51
|
Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 2016; 15:551-67. [PMID: 27020098 DOI: 10.1038/nrd.2016.39] [Citation(s) in RCA: 638] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes - a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field.
Collapse
Affiliation(s)
- James N Fullerton
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, UK
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, UK
| |
Collapse
|
52
|
Gordon S. Phagocytosis: An Immunobiologic Process. Immunity 2016; 44:463-475. [DOI: 10.1016/j.immuni.2016.02.026] [Citation(s) in RCA: 577] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/09/2016] [Accepted: 02/23/2016] [Indexed: 12/27/2022]
|
53
|
Huang J, Milton A, Arnold RD, Huang H, Smith F, Panizzi JR, Panizzi P. Methods for measuring myeloperoxidase activity toward assessing inhibitor efficacy in living systems. J Leukoc Biol 2016; 99:541-8. [PMID: 26884610 DOI: 10.1189/jlb.3ru0615-256r] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/11/2016] [Indexed: 12/23/2022] Open
Abstract
Myeloperoxidase aids in clearance of microbes by generation of peroxidase-mediated oxidants that kill leukocyte-engulfed pathogens. In this review, we will examine 1) strategies for in vitro evaluation of myeloperoxidase function and its inhibition, 2) ways to monitor generation of certain oxidant species during inflammation, and 3) how these methods can be used to approximate the total polymorphonuclear neutrophil chemotaxis following insult. Several optical imaging probes are designed to target reactive oxygen and nitrogen species during polymorphonuclear neutrophil inflammatory burst following injury. Here, we review the following 1) the broad effect of myeloperoxidase on normal physiology, 2) the difference between myeloperoxidase and other peroxidases, 3) the current optical probes available for use as surrogates for direct measures of myeloperoxidase-derived oxidants, and 4) the range of preclinical options for imaging myeloperoxidase accumulation at sites of inflammation in mice. We also stress the advantages and drawbacks of each of these methods, the pharmacokinetic considerations that may limit probe use to strictly cell cultures for some reactive oxygen and nitrogen species, rather than in vivo utility as indicators of myeloperoxidase function. Taken together, our review should shed light on the fundamental rational behind these techniques for measuring myeloperoxidase activity and polymorphonuclear neutrophil response after injury toward developing safe myeloperoxidase inhibitors as potential therapy for chronic obstructive pulmonary disease and rheumatoid arthritis.
Collapse
Affiliation(s)
- Jiansheng Huang
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Amber Milton
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Robert D Arnold
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Hui Huang
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Forrest Smith
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Jennifer R Panizzi
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Peter Panizzi
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
54
|
Zhang YR, Zhao ZM, Su L, Miao JY, Zhao BX. A ratiometric fluorescence sensor for HOCl based on a FRET platform and application in living cells. RSC Adv 2016. [DOI: 10.1039/c5ra26027b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A ratiometric fluorescent probe CRSH based on a FRET platform for detecting HOCl. CRSH showed high selectivity, excellent sensitivity and a fast response toward HOCl.
Collapse
Affiliation(s)
- Yan-Ru Zhang
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Zhi-Min Zhao
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- P. R. China
| | - Le Su
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- P. R. China
| | - Jun-Ying Miao
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- P. R. China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
55
|
Abstract
Phagocytosis is a fundamental process through which innate immune cells engulf bacteria, apoptotic cells or other foreign particles in order to kill or neutralize the ingested material, or to present it as antigens and initiate adaptive immune responses. The pH of phagosomes is a critical parameter regulating fission or fusion with endomembranes and activation of proteolytic enzymes, events that allow the phagocytic vacuole to mature into a degradative organelle. In addition, translocation of H(+) is required for the production of high levels of reactive oxygen species (ROS), which are essential for efficient killing and signaling to other host tissues. Many intracellular pathogens subvert phagocytic killing by limiting phagosomal acidification, highlighting the importance of pH in phagosome biology. Here we describe a ratiometric method for measuring phagosomal pH in neutrophils using fluorescein isothiocyanate (FITC)-labeled zymosan as phagocytic targets, and live-cell imaging. The assay is based on the fluorescence properties of FITC, which is quenched by acidic pH when excited at 490 nm but not when excited at 440 nm, allowing quantification of a pH-dependent ratio, rather than absolute fluorescence, of a single dye. A detailed protocol for performing in situ dye calibration and conversion of ratio to real pH values is also provided. Single-dye ratiometric methods are generally considered superior to single wavelength or dual-dye pseudo-ratiometric protocols, as they are less sensitive to perturbations such as bleaching, focus changes, laser variations, and uneven labeling, which distort the measured signal. This method can be easily modified to measure pH in other phagocytic cell types, and zymosan can be replaced by any other amine-containing particle, from inert beads to living microorganisms. Finally, this method can be adapted to make use of other fluorescent probes sensitive to different pH ranges or other phagosomal activities, making it a generalized protocol for the functional imaging of phagosomes.
