assembled drug delivery systems (sDDSs), made from nanocarriers and drugs, are one of the major types of nanomedicines, many of which are in clinical use, under preclinical investigation, or in clinical trials. One of the hurdles of this type of nanomedicine in real applications is the inherent complexity of their fabrication processes, which generally lack precise control over the sDDS structures and the batch-to-batch reproducibility. Furthermore, the classic 2D in vitro cell model, monolayer cell culture, has been used to evaluate sDDSs. However, 2D cell culture cannot adequately replicate in vivo tissue-level structures and their highly complex dynamic 3D environments, nor can it simulate their functions. Thus, evaluations using 2D cell culture often cannot correctly correlate with sDDS behaviors and effects in humans. Microfluidic technology offers novel solutions to overcome these problems and facilitates studying the structure-performance relationships for sDDS developments. In this Review, recent advances in microfluidics for 1) fabrication of sDDSs with well-defined physicochemical properties, such as size, shape, rigidity, and drug-loading efficiency, and 2) fabrication of 3D-cell cultures as "tissue/organ-on-a-chip" platforms for evaluations of sDDS biological performance are in focus.
Collapse
Affiliation(s)
- Hao Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yifeng Zhu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Youqing Shen
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
87
|
Cacicedo ML, Islan GA, León IE, Álvarez VA, Chourpa I, Allard-Vannier E, García-Aranda N, Díaz-Riascos ZV, Fernández Y, Schwartz S, Abasolo I, Castro GR. Bacterial cellulose hydrogel loaded with lipid nanoparticles for localized cancer treatment. Colloids Surf B Biointerfaces 2018; 170:596-608. [PMID: 29975908 DOI: 10.1016/j.colsurfb.2018.06.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
The use of hybrid materials, where a matrix sustains nanoparticles controlling the release of the chemotherapeutic drug, could be beneficial for the treatment of primary tumors prior or after surgery. This localized chemotherapy would guarantee high drug concentrations at the tumor site while precluding systemic drug exposure minimizing undesirable side effects. We combined bacterial cellulose hydrogel (BC) and nanostructured lipid carriers (NLCs) including doxorubicin (Dox) as a drug model. NLCs loaded with cationic Dox (NLCs-H) or neutral Dox (NLCs-N) were fully characterized and their cell internalization and cytotoxic efficacy were evaluated in vitro against MDA-MB-231 cells. Thereafter, a fixed combination of NLCs-H and NLCs-N loaded into BC (BC-NLCs-NH) was assayed in vivo into an orthotopic breast cancer mouse model. NLCs-H showed low encapsulation efficiency (48%) and fast release of the drug while NLCs-N showed higher encapsulation (97%) and sustained drug release. Both NLCs internalized via endocytic pathway, while allowing a sustained release of the Dox, which in turn rendered IC50 values below of those of free Dox. Taking advantage of the differential drug release, a mixture of NLCs-N and NLCs-H was encapsulated into BC matrix (BC-NLCs-NH) and assayed in vivo, showing a significant reduction of tumor growth, metastasis incidence and local drug toxicities.
Collapse
Affiliation(s)
- M L Cacicedo
- Nanobiomaterials Lab, CINDEFI, School of Sciences, National University of La Plata-CONICET (CCT La Plata), 50 & 115 street, CP 1900 AJL, City of La Plata, Buenos Aires, Argentina
| | - G A Islan
- Nanobiomaterials Lab, CINDEFI, School of Sciences, National University of La Plata-CONICET (CCT La Plata), 50 & 115 street, CP 1900 AJL, City of La Plata, Buenos Aires, Argentina
| | - I E León
- Chemical Inorganic Center (CEQUINOR, UNLP, CONICET), School of Sciences, National University of La Plata-CONICET (CCT La Plata), CP 1900 AJL, City of La Plata, Buenos Aires, Argentina
| | - V A Álvarez
- CoMP (Composite Materials Group), Research Institute of Material Science and Technology (INTEMA), Engineering School, National University of Mar del Plata, Av. Colón 10890, B7608FDQ, Mar del Plata, Argentina
| | - I Chourpa
- Université Francois-Rabelais de Tours, EA6295″Nanomedicaments et Nanosondes", 31 Avenue Monge, 37200, Tours, France
| | - E Allard-Vannier
- Université Francois-Rabelais de Tours, EA6295″Nanomedicaments et Nanosondes", 31 Avenue Monge, 37200, Tours, France
| | - N García-Aranda
- Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Drug Delivery & Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Z V Díaz-Riascos
- Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Y Fernández
- Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Drug Delivery & Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - S Schwartz
- Drug Delivery & Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
| | - I Abasolo
- Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Drug Delivery & Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
| | - G R Castro
- Nanobiomaterials Lab, CINDEFI, School of Sciences, National University of La Plata-CONICET (CCT La Plata), 50 & 115 street, CP 1900 AJL, City of La Plata, Buenos Aires, Argentina.
