51
|
Ghimessy AK, Gellert A, Schlegl E, Hegedus B, Raso E, Barbai T, Timar J, Ostoros G, Megyesfalvi Z, Gieszer B, Moldvay J, Renyi-Vamos F, Lohinai Z, Hoda MA, Klikovits T, Klepetko W, Laszlo V, Dome B. KRAS Mutations Predict Response and Outcome in Advanced Lung Adenocarcinoma Patients Receiving First-Line Bevacizumab and Platinum-Based Chemotherapy. Cancers (Basel) 2019; 11:E1514. [PMID: 31600989 PMCID: PMC6827133 DOI: 10.3390/cancers11101514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 01/09/2023] Open
Abstract
Bevacizumab, combined with platinum-based chemotherapy, has been widely used in the treatment of advanced-stage lung adenocarcinoma (LADC). Although KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) mutation is the most common genetic alteration in human LADC and its role in promoting angiogenesis has been well established, its prognostic and predictive role in the above setting remains unclear. The association between KRAS exon 2 mutational status and clinicopathological variables including progression-free survival and overall survival (PFS and OS, respectively) was retrospectively analyzed in 501 Caucasian stage IIIB-IV LADC patients receiving first-line platinum-based chemotherapy (CHT) with or without bevacizumab (BEV). EGFR (epidermal growth factor receptor)-mutant cases were excluded. Of 247 BEV/CHT and 254 CHT patients, 95 (38.5%) and 75 (29.5%) had mutations in KRAS, respectively. KRAS mutation was associated with smoking (p = 0.008) and female gender (p = 0.002) in the BEV/CHT group. We found no difference in OS between patients with KRAS-mutant versus KRAS wild-type tumors in the CHT-alone group (p = 0.6771). Notably, patients with KRAS-mutant tumors demonstrated significantly shorter PFS (p = 0.0255) and OS (p = 0.0186) in response to BEV/CHT compared to KRAS wild-type patients. KRAS mutation was an independent predictor of shorter PFS (hazard ratio, 0.597; p = 0.011) and OS (hazard ratio, 0.645; p = 0.012) in the BEV/CHT group. G12D KRAS-mutant patients receiving BEV/CHT showed significantly shorter PFS (3.7 months versus 8.27 months in the G12/13x group; p = 0.0032) and OS (7.2 months versus 16.1 months in the G12/13x group; p = 0.0144). In this single-center, retrospective study, KRAS-mutant LADC patients receiving BEV/CHT treatment exhibited inferior PFS and OS compared to those with KRAS wild-type advanced LADC. G12D mutations may define a subset of KRAS-mutant LADC patients unsuitable for antiangiogenic therapy with BEV.
Collapse
Affiliation(s)
- Aron Kristof Ghimessy
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary.
| | - Aron Gellert
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary.
| | - Erzsebet Schlegl
- Department of Tumor Biology, National Koranyi Institute of Pulmonology-Semmelweis University, 1122 Budapest, Hungary.
| | - Balazs Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, 45239 Essen, Germany.
- nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary.
- Tumor Progression Research Group, Hungarian Academy of Sciences-Semmelweis University, 1091 Budapest, Hungary.
| | - Erzsebet Raso
- nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary.
- Tumor Progression Research Group, Hungarian Academy of Sciences-Semmelweis University, 1091 Budapest, Hungary.
| | - Tamas Barbai
- nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary.
- Tumor Progression Research Group, Hungarian Academy of Sciences-Semmelweis University, 1091 Budapest, Hungary.
| | - Jozsef Timar
- nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary.
- Tumor Progression Research Group, Hungarian Academy of Sciences-Semmelweis University, 1091 Budapest, Hungary.
| | - Gyula Ostoros
- th Department of Pulmonology, National Koranyi Institute of Pulmonology, 1122 Budapest, Hungary.
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary.
- Department of Tumor Biology, National Koranyi Institute of Pulmonology-Semmelweis University, 1122 Budapest, Hungary.
| | - Balazs Gieszer
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary.
| | - Judit Moldvay
- Department of Tumor Biology, National Koranyi Institute of Pulmonology-Semmelweis University, 1122 Budapest, Hungary.
- nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary.
- MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences, 1091 Budapest, Hungary.
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary.
| | - Zoltan Lohinai
- Department of Tumor Biology, National Koranyi Institute of Pulmonology-Semmelweis University, 1122 Budapest, Hungary.
| | - Mir Alireza Hoda
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, A-1090 Vienna, Austria.
| | - Thomas Klikovits
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, A-1090 Vienna, Austria.
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, A-1090 Vienna, Austria.
| | - Viktoria Laszlo
- Department of Tumor Biology, National Koranyi Institute of Pulmonology-Semmelweis University, 1122 Budapest, Hungary.
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, A-1090 Vienna, Austria.
| | - Balazs Dome
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary.
- Department of Tumor Biology, National Koranyi Institute of Pulmonology-Semmelweis University, 1122 Budapest, Hungary.
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
52
|
Strand MS, Krasnick BA, Pan H, Zhang X, Bi Y, Brooks C, Wetzel C, Sankpal N, Fleming T, Goedegebuure SP, DeNardo DG, Gillanders WE, Hawkins WG, Wickline SA, Fields RC. Precision delivery of RAS-inhibiting siRNA to KRAS driven cancer via peptide-based nanoparticles. Oncotarget 2019; 10:4761-4775. [PMID: 31413817 PMCID: PMC6677667 DOI: 10.18632/oncotarget.27109] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/29/2019] [Indexed: 12/13/2022] Open
Abstract
Over 95% of pancreatic adenocarcinomas (PDACs), as well as a large fraction of other tumor types, such as colorectal adenocarcinoma, are driven by KRAS activation. However, no direct RAS inhibitors exist for cancer therapy. Furthermore, the delivery of therapeutic agents of any kind to PDAC in particular has been hindered by the extensive desmoplasia and resultant drug delivery challenges that accompanies these tumors. Small interfering RNA (siRNA) is a promising modality for anti-neoplastic therapy due to its precision and wide range of potential therapeutic targets. Unfortunately, siRNA therapy is limited by low serum half-life, vulnerability to intracellular digestion, and transient therapeutic effect. We assessed the ability of a peptide based, oligonucleotide condensing, endosomolytic nanoparticle (NP) system to deliver siRNA to KRAS-driven cancers. We show that this peptide-based NP is avidly taken up by cancer cells in vitro, can deliver KRAS-specific siRNA, inhibit KRAS expression, and reduce cell viability. We further demonstrate that this system can deliver siRNA to the tumor microenvironment, reduce KRAS expression, and inhibit pancreatic cancer growth in vivo. In a spontaneous KPPC model of PDAC, this system effectively delivers siRNA to stroma-rich tumors. This model has the potential for translational relevance for patients with KRAS driven solid tumors.
Collapse
Affiliation(s)
- Matthew S Strand
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Bradley A Krasnick
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hua Pan
- University of South Florida Health, Division of Cardiovascular Sciences, Tampa, FL, USA
| | - Xiuli Zhang
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ye Bi
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Candace Brooks
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Christopher Wetzel
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Narendra Sankpal
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph Hospital, Phoenix, AZ, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Samuel A Wickline
- University of South Florida Health, Division of Cardiovascular Sciences, Tampa, FL, USA
| | - Ryan C Fields
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
53
|
Abstract
Large-scale sequencing of human tumours has uncovered a vast array of genomic alterations. Genetically engineered mouse models recapitulate many features of human cancer and have been instrumental in assigning biological meaning to specific cancer-associated alterations. However, their time, cost and labour-intensive nature limits their broad utility; thus, the functional importance of the majority of genomic aberrations in cancer remains unknown. Recent advances have accelerated the functional interrogation of cancer-associated alterations within in vivo models. Specifically, the past few years have seen the emergence of CRISPR-Cas9-based strategies to rapidly generate increasingly complex somatic alterations and the development of multiplexed and quantitative approaches to ascertain gene function in vivo.
Collapse
|
54
|
Murugan AK, Grieco M, Tsuchida N. RAS mutations in human cancers: Roles in precision medicine. Semin Cancer Biol 2019; 59:23-35. [PMID: 31255772 DOI: 10.1016/j.semcancer.2019.06.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/13/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Ras proteins play a crucial role as a central component of the cellular networks controlling a variety of signaling pathways that regulate growth, proliferation, survival, differentiation, adhesion, cytoskeletal rearrangements and motility of a cell. Almost, 4 decades passed since Ras research was started and ras genes were originally discovered as retroviral oncogenes. Later on, mutations of the human RAS genes were linked to tumorigenesis. Genetic analyses found that RAS is one of the most deregulated oncogenes in human cancers. In this review, we summarize the pioneering works which allowed the discovery of RAS oncogenes, the finding of frequent mutations of RAS in various human cancers, the role of these mutations in tumorigenesis and mutation-activated signaling networks. We further describe the importance of RAS mutations in personalized or precision medicine particularly in molecular targeted therapy, as well as their use as diagnostic and prognostic markers as therapeutic determinants in human cancers.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 Japan.
| | - Michele Grieco
- DiSTABiF, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, via Vivaldi 43, Caserta 81100 Italy
| | - Nobuo Tsuchida
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 Japan.
| |
Collapse
|
55
|
Ji J, Yuan J, Guo X, Ji R, Quan Q, Ding M, Li X, Liu Y. Harmine suppresses hyper-activated Ras-MAPK pathway by selectively targeting oncogenic mutated Ras/Raf in Caenorhabditis elegans. Cancer Cell Int 2019; 19:159. [PMID: 31198408 PMCID: PMC6558680 DOI: 10.1186/s12935-019-0880-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Mutationally activated Ras proteins are closely linked to a wide variety of human cancers. Hence, there has been an intensive search for anti-Ras therapies for cancer treatment. The sole Ras gene, which encodes LET-60, in Caenorhabditis elegans regulates vulval development. While the loss of let-60 function leads to failure of vulva formation, the let-60(n1046gf) allele, which contains a missense mutation mimicking a Ras codon 13 mutation found in human cancers, results in extra vulval tissue, a phenotype named Muv (multiple vulvas). Methods By taking advantage of the easy-to-score Muv phenotype of let-60(n1046gf), we used a step-by-step screening approach (from crude extract to active fraction to active natural compound) to search for inhibitors of oncogenic Ras. Mutants of other key components in the Ras-mitogen-activated protein kinase (MAPK) pathway were used to identify other candidate targets. Results The natural compound harmine, isolated from the plant Peganum harmala, was found to suppress the Muv phenotype of let-60(n1046gf). In addition, harmine targets the hyper-activation of the Ras/MAPK pathway specifically caused by overexpression or mutated forms of LET-60/Ras and its immediate downstream molecule LIN-45/Raf. Finally, harmine can be absorbed into the worm body and probably functions in its native form, rather than requiring metabolic activation. Conclusion In sum, we have revealed for the first time the anti-Ras activity of harmine in a C. elegans model system. Our results revealed the potential anti-cancer mechanism of harmine, which may be useful for the treatment of specific human cancers that are associated with oncogenic Ras mutations.