Collapse
Affiliation(s)
- Paula Nunes
- Department of Cellular Physiology and Metabolism, University of Geneva;
| | - Daniele Guido
- Department of Cellular Physiology and Metabolism, University of Geneva
| | - Nicolas Demaurex
- Department of Cellular Physiology and Metabolism, University of Geneva
| |
Collapse
|
56
|
Jubrail J, Morris P, Bewley MA, Stoneham S, Johnston SA, Foster SJ, Peden AA, Read RC, Marriott HM, Dockrell DH. Inability to sustain intraphagolysosomal killing of Staphylococcus aureus predisposes to bacterial persistence in macrophages. Cell Microbiol 2015; 18:80-96. [PMID: 26248337 PMCID: PMC4778410 DOI: 10.1111/cmi.12485] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/07/2015] [Indexed: 12/25/2022]
Abstract
Macrophages are critical effectors of the early innate response to bacteria in tissues. Phagocytosis and killing of bacteria are interrelated functions essential for bacterial clearance but the rate-limiting step when macrophages are challenged with large numbers of the major medical pathogen Staphylococcus aureus is unknown. We show that macrophages have a finite capacity for intracellular killing and fail to match sustained phagocytosis with sustained microbial killing when exposed to large inocula of S. aureus (Newman, SH1000 and USA300 strains). S. aureus ingestion by macrophages is associated with a rapid decline in bacterial viability immediately after phagocytosis. However, not all bacteria are killed in the phagolysosome, and we demonstrate reduced acidification of the phagolysosome, associated with failure of phagolysosomal maturation and reduced activation of cathepsin D. This results in accumulation of viable intracellular bacteria in macrophages. We show macrophages fail to engage apoptosis-associated bacterial killing. Ultittop mately macrophages with viable bacteria undergo cell lysis, and viable bacteria are released and can be internalized by other macrophages. We show that cycles of lysis and reuptake maintain a pool of viable intracellular bacteria over time when killing is overwhelmed and demonstrate intracellular persistence in alveolar macrophages in the lungs in a murine model.
Collapse
Affiliation(s)
- Jamil Jubrail
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK.,The Florey Institute, University of Sheffield, Sheffield, UK
| | - Paul Morris
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK.,The Florey Institute, University of Sheffield, Sheffield, UK
| | - Martin A Bewley
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK.,The Florey Institute, University of Sheffield, Sheffield, UK
| | - Simon Stoneham
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK.,The Florey Institute, University of Sheffield, Sheffield, UK
| | - Simon A Johnston
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK.,The Florey Institute, University of Sheffield, Sheffield, UK.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Simon J Foster
- The Florey Institute, University of Sheffield, Sheffield, UK.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Andrew A Peden
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | - Robert C Read
- Academic Unit of Clinical and Experimental Sciences, University of Southampton Medical School, Southampton, UK
| | - Helen M Marriott
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK.,The Florey Institute, University of Sheffield, Sheffield, UK
| | - David H Dockrell
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK.,The Florey Institute, University of Sheffield, Sheffield, UK.,Academic Directorate of Communicable Diseases, Sheffield Teaching Hospitals, Sheffield, UK
| |
Collapse
|
57
|
Gilroy D, De Maeyer R. New insights into the resolution of inflammation. Semin Immunol 2015; 27:161-8. [PMID: 26037968 DOI: 10.1016/j.smim.2015.05.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022]
Abstract
The goal of treating chronic inflammatory diseases must be to inhibit persistent inflammation and restore tissue function. To achieve this we need to improve our understanding of the pathways that drive inflammation as well as those that bring about its resolution. In particular, resolution of inflammation is driven by a complex set of mediators that regulate cellular events required to clear inflammatory cells from sites of injury or infection and restore homeostasis. Indeed, it may be argued that dysfunctional resolution may underpin the aetiology of some chronic inflammatory disease and that a novel goal in treating such diseases is to develop drugs based on the mode of endogenous pro-resolution factors in order to drive on-going inflammation down a pro-resolution pathway. And while we are improving our understanding of the resolution of acute and chronic inflammation, much remains to be discovered. Here we will discuss the key endogenous checkpoints necessary for mounting an effective yet limited inflammatory response and the crucial biochemical pathways necessary to prevent its persistence and trigger its resolution. In doing so, we will provide an update on what is known about resolution of acute inflammation, in particular its link with adaptive immunity.
Collapse
Affiliation(s)
- Derek Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, United Kingdom.
| | - Roel De Maeyer
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, United Kingdom
| |
Collapse
|
58
|
Mendum TA, Wu H, Kierzek AM, Stewart GR. Lipid metabolism and Type VII secretion systems dominate the genome scale virulence profile of Mycobacterium tuberculosis in human dendritic cells. BMC Genomics 2015; 16:372. [PMID: 25956932 PMCID: PMC4425887 DOI: 10.1186/s12864-015-1569-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/23/2015] [Indexed: 12/20/2022] Open
Abstract
Background Mycobacterium tuberculosis continues to kill more people than any other bacterium. Although its archetypal host cell is the macrophage, it also enters, and survives within, dendritic cells (DCs). By modulating the behaviour of the DC, M. tuberculosis is able to manipulate the host’s immune response and establish an infection. To identify the M. tuberculosis genes required for survival within DCs we infected primary human DCs with an M. tuberculosis transposon library and identified mutations with a reduced ability to survive. Results Parallel sequencing of the transposon inserts of the surviving mutants identified a large number of genes as being required for optimal intracellular fitness in DCs. Loci whose mutation attenuated intracellular survival included those involved in synthesising cell wall lipids, not only the well-established virulence factors, pDIM and cord factor, but also sulfolipids and PGL, which have not previously been identified as having a direct virulence role in cells. Other attenuated loci included the secretion systems ESX-1, ESX-2 and ESX-4, alongside many PPE genes, implicating a role for ESX-5. In contrast the canonical ESAT-6 family of ESX substrates did not have intra-DC fitness costs suggesting an alternative ESX-1 associated virulence mechanism. With the aid of a gene-nutrient interaction model, metabolic processes such as cholesterol side chain catabolism, nitrate reductase and cysteine-methionine metabolism were also identified as important for survival in DCs. Conclusion We conclude that many of the virulence factors required for survival in DC are shared with macrophages, but that survival in DCs also requires several additional functions, such as cysteine-methionine metabolism, PGLs, sulfolipids, ESX systems and PPE genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1569-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tom A Mendum
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Huihai Wu
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Andrzej M Kierzek
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Graham R Stewart
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
59
|
Levine AP, Duchen MR, de Villiers S, Rich PR, Segal AW. Alkalinity of neutrophil phagocytic vacuoles is modulated by HVCN1 and has consequences for myeloperoxidase activity. PLoS One 2015; 10:e0125906. [PMID: 25885273 PMCID: PMC4401748 DOI: 10.1371/journal.pone.0125906] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/21/2015] [Indexed: 12/03/2022] Open
Abstract
The NADPH oxidase of neutrophils, essential for innate immunity, passes electrons across the phagocytic membrane to form superoxide in the phagocytic vacuole. Activity of the oxidase requires that charge movements across the vacuolar membrane are balanced. Using the pH indicator SNARF, we measured changes in pH in the phagocytic vacuole and cytosol of neutrophils. In human cells, the vacuolar pH rose to ~9, and the cytosol acidified slightly. By contrast, in Hvcn1 knock out mouse neutrophils, the vacuolar pH rose above 11, vacuoles swelled, and the cytosol acidified excessively, demonstrating that ordinarily this channel plays an important role in charge compensation. Proton extrusion was not diminished in Hvcn1-/- mouse neutrophils arguing against its role in maintaining pH homeostasis across the plasma membrane. Conditions in the vacuole are optimal for bacterial killing by the neutral proteases, cathepsin G and elastase, and not by myeloperoxidase, activity of which was unphysiologically low at alkaline pH.