| |
Collapse
|
88
|
Emi TT, Barnes T, Orton E, Reisch A, Tolouei AE, Madani SZM, Kennedy SM. Pulsatile Chemotherapeutic Delivery Profiles Using Magnetically Responsive Hydrogels. ACS Biomater Sci Eng 2018; 4:2412-2423. [PMID: 30019005 PMCID: PMC6039960 DOI: 10.1021/acsbiomaterials.8b00348] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022]
Abstract
![]()
Pulsatile
chemotherapeutic delivery profiles may provide a number
advantages by maximizing the anticancer toxicity of chemotherapeutics,
reducing off-target side effects, and combating adaptive resistance.
While these temporally dynamic deliveries have shown some promise,
they have yet to be clinically deployed from implantable hydrogels,
whose localized deliveries could further enhance therapeutic outcomes.
Here, several pulsatile chemotherapeutic delivery profiles were tested
on melanoma cell survival in vitro and compared to constant (flatline)
delivery profiles of the same integrated dose. Results indicated that
pulsatile delivery profiles were more efficient at killing melanoma
cells than flatline deliveries. Furthermore, results suggested that
parameters like the duration of drug “on” periods (pulse
width), delivery rates during those periods (pulse heights), and the
number/frequency of pulses could be used to optimize delivery profiles.
Optimization of pulsatile profiles at tumor sites in vivo would require
hydrogel materials capable of producing a wide variety of pulsatile
profiles (e.g., of different pulse heights, pulse widths, and pulse
numbers). This work goes on to demonstrate that magnetically responsive,
biphasic ferrogels are capable of producing pulsatile mitoxantrone
delivery profiles similar to those tested in vitro. Pulse parameters
such as the timing and rate of delivery during “on”
periods could be remotely regulated through the use of simple, hand-held
magnets. The timing of pulses was controlled simply by deciding when
and for how long to magnetically stimulate. The rate of release during
pulse “on” periods was a function of the magnetic stimulation
frequency. These findings add to the growing evidence that pulsatile
chemotherapeutic delivery profiles may be therapeutically beneficial
and suggest that magnetically responsive hydrogels could provide useful
tools for optimizing and clinically deploying pulsatile chemotherapeutic
delivery profiles.
Collapse
Affiliation(s)
- Tania T Emi
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Tanner Barnes
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island 028881, United States
| | - Emma Orton
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island 028881, United States
| | - Anne Reisch
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island 028881, United States
| | - Anita E Tolouei
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - S Zahra M Madani
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Stephen M Kennedy
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States.,Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island 028881, United States
| |
Collapse
|
89
|
Distribution of Glutathione-Stabilized Gold Nanoparticles in Feline Fibrosarcomas and Their Role as a Drug Delivery System for Doxorubicin-Preclinical Studies in a Murine Model. Int J Mol Sci 2018; 19:ijms19041021. [PMID: 29596317 PMCID: PMC5979397 DOI: 10.3390/ijms19041021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Feline injection site sarcomas (FISS) are malignant skin tumors with high recurrence rates despite the primary treatment of radical surgical resections. Adjunctive radiotherapy or chemotherapy with doxorubicin is mostly ineffective. Cellular and molecular causes of multidrug resistance, specific physio-chemical properties of solid tumors impairing drug transport, and the tumor microenvironment have been indicated for causing standard chemotherapy failure. Gold nanoparticles are promising imaging tools, nanotherapeutics, and drug delivery systems (DDS) for chemotherapeutics, improving drug transport within solid tumors. This study was conducted to assess the distribution of 4-nm glutathione-stabilized gold nanoparticles in FISS and their influence on kidney and liver parameters in nude mice. The role of gold nanoparticles as a doxorubicin DDS in FISS was examined to determine the potential reasons for failure to translate results from in vitro to in vivo studies. Grade III tumors characterized by a large area of necrosis at their core displayed positive immuneexpression of tumor-associated macrophages (TAM) at both the periphery and within the tumor core near the area of necrosis. Gold nanoparticles did not cause necrosis at the injection site and had no negative effect on liver and kidney parameters in nude mice. Gold nanoparticles accumulated in the tumor core and at the periphery and co-internalized with TAM—an important observation and potential therapeutic target warranting further investigation. The large area of necrosis and high immunoexpression of TAM, indicating “pro-tumor macrophages”, may be responsible for FISS tumor progression and therapeutic failure. However, further studies are required to test this hypothesis.