Collapse
Affiliation(s)
- Jiaojiao Ji
- 1Beijing University of Chinese Medicine, Beijing, China
| | - Jiang Yuan
- 1Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Guo
- 1Beijing University of Chinese Medicine, Beijing, China
| | - Ruifang Ji
- 1Beijing University of Chinese Medicine, Beijing, China
| | - Qinghua Quan
- 1Beijing University of Chinese Medicine, Beijing, China
| | - Mei Ding
- 2State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Li
- 2State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yonggang Liu
- 1Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
56
|
Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, Singh B, Rosenblum M, Fuchs E. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell 2019; 177:1172-1186.e14. [PMID: 31031009 PMCID: PMC6525024 DOI: 10.1016/j.cell.2019.03.025] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/11/2019] [Accepted: 03/11/2019] [Indexed: 12/29/2022]
Abstract
Our bodies are equipped with powerful immune surveillance to clear cancerous cells as they emerge. How tumor-initiating stem cells (tSCs) that form and propagate cancers equip themselves to overcome this barrier remains poorly understood. To tackle this problem, we designed a skin cancer model for squamous cell carcinoma (SCC) that can be effectively challenged by adoptive cytotoxic T cell transfer (ACT)-based immunotherapy. Using single-cell RNA sequencing (RNA-seq) and lineage tracing, we found that transforming growth factor β (TGF-β)-responding tSCs are superior at resisting ACT and form the root of tumor relapse. Probing mechanism, we discovered that during malignancy, tSCs selectively acquire CD80, a surface ligand previously identified on immune cells. Moreover, upon engaging cytotoxic T lymphocyte antigen-4 (CTLA4), CD80-expressing tSCs directly dampen cytotoxic T cell activity. Conversely, upon CTLA4- or TGF-β-blocking immunotherapies or Cd80 ablation, tSCs become vulnerable, diminishing tumor relapse after ACT treatment. Our findings place tSCs at the crux of how immune checkpoint pathways are activated.
Collapse
Affiliation(s)
- Yuxuan Miao
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Hanseul Yang
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - John Levorse
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Shaopeng Yuan
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Lisa Polak
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Megan Sribour
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Bhuvanesh Singh
- Department of Surgery, Laboratory of Epithelial Cancer Biology and Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Michael Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
57
|
Modelling of Protein Kinase Signaling Pathways in Melanoma and Other Cancers. Cancers (Basel) 2019; 11:cancers11040465. [PMID: 30987166 PMCID: PMC6520749 DOI: 10.3390/cancers11040465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 12/18/2022] Open
Abstract
Melanoma is a highly aggressive tumor with a strong dependence on intracellular signaling pathways. Almost half of all melanomas are driven by mutations in the v-Raf murine sarcoma viral oncogene homolog B (BRAF) with BRAFV600E being the most prevalent mutation. Recently developed targeted treatment directed against mutant BRAF and downstream mitogen-activated protein kinase (MAPK) MAP2K1 (also termed MEK1) have improved overall survival of melanoma patients. However, the MAPK signaling pathway is far more complex than a single chain of consecutively activated MAPK enzymes and it contains nested-, inherent feedback mechanisms, crosstalk with other signaling pathways, epigenetic regulatory mechanisms, and interacting small non-coding RNAs. A more complete understanding of this pathway is needed to better understand melanoma development and mechanisms of treatment resistance. Network reconstruction, analysis, and modelling under the systems biology paradigm have been used recently in different malignant tumors including melanoma to analyze and integrate 'omics' data, formulate mechanistic hypotheses on tumorigenesis, assess and personalize anticancer therapy, and propose new drug targets. Here we review the current knowledge of network modelling approaches in cancer with a special emphasis on melanoma.
Collapse
|
58
|
Tirella A, Kloc-Muniak K, Good L, Ridden J, Ashford M, Puri S, Tirelli N. CD44 targeted delivery of siRNA by using HA-decorated nanotechnologies for KRAS silencing in cancer treatment. Int J Pharm 2019; 561:114-123. [DOI: 10.1016/j.ijpharm.2019.02.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
|
59
|
Khan AQ, Kuttikrishnan S, Siveen KS, Prabhu KS, Shanmugakonar M, Al-Naemi HA, Haris M, Dermime S, Uddin S. RAS-mediated oncogenic signaling pathways in human malignancies. Semin Cancer Biol 2019; 54:1-13. [PMID: 29524560 DOI: 10.1016/j.semcancer.2018.03.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
Abstract
Abnormally activated RAS proteins are the main oncogenic driver that governs the functioning of major signaling pathways involved in the initiation and development of human malignancies. Mutations in RAS genes and or its regulators, most frequent in human cancers, are the main force for incessant RAS activation and associated pathological conditions including cancer. In general, RAS is the main upstream regulator of the highly conserved signaling mechanisms associated with a plethora of important cellular activities vital for normal homeostasis. Mutated or the oncogenic RAS aberrantly activates a web of interconnected signaling pathways including RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase), phosphoinositide-3 kinase (PI3K)/AKT (protein kinase B), protein kinase C (PKC) and ral guanine nucleotide dissociation stimulator (RALGDS), etc., leading to uncontrolled transcriptional expression and reprogramming in the functioning of a range of nuclear and cytosolic effectors critically associated with the hallmarks of carcinogenesis. This review highlights the recent literature on how oncogenic RAS negatively use its signaling web in deregulating the expression and functioning of various effector molecules in the pathogenesis of human malignancies.
Collapse
Affiliation(s)
- Abdul Q Khan
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shilpa Kuttikrishnan
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Kodappully S Siveen
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Hamda A Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Translational Medicine Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
60
|
Orlando E, Aebersold DM, Medová M, Zimmer Y. Oncogene addiction as a foundation of targeted cancer therapy: The paradigm of the MET receptor tyrosine kinase. Cancer Lett 2019; 443:189-202. [DOI: 10.1016/j.canlet.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
|
61
|
Wang M, Wu W, Li L, He J, Huang S, Chen S, Chen J, Long M, Yang S, Li P. Analysis of the miRNA Expression Profiles in the Zearalenone-Exposed TM3 Leydig Cell Line. Int J Mol Sci 2019; 20:E635. [PMID: 30717214 PMCID: PMC6386897 DOI: 10.3390/ijms20030635] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/13/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022] Open
Abstract
Zearalenone (ZEN), an important environmental pollutant, can cause serious harm to human and animal health. The aim of our study was to examine the effect of zearalenone (ZEN) on miRNA expression profiles in the mouse Leydig cell line (TM3 Leydig cell line) by miRNA sequencing. The effect of ZEN on the viability of TM3 Leydig cells was verified by Cell Counting Kit-8 (CCK-8). MiRNA sequencing was performed 24 h after the exposure of TM3 Leydig cells with 50 μmol/L of ZEN. Bioinformatics predicted the miRNA target genes, performed Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and conducted miRNA-gene-pathway mapping to show the relationship between miRNA, the target gene, and the signalling pathway. The expression levels of miRNA and the miRNA target genes associated with ZEN toxicology were verified by quantitative real-time polymerase chain reaction. The miRNA sequencing revealed a significant change (p < 0.05) in the 197 miRNAs in the ZEN-treated and control groups, among which 86 were up-regulated and 111 were down-regulated. GO analysis of the target genes of these miRNAs indicated various biological functions. KEGG analysis showed that the predicted miRNA target genes were involved in signalling pathways, such as cancer, apoptosis, and oxidation, namely, the Ras signalling pathway, Rap1 signalling pathway, PI3K-AKT signalling pathway, Foxo signalling pathway, and AMPK signalling pathway. These results suggest that ZEN, as an estrogen-like toxin, is regulated by microRNAs. Our results can help to examine the toxicological effects of ZEN-regulated miRNAs on germ cells.
Collapse
Affiliation(s)
- Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Weiwei Wu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China.
| | - Lin Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
- Fushun modern agriculture and poverty alleviation and development promotion center, Fushun 113006, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Sheng Huang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Si Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
62
|
Anelli V, Ordas A, Kneitz S, Sagredo LM, Gourain V, Schartl M, Meijer AH, Mione M. Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression. Front Genet 2018; 9:675. [PMID: 30619488 PMCID: PMC6305343 DOI: 10.3389/fgene.2018.00675] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Ras genes are among the most commonly mutated genes in human cancer; yet our understanding of their oncogenic activity at the molecular mechanistic level is incomplete. To identify downstream events that mediate ras-induced cellular transformation in vivo, we analyzed global microRNA expression in three different models of Ras-induction and tumor formation in zebrafish. Six microRNAs were found increased in Ras-induced melanoma, glioma and in an inducible model of ubiquitous Ras expression. The upregulation of the microRNAs depended on the activation of the ERK and AKT pathways and to a lesser extent, on mTOR signaling. Two Ras-induced microRNAs (miR-146a and 193a) target Jmjd6, inducing downregulation of its mRNA and protein levels at the onset of Ras expression during melanoma development. However, at later stages of melanoma progression, jmjd6 levels were found elevated. The dynamic of Jmjd6 levels during progression of melanoma in the zebrafish model suggests that upregulation of the microRNAs targeting Jmjd6 may be part of an anti-cancer response. Indeed, triple transgenic fish engineered to express a microRNA-resistant Jmjd6 from the onset of melanoma have increased tumor burden, higher infiltration of leukocytes and shorter melanoma-free survival. Increased JMJD6 expression is found in several human cancers, including melanoma, suggesting that the up-regulation of Jmjd6 is a critical event in tumor progression. The following link has been created to allow review of record GSE37015: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjcrbiuicyyqgpc&acc=GSE37015.
Collapse
Affiliation(s)
| | - Anita Ordas
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Susanne Kneitz
- Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Leonel Munoz Sagredo
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Faculty of Medicine, University of Valparaiso, Valparaíso, Chile
| | - Victor Gourain
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX, United States
| | | | | |
Collapse
|
63
|
Xu Z, Duan F, Lu H, Abdulkadhim Dragh M, Xia Y, Liang H, Hong L. UBIAD1 suppresses the proliferation of bladder carcinoma cells by regulating H-Ras intracellular trafficking via interaction with the C-terminal domain of H-Ras. Cell Death Dis 2018; 9:1170. [PMID: 30518913 PMCID: PMC6281600 DOI: 10.1038/s41419-018-1215-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
UbiA prenyltransferase domain-containing protein 1 (UBIAD1) plays a key role in biosynthesis of vitamin K2 and coenzyme Q10 using geranylgeranyl diphosphate (GGPP). However, the mechanism by which UBIAD1 participates in tumorigenesis remains unknown. This study show that UBIAD1 interacts with H-Ras, retains H-Ras in the Golgi apparatus, prevents H-Ras trafficking from the Golgi apparatus to the plasma membrane, blocks the aberrant activation of Ras/MAPK signaling, and inhibits the proliferation of bladder cancer cells. In addition, GGPP was required to maintain the function of UBIAD1 in regulating the Ras/ERK signaling pathway. A Drosophila model was employed to confirm the function of UBIAD1/HEIX in vivo. The activation of Ras/ERK signaling at the plasma membrane induced melanotic masses in Drosophila larvae. Our study suggests that UBIAD1 serves as a tumor suppressor in cancer and tentatively reveals the underlying mechanism of melanotic mass formation in Drosophila.