Collapse
Affiliation(s)
- Adam P. Levine
- Division of Medicine, University College London, London, United Kingdom
| | - Michael R. Duchen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Simon de Villiers
- Glynn Laboratory of Bioenergetics, Department of Biology, University College London, London, United Kingdom
| | - Peter R. Rich
- Glynn Laboratory of Bioenergetics, Department of Biology, University College London, London, United Kingdom
| | - Anthony W. Segal
- Division of Medicine, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
60
|
Canton J, Khezri R, Glogauer M, Grinstein S. Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Mol Biol Cell 2014; 25:3330-41. [PMID: 25165138 PMCID: PMC4214780 DOI: 10.1091/mbc.e14-05-0967] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 01/17/2023] Open
Abstract
Macrophages respond to changes in environmental stimuli by assuming distinct functional phenotypes, a phenomenon referred to as macrophage polarization. We generated classically (M1) and alternatively (M2) polarized macrophages--two extremes of the polarization spectrum--to compare the properties of their phagosomes. Specifically, we analyzed the regulation of the luminal pH after particle engulfment. The phagosomes of M1 macrophages had a similar buffering power and proton (equivalent) leakage permeability but significantly reduced proton-pumping activity compared with M2 phagosomes. As a result, only the latter underwent a rapid and profound acidification. By contrast, M1 phagosomes displayed alkaline pH oscillations, which were caused by proton consumption upon dismutation of superoxide, followed by activation of a voltage- and Zn(2+)-sensitive permeation pathway, likely HV1 channels. The paucity of V-ATPases in M1 phagosomes was associated with, and likely caused by, delayed fusion with late endosomes and lysosomes. The delayed kinetics of maturation was, in turn, promoted by the failure of M1 phagosomes to acidify. Thus, in M1 cells, elimination of pathogens through deployment of the microbicidal NADPH oxidase is given priority at the expense of delayed acidification. By contrast, M2 phagosomes proceed to acidify immediately in order to clear apoptotic bodies rapidly and effectively.
Collapse
Affiliation(s)
- Johnathan Canton
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Rojyar Khezri
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5C 1N8, Canada
| |
Collapse
|
61
|
van Kessel KPM, Bestebroer J, van Strijp JAG. Neutrophil-Mediated Phagocytosis of Staphylococcus aureus. Front Immunol 2014; 5:467. [PMID: 25309547 PMCID: PMC4176147 DOI: 10.3389/fimmu.2014.00467] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Initial elimination of invading Staphylococcus aureus from the body is mediated by professional phagocytes. The neutrophil is the major phagocyte of the innate immunity and plays a key role in the host defense against staphylococcal infections. Opsonization of the bacteria with immunoglobulins and complement factors enables efficient recognition by the neutrophil that subsequently leads to intracellular compartmentalization and killing. Here, we provide a review of the key processes evolved in neutrophil-mediated phagocytosis of S. aureus and briefly describe killing. As S. aureus is not helpless against the professional phagocytes, we will also highlight its immune evasion arsenal related to phagocytosis.
Collapse
Affiliation(s)
- Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Jovanka Bestebroer
- Medical Microbiology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht , Utrecht , Netherlands
| |
Collapse
|
62
|
Abstract
Macrophages are capable of assuming distinct, meta-stable, functional phenotypes in response to environmental cues-a process referred to as macrophage polarization. The identity and plasticity of polarized macrophage subsets as well as their functions in the maintenance of homeostasis and the progression of various pathologies have become areas of intense interest. Yet, the mechanisms by which they achieve subset-specific functions at the cellular level remain unclear. It is becoming apparent that phagocytosis and phagosome maturation differ depending on the polarization of macrophages. This minireview summarizes recent progress in this field, highlighting developing trends and discussing the molecular mechanisms that underlie subset-specific functions.