Collapse
|
90
|
Park JK, Kim Y, Kim H, Jeon J, Kim TW, Park JH, Hwnag YI, Lee WJ, Kang JS. The anti-fibrotic effect of GV1001 combined with gemcitabine on treatment of pancreatic ductal adenocarcinoma. Oncotarget 2018; 7:75081-75093. [PMID: 27655706 PMCID: PMC5342724 DOI: 10.18632/oncotarget.12057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
GV1001 is a telomerase-based cancer vaccine made of a 16-mer telomerase reverse transcriptase (TERT) peptide, and human TERT, the rate-limiting subunit of the telomerase complex, is an attractive target for cancer vaccination. The aim of this study was to evaluate the effect of telomerase peptide vaccination, GV1001 combined with gemcitabine in treatment of pancreatic ductal adenocarcinoma (PDAC). Human PDAC cell lines were used in vitro experiment and also, PDAC xenograft mice model was established using PANC1, AsPC1 and CD133+ AsPC1 (PDAC stem cell). Treatment groups were divided as follows; control, gemcitabine, GV1001, gemcitabine and GV1001 combination. The inflammatory cytokines were measured from the blood, and xenograft tumor specimens were evaluated. GV1001 treatment alone did not affect the proliferation or the apoptosis of PDAC cells. Gemcitabine alone and gemcitabine with GV1001 groups had significantly reduced in tumor size and showed abundant apoptosis compared to other treatment groups. Surprisingly, xenograft PDAC tumor specimens of gemcitabine alone group had been replaced by severe fibrosis whereas gemcitabine with GV1001 group had significantly less fibrosis. Blood levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β increased in gemcitabine alone group, however, it was decreased in gemcitabine with GV1001 group. GV1001 combined with gemcitabine treatment showed significant loss of fibrosis in tumor tissue as well as tumor cell death. Therefore, further investigation of GV1001 effect combined with gemcitabine treatment may give us useful insights to overcome the hurdle in anti-cancer drug delivery over massive fibrosis around PDACs.
Collapse
Affiliation(s)
- Joo Kyung Park
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yejin Kim
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyemin Kim
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Jane Jeon
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Wan Kim
- Department of Ophthalmology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Ji-Hong Park
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Young-Il Hwnag
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Wang Jae Lee
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
91
|
Biehl P, Von der Lühe M, Dutz S, Schacher FH. Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings. Polymers (Basel) 2018; 10:E91. [PMID: 30966126 PMCID: PMC6414908 DOI: 10.3390/polym10010091] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/04/2023] Open
Abstract
Throughout the last decades, magnetic nanoparticles (MNP) have gained tremendous interest in different fields of applications like biomedicine (e.g., magnetic resonance imaging (MRI), drug delivery, hyperthermia), but also more technical applications (e.g., catalysis, waste water treatment) have been pursued. Different surfactants and polymers are extensively used for surface coating of MNP to passivate the surface and avoid or decrease agglomeration, decrease or modulate biomolecule absorption, and in most cases increase dispersion stability. For this purpose, electrostatic or steric repulsion can be exploited and, in that regard, surface charge is the most important (hybrid) particle property. Therefore, polyelectrolytes are of great interest for nanoparticle coating, as they are able to stabilize the particles in dispersion by electrostatic repulsion due to their high charge densities. In this review article, we focus on polyzwitterions as a subclass of polyelectrolytes and their use as coating materials for MNP. In the context of biomedical applications, polyzwitterions are widely used as they exhibit antifouling properties and thus can lead to minimized protein adsorption and also long circulation times.