Collapse
Affiliation(s)
- Zhiliang Xu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fengsen Duan
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huiai Lu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Maytham Abdulkadhim Dragh
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yanzhi Xia
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ling Hong
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
64
|
Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxid Redox Signal 2018; 29:1553-1588. [PMID: 29186971 DOI: 10.1089/ars.2017.7441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression. These investigations have challenged the established dogma of ROS as agents of cell death by demonstrating a secondary function that fuels cell proliferation and survival. Studies have thus identified (onco)proteins (Bcl-2, STAT3/5, RAS, Rac1, and Myc) in manipulating ROS level as well as exploiting an altered redox environment to create a milieu conducive for cancer formation and progression. CRITICAL ISSUES Despite these advances, drug resistance and its association with an altered redox metabolism continue to pose a challenge at the mechanistic and clinical levels. Therefore, identifying specific signatures, altered protein expressions, and modifications as well as protein-protein interplay/function could not only enhance our understanding of the redox networks during cancer initiation and progression but will also provide novel targets for designing specific therapeutic strategies. FUTURE DIRECTIONS Not only a heightened realization is required to unravel various gene/protein networks associated with cancer formation and progression, particularly from the redox standpoint, but there is also a need for developing more sensitive tools for assessing cancer redox metabolism in clinical settings. This review attempts to summarize our current knowledge of the crosstalk between oncoproteins and ROS in promoting cancer cell survival and proliferation and treatment strategies employed against these oncoproteins. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jolin Xiao Hui Lai
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jie Qing Eu
- 2 Cancer Science Institute , Singapore, Singapore
| | - Gregory Lucien Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,3 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
65
|
Wang M, Wang N, Tong J, Pan J, Long M, Li P. Transcriptome analysis to identify the Ras and Rap1 signal pathway genes involved in the response of TM3 Leydig cells exposed to zearalenone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31230-31239. [PMID: 30191529 DOI: 10.1007/s11356-018-3129-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
The mechanism of action of zearalenone (ZEA) in inducing germ cell tumors is unclear, and little is known about the change in the transcriptome of germ cells after ZEA exposure. To explore the molecular basis of the ZEA oncogene, we examined the median lethal concentration (50 μmol/L) and pro-apoptotic effect of ZEA on TM3 Leydig cells by MTT and TUNEL assay. Subsequently, we investigated the genetic changes in the transcriptome of TM3 Leydig cells exposed to 50 μmol/L ZEA. The transcriptome sequencing results show that 772 genes are significantly down-regulated, while 204 genes are significantly up-regulated. Gene ontology (GO) enrichment analysis shows that ZEA has a major effect on the connective function, cell composition, cell cycle, and energy metabolism of the TM3 Leydig cells. Using the results of the GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, we select the Ras and Rap1 signaling pathways that are closely related to the occurrence of cancer. The differentially expressed genes visualized in the KEGG pathway were selected for RT-qPCR differential gene expression validation. The results show that the gene expression results are consistent with the transcriptome sequencing results. This study thus provides a theoretical molecular basis for the mechanism of ZEA carcinogenesis.
Collapse
Affiliation(s)
- Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jingjing Tong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiawen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
66
|
O'Bryan JP. Pharmacological targeting of RAS: Recent success with direct inhibitors. Pharmacol Res 2018; 139:503-511. [PMID: 30366101 DOI: 10.1016/j.phrs.2018.10.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023]
Abstract
RAS has long been viewed as undruggable due to its lack of deep pockets for binding of small molecule inhibitors. However, recent successes in the development of direct RAS inhibitors suggest that the goal of pharmacological inhibition of RAS in patients may soon be realized. This review will discuss the role of RAS in cancer, the approaches used to develop direct RAS inhibitors, and highlight recent successes in the development of novel RAS inhibitory compounds that target different aspects of RAS biochemistry. In particular, this review will discuss the different properties of RAS that have been targeted by various inhibitors including membrane localization, the different activation states of RAS, effector binding, and nucleotide exchange. In addition, this review will highlight the recent success with mutation-specific inhibitors that exploit the unique biochemistry of the RAS(G12C) mutant. Although this mutation in KRAS accounts for 11% of all KRAS mutations in cancer, it is the most prominent KRAS mutant in lung cancer suggesting that G12C-specific inhibitors may provide a new approach for treating the subset of lung cancer patients harboring this mutant allele. Finally, this review will discuss the involvement of dimerization in RAS function and highlight new approaches to inhibit RAS by specifically interfering with RAS:RAS interaction.
Collapse
Affiliation(s)
- John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, United States.
| |
Collapse
|
67
|
Stout MC, Campbell PM. RASpecting the oncogene: New pathways to therapeutic advances. Biochem Pharmacol 2018; 158:217-228. [PMID: 30352234 DOI: 10.1016/j.bcp.2018.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
RAS is the most commonly mutated driver of tumorigenesis, seen in about 30% of all cancer cases. There is a subset of tumors termed RAS-driven cancers in which RAS mutation or overactivation is evident, including as much as 95% in pancreatic and 50% in colon cancer. RAS is a family of small membrane bound GTPases that act as a signaling node to control both normal and cancer biology. Since the discovery of RAS' overall prominence in many tumor types and specifically in RAS-dependent cancers, it has been an obvious therapeutic target for drug development. However, RAS has proved a very elusive target, and after a few prominent RAS targeted drugs failed in clinical trials after decades of research, RAS was termed "undruggable" and research in this field was greatly hampered. An increase in knowledge about basic RAS biology has led to a resurgence in the generation of novel therapeutics targeting RAS signaling utilizing various and distinct approaches. These new drugs target RAS activation directly, block downstream signaling effectors and inhibit proper post-translational processing and trafficking/recycling of RAS. This review will cover how these new drugs were developed and how they have fared in preclinical and early phase clinical trials.
Collapse
Affiliation(s)
- Matthew C Stout
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, USA; Cancer Biology Program and The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, USA
| | - Paul M Campbell
- Cancer Biology Program and The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, USA.
| |
Collapse
|
68
|
Hodges TR, Abbott JR, Little AJ, Sarkar D, Salovich JM, Howes JE, Akan DT, Sai J, Arnold AL, Browning C, Burns MC, Sobolik T, Sun Q, Beesetty Y, Coker JA, Scharn D, Stadtmueller H, Rossanese OW, Phan J, Waterson AG, McConnell DB, Fesik SW. Discovery and Structure-Based Optimization of Benzimidazole-Derived Activators of SOS1-Mediated Nucleotide Exchange on RAS. J Med Chem 2018; 61:8875-8894. [PMID: 30205005 PMCID: PMC8314423 DOI: 10.1021/acs.jmedchem.8b01108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Son of sevenless homologue 1 (SOS1) is a guanine nucleotide exchange factor that catalyzes the exchange of GDP for GTP on RAS. In its active form, GTP-bound RAS is responsible for numerous critical cellular processes. Aberrant RAS activity is involved in ∼30% of all human cancers; hence, SOS1 is an attractive therapeutic target for its role in modulating RAS activation. Here, we describe a new series of benzimidazole-derived SOS1 agonists. Using structure-guided design, we discovered small molecules that increase nucleotide exchange on RAS in vitro at submicromolar concentrations, bind to SOS1 with low double-digit nanomolar affinity, rapidly enhance cellular RAS-GTP levels, and invoke biphasic signaling changes in phosphorylation of ERK 1/2. These compounds represent the most potent series of SOS1 agonists reported to date.
Collapse
Affiliation(s)
- Timothy R. Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Jason R. Abbott
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Andrew J. Little
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Dhruba Sarkar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - James M. Salovich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Jennifer E. Howes
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Denis T. Akan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Jiqing Sai
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Allison L. Arnold
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Carrie Browning
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Michael C. Burns
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Tammy Sobolik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Qi Sun
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Yugandhar Beesetty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Jesse A. Coker
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Dirk Scharn
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Heinz Stadtmueller
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Olivia W. Rossanese
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Jason Phan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Alex G. Waterson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232-0146, USA
| | - Darryl B. McConnell
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232-0146, USA
| |
Collapse
|
69
|
Ras proteins as therapeutic targets. Biochem Soc Trans 2018; 46:1303-1311. [PMID: 30154091 DOI: 10.1042/bst20170529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/25/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
Oncogenic mutations in RAS genes underlie the pathogenesis of many human tumours, and there has been intense effort for over 30 years to develop effective and tolerated targeted therapeutics for patients with Ras-driven cancers. This review summarises the progress made in Ras drug discovery, highlighting some of the recent developments in directly targeting Ras through advances in small molecule drug design and novel therapeutic strategies.
Collapse
|
70
|
Abstract
Due to the clonal nature of human leukemia evolution, all leukemic cells carry the same leukemia-initiating genetic lesions, independently of the intrinsic tumoral cellular heterogeneity. However, the latest findings have shown that the mode of action of oncogenes is not homogeneous throughout the developmental history of leukemia. Studies on different types of hematopoietic tumors have shown that the contribution of oncogenes to leukemia is mainly mediated through the epigenetic reprogramming of the leukemia-initiating target cell. This driving of cancer by a malignant epigenetic stem cell rewiring is, however, not exclusive of the hematopoietic system, but rather represents a common tumoral mechanism that is also at work in epithelial tumors. Tumoral epigenetic reprogramming is therefore a new type of interaction between genes and their target cells, in which the action of the oncogene modifies the epigenome to prime leukemia development by establishing a new pathological tumoral cellular identity. This reprogramming may remain latent until it is triggered by either endogenous or environmental stimuli. This new view on the making of leukemia not only reveals a novel function for oncogenes, but also provides evidence for a previously unconsidered model of leukemogenesis, in which the programming of the leukemia cellular identity has already occurred at the level of stem cells, therefore showing a role for oncogenes in the timing of leukemia initiation.
Collapse
|
71
|
Burns MC, Howes JE, Sun Q, Little AJ, Camper DV, Abbott JR, Phan J, Lee T, Waterson AG, Rossanese OW, Fesik SW. High-throughput screening identifies small molecules that bind to the RAS:SOS:RAS complex and perturb RAS signaling. Anal Biochem 2018; 548:44-52. [PMID: 29444450 PMCID: PMC5935105 DOI: 10.1016/j.ab.2018.01.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 01/08/2023]
Abstract
K-RAS is mutated in approximately 30% of human cancers, resulting in increased RAS signaling and tumor growth. Thus, RAS is a highly validated therapeutic target, especially in tumors of the pancreas, lung and colon. Although directly targeting RAS has proven to be challenging, it may be possible to target other proteins involved in RAS signaling, such as the guanine nucleotide exchange factor Son of Sevenless (SOS). We have previously reported on the discovery of small molecules that bind to SOS1, activate SOS-mediated nucleotide exchange on RAS, and paradoxically inhibit ERK phosphorylation (Burns et al., PNAS, 2014). Here, we describe the discovery of additional, structurally diverse small molecules that also bind to SOS1 in the same pocket and elicit similar biological effects. We tested >160,000 compounds in a fluorescence-based assay to assess their effects on SOS-mediated nucleotide exchange. X-Ray structures revealed that these small molecules bind to the CDC25 domain of SOS1. Compounds that elicited high levels of nucleotide exchange activity in vitro increased RAS-GTP levels in cells, and inhibited phospho ERK levels at higher treatment concentrations. The identification of structurally diverse SOS1 binding ligands may assist in the discovery of new molecules designed to target RAS-driven tumors.