Collapse
Affiliation(s)
- Johnathan Canton
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
63
|
Successful management of liver abscesses in a patient with chronic granulomatous disease (CGD) using corticosteroids. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2014. [DOI: 10.1016/j.epsc.2014.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
64
|
El Chemaly A, Nunes P, Jimaja W, Castelbou C, Demaurex N. Hv1 proton channels differentially regulate the pH of neutrophil and macrophage phagosomes by sustaining the production of phagosomal ROS that inhibit the delivery of vacuolar ATPases. J Leukoc Biol 2014; 95:827-839. [PMID: 24415791 DOI: 10.1189/jlb.0513251] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 11/24/2022] Open
Abstract
Production of ROS and maintenance of an appropriate pH within the lumen of neutrophil and macrophage phagosomes are important for an effective immune response. Hv1 proton channels sustain ROS production at the plasma membrane, but their role in phagosomes is not known. Here, we tested whether Hv1 channels regulate the pHp and sustain phagosomal ROS production in neutrophils and macrophages. The presence of Hv1 channels on phagosomes of human neutrophils and mouse macrophages was confirmed by Western blot and immunostaining. Phagosomal ROS production, measured with OxyBurst-coupled targets, was reduced in neutrophils and macrophages isolated from Hv1-deficient mice. Ratiometric imaging of FITC-coupled targets showed that phagosomes acidified more slowly in Hv1-deficient macrophages and transiently alkalinized when the V-ATPase was inhibited. In WT neutrophils, 97% of phagosomes remained neutral 30 min after particle ingestion, whereas 37% of Hv1-deficient phagosomes were alkaline (pH>8.3) and 14% acidic (pH<6.3). The subpopulation of acidic phagosomes was eliminated by V-ATPase inhibition, whereas NOX inhibition caused a rapid acidification, independently of Hv1 expression. Finally, V-ATPase accumulation on phagosomes was inversely correlated to intraphagosomal ROS production in neutrophils. These data indicate that Hvcn1 ablation deregulates neutrophil pHp, leading to alkalinization in phagosomes with residual ROS production or to the early accumulation of V-ATPase on phagosomes that fail to mount an oxidative response. Hv1 channels therefore differentially regulate the pHp in neutrophils and macrophages, sustaining rapid acidification in macrophage phagosomes and maintaining a neutral pH in neutrophil phagosomes.
Collapse
Affiliation(s)
- Antoun El Chemaly
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Wedali Jimaja
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Cyril Castelbou
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
65
|
Abstract
SIGNIFICANCE Postharvest pathogens can start its attack process immediately after spores land on wounded tissue, whereas other pathogens can forcibly breach the unripe fruit cuticle and then remain quiescent for months until fruit ripens and then cause major losses. RECENT ADVANCES Postharvest fungal pathogens activate their development by secreting organic acids or ammonia that acidify or alkalinize the host ambient surroundings. CRITICAL ISSUES These fungal pH modulations of host environment regulate an arsenal of enzymes to increase fungal pathogenicity. This arsenal includes genes and processes that compromise host defenses, contribute to intracellular signaling, produce cell wall-degrading enzymes, regulate specific transporters, induce redox protectant systems, and generate factors needed by the pathogen to effectively cope with the hostile environment found within the host. Further, evidence is accumulating that the secreted molecules (organic acids and ammonia) are multifunctional and together with effect of the ambient pH, they activate virulence factors and simultaneously hijack the plant defense response and induce program cell death to further enhance their necrotrophic attack. FUTURE DIRECTIONS Global studies of the effect of secreted molecules on fruit pathogen interaction, will determine the importance of these molecules on quiescence release and the initiation of fungal colonization leading to fruit and vegetable losses.
Collapse
Affiliation(s)
- Noam Alkan
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
66
|
Kettle AJ, Albrett AM, Chapman AL, Dickerhof N, Forbes LV, Khalilova I, Turner R. Measuring chlorine bleach in biology and medicine. Biochim Biophys Acta Gen Subj 2013; 1840:781-93. [PMID: 23872351 DOI: 10.1016/j.bbagen.2013.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chlorine bleach, or hypochlorous acid, is the most reactive two-electron oxidant produced in appreciable amounts in our bodies. Neutrophils are the main source of hypochlorous acid. These champions of the innate immune system use it to fight infection but also direct it against host tissue in inflammatory diseases. Neutrophils contain a rich supply of the enzyme myeloperoxidase. It uses hydrogen peroxide to convert chloride to hypochlorous acid. SCOPE OF REVIEW We give a critical appraisal of the best methods to measure production of hypochlorous acid by purified peroxidases and isolated neutrophils. Robust ways of detecting it inside neutrophil phagosomes where bacteria are killed are also discussed. Special attention is focused on reaction-based fluorescent probes but their visual charm is tempered by stressing their current limitations. Finally, the strengths and weaknesses of biomarker assays that capture the footprints of chlorine in various pathologies are evaluated. MAJOR CONCLUSIONS Detection of hypochlorous acid by purified peroxidases and isolated neutrophils is best achieved by measuring accumulation of taurine chloramine. Formation of hypochlorous acid inside neutrophil phagosomes can be tracked using mass spectrometric analysis of 3-chlorotyrosine and methionine sulfoxide in bacterial proteins, or detection of chlorinated fluorescein on ingestible particles. Reaction-based fluorescent probes can also be used to monitor hypochlorous acid during phagocytosis. Specific biomarkers of its formation during inflammation include 3-chlorotyrosine, chlorinated products of plasmalogens, and glutathione sulfonamide. GENERAL SIGNIFICANCE These methods should bring new insights into how chlorine bleach is produced by peroxidases, reacts within phagosomes to kill bacteria, and contributes to inflammation. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, P.O. Box 4345, Christchurch, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
67
|
Henriet SSV, Jans J, Simonetti E, Kwon-Chung KJ, Rijs AJMM, Hermans PWM, Holland SM, de Jonge MI, Warris A. Chloroquine modulates the fungal immune response in phagocytic cells from patients with chronic granulomatous disease. J Infect Dis 2013; 207:1932-9. [PMID: 23482646 DOI: 10.1093/infdis/jit103] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Invasive aspergillosis is a major threat to patients with chronic granulomatous disease (CGD). Fungal pathogenesis is the result of a diminished antifungal capacity and dysregulated inflammation. A deficient NADPH-oxidase complex results in defective phagolysosomal alkalization. To investigate the contribution of defective pH regulation in phagocytes among patients with CGD during fungal pathogenesis, we evaluated the effect of the acidotropic, antimalarial drug chloroquine (CQ) on the antifungal capacity of polymorphonuclear cells (PMNs) and on the inflammatory response of peripheral blood mononuclear cells (PBMCs). Chloroquine exerted a direct pH-dependent antifungal effect on Aspergillus fumigatus and Aspergillus nidulans; it increased the antifungal activity of PMNs from patients with CGD at a significantly lower concentration, compared with the concentration for PMNs from healthy individuals; and decreased the hyperinflammatory state of PBMCs from patients with CGD, as observed by decreased tumor necrosis factor α and interleukin 1β release. Chloroquine targets both limbs of fungal pathogenesis and might be of great value in the clearance of invasive aspergillosis in patients with CGD.