Collapse
Affiliation(s)
- Philip Biehl
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Moritz Von der Lühe
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany.
| | - Felix H Schacher
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
92
|
Meng Z, Kang Z, Sun C, Yang S, Zhao B, Feng S, Meng Q, Liu K. Enhanced gene transfection efficiency by use of peptide vectors containing laminin receptor-targeting sequence YIGSR. NANOSCALE 2018; 10:1215-1227. [PMID: 29292451 DOI: 10.1039/c7nr05843h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study presents the design and evaluation of a series of multifunctional peptides and their gene delivery abilities. The peptide sequences contained a cell-penetrating segment, six continuous histidine residues, a stearyl moiety and a laminin receptor-targeting segment. The YIGSR segment promoted cellular uptake through the interaction with laminin receptors on the surface of cells, which resulted in a great improvement in gene transfection efficiency. The conformation, particle size and zeta potential of peptide/DNA complexes were characterized via circular dichroism and dynamic light scattering. Their gene transfection efficiency was investigated by fluorescence-activated cell sorting and confocal microscopy. The transfection efficiency of the designed peptide vectors was higher than that of Lipo 2000. The peptide TAT-H6-K(C18)-YIGSR displayed transfection efficiencies at N/P ratios of 6, which was 3.5 and 7 times higher than that of Lipo 2000 in B16F10 and 293T cells, respectively. All peptides exhibited lower cytotoxicity than Lipo 2000 in B16F10 and 293T cells. In summary, the designed YIGSR-containing multifunctional peptide gene vectors promoted cellular uptake and gene transfection. Their in vivo transfection ability was investigated in zebrafish, and the transfection efficiency was determined by confocal microscopy and bioluminescence imaging. The peptide vectors, owing to their relatively short sequences and ease of functionalization, offer a promising approach for gene delivery because of their low cytotoxicity and high transfection efficiency.
Collapse
Affiliation(s)
- Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Optimization of Weight Ratio for DSPE-PEG/TPGS Hybrid Micelles to Improve Drug Retention and Tumor Penetration. Pharm Res 2018; 35:13. [PMID: 29302821 DOI: 10.1007/s11095-017-2340-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/24/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE To enhance therapeutic efficacy and prevent phlebitis caused by Asulacrine (ASL) precipitation post intravenous injection, ASL-loaded hybrid micelles with size below 40 nm were developed to improve drug retention and tumor penetration. METHODS ASL-micelles were prepared using different weight ratios of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethyleneglycol-2000 (DSPE-PEG2000) and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) polymers. Stability of micelles was optimized in terms of critical micelle concentration (CMC) and drug release properties. The encapsulation efficiency (EE) and drug loading were determined using an established dialysis-mathematic fitting method. Multicellular spheroids (MCTS) penetration and cytotoxicity were investigated on MCF-7 cell line. Pharmacokinetics of ASL-micelles was evaluated in rats with ASL-solution as control. RESULTS The ASL-micelles prepared with DSPE-PEG2000 and TPGS (1:1, w/w) exhibited small size (~18.5 nm), higher EE (~94.12%), better sustained in vitro drug release with lower CMC which may be ascribed to the interaction between drug and carriers. Compared to free ASL, ASL-micelles showed better MCTS penetration capacity and more potent cytotoxicity. Pharmacokinetic studies demonstrated that the half-life and AUC values of ASL-micelles were approximately 1.37-fold and 3.49-fold greater than that of free ASL. CONCLUSIONS The optimized DSPE-PEG2000/TPGS micelles could serve as a promising vehicle to improve drug retention and penetration in tumor.