Collapse
Affiliation(s)
- Michael C Burns
- Vanderbilt University School of Medicine, Department of Biochemistry, 2215 Garland Ave., 607 Light Hall, Nashville, TN, 37232-0146, USA
| | - Jennifer E Howes
- Vanderbilt University School of Medicine, Department of Biochemistry, 2215 Garland Ave., 607 Light Hall, Nashville, TN, 37232-0146, USA
| | - Qi Sun
- Vanderbilt University School of Medicine, Department of Biochemistry, 2215 Garland Ave., 607 Light Hall, Nashville, TN, 37232-0146, USA
| | - Andrew J Little
- Vanderbilt University School of Medicine, Department of Biochemistry, 2215 Garland Ave., 607 Light Hall, Nashville, TN, 37232-0146, USA
| | - DeMarco V Camper
- Vanderbilt University School of Medicine, Department of Biochemistry, 2215 Garland Ave., 607 Light Hall, Nashville, TN, 37232-0146, USA
| | - Jason R Abbott
- Vanderbilt University School of Medicine, Department of Biochemistry, 2215 Garland Ave., 607 Light Hall, Nashville, TN, 37232-0146, USA
| | - Jason Phan
- Vanderbilt University School of Medicine, Department of Biochemistry, 2215 Garland Ave., 607 Light Hall, Nashville, TN, 37232-0146, USA
| | - Taekyu Lee
- Vanderbilt University School of Medicine, Department of Biochemistry, 2215 Garland Ave., 607 Light Hall, Nashville, TN, 37232-0146, USA
| | - Alex G Waterson
- Vanderbilt University School of Medicine, Department of Biochemistry, 2215 Garland Ave., 607 Light Hall, Nashville, TN, 37232-0146, USA
| | - Olivia W Rossanese
- Vanderbilt University School of Medicine, Department of Biochemistry, 2215 Garland Ave., 607 Light Hall, Nashville, TN, 37232-0146, USA
| | - Stephen W Fesik
- Vanderbilt University School of Medicine, Department of Biochemistry, 2215 Garland Ave., 607 Light Hall, Nashville, TN, 37232-0146, USA.
| |
Collapse
|
72
|
Howes JE, Akan DT, Burns MC, Rossanese OW, Waterson AG, Fesik SW. Small Molecule-Mediated Activation of RAS Elicits Biphasic Modulation of Phospho-ERK Levels that Are Regulated through Negative Feedback on SOS1. Mol Cancer Ther 2018; 17:1051-1060. [PMID: 29440291 DOI: 10.1158/1535-7163.mct-17-0666] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/11/2017] [Accepted: 01/11/2018] [Indexed: 11/16/2022]
Abstract
Oncogenic mutation of RAS results in aberrant cellular signaling and is responsible for more than 30% of all human tumors. Therefore, pharmacologic modulation of RAS has attracted great interest as a therapeutic strategy. Our laboratory has recently discovered small molecules that activate Son of Sevenless (SOS)-catalyzed nucleotide exchange on RAS and inhibit downstream signaling. Here, we describe how pharmacologically targeting SOS1 induced biphasic modulation of RAS-GTP and ERK phosphorylation levels, which we observed in a variety of cell lines expressing different RAS-mutant isoforms. We show that compound treatment caused an increase in phosphorylation at ERK consensus motifs on SOS1 that was not observed with the expression of a non-phosphorylatable S1178A SOS1 mutant or after pretreatment with an ERK inhibitor. Phosphorylation at S1178 on SOS1 is known to inhibit the association between SOS1 and GRB2 and disrupt SOS1 membrane localization. Consistent with this, we show that wild-type SOS1 and GRB2 dissociated in a time-dependent fashion in response to compound treatment, and conversely, this interaction was enhanced with the expression of an S1178A SOS1 mutant. Furthermore, in cells expressing either S1178A SOS1 or a constitutively membrane-bound CAAX box tagged SOS1 mutant, we observed elevated RAS-GTP levels over time in response to compound, as compared with the biphasic changes in RAS-GTP exhibited in cells expressing wild-type SOS1. These results suggest that small molecule targeting of SOS1 can elicit a biphasic modulation of RAS-GTP and phospho-ERK levels through negative feedback on SOS1 that regulates the interaction between SOS1 and GRB2. Mol Cancer Ther; 17(5); 1051-60. ©2018 AACR.
Collapse
Affiliation(s)
- Jennifer E Howes
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Denis T Akan
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Michael C Burns
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | | | - Alex G Waterson
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
73
|
Shah S, Brock EJ, Ji K, Mattingly RR. Ras and Rap1: A tale of two GTPases. Semin Cancer Biol 2018; 54:29-39. [PMID: 29621614 DOI: 10.1016/j.semcancer.2018.03.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
Ras oncoproteins play pivotal roles in both the development and maintenance of many tumor types. Unfortunately, these proteins are difficult to directly target using traditional pharmacological strategies, in part due to their lack of obvious binding pockets or allosteric sites. This obstacle has driven a considerable amount of research into pursuing alternative ways to effectively inhibit Ras, examples of which include inducing mislocalization to prevent Ras maturation and inactivating downstream proteins in Ras-driven signaling pathways. Ras proteins are archetypes of a superfamily of small GTPases that play specific roles in the regulation of many cellular processes, including vesicle trafficking, nuclear transport, cytoskeletal rearrangement, and cell cycle progression. Several other superfamily members have also been linked to the control of normal and cancer cell growth and survival. For example, Rap1 has high sequence similarity to Ras, has overlapping binding partners, and has been demonstrated to both oppose and mimic Ras-driven cancer phenotypes. Rap1 plays an important role in cell adhesion and integrin function in a variety of cell types. Mechanistically, Ras and Rap1 cooperate to initiate and sustain ERK signaling, which is activated in many malignancies and is the target of successful therapeutics. Here we review the role activated Rap1 in ERK signaling and other downstream pathways to promote invasion and cell migration and metastasis in various cancer types.
Collapse
Affiliation(s)
- Seema Shah
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ethan J Brock
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Raymond R Mattingly
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
74
|
Ross SJ, Revenko AS, Hanson LL, Ellston R, Staniszewska A, Whalley N, Pandey SK, Revill M, Rooney C, Buckett LK, Klein SK, Hudson K, Monia BP, Zinda M, Blakey DC, Lyne PD, Macleod AR. Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci Transl Med 2018; 9:9/394/eaal5253. [PMID: 28615361 DOI: 10.1126/scitranslmed.aal5253] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/21/2017] [Indexed: 12/28/2022]
Abstract
Activating mutations in KRAS underlie the pathogenesis of up to 20% of human tumors, and KRAS is one of the most frequently mutated genes in cancer. Developing therapeutics to block KRAS activity has proven difficult, and no direct inhibitor of KRAS function has entered clinical trials. We describe the preclinical evaluation of AZD4785, a high-affinity constrained ethyl-containing therapeutic antisense oligonucleotide (ASO) targeting KRAS mRNA. AZD4785 potently and selectively depleted cellular KRAS mRNA and protein, resulting in inhibition of downstream effector pathways and antiproliferative effects selectively in KRAS mutant cells. AZD4785-mediated depletion of KRAS was not associated with feedback activation of the mitogen-activated protein kinase (MAPK) pathway, which is seen with RAS-MAPK pathway inhibitors. Systemic delivery of AZD4785 to mice bearing KRAS mutant non-small cell lung cancer cell line xenografts or patient-derived xenografts resulted in inhibition of KRAS expression in tumors and antitumor activity. The safety of this approach was demonstrated in mice and monkeys with KRAS ASOs that produced robust target knockdown in a broad set of tissues without any adverse effects. Together, these data suggest that AZD4785 is an attractive therapeutic for the treatment of KRAS-driven human cancers and warrants further development.
Collapse
|
75
|
Liu S, Iaria J, Simpson RJ, Zhu HJ. Ras enhances TGF-β signaling by decreasing cellular protein levels of its type II receptor negative regulator SPSB1. Cell Commun Signal 2018. [PMID: 29534718 PMCID: PMC5850916 DOI: 10.1186/s12964-018-0223-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Transformation by oncogene Ras overcomes TGF-β mediated growth inhibition in epithelial cells. However, it cooperates with each other to mediate epithelial to mesenchymal transition (EMT). The mechanism of how these two pathways interact with each other is controversial. Methods Molecular techniques were used to engineer expression plasmids for Ras, SPRY, TGF-β receptors, type I and II and ubiquitin. Immunoprecipitation and western blots were employed to determine protein-protein interactions, preotein levels, protein phosphorylation while immunofluorecesent staining for molecular co-localization. TGF-β signalling activities is also determined by its luciferase reporter assay. Trans-well assays were used to measure cell migration and invasion. Results Ras interacts with the SPSB1’s SPRY domain to enhance TGF-β signaling. Ras interacts and colocalizes with the TGF-β type II receptor’s (TβRII) negative regulator SPSB1 on the cell membrane, consequently promoting SPSB1 protein degradation via enhanced mono- and di-ubiquitination. Reduced SPSB1 levels result in the stablization of TβRII, in turn the increase of receptor levels significantly enhance Smad2/3 phosphorylation and signaling. Importantly, forced expression of SPSB1 in Ras transformed cells suppresses TGF-β signaling and its mediated migration and invasion. Conclusion Ras positively cooperates with TGF-β signaling by reducing the cellular protein levels of TβRII negative regualtor SPSB1. Electronic supplementary material The online version of this article (10.1186/s12964-018-0223-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Surgery (RMH), The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC, 3010, Australia
| | - Josephine Iaria
- Department of Surgery (RMH), The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC, 3010, Australia
| | - Richard J Simpson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Hong-Jian Zhu
- Department of Surgery (RMH), The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC, 3010, Australia.
| |
Collapse
|
76
|
Abstract
The MYC proto-oncogene is a gene product that coordinates the transcriptional regulation of a multitude of genes that are essential to cellular programs required for normal as well as neoplastic cellular growth and proliferation, including cell cycle, self-renewal, survival, cell growth, metabolism, protein and ribosomal biogenesis, and differentiation. Here, we propose that MYC regulates these programs in a manner that is coordinated with a global influence on the host immune response. MYC had been presumed to contribute to tumorigenesis through tumor cell-intrinsic influences. More recently, MYC expression in tumor cells has been shown to regulate the tumor microenvironment through effects on both innate and adaptive immune effector cells and immune regulatory cytokines. Then, MYC was shown to regulate the expression of the immune checkpoint gene products CD47 and programmed death-ligand 1. Similarly, other oncogenes, which are known to modulate MYC, have been shown to regulate immune checkpoints. Hence, MYC may generally prevent highly proliferative cells from eliciting an immune response. MYC-driven neoplastic cells have coopted this mechanism to bypass immune detection. Thus, MYC inactivation can restore the immune response against a tumor. MYC-induced tumors may be particularly sensitive to immuno-oncology therapeutic interventions.
Collapse
|
77
|
Integration of zebrafish fin regeneration genes with expression data of human tumors in silico uncovers potential novel melanoma markers. Oncotarget 2018; 7:71567-71579. [PMID: 27689402 PMCID: PMC5342102 DOI: 10.18632/oncotarget.12257] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 11/29/2022] Open
Abstract
Tissue regeneration requires expression of a large, unknown number of genes to initiate and maintain cellular processes such as proliferation, extracellular matrix synthesis, differentiation and migration. A unique model to simulate this process in a controlled manner is the re-growth of the caudal fin of zebrafish after amputation. Within this tissue stem cells differentiate into fibroblasts, epithelial and endothelial cells as well as melanocytes. Many genes implicated in the regeneration process are deregulated in cancer. We therefore undertook a systematic gene expression study to identify genes upregulated during the re-growth of caudal fin tissue. By applying a high stringency cut-off value of 4-fold change, we identified 54 annotated genes significantly overexpressed in regenerating blastema. Further bioinformatics data mining studies showed that 22 out of the 54 regeneration genes where overexpressed in melanoma compared to normal skin or other cancers. Whereas the role of TNC (tenascin C) and FN1 (fibronectin 1) in melanoma development is well documented, implication of MARCKS, RCN3, BAMBI, PEA3/ETV4 and the FK506 family members FKBP7, FKBP10 and FKBP11 in melanoma progression is unclear. Corresponding proteins were detected in melanoma tissue but not in normal skin. High expression of FKBP7, DPYSL5 and MDK was significantly associated with poor survival. We discuss a potential role of these novel melanoma genes, which have promising potential as new therapeutic targets or diagnostic markers.