Collapse
Affiliation(s)
- Stefanie S V Henriet
- Department of Pediatrics, Radboud University Nijmegen Medical Centre, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Winterbourn CC, Kettle AJ. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid Redox Signal 2013; 18:642-60. [PMID: 22881869 DOI: 10.1089/ars.2012.4827] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE When neutrophils kill microorganisms, they ingest them into phagosomes and bombard them with a burst of reactive oxygen species. RECENT ADVANCES This review focuses on what oxidants are produced and how they kill. The neutrophil NADPH oxidase is activated and shuttles electrons from NADPH in the cytoplasm to oxygen in the phagosomal lumen. Superoxide is generated in the narrow space between the ingested organism and the phagosomal membrane and kinetic modeling indicates that it reaches a concentration of around 20 μM. Degranulation leads to a very high protein concentration with up to millimolar myeloperoxidase (MPO). MPO has many substrates, but its main phagosomal reactions should be to dismutate superoxide and, provided adequate chloride, catalyze efficient conversion of hydrogen peroxide to hypochlorous acid (HOCl). Studies with specific probes have shown that HOCl is produced in the phagosome and reacts with ingested bacteria. The amount generated should be high enough to kill. However, much of the HOCl reacts with phagosomal proteins. Generation of chloramines may contribute to killing, but the full consequences of this are not yet clear. CRITICAL ISSUES Isolated neutrophils kill most of the ingested microorganisms rapidly by an MPO-dependent mechanism that is almost certainly due to HOCl. However, individuals with MPO deficiency rarely have problems with infection. A possible explanation is that HOCl provides a frontline response that kills most of the microorganisms, with survivors killed by nonoxidative processes. The latter may deal adequately with low-level infection but with high exposure, more efficient HOCl-dependent killing is required. FUTURE DIRECTIONS Better quantification of HOCl and other oxidants in the phagosome should clarify their roles in antimicrobial action.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand.
| | | |
Collapse
|
69
|
Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak PP. The resolution of inflammation. Nat Rev Immunol 2012. [PMID: 23197111 DOI: 10.1038/nri3362] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In 2012, Nature Reviews Immunology organized a conference that brought together scientists and clinicians from both academia and industry to discuss one of the most pressing questions in medicine--how do we turn off rampant, undesirable inflammation? There is a growing appreciation that, similarly to the initiation of inflammation, the resolution of inflammation is an intricate and active process. Can we therefore harness the mediators involved in resolution responses to treat patients with chronic inflammatory or autoimmune diseases? Here, we ask five of the speakers from the conference to share their thoughts on this emerging field.
Collapse
Affiliation(s)
- Christopher D Buckley
- Rheumatology Research Group at the Centre for Translational Inflammation Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WD, UK.
| | | | | | | | | |
Collapse
|
70
|
Nordenfelt P, Grinstein S, Björck L, Tapper H. V-ATPase-mediated phagosomal acidification is impaired by Streptococcus pyogenes through Mga-regulated surface proteins. Microbes Infect 2012; 14:1319-29. [PMID: 22981599 DOI: 10.1016/j.micinf.2012.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 12/22/2022]
Abstract
Streptococcus pyogenes, a significant bacterial pathogen in humans, interferes with the membrane traffic of human neutrophils and survives following phagocytosis. The mechanism(s) behind this property is not known, but in contrast to wild-type bacteria, mutant bacteria lacking virulence factors regulated by the transcriptional regulator Mga, are phagocytosed and killed. In the present work we investigated whether differences in phagosomal acidification may contribute to this difference. Phagosomal pH in neutrophil-differentiated HL-60 cells was studied by fluorescence ratio imaging, and phagosomes containing wild-type S. pyogenes bacteria of the M1 serotype exhibited little or no acidification, whereas Mga mutant bacteria were found in more acidic phagosomes. With phagosomes containing these bacteria, proton delivery was inhibited by adding folimycin, a vacuolar-type adenosine triphosphatase (V-ATPase) inhibitor. This inhibitor had no effect on phagosomes containing wild-type bacteria, indicating either inactivation or removal of V-ATPases by the bacteria. Analysis of isolated bacteria-containing phagosomes confirmed the latter scenario and showed a more efficient delivery of V-ATPases to phagosomes containing Mga mutant bacteria. The results demonstrate that V-ATPase-mediated phagosomal proton delivery is reduced during phagocytosis of wild-type S. pyogenes, leading to impaired acidification, and that surface proteins of the mga regulon are responsible for this effect.
Collapse
Affiliation(s)
- Pontus Nordenfelt
- Division of Infection Medicine, Department of Clinical Sciences, BMC, B14, Lund University, SE-221 84 Lund, Sweden.
| | | | | | | |
Collapse
|
71
|
Abstract
Current viewpoints concerning the bactericidal mechanisms of neutrophils are reviewed from a perspective that emphasizes challenges presented by the inability to duplicate ex vivo the intracellular milieu. Among the challenges considered are the influences of confinement upon substrate availability and reaction dynamics, direct and indirect synergistic interactions between individual toxins, and bacterial responses to stressors. Approaches to gauging relative contributions of various oxidative and nonoxidative toxins within neutrophils using bacteria and bacterial mimics as intrinsic probes are also discussed.