Collapse
|
94
|
Wang Z, Wu Z, Liu J, Zhang W. Particle morphology: an important factor affecting drug delivery by nanocarriers into solid tumors. Expert Opin Drug Deliv 2017; 15:379-395. [PMID: 29264946 DOI: 10.1080/17425247.2018.1420051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Efficient delivery of drugs by nanoparticles deep into solid tumors is the precondition of valid cancer therapy. Despite profound understanding of the delivery of spherical nanoparticles into solid tumor attained, insufficient attention was paid to anisotropic particles. Actually, owing to their structural asymmetry, some non-spherical particles exhibit significant advantages over their spherical counterparts. AREAS COVERED This review will focus on particles with different shapes (discoidal particle, nanorod, filamentous particle, single-walled carbon nanotube) and the influence of their morphological characteristics (size, aspect ratio, rigidity) on the process of drug delivery to solid tumor in view of systemic circulation, transport from circulation system to tumor tissue, intratumoral transport and uptake by tumor cells, on the basis of introduction of challenges for drug delivery to solid tumor. In addition, the morphological characteristics will be briefly introduced to provide an understanding of anisotropic particle morphology. EXPERT OPINION Anisotropic particles exhibit desirable properties such as enhanced circulation time and efficient tumor penetration that could serve as an enlightenment in the exploitation of novel non-spherical nanocarriers to clinical therapy. Yet, current understanding of how anisotropic particles interact with organism is insufficient, which restricts the biomedical application of anisotropic particles. Further work is desired for the development of practical fabrication of anisotropic particles, quantitative analysis of particle morphology, as well as profound understanding of new targeting mechanism and intratumoral penetration of anisotropic particles.
Collapse
Affiliation(s)
- Zhen Wang
- a Department of Pharmaceutics , China Pharmaceutical University , Nanjing , PR China.,b Drug Discovery Department , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | - Zimei Wu
- c School of Pharmacy , University of Auckland , Auckland , New Zealand
| | - Jianping Liu
- a Department of Pharmaceutics , China Pharmaceutical University , Nanjing , PR China
| | - Wenli Zhang
- a Department of Pharmaceutics , China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
95
|
pH-responsive mesoporous ZSM-5 zeolites/chitosan core-shell nanodisks loaded with doxorubicin against osteosarcoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:142-153. [PMID: 29407142 DOI: 10.1016/j.msec.2017.12.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
Oral or intravenous chemotherapy is an important strategy to treat metastatic cancer, but it may cause systemic toxicity for healthy tissue. Herein, we for the first time fabricated mesoporous ZSM-5 zeolites/chitosan core-shell nanodisks loaded with doxorubicin (ZSM-5/CS/DOX) as drug delivery systems against osteosarcoma. The mesoporous ZSM-5 zeolites exhibited disk-like shapes with thicknesses of 100nm and diameters of 300nm, and the mesopores with pore sizes of 3.75nm were originated from desilication treatment. The pH-responsive ZSM-5/CS/DOX nanodisks possessed a great drug loading efficiency of 97.7%, and their controlled release trends of DOX were fitted well with the Korsmeyer-Peppas model. The DOX could be efficiently released the ZSM-5/CS/DOX nanodisks after cellular endocytosis and induced cancer cells apoptosis. Moreover, the pH-responsive drug carriers led to efficient tumor inhibition with low side effects, especially cardiac toxicity, as confirmed by pharmacokinetic study, serological examination and H&E staining assays. Therefore, the ZSM-5/CS/DOX nanodisks are a promising pH-responsive drug carrier for targeted cancer therapy.
Collapse
|
96
|
Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, Choi HG, Yong CS, Kim JO. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Arch Pharm Res 2017; 41:111-129. [PMID: 29214601 DOI: 10.1007/s12272-017-0995-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 01/05/2023]
|
97
|
Mishra DK, Balekar N, Mishra PK. Nanoengineered strategies for siRNA delivery: from target assessment to cancer therapeutic efficacy. Drug Deliv Transl Res 2017; 7:346-358. [PMID: 28050890 DOI: 10.1007/s13346-016-0352-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The promise of RNA interference (RNAi) technology in cancer therapeutics aims to deliver small interfering RNA (siRNA) for silencing of gene expression in cell type-specific pathway. However, the challenge for the delivery of stable siRNA is hindered by an immune-hostile tumor microenvironment and physiological barriers of the circulatory system. Therefore, the development and validation of safe, stable, and efficient nanoengineered delivery systems are highly essential for effective delivery of siRNA into cancer cells. This review focuses on gene-silencing mechanisms, challenges to siRNA delivery, design and delivery of nanocarrier systems, ongoing clinical trials, and translational prospects for siRNA-mediated cancer therapeutics.