Collapse
|
78
|
McGee JH, Shim SY, Lee SJ, Swanson PK, Jiang SY, Durney MA, Verdine GL. Exceptionally high-affinity Ras binders that remodel its effector domain. J Biol Chem 2017; 293:3265-3280. [PMID: 29282294 PMCID: PMC5836121 DOI: 10.1074/jbc.m117.816348] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/21/2017] [Indexed: 01/27/2023] Open
Abstract
The Ras proteins are aberrantly activated in a wide range of human cancers, often endowing tumors with aggressive properties and resistance to therapy. Decades of effort to develop direct Ras inhibitors for clinical use have thus far failed, largely because of a lack of adequate small-molecule-binding pockets on the Ras surface. Here, we report the discovery of Ras-binding miniproteins from a naïve library and their evolution to afford versions with midpicomolar affinity to Ras. A series of biochemical experiments indicated that these miniproteins bind to the Ras effector domain as dimers, and high-resolution crystal structures revealed that these miniprotein dimers bind Ras in an unprecedented mode in which the Ras effector domain is remodeled to expose an extended pocket that connects two isolated pockets previously found to engage small-molecule ligands. We also report a Ras point mutant that stabilizes the protein in the open conformation trapped by these miniproteins. These findings provide new tools for studying Ras structure and function and present opportunities for the development of both miniprotein and small-molecule inhibitors that directly target the Ras proteins.
Collapse
Affiliation(s)
- John H McGee
- From the Departments of Molecular and Cellular Biology.,Stem Cell and Regenerative Biology, and.,FOG Pharmaceuticals, Cambridge, Massachusetts 02140
| | - So Youn Shim
- Stem Cell and Regenerative Biology, and.,FOG Pharmaceuticals, Cambridge, Massachusetts 02140.,Chemistry and Chemical Biology, Harvard University and Harvard Medical School, Cambridge, Massachusetts 02138 and
| | | | | | | | | | - Gregory L Verdine
- From the Departments of Molecular and Cellular Biology, .,Stem Cell and Regenerative Biology, and.,FOG Pharmaceuticals, Cambridge, Massachusetts 02140.,Chemistry and Chemical Biology, Harvard University and Harvard Medical School, Cambridge, Massachusetts 02138 and
| |
Collapse
|
79
|
Yoo BH, Khan IA, Koomson A, Gowda P, Sasazuki T, Shirasawa S, Gujar S, Rosen KV. Oncogenic RAS-induced downregulation of ATG12 is required for survival of malignant intestinal epithelial cells. Autophagy 2017; 14:134-151. [PMID: 28933585 DOI: 10.1080/15548627.2017.1370171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activating mutations of RAS GTPase contribute to the progression of many cancers, including colorectal carcinoma. So far, attempts to develop treatments of mutant RAS-carrying cancers have been unsuccessful due to insufficient understanding of the salient mechanisms of RAS signaling. We found that RAS downregulates the protein ATG12 in colon cancer cells. ATG12 is a mediator of autophagy, a process of degradation and reutilization of cellular components. In addition, ATG12 can kill cells via autophagy-independent mechanisms. We established that RAS reduces ATG12 levels in cancer cells by accelerating its proteasomal degradation. We further observed that RAS-dependent ATG12 loss in these cells is mediated by protein kinases MAP2K/MEK and MAPK1/ERK2-MAPK3/ERK1, known effectors of RAS. We also demonstrated that the reversal of the effect of RAS on ATG12 achieved by the expression of exogenous ATG12 in cancer cells triggers both apoptotic and nonapoptotic signals and efficiently kills the cells. ATG12 is known to promote autophagy by forming covalent complexes with other autophagy mediators, such as ATG5. We found that the ability of ATG12 to kill oncogenic RAS-carrying malignant cells does not require covalent binding of ATG12 to other proteins. In summary, we have identified a novel mechanism by which oncogenic RAS promotes survival of malignant intestinal epithelial cells. This mechanism is driven by RAS-dependent loss of ATG12 in these cells.
Collapse
Affiliation(s)
- Byong Hoon Yoo
- a Departments of Pediatrics and Department of Biochemistry and Molecular Biology , Atlantic Research Centre, Dalhousie University , Halifax , NS , Canada
| | - Iman Aftab Khan
- a Departments of Pediatrics and Department of Biochemistry and Molecular Biology , Atlantic Research Centre, Dalhousie University , Halifax , NS , Canada
| | - Ananda Koomson
- a Departments of Pediatrics and Department of Biochemistry and Molecular Biology , Atlantic Research Centre, Dalhousie University , Halifax , NS , Canada
| | - Pramod Gowda
- a Departments of Pediatrics and Department of Biochemistry and Molecular Biology , Atlantic Research Centre, Dalhousie University , Halifax , NS , Canada
| | | | - Senji Shirasawa
- c Department of Cell Biology , Faculty of Medicine, and Center for Advanced Molecular Medicine, Fukuoka University , Fukuoka , Japan
| | - Shashi Gujar
- d Department of Microbiology and Immunology , Dalhousie University , Halifax , NS , Canada
| | - Kirill V. Rosen
- a Departments of Pediatrics and Department of Biochemistry and Molecular Biology , Atlantic Research Centre, Dalhousie University , Halifax , NS , Canada
| |
Collapse
|
80
|
Li Y, Deutzmann A, Choi PS, Fan AC, Felsher DW. BIM mediates oncogene inactivation-induced apoptosis in multiple transgenic mouse models of acute lymphoblastic leukemia. Oncotarget 2017; 7:26926-34. [PMID: 27095570 PMCID: PMC5053622 DOI: 10.18632/oncotarget.8731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
Oncogene inactivation in both clinical targeted therapies and conditional transgenic mouse cancer models can induce significant tumor regression associated with the robust induction of apoptosis. Here we report that in MYC-, RAS-, and BCR-ABL-induced acute lymphoblastic leukemia (ALL), apoptosis upon oncogene inactivation is mediated by the same pro-apoptotic protein, BIM. The induction of BIMin the MYC- and RAS-driven leukemia is mediated by the downregulation of miR-17-92. Overexpression of miR-17-92 blocked the induction of apoptosis upon oncogene inactivation in the MYC and RAS-driven but not in the BCR-ABL-driven ALL leukemia. Hence, our results provide novel insight into the mechanism of apoptosis upon oncogene inactivation and suggest that induction of BIM-mediated apoptosis may be an important therapeutic approach for ALL.
Collapse
Affiliation(s)
- Yulin Li
- Division of Oncology, Department of Medicine and Pathology, Stanford University, Stanford, CA, United States of America
| | - Anja Deutzmann
- Division of Oncology, Department of Medicine and Pathology, Stanford University, Stanford, CA, United States of America
| | - Peter S Choi
- Division of Oncology, Department of Medicine and Pathology, Stanford University, Stanford, CA, United States of America
| | - Alice C Fan
- Division of Oncology, Department of Medicine and Pathology, Stanford University, Stanford, CA, United States of America
| | - Dean W Felsher
- Division of Oncology, Department of Medicine and Pathology, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
81
|
The impact of melanoma genetics on treatment response and resistance in clinical and experimental studies. Cancer Metastasis Rev 2017; 36:53-75. [PMID: 28210865 DOI: 10.1007/s10555-017-9657-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recent attempts to characterize the melanoma mutational landscape using high-throughput sequencing technologies have identified new genes and pathways involved in the molecular pathogenesis of melanoma. Apart from mutated BRAF, NRAS, and KIT, a series of new recurrently mutated candidate genes with impact on signaling pathways have been identified such as NF1, PTEN, IDH1, RAC1, ARID2, and TP53. Under targeted treatment using BRAF and MEK1/2 inhibitors either alone or in combination, a majority of patients experience recurrences, which are due to different genetic mechanisms such as gene amplifications of BRAF or NRAS, MEK1/2 and PI3K mutations. In principle, resistance mechanisms converge on two signaling pathways, MAPK and PI3K-AKT-mTOR pathways. Resistance may be due to small subsets of resistant cells within a heterogeneous tumor mass not identified by sequencing of the bulk tumor. Future sequencing studies addressing tumor heterogeneity, e.g., by using single-cell sequencing technology, will most likely improve this situation. Gene expression patterns of metastatic lesions were also shown to predict treatment response, e.g., a MITF-low/NF-κB-high melanoma phenotype is resistant against classical targeted therapies. Finally, more recent treatment approaches using checkpoint inhibitors directed against PD-1 and CTLA-4 are very effective in melanoma and other tumor entities. Here, the mutational and neoantigen load of melanoma lesions may help to predict treatment response. Taken together, the new sequencing, molecular, and bioinformatic technologies exploiting the melanoma genome for treatment decisions have significantly improved our understanding of melanoma pathogenesis, treatment response, and resistance for either targeted treatment or immune checkpoint blockade.
Collapse
|
82
|
Phesse TJ, Durban VM, Sansom OJ. Defining key concepts of intestinal and epithelial cancer biology through the use of mouse models. Carcinogenesis 2017; 38:953-965. [PMID: 28981588 PMCID: PMC5862284 DOI: 10.1093/carcin/bgx080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Over the past 20 years, huge advances have been made in modelling human diseases such as cancer using genetically modified mice. Accurate in vivo models are essential to examine the complex interaction between cancer cells, surrounding stromal cells, tumour-associated inflammatory cells, fibroblast and blood vessels, and to recapitulate all the steps involved in metastasis. Elucidating these interactions in vitro has inherent limitations, and thus animal models are a powerful tool to enable researchers to gain insight into the complex interactions between signalling pathways and different cells types. This review will focus on how advances in in vivo models have shed light on many aspects of cancer biology including the identification of oncogenes, tumour suppressors and stem cells, epigenetics, cell death and context dependent cell signalling.