Collapse
Affiliation(s)
- James K Hurst
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
72
|
Henriet SSV, Verweij PE, Warris A. Aspergillus nidulans and Chronic Granulomatous Disease: A Unique Host–Pathogen Interaction. J Infect Dis 2012; 206:1128-37. [DOI: 10.1093/infdis/jis473] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
73
|
El Chemaly A, Demaurex N. Do Hv1 proton channels regulate the ionic and redox homeostasis of phagosomes? Mol Cell Endocrinol 2012; 353:82-7. [PMID: 22056415 DOI: 10.1016/j.mce.2011.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/06/2011] [Accepted: 10/06/2011] [Indexed: 12/28/2022]
Abstract
Recent work on animal models has revealed the important role played by the voltage-gated proton channel Hv1 during bacterial killing by innate immune cells. Studies from mice lacking Hv1 channels showed that Hv1 proton channels are required for high-level production of reactive oxygen species (ROS) by the NADPH oxidase of phagocytes (NOX2) in two ways. First, Hv1 channels maintain a physiological membrane potential during the respiratory burst of neutrophils by providing a compensating charge for the electrons transferred by NOX2 from NADPH to superoxide. Second, Hv1 channels maintain a physiological cytosolic pH by extruding the acid generated by the NOX2-dependent consumption of NADPH. The two mechanisms directly sustain the activity of the NOX2 enzyme and indirectly sustain other neutrophil functions by enhancing the driving force for the entry of calcium into cells, thereby boosting cellular calcium signals. The increased depolarization of Hv1-deficient neutrophils aborted calcium responses to chemoattractants and revealed adhesion and migration defects that were associated with an impaired depolymerization of the cortical actin cytoskeleton. Current research aims to transpose these findings to phagosomes, the phagocytic vacuoles where bacterial killing takes place. However, the mechanisms that control the phagosomal pH appear to vary greatly between phagocytes: phagosomes rapidly acidify in macrophages but remain neutral for several minutes in neutrophils following ingestion of solid particles, whereas in dendritic cells phagosomes alkalinize, a mechanism thought to promote antigen cross-presentation. In this review, we discuss how the knowledge gained on the role of Hv1 channels at the plasma membrane of neutrophils can be used to study the regulation of the phagosomal pH, ROS, membrane potential, and calcium fluxes in different phagocytic cells.
Collapse
Affiliation(s)
- Antoun El Chemaly
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
74
|
Wiese M, Gerlach RG, Popp I, Matuszak J, Mahapatro M, Castiglione K, Chakravortty D, Willam C, Hensel M, Bogdan C, Jantsch J. Hypoxia-mediated impairment of the mitochondrial respiratory chain inhibits the bactericidal activity of macrophages. Infect Immun 2012; 80:1455-1466. [PMID: 22252868 PMCID: PMC3318416 DOI: 10.1128/iai.05972-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/28/2011] [Indexed: 12/14/2022] Open
Abstract
In infected tissues oxygen tensions are low. As innate immune cells have to operate under these conditions, we analyzed the ability of macrophages (Mφ) to kill Escherichia coli or Staphylococcus aureus in a hypoxic microenvironment. Oxygen restriction did not promote intracellular bacterial growth but did impair the bactericidal activity of the host cells against both pathogens. This correlated with a decreased production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates. Experiments with phagocyte NADPH oxidase (PHOX) and inducible NO synthase (NOS2) double-deficient Mφ revealed that in E. coli- or S. aureus-infected cells the reduced antibacterial activity during hypoxia was either entirely or partially independent of the diminished PHOX and NOS2 activity. Hypoxia impaired the mitochondrial activity of infected Mφ. Inhibition of the mitochondrial respiratory chain activity during normoxia (using rotenone or antimycin A) completely or partially mimicked the defective antibacterial activity observed in hypoxic E. coli- or S. aureus-infected wild-type Mφ, respectively. Accordingly, inhibition of the respiratory chain of S. aureus-infected, normoxic PHOX(-/-) NOS2(-/-) Mφ further raised the bacterial burden of the cells, which reached the level measured in hypoxic PHOX(-/-) NOS2(-/-) Mφ cultures. Our data demonstrate that the reduced killing of S. aureus or E. coli during hypoxia is not simply due to a lack of PHOX and NOS2 activity but partially or completely results from an impaired mitochondrial antibacterial effector function. Since pharmacological inhibition of the respiratory chain raised the generation of ROI but nevertheless phenocopied the effect of hypoxia, ROI can be excluded as the mechanism underlying the antimicrobial activity of mitochondria.
Collapse
Affiliation(s)
- Melanie Wiese
- Microbiology Institute–Clinical Microbiology, Immunology, and Hygiene
| | - Roman G. Gerlach
- Junior Research Group 3, Robert Koch Institute, Wernigerode, Germany
| | - Isabel Popp
- Microbiology Institute–Clinical Microbiology, Immunology, and Hygiene
| | - Jasmin Matuszak
- Microbiology Institute–Clinical Microbiology, Immunology, and Hygiene
| | - Mousumi Mahapatro
- Microbiology Institute–Clinical Microbiology, Immunology, and Hygiene
| | | | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research and Biosafety Laboratories, Indian Institute of Science, Bangalore, India
| | - Carsten Willam
- Department of Nephrology and Hypertension, University Hospital of Erlangen and Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Michael Hensel
- Department of Microbiology, University of Osnabrueck, Osnabrueck, Germany
| | - Christian Bogdan
- Microbiology Institute–Clinical Microbiology, Immunology, and Hygiene
| | - Jonathan Jantsch
- Microbiology Institute–Clinical Microbiology, Immunology, and Hygiene
| |
Collapse
|
75
|
Cuzzi B, Cescutti P, Furlanis L, Lagatolla C, Sturiale L, Garozzo D, Rizzo R. Investigation of bacterial resistance to the immune system response: cepacian depolymerisation by reactive oxygen species. Innate Immun 2012; 18:661-71. [PMID: 22278934 DOI: 10.1177/1753425911435954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS) are part of the weapons used by the immune system to kill and degrade infecting microorganisms. Bacteria can produce macromolecules, such as polysaccharides, that are able to scavenge ROS. Species belonging to the Burkholderia cepacia complex are involved in serious lung infection in cystic fibrosis patients and produce a characteristic polysaccharide, cepacian. The interaction between ROS and bacterial polysaccharides was first investigated by killing experiments, where bacteria cells were incubated with sodium hypochlorite (NaClO) with and without prior incubation with cepacian. The results showed that the polysaccharide had a protective effect towards bacterial cells. Cepacian was then treated with different concentrations of NaClO and the course of reactions was followed by means of capillary viscometry. The degradation products were characterised by size-exclusion chromatography, NMR and mass spectrometry. The results showed that hypochlorite depolymerised cepacian, removed side chains and O-acetyl groups, but did not cleave the glycosidic bond between glucuronic acid and rhamnose. The structure of some oligomers produced by NaClO oxidation is reported.