Collapse
Affiliation(s)
| | - Neelam Balekar
- IPS Academy, College of Pharmacy, A. B. Road, Indore, MP, 452 012, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, National Institute for Research in Environmental Health, Indian Council of Medical Research (ICMR), Bhopal, India
| |
Collapse
|
98
|
Logsdon DK, Beeghly GF, Munson JM. Chemoprotection Across the Tumor Border: Cancer Cell Response to Doxorubicin Depends on Stromal Fibroblast Ratios and Interstitial Therapeutic Transport. Cell Mol Bioeng 2017; 10:463-481. [PMID: 31719872 PMCID: PMC6816789 DOI: 10.1007/s12195-017-0498-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Increasing evidence suggests that the tumor microenvironment reduces therapeutic delivery and may lead to chemotherapeutic resistance. At tumor borders, drug is convectively transported across a unique microenvironment composed of inverse gradients of stromal and tumor cells. These regions are particularly important to overall survival, as they are often missed through surgical intervention and contain many invading cells, often responsible for metastatic spread. An understanding of how cells in this tumor-border region respond to chemotherapy could begin to elucidate the role of transport and intercellular interactions in relation to chemoresistance. Here we examine the contribution of drug transport and stromal fibroblasts to breast cancer response to doxorubicin using in silico and in vitro models of the tumor-stroma interface. METHODS 2D culture systems were utilized to determine the effects of modulated ratios of fibroblasts and cancer cells on overall cancer cell viability. A homogenous breast mimetic in vitro 3D collagen I-based hydrogel system, with drug delivered via pressure driven flow (0.5 µm/s), was developed to determine the effects of transport and fibroblasts on doxorubicin treatment efficacy. Using a novel layered tumor bulk-to-stroma transition in vitro 3D hydrogel model, ratios of MDA-MB-231s and fibroblasts were seeded in successive layers creating cellular gradients, yielding insight into region specific cancer cell viability at the tumor border. In silico models, utilizing concentration profiles developed in COMSOL Multiphysics, were optimized for time dependent viability prediction and confirmation of in vitro findings. RESULTS In general, the addition of fibroblasts increased viability of cancer cells exposed to doxorubicin, indicating a protective effect of co-culture. More specifically, however, modulating ratios of cancer cells (MDA-MB-231):fibroblasts in 2D co-cultures, to mimic the tumor-stroma transition, resulted in a linear decrease in cancer cell viability from 77% (4:1) to 44% (1:4). Similar trends were seen in the breast-mimetic in vitro 3D collagen I-based homogenous hydrogel system. Our in vitro and in silico tumor border models indicate that MDA-MB-231s at the top of the gel, indicative of the tumor bulk, receive the greatest concentration of drug for the longest time, yet cellular death is lowest in this region. This trend is reversed for MDA-MB-231s alone. CONCLUSION Together, our data indicate that fibroblasts are chemoprotective at lower density, resulting in less tumor death in regions of higher chemotherapy concentration. Additionally, chemotherapeutic agent transport properties can modulate this effect.
Collapse
Affiliation(s)
- Daniel K. Logsdon
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Garrett F. Beeghly
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Jennifer M. Munson
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061 USA
| |
Collapse
|
99
|
|
100
|
Jablonowski LJ, Teraphongphom NT, Wheatley MA. Drug Delivery from a Multi-faceted Ultrasound Contrast Agent: Influence of Shell Composition. Mol Pharm 2017; 14:3448-3456. [DOI: 10.1021/acs.molpharmaceut.7b00451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lauren J. Jablonowski
- School
of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Nutte T. Teraphongphom
- School
of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Margaret A. Wheatley
- School
of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|