Collapse
Affiliation(s)
- Toby J Phesse
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, South Glamorgan, CF24 4HQ, UK
| | - Victoria Marsh Durban
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, South Glamorgan, CF24 4HQ, UK
- ReNeuron, Pencoed Business Park, Pencoed, Bridgend, CF35 5HY, UK and
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, G61 1BD, UK
| |
Collapse
|
83
|
Gu L, Deng ZJ, Roy S, Hammond PT. A Combination RNAi-Chemotherapy Layer-by-Layer Nanoparticle for Systemic Targeting of KRAS/P53 with Cisplatin to Treat Non-Small Cell Lung Cancer. Clin Cancer Res 2017; 23:7312-7323. [PMID: 28912139 DOI: 10.1158/1078-0432.ccr-16-2186] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 06/22/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Mutation of the Kirsten ras sarcoma viral oncogene homolog (KRAS) and loss of p53 function are commonly seen in patients with non-small cell lung cancer (NSCLC). Combining therapeutics targeting these tumor-defensive pathways with cisplatin in a single-nanoparticle platform are rarely developed in clinic.Experimental Design: Cisplatin was encapsulated in liposomes, which multiple polyelectrolyte layers, including siKRAS and miR-34a were built on to generate multifunctional layer-by-layer nanoparticle. Structure, size, and surface charge were characterized, in addition to in vitro toxicity studies. In vivo tumor targeting and therapy was investigated in an orthotopic lung cancer model by microCT, fluorescence imaging, and immunohistochemistry.Results: The singular nanoscale formulation, incorporating oncogene siKRAS, tumor-suppressor stimulating miR-34a, and cisplatin, has shown enhanced toxicity against lung cancer cell line, KP cell. In vivo, systemic delivery of the nanoparticles indicated a preferential uptake in lung of the tumor-bearing mice. Efficacy studies indicated prolonged survival of mice from the combination treatment.Conclusions: The combination RNA-chemotherapy in an LbL formulation provides an enhanced treatment efficacy against NSCLC, indicating promising potential in clinic. Clin Cancer Res; 23(23); 7312-23. ©2017 AACR.
Collapse
Affiliation(s)
- Li Gu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Zhou J Deng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sweta Roy
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. .,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
84
|
EMT and Treatment Resistance in Pancreatic Cancer. Cancers (Basel) 2017; 9:cancers9090122. [PMID: 28895920 PMCID: PMC5615337 DOI: 10.3390/cancers9090122] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/01/2017] [Accepted: 09/10/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is the third leading cause of adult cancer mortality in the United States. The poor prognosis for patients with PC is mainly due to its aggressive course, the limited efficacy of active systemic treatments, and a metastatic behavior, demonstrated throughout the evolution of the disease. On average, 80% of patients with PC are diagnosed with metastatic disease, and the half of those who undergo surgery and adjuvant therapy develop liver metastasis within two years. Metastatic dissemination is an early event in PC and is mainly attributed to an evolutionary biological process called epithelial-to-mesenchymal transition (EMT). This innate mechanism could have a dual role during embryonic growth and organ differentiation, and in cancer progression, cancer stem cell intravasation, and metastasis settlement. Many of the molecular pathways decisive in EMT progression have been already unraveled, but little is known about the causes behind the induction of this mechanism. EMT is one of the most distinctive and critical features of PC, occurring even in the very first stages of tumor development. This is known as pancreatic intraepithelial neoplasia (PanIN) and leads to early dissemination, drug resistance, and unfavorable prognosis and survival. The intention of this review is to shed new light on the critical role assumed by EMT during PC progression, with a particular focus on its role in PC resistance.
Collapse
|
85
|
Anders K, Kershaw O, Larue L, Gruber AD, Blankenstein T. The immune system prevents recurrence of transplanted but not autochthonous antigenic tumors after oncogene inactivation therapy. Int J Cancer 2017; 141:2551-2561. [PMID: 28833076 DOI: 10.1002/ijc.31009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022]
Abstract
Targeted oncogene inactivation by small molecule inhibitors can be very effective but tumor recurrence is a frequent problem in the clinic. Therapy by inactivation of the cancer-driving oncogene in transplanted tumors was shown to be augmented in the presence of T cells. However, these experiments did not take into account the long-term, usually tolerogenic, interaction of de novo malignancies with the immune system. Here, we employed mice, in which SV40 large T (Tag) and firefly luciferase (Luc) as fusion protein (TagLuc) could be regulated with the Tet-on system and upon activation resulted in tumors after a long latency. TagLuc inactivation induced profound tumor regression, demonstrating sustained oncogene addiction. While tumor relapse after TagLuc inactivation was prevented in immunocompetent mice bearing transplanted tumors, autochthonous tumors relapsed or recurred after therapy discontinuation indicating that the immune system that coevolved with the malignancy over an extended period of time lost the potency to mount an efficient anti-tumor immune response. By contrast, adoptively transferred CD8+ T cells targeting the cancer-driving oncogene eradicated recurrent autochthonous tumors, highlighting a suitable therapy option in a clinically relevant model.
Collapse
Affiliation(s)
| | | | - Lionel Larue
- Normal and Pathological Development of Melanocytes, 91405 Orsay, France.,Centre National de la Recherche Scientifique (CNRS) UMR3347, 91405 Orsay, France.,INSERM U1021, 91405 Orsay, France.,Equipe Labellisee e Ligue Nationale contre le Cancer, 91405 Orsay, France
| | | | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Institute of Immunology, Charité Campus Berlin Buch, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
86
|
ER stress and distinct outputs of the IRE1α RNase control proliferation and senescence in response to oncogenic Ras. Proc Natl Acad Sci U S A 2017; 114:9900-9905. [PMID: 28847931 DOI: 10.1073/pnas.1701757114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oncogenic Ras causes proliferation followed by premature senescence in primary cells, an initial barrier to tumor development. The role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in regulating these two cellular outcomes is poorly understood. During ER stress, the inositol requiring enzyme 1α (IRE1α) endoribonuclease (RNase), a key mediator of the UPR, cleaves Xbp1 mRNA to generate a potent transcription factor adaptive toward ER stress. However, IRE1α also promotes cleavage and degradation of ER-localized mRNAs essential for cell death. Here, we show that oncogenic HRas induces ER stress and activation of IRE1α. Reduction of ER stress or Xbp1 splicing using pharmacological, genetic, and RNAi approaches demonstrates that this adaptive response is critical for HRas-induced proliferation. Paradoxically, reduced ER stress or Xbp1 splicing promotes growth arrest and premature senescence through hyperactivation of the IRE1α RNase. Microarray analysis of IRE1α- and XBP1-depleted cells, validation using RNA cleavage assays, and 5' RACE identified the prooncogenic basic helix-loop-helix transcription factor ID1 as an IRE1α RNase target. Further, we demonstrate that Id1 degradation by IRE1α is essential for HRas-induced premature senescence. Together, our studies point to IRE1α as an important node for posttranscriptional regulation of the early Ras phenotype that is dependent on both oncogenic signaling as well as stress signals imparted by the tumor microenvironment and could be an important mechanism driving escape from Ras-induced senescence.
Collapse
|
87
|
Abstract
In this review, we summarize recent work exploring a novel conceptual approach termed "synthetic essentiality" as a means for targeting specific tumor suppressor gene deficiencies in cancer. With the aid of extensive publically available cancer genome and clinical databases, "synthetic essentiality" could be utilized to identify synthetic essential genes, which might be occasionally deleted in some cancers but almost always retained in the context of a specific tumor suppressor deficiency. Synthetic essentiality expands the existing concepts for therapeutic strategies, including oncogene addiction, tumor maintenance, synthetic, and collateral lethality, to provide a framework for the discovery of cancer-specific vulnerabilities. Enabled by ever-expanding large-scale genome datasets and genome-scale functional screens, the "synthetic essentiality" framework provides an avenue for the identification of context-specific therapeutic targets and development of patient responder hypotheses for novel and existing therapies.
Collapse
Affiliation(s)
- Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
88
|
Kaiser CE, Van Ert NA, Agrawal P, Chawla R, Yang D, Hurley LH. Insight into the Complexity of the i-Motif and G-Quadruplex DNA Structures Formed in the KRAS Promoter and Subsequent Drug-Induced Gene Repression. J Am Chem Soc 2017; 139:8522-8536. [PMID: 28570076 PMCID: PMC5978000 DOI: 10.1021/jacs.7b02046] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activating KRAS mutations frequently occur in pancreatic, colorectal, and lung adenocarcinomas. While many attempts have been made to target oncogenic KRAS, no clinically useful therapies currently exist. Most efforts to target KRAS have focused on inhibiting the mutant protein; a less explored approach involves targeting KRAS at the transcriptional level. The promoter element of the KRAS gene contains a GC-rich nuclease hypersensitive site with three potential DNA secondary structure-forming regions. These are referred to as the Near-, Mid-, and Far-regions, on the basis of their proximity to the transcription start site. As a result of transcription-induced negative superhelicity, these regions can open up to form unique DNA secondary structures: G-quadruplexes on the G-rich strand and i-motifs on the C-rich strand. While the G-quadruplexes have been well characterized, the i-motifs have not been investigated as thoroughly. Here we show that the i-motif that forms in the C-rich Mid-region is the most stable and exists in a dynamic equilibrium with a hybrid i-motif/hairpin species and an unfolded hairpin species. The transcription factor heterogeneous nuclear ribonucleoprotein K (hnRNP K) was found to bind selectively to the i-motif species and to positively modulate KRAS transcription. Additionally, we identified a benzophenanthridine alkaloid that dissipates the hairpin species and destabilizes the interaction of hnRNP K with the Mid-region i-motif. This same compound stabilizes the three existing KRAS G-quadruplexes. The combined effect of the compound on the Mid-region i-motif and the G-quadruplexes leads to downregulation of KRAS gene expression. This dual i-motif/G-quadruplex-interactive compound presents a new mechanism to modulate gene expression.
Collapse
Affiliation(s)
- Christine E. Kaiser
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Natalie A. Van Ert
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Prashansa Agrawal
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Reena Chawla
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Danzhou Yang
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, United States
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Laurence H. Hurley
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, United States
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
89
|
Evan GI, Hah N, Littlewood TD, Sodir NM, Campos T, Downes M, Evans RM. Re-engineering the Pancreas Tumor Microenvironment: A "Regenerative Program" Hacked. Clin Cancer Res 2017; 23:1647-1655. [PMID: 28373363 PMCID: PMC5381729 DOI: 10.1158/1078-0432.ccr-16-3275] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022]
Abstract
The "hallmarks" of pancreatic ductal adenocarcinoma (PDAC) include proliferative, invasive, and metastatic tumor cells and an associated dense desmoplasia comprised of fibroblasts, pancreatic stellate cells, extracellular matrix, and immune cells. The oncogenically activated pancreatic epithelium and its associated stroma are obligatorily interdependent, with the resulting inflammatory and immunosuppressive microenvironment contributing greatly to the evolution and maintenance of PDAC. The peculiar pancreas-specific tumor phenotype is a consequence of oncogenes hacking the resident pancreas regenerative program, a tissue-specific repair mechanism regulated by discrete super enhancer networks. Defined as genomic regions containing clusters of multiple enhancers, super enhancers play pivotal roles in cell/tissue specification, identity, and maintenance. Hence, interfering with such super enhancer-driven repair networks should exert a disproportionately disruptive effect on tumor versus normal pancreatic tissue. Novel drugs that directly or indirectly inhibit processes regulating epigenetic status and integrity, including those driven by histone deacetylases, histone methyltransferase and hydroxylases, DNA methyltransferases, various metabolic enzymes, and bromodomain and extraterminal motif proteins, have shown the feasibility of disrupting super enhancer-dependent transcription in treating multiple tumor types, including PDAC. The idea that pancreatic adenocarcinomas rely on embedded super enhancer transcriptional mechanisms suggests a vulnerability that can be potentially targeted as novel therapies for this intractable disease. Clin Cancer Res; 23(7); 1647-55. ©2017 AACRSee all articles in this CCR Focus section, "Pancreatic Cancer: Challenge and Inspiration."
Collapse
Affiliation(s)
- Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Nasun Hah
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Nicole M Sodir
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tania Campos
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
90
|
Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis. Proc Natl Acad Sci U S A 2017; 114:3648-3653. [PMID: 28320962 DOI: 10.1073/pnas.1620861114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles' heel in tumors initiated by oncogenic Kras.