Collapse
Affiliation(s)
- Bruno Cuzzi
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
76
|
Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol 2012; 30:459-89. [PMID: 22224774 DOI: 10.1146/annurev-immunol-020711-074942] [Citation(s) in RCA: 1175] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neutrophils are the most abundant white blood cells in circulation, and patients with congenital neutrophil deficiencies suffer from severe infections that are often fatal, underscoring the importance of these cells in immune defense. In spite of neutrophils' relevance in immunity, research on these cells has been hampered by their experimentally intractable nature. Here, we present a survey of basic neutrophil biology, with an emphasis on examples that highlight the function of neutrophils not only as professional killers, but also as instructors of the immune system in the context of infection and inflammatory disease. We focus on emerging issues in the field of neutrophil biology, address questions in this area that remain unanswered, and critically examine the experimental basis for common assumptions found in neutrophil literature.
Collapse
Affiliation(s)
- Borko Amulic
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
77
|
Narni-Mancinelli E, Soudja SM, Crozat K, Dalod M, Gounon P, Geissmann F, Lauvau G. Inflammatory monocytes and neutrophils are licensed to kill during memory responses in vivo. PLoS Pathog 2011; 7:e1002457. [PMID: 22241983 PMCID: PMC3248567 DOI: 10.1371/journal.ppat.1002457] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/09/2011] [Indexed: 12/24/2022] Open
Abstract
Immunological memory is a hallmark of B and T lymphocytes that have undergone a previous encounter with a given antigen. It is assumed that memory cells mediate better protection of the host upon re-infection because of improved effector functions such as antibody production, cytotoxic activity and cytokine secretion. In contrast to cells of the adaptive immune system, innate immune cells are believed to exhibit a comparable functional effector response each time the same pathogen is encountered. Here, using mice infected by the intracellular bacterium Listeria monocytogenes, we show that during a recall bacterial infection, the chemokine CCL3 secreted by memory CD8+ T cells drives drastic modifications of the functional properties of several populations of phagocytes. We found that inflammatory ly6C+ monocytes and neutrophils largely mediated memory CD8+ T cell bacteriocidal activity by producing increased levels of reactive oxygen species (ROS), augmenting the pH of their phagosomes and inducing antimicrobial autophagy. These events allowed an extremely rapid control of bacterial growth in vivo and accounted for protective immunity. Therefore, our results provide evidence that cytotoxic memory CD8+ T cells can license distinct antimicrobial effector mechanisms of innate cells to efficiently clear pathogens. The immune system comprises white blood cells that belong to the innate or the adaptive immune arms. Adaptive immune cells such as T and B lymphocytes can give rise to memory cells which mediate long-lived immunity against pathogens. During a recall infection, innate immune phagocytic cells such as monocytes and neutrophils can be critical to kill microbial pathogens inside infected tissues. Whether and how such antimicrobial features of phagocytic cells of the innate immune system are modulated during a memory response in a vaccinated host is not known. The present report shows that cytolytic memory T lymphocytes, an important subpopulation of effector T cells, can drastically enhance the functional killing capacities of monocytes and neutrophils for optimized pathogen clearance from infected hosts. These phagocytes exhibit enhanced generation of oxidative burst, increased phagosomal pH and autophagy, three mechanisms that lead to intracellular pathogen death. This result is important since it suggests that modulating innate immune cells effector activities could be an interesting strategy to enhance vaccine efficacy.
Collapse
Affiliation(s)
- Emilie Narni-Mancinelli
- Institut National de la Santé et de la Recherche Médicale Unité 924, Groupe Avenir, Université de Nice-Sophia Antipolis, Valbonne, France
- Université de Nice-Sophia Antipolis, UFR Sciences, Nice, France
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 631, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6102 (CNRS-UMR), Marseille, France
| | - Saidi M'Homa Soudja
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, United States of America
| | - Karine Crozat
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 631, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6102 (CNRS-UMR), Marseille, France
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 631, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6102 (CNRS-UMR), Marseille, France
| | - Pierre Gounon
- Université de Nice-Sophia Antipolis, UFR Sciences, Nice, France
| | - Frédéric Geissmann
- King's College London, Centre for Cellular and Molecular Biology of Inflammation, London, England, United Kingdom
| | - Grégoire Lauvau
- Institut National de la Santé et de la Recherche Médicale Unité 924, Groupe Avenir, Université de Nice-Sophia Antipolis, Valbonne, France
- Université de Nice-Sophia Antipolis, UFR Sciences, Nice, France
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
78
|
Ikejiri A, Nagai S, Goda N, Kurebayashi Y, Osada-Oka M, Takubo K, Suda T, Koyasu S. Dynamic regulation of Th17 differentiation by oxygen concentrations. Int Immunol 2011; 24:137-46. [PMID: 22207131 DOI: 10.1093/intimm/dxr111] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Naive CD4(+) T cells are activated by antigen-presenting cells (APCs) and differentiate into distinct types of helper T (T(h)) cells in the lymph node or spleen. Oxygen (O(2)) tension is generally low in these secondary lymphoid tissues compared with the bloodstream or atmosphere. However, the effect of changes in O(2) concentration on the differentiation of T(h) cells remains unclear. Here, we established a novel model of T(h)-cell differentiation, which mimics physiological O(2) conditions. We primed naive CD4(+) T cells under 5% O(2), which has been observed in the lymph node or spleen and reoxygenated under normoxia that mimicked the O(2) concentration in blood. In this model, the differentiation of T(h)17 cells, but not T(h)1 or iTreg cells, was enhanced. Under the condition of 5% O(2), mammalian target of rapamycin complex 1 (mTORC1) was activated and led to the stabilization of hypoxia-inducible factor 1α (HIF-1α) in T(h)17 cells. The activation of mTORC1 and the acceleration of T(h)17-cell differentiation, which occurred when cells were primed under 5% O(2), were not observed in the absence of HIF-1α but were accelerated in the absence of von Hippel-Lindau tumor suppressor protein (vHL), a factor critical for HIF-1α degradation. Thus, a positive feedback loop between HIF-1α and mTORC1 induced by hypoxia followed by reoxygenation accelerates T(h)17-cell differentiation.