Collapse
|
91
|
Boutin AT, Liao WT, Wang M, Hwang SS, Karpinets TV, Cheung H, Chu GC, Jiang S, Hu J, Chang K, Vilar E, Song X, Zhang J, Kopetz S, Futreal A, Wang YA, Kwong LN, DePinho RA. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev 2017; 31:370-382. [PMID: 28289141 PMCID: PMC5358757 DOI: 10.1101/gad.293449.116] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Abstract
Human colorectal cancer (CRC) is a major cause of cancer mortality and frequently harbors activating mutations in the KRAS gene. To understand the role of oncogenic KRAS in CRC, we engineered a mouse model of metastatic CRC that harbors an inducible oncogenic Kras allele (Krasmut ) and conditional null alleles of Apc and Trp53 (iKAP). The iKAP model recapitulates tumor progression from adenoma through metastases. Whole-exome sequencing revealed that the Krasmut allele was heterogenous in primary tumors yet homogenous in metastases, a pattern consistent with activated Krasmut signaling being a driver of progression to metastasis. System-level and functional analyses revealed the TGF-β pathway as a key mediator of Krasmut -driven invasiveness. Genetic extinction of Krasmut resulted in specific elimination of the Krasmut subpopulation in primary and metastatic tumors, leading to apoptotic elimination of advanced invasive and metastatic disease. This faithful CRC model provides genetic evidence that Krasmut drives CRC invasion and maintenance of metastases.
Collapse
Affiliation(s)
- Adam T Boutin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wen-Ting Liao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Melody Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Soyoon Sarah Hwang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tatiana V Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hannah Cheung
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gerald C Chu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shan Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kyle Chang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xingzhi Song
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jianhua Zhang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lawrence N Kwong
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
92
|
Pandey PR, Chatterjee B, Olanich ME, Khan J, Miettinen MM, Hewitt SM, Barr FG. PAX3-FOXO1 is essential for tumour initiation and maintenance but not recurrence in a human myoblast model of rhabdomyosarcoma. J Pathol 2017; 241:626-637. [PMID: 28138962 DOI: 10.1002/path.4867] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/09/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022]
Abstract
The PAX3-FOXO1 fusion gene is generated by a 2;13 chromosomal translocation and is a characteristic feature of an aggressive subset of rhabdomyosarcoma (RMS). To dissect the mechanism of oncogene action during RMS tumourigenesis and progression, doxycycline-inducible PAX3-FOXO1 and constitutive MYCN expression constructs were introduced into immortalized human myoblasts. Although myoblasts expressing PAX3-FOXO1 or MYCN alone were not transformed in focus formation assays, combined PAX3-FOXO1 and MYCN expression resulted in transformation. Following intramuscular injection into immunodeficient mice, myoblasts expressing PAX3-FOXO1 and MYCN formed rapidly growing RMS tumours, whereas myoblasts expressing only PAX3-FOXO1 formed tumours after a longer latency period. Doxycycline withdrawal in myoblasts expressing inducible PAX3-FOXO1 and constitutive MYCN following tumour formation in vivo or focus formation in vitro resulted in tumour regression or smaller foci associated with myogenic differentiation and cell death. Following regression, most tumours recurred in the absence of doxycycline. Analysis of recurrent tumours revealed a subset without PAX3-FOXO1 expression, and cell lines derived from these recurrent tumours showed transformation in the absence of doxycycline. The doxycycline-independent oncogenicity in these recurrent tumour-derived lines persisted even after PAX3-FOXO1 was inactivated with a CRISPR/Cas9 editing strategy. Whereas cell lines derived from primary tumours were dependent on PAX3-FOXO1 and differentiated following doxycycline withdrawal, recurrent tumour-derived cells without PAX3-FOXO1 expression did not differentiate under these conditions. These findings indicate that PAX3-FOXO1 collaborates with MYCN during early RMS tumourigenesis to dysregulate proliferation and inhibit myogenic differentiation and cell death. Although most cells in the primary tumours are dependent on PAX3-FOXO1, recurrent tumours can develop by a PAX3-FOXO1-independent mechanism, in which rare cells are postulated to acquire secondary transforming events that were activated or selected by initial PAX3-FOXO1 expression. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Puspa R Pandey
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bishwanath Chatterjee
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mary E Olanich
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Markku M Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Frederic G Barr
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
93
|
MYC: Master Regulator of Immune Privilege. Trends Immunol 2017; 38:298-305. [PMID: 28233639 DOI: 10.1016/j.it.2017.01.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/23/2022]
Abstract
Cancers are often initiated by genetic events that activate proto-oncogenes or inactivate tumor-suppressor genes. These events are also crucial for sustained tumor cell proliferation and survival, a phenomenon described as oncogene addiction. In addition to this cell-intrinsic role, recent evidence indicates that oncogenes also directly regulate immune responses, leading to immunosuppression. Expression of many oncogenes or loss of tumor suppressors induces the expression of immune checkpoints that regulate the immune response, such as PD-L1. We discuss here how oncogenes, and in particular MYC, suppress immune surveillance, and how oncogene-targeted therapies may restore the immune response against tumors.
Collapse
|
94
|
Garde Noguera J, Jantus-Lewintre E, Gil-Raga M, Evgenyeva E, Maciá Escalante S, Llombart-Cussac A, Camps Herrero C. Role of RAS mutation status as a prognostic factor for patients with advanced colorectal cancer treated with first-line chemotherapy based on fluoropyrimidines and oxaliplatin, with or without bevavizumab: A retrospective analysis. Mol Clin Oncol 2017; 6:403-408. [PMID: 28451421 DOI: 10.3892/mco.2017.1149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 12/02/2016] [Indexed: 01/28/2023] Open
Abstract
The role of Kirsten rat sarcoma viral oncogene homolog (KRAS) and neuroblastoma RAS viral oncogene homolog (NRAS) mutations as negative predictors for anti-epidermal growth factor receptor (EGFR) therapies in metastatic colorectal cancer (CRC) has been firmly established. However, whether the RAS mutation status plays a role as a biomarker for anti-vascular endothelial growth factor (VEGF) treatment remains controversial. Data from 93 CRC patients who received first-line cytotoxic chemotherapy with fluoropyrimidines and oxaliplatin, with or without bevacizumab, were analyzed. We investigated the association between the RAS mutation status and clinical outcomes in terms of response rate, progression-free survival (PFS) and overall survival (OS). Mutations in RAS genes were observed in 47 (52.6%) patients (45 KRAS and 2 NRAS mutations). Patients with tumours harbouring RAS mutations were less suitable for primary tumour resection, were more likely to develop lung metastases, and received bevacizumab treatment for a shorter time period compared with those with wild-type tumours. The response rate to chemotherapy did not differ according to the RAS mutation status, and there were no significant differences in PFS [RAS mutation: 12 months, 95% confidence interval (CI): 8.7-15.2 vs. RAS wild-type: 12 months, 95% CI: 9.67-14.32; P=0.857] or OS (RAS mutation: 20 months, 95% CI: 14.3-25.6 vs. RAS wild-type: 24 months, 95% CI: 18.7-29.2; P=0.631). Patients with RAS mutation vs. those with RAS wild-type exhibited a favourable trend in PFS when treated with bevacizumab (13 months, 95% CI: 6.5-19.4 vs. 10 months, 95% CI: 4.2-15.7, respectively; P=0.07) and OS (27 months, 95% CI: 18.5-35.4 vs. 15 months, 95% CI: 12.4-17.5, respectively; P=0.22). In conclusion, RAS mutations are not a prognostic marker for PFS and OS in CRC patients receiving fluoropyrimidine-oxaliplatine treatment, with or without bevacizumab. RAS mutations are not predictive of the lack of efficacy of bevacizumab, and these patients appear to benefit from anti-angiogenic treatment.
Collapse
Affiliation(s)
- Javier Garde Noguera
- Medical Oncology Department, Hospital Arnau de Vilanova of Valencia, 46015 Valencia, Spain
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, University General Hospital of Valencia, Research Foundation, 46014 Valencia, Spain
| | - Mireia Gil-Raga
- Medical Oncology Department, Hospital de Sagunto, 46520 Valencia, Spain
| | - Elena Evgenyeva
- Pathology Department, Hospital Marina-Salud de Denia, 03700 Dénia, Spain
| | | | | | - Carlos Camps Herrero
- Medical Oncology and Molecular Laboratory Department, University General Hospital of Valencia, University of Valencia, 46014 Valencia, Spain
| |
Collapse
|
95
|
Podolsky MA, Bailey JT, Gunderson AJ, Oakes CJ, Breech K, Glick AB. Differentiated State of Initiating Tumor Cells Is Key to Distinctive Immune Responses Seen in H-Ras G12V-Induced Squamous Tumors. Cancer Immunol Res 2017; 5:198-210. [PMID: 28137717 DOI: 10.1158/2326-6066.cir-16-0304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/30/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022]
Abstract
Heterogeneity in tumor immune responses is a poorly understood yet critical parameter for successful immunotherapy. In two doxycycline-inducible models where oncogenic H-RasG12V is targeted either to the epidermal basal/stem cell layer with a Keratin14-rtTA transgene (K14Ras), or committed progenitor/suprabasal cells with an Involucrin-tTA transgene (InvRas), we observed strikingly distinct tumor immune responses. On threshold doxycycline levels yielding similar Ras expression, tumor latency, and numbers, tumors from K14Ras mice had an immunosuppressed microenvironment, whereas InvRas tumors had a proinflammatory microenvironment. On a Rag1-/- background, InvRas mice developed fewer and smaller tumors that regressed over time, whereas K14Ras mice developed more tumors with shorter latency than Rag1+/+ controls. Adoptive transfer and depletion studies revealed that B-cell and CD4 T-cell cooperation was critical for tumor yield, lymphocyte polarization, and tumor immune phenotype in Rag1+/+ mice of both models. Coculture of tumor-conditioned B cells with CD4 T cells implicated direct contact for Th1 and regulatory T cell (Treg) polarization, and CD40-CD40L for Th1, Th2, and Treg generation, a response not observed from splenic B cells. Anti-CD40L caused regression of InvRas tumors but enhanced growth in K14Ras, whereas a CD40 agonist mAb had opposite effects in each tumor model. These data show that position of tumor-initiating cells within a stratified squamous epithelial tissue provokes distinct B- and CD4 T-cell interactions, which establish unique tumor microenvironments that regulate tumor development and response to immunotherapy. Cancer Immunol Res; 5(3); 198-210. ©2017 AACR.
Collapse
Affiliation(s)
- Michael A Podolsky
- The Pennsylvania State University, The Huck Institutes of the Life Sciences, State College, Pennsylvania
| | - Jacob T Bailey
- The Pennsylvania State University, The Huck Institutes of the Life Sciences, State College, Pennsylvania
| | | | - Carrie J Oakes
- The Pennsylvania State University, The Huck Institutes of the Life Sciences, State College, Pennsylvania
| | - Kyle Breech
- The Pennsylvania State University, The Huck Institutes of the Life Sciences, State College, Pennsylvania
| | - Adam B Glick
- The Pennsylvania State University, The Huck Institutes of the Life Sciences, State College, Pennsylvania.
| |
Collapse
|
96
|
Xu J, Zhang X, Chen Y, Huang Y, Wang P, Wei Y, Ma X, Li S. Improved Micellar Formulation for Enhanced Delivery for Paclitaxel. Mol Pharm 2016; 14:31-41. [PMID: 28043124 DOI: 10.1021/acs.molpharmaceut.6b00581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have previously improved the bioactivity of PEG5k-FTS2 system by incorporating disulfide bond (PEG5k-S-S-FTS2) to facilitate the release of farnesyl thiosalicylic acid (FTS).1 Later, fluorenylmethyloxycarbonyl (Fmoc) moiety has been introduced to PEG5k-FTS2 system (PEG5k-Fmoc-FTS2) in order to enhance drug loading capacity (DLC) and formulation stability.2 In this study, we have brought in both disulfide linkage and Fmoc group to PEG5k-FTS2 to form a simple PEG5k-Fmoc-S-S-FTS2 micellar system. PEG5k-Fmoc-S-S-FTS2 conjugate formed filamentous micelles with a ∼10-fold decrease in critical micellar concentration (CMC). Compared with PEG5k-Fmoc-FTS2, our novel system exhibited further strengthened DLC and colloidal stability. More FTS was freed from PEG5k-Fmoc-S-S-FTS2 in treated tumor cells compared to PEG5k-Fmoc-FTS2, which was correlated to an increased cytotoxicity of our new carrier in these cancer cells. After loading Paclitaxel (PTX) into PEG5k-Fmoc-S-S-FTS2 micelles, it showed more potent efficiency in inhibition of tumor cell proliferation than Taxol and PTX-loaded PEG5k-Fmoc-FTS2. PTX release kinetics of PTX/PEG5k-Fmoc-S-S-FTS2 was much slower than that of Taxol and PTX/PEG5k-Fmoc-FTS2 in normal release medium. In contrast, in glutathione (GSH)-containing medium, PTX in PEG5k-Fmoc-S-S-FTS2 micelles revealed faster and more complete release. Pharmacokinetics and tissue distribution study showed that our PEG5k-Fmoc-S-S-FTS2 system maintained PTX in circulation for a longer time and delivered more PTX to tumor sites with less accumulation in major organs. Finally, PTX-loaded PEG5k-Fmoc-S-S-FTS2 micelles resulted in a superior therapeutic effect in vivo compared to Taxol and PTX formulated in PEG5k-Fmoc-FTS2 micelles.
Collapse
Affiliation(s)
- Jieni Xu
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Xiaolan Zhang
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Yichao Chen
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Yixian Huang
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Pengcheng Wang
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Yuan Wei
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Xiaochao Ma
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Song Li
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
97
|
Câmara DAD, Mambelli LI, Porcacchia AS, Kerkis I. Advances and Challenges on Cancer Cells Reprogramming Using Induced Pluripotent Stem Cells Technologies. J Cancer 2016; 7:2296-2303. [PMID: 27994667 PMCID: PMC5166540 DOI: 10.7150/jca.16629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/18/2016] [Indexed: 12/18/2022] Open
Abstract
Cancer cells transformation into a normal state or into a cancer cell population which is less tumorigenic than the initial one is a challenge that has been discussed during last decades and it is still far to be solved. Due to the highly heterogeneous nature of cancer cells, such transformation involves many genetic and epigenetic factors which are specific for each type of tumor. Different methods of cancer cells reprogramming have been established and can represent a possibility to obtain less tumorigenic or even normal cells. These methods are quite complex, thus a simple and efficient method of reprogramming is still required. As soon as induced pluripotent stem cells (iPSC) technology, which allowed to reprogram terminally differentiated cells into embryonic stem cells (ESC)-like, was developed, the method strongly attracted the attention of researches, opening new perspectives for stem cell (SC) personalized therapies and offering a powerful in vitro model for drug screening. This technology is also used to reprogram cancer cells, thus providing a modern platform to study cancer-related genes and the interaction between these genes and the cell environment before and after reprogramming, in order to elucidate the mechanisms of cancer initiation and progression. The present review summarizes recent advances on cancer cells reprogramming using iPSC technology and shows the progress achieved in such field.
Collapse
Affiliation(s)
- Diana Aparecida Dias Câmara
- Laboratory of Genetics, Butantan Institute
- Department of Morphology and Genetics, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | | |
Collapse
|
98
|
De Rosa M, Rega D, Costabile V, Duraturo F, Niglio A, Izzo P, Pace U, Delrio P. The biological complexity of colorectal cancer: insights into biomarkers for early detection and personalized care. Therap Adv Gastroenterol 2016; 9:861-886. [PMID: 27803741 PMCID: PMC5076770 DOI: 10.1177/1756283x16659790] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer has been ranked the third and second most prevalent of all cancers in men and women, respectively, and it represents the fourth most common cause of cancer deaths. In 2012, there were 1.4 million estimated cases of colorectal cancer worldwide, and 700,000 estimated deaths, which implies significant impact on public health, especially in economically-developed countries. In recent years, there has been an increase in the number of tumors, although this has been accompanied by decreased mortality, due to more appropriate and available information, earlier diagnosis, and improvements in treatment. Colorectal cancers are characterized by great genotypic and phenotypic heterogeneity, including tumor microenvironment and interactions between healthy and cancer cells. All of these traits confer a unique peculiarity to each tumor, which can thus be considered as an individual disease. Well conducted molecular and clinical characterization of each colorectal cancer is essential with a view to the implementation of precision oncology, and thus personalized care. This last aims at standardization of therapeutic plans chosen according to the genetic background of each specific neoplasm, to increase overall survival and reduce treatment side effects. Thus, prognostic and predictive molecular biomarkers assume a critical role in the characterization of colorectal cancer and in the determination of the most appropriate therapy.
Collapse
Affiliation(s)
- Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II ’, I-80131 Naples, Italy
| | - Daniela Rega
- Colorectal Surgical Oncology-Abdominal Oncology Department, Istituto Nazionale per lo Studio e la Cura dei Tumori, ‘Fondazione Giovanni Pascale’ IRCCS, I-80131 Naples, Italy
| | - Valeria Costabile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II ’, I-80131 Naples, Italy
| | - Francesca Duraturo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II ’, I-80131 Naples, Italy
| | - Antonello Niglio
- Colorectal Surgical Oncology-Abdominal Oncology Department, Istituto Nazionale per lo Studio e la Cura dei Tumori, ‘Fondazione Giovanni Pascale’ IRCCS, I-80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II ’, I-80131 Naples, Italy
| | - Ugo Pace
- Colorectal Surgical Oncology-Abdominal Oncology Department, Istituto Nazionale per lo Studio e la Cura dei Tumori, ‘Fondazione Giovanni Pascale’ IRCCS, I-80131 Naples, Italy
| | - Paolo Delrio
- Colorectal Surgical Oncology-Abdominal Oncology Department, Istituto Nazionale per lo Studio e la Cura dei Tumori, ‘Fondazione Giovanni Pascale’ IRCCS, I-80131 Naples, Italy
| |
Collapse
|
99
|
Brock EJ, Ji K, Reiners JJ, Mattingly RR. How to Target Activated Ras Proteins: Direct Inhibition vs. Induced Mislocalization. Mini Rev Med Chem 2016; 16:358-69. [PMID: 26423696 DOI: 10.2174/1389557515666151001154002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/03/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
Oncogenic Ras proteins are a driving force in a significant set of human cancers and wildtype, unmutated Ras proteins likely contribute to the malignant phenotype of many more. The overall challenge of targeting activated Ras proteins has great promise to treat cancer, but this goal has yet to be achieved. Significant efforts and resources have been committed to inhibiting Ras, but these energies have so far made little impact in the clinic. Direct attempts to target activated Ras proteins have faced many obstacles, including the fundamental nature of the gain-of-function oncogenic activity being produced by a loss-of-function at the biochemical level. Nevertheless, there has been very promising recent pre-clinical progress. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mislocalization. While these efforts to indirectly target Ras through inhibition of farnesyl transferase (FTase) were rationally designed, this strategy suffered from insufficient attention to the distinctions between the isoforms of Ras. This led to subsequent failures in large-scale clinical trials targeting K-Ras driven lung, colon, and pancreatic cancers. Despite these setbacks, efforts to indirectly target activated Ras through inducing its mislocalization have persisted. It is plausible that FTase inhibitors may still have some utility in the clinic, perhaps in combination with statins or other agents. Alternative approaches for inducing mislocalization of Ras through disruption of its palmitoylation cycle or interaction with chaperone proteins are in early stages of development.
Collapse
Affiliation(s)
| | | | | | - Raymond R Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Ave, Detroit MI, USA.
| |
Collapse
|
100
|
Johannessen TCA, Mukherjee J, Viswanath P, Ohba S, Ronen SM, Bjerkvig R, Pieper RO. Rapid Conversion of Mutant IDH1 from Driver to Passenger in a Model of Human Gliomagenesis. Mol Cancer Res 2016; 14:976-983. [PMID: 27430238 PMCID: PMC5065766 DOI: 10.1158/1541-7786.mcr-16-0141] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/30/2016] [Indexed: 12/30/2022]
Abstract
Missense mutations in the active site of isocitrate dehydrogenase 1 (IDH1) biologically and diagnostically distinguish low-grade gliomas and secondary glioblastomas from primary glioblastomas. IDH1 mutations lead to the formation of the oncometabolite 2-hydroxyglutarate (2-HG) from the reduction of α-ketoglutarate (α-KG), which in turn facilitates tumorigenesis by modifying DNA and histone methylation as well blocking differentiation processes. Although mutant IDH1 expression is thought to drive the gliomagenesis process, the extent to which it remains a viable therapeutic target remains unknown. To address this question, we exposed immortalized (p53/pRb deficient), untransformed human astrocytes to the mutant IDH1 inhibitor AGI-5198 prior to, concomitant with, or at intervals after, introduction of transforming mutant IDH1, then measured effects on 2-HG levels, histone methylation (H3K4me3, H3K9me2, H3K9me3, or H3K27me3), and growth in soft agar. Addition of AGI-5198 prior to, or concomitant with, introduction of mutant IDH1 blocked all mutant IDH1-driven changes, including cellular transformation. Addition at time intervals as short as 4 days following introduction of mutant IDH1 also suppressed 2-HG levels, but had minimal effects on histone methylation, and lost the ability to suppress clonogenicity in a time-dependent manner. Furthermore, in two different models of mutant IDH1-driven gliomagenesis, AGI-5198 exposures that abolished production of 2-HG also failed to decrease histone methylation, adherent cell growth, or anchorage-independent growth in soft agar over a prolonged period. These studies show although mutant IDH1 expression drives gliomagenesis, mutant IDH1 itself rapidly converts from driver to passenger. IMPLICATIONS Agents that target mutant IDH may be effective for a narrow time and may require further optimization or additional therapeutics in glioma. Mol Cancer Res; 14(10); 976-83. ©2016 AACR.
Collapse
Affiliation(s)
- Tor-Christian Aase Johannessen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Department of Biomedicine, The Kristian Gerhard Jebsen Brain Tumor Research Centre, University of Bergen, Bergen, Norway
| | - Joydeep Mukherjee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Pavithra Viswanath
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Shigeo Ohba
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Sabrina M Ronen
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Rolf Bjerkvig
- Department of Biomedicine, The Kristian Gerhard Jebsen Brain Tumor Research Centre, University of Bergen, Bergen, Norway
| | - Russell O Pieper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.
| |
Collapse
|