Collapse
Affiliation(s)
- Ai Ikejiri
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Kettle AJ, Maroz A, Woodroffe G, Winterbourn CC, Anderson RF. Spectral and kinetic evidence for reaction of superoxide with compound I of myeloperoxidase. Free Radic Biol Med 2011; 51:2190-4. [PMID: 22002086 DOI: 10.1016/j.freeradbiomed.2011.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/15/2011] [Accepted: 09/17/2011] [Indexed: 12/01/2022]
Abstract
Superoxide and myeloperoxidase (MPO) are essential for the oxidative killing of bacteria by neutrophils. Previously, we developed a kinetic model to demonstrate that within the confines of neutrophil phagosomes, superoxide should react exclusively with MPO and be converted to hypochlorous acid. The model consists of all known reactions and rate constants for reactions of superoxide, hydrogen peroxide, and chloride ions with MPO, except for the reaction of superoxide with compound I, which could only be estimated. Compound I is a transitory redox intermediate of MPO that is responsible for oxidizing chloride ions to hypochlorous acid. To tackle the challenge of observing the reaction between two transient species, we combined stopped-flow spectrophotometry with pulse radiolysis. Using this technique, we directly observed the reduction of compound I by superoxide. The rate constant for the reaction was determined to be 5.6±0.3×10(6)M(-1)s(-1). This value establishes superoxide as one of the best substrates for compound I. Based on this value, the rate constant for reduction of compound II by superoxide was determined to be 1.2±0.1×10(6)M(-1)s(-1). Within phagosomes, the reduction of compound I by superoxide will compete with the oxidation of chloride ions so that the relative concentrations of these two substrates will affect the yield of hypochlorous acid. Characterization of this reaction confirms that superoxide is a physiological substrate for MPO and that their interactions are central to an important host defense mechanism.
Collapse
Affiliation(s)
- Anthony J Kettle
- Free Radical Research Group, Department of Pathology, University of Otago at Christchurch, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
80
|
Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH-independent manner. EMBO J 2011; 31:932-44. [PMID: 22157818 DOI: 10.1038/emboj.2011.440] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022] Open
Abstract
The level of proteolysis within phagosomes of dendritic cells (DCs) is thought to be tightly regulated, as it directly impacts the cell's efficiency to process antigen. Activity of the antimicrobial effector NADPH oxidase (NOX2) has been shown to reduce levels of proteolysis within phagosomes of both macrophages and DCs. However, the proposed mechanisms underlying these observations in these two myeloid cell lineages are dissimilar. Using real-time analysis of lumenal microenvironmental parameters within phagosomes in live bone marrow-derived DCs, we show that the levels of phagosomal proteolysis are diminished in the presence of NOX2 activity, but in contrast to previous reports, the acidification of the phagosome is largely unaffected. As found in macrophages, we show that NOX2 controls phagosomal proteolysis in DCs through redox modulation of local cysteine cathepsins. Aspartic cathepsins were unaffected by redox conditions, indicating that NOX2 skews the relative protease activities in these antigen processing compartments. The ability of DC phagosomes to reduce disulphides was also compromised by NOX2 activity, implicating this oxidase in the control of an additional antigen processing chemistry of DCs.
Collapse
|
81
|
Neutrophil myeloperoxidase: soldier and statesman. Arch Immunol Ther Exp (Warsz) 2011; 60:43-54. [PMID: 22143159 DOI: 10.1007/s00005-011-0156-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/05/2011] [Indexed: 01/15/2023]
Abstract
Myeloperoxidase (MPO) is a major protein constituent of the primary granules of vertebrate neutrophils. It catalyses the hydrogen peroxide-mediated oxidation of halide ions to hypohalous acids, especially HOCl. These reactive oxygen species can participate in a variety of secondary reactions, leading to modifications of amino acids and many types of biological macromolecules. The classic paradigm views MPO as a component of the phagocyte oxygen-dependent intracellular microbicidal system, and thus an important arm of the effector phase of innate immune responses. However, the limited immunodeficiency associated with lack of MPO in mouse and human models has challenged this paradigm. In this review we examine more recent information on the interaction between MPO, its bioreactive reaction products, and targets within the inflammatory microenvironment. We propose that two assumptions of the current model may require revisiting. First, many important targets of MPO modification are extracellular, rather than present only within the phagolysosome, such as various components of neutrophil extracellular traps. Second, we suggest that the pro-inflammatory pathological role of MPO may be a particular feature of chronic inflammation. In the physiological setting of acute neutrophil-mediated inflammation MPO may also form part of a negative feedback loop which down-regulates inflammation, limits tissue damage, and facilitates the switch from innate to adaptive immunity. This different perspective on this well-studied enzyme may usefully inform further research into its function in health and disease.
Collapse
|
82
|
Nüsse O. Biochemistry of the phagosome: the challenge to study a transient organelle. ScientificWorldJournal 2011; 11:2364-81. [PMID: 22194668 PMCID: PMC3236389 DOI: 10.1100/2011/741046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/26/2011] [Indexed: 12/21/2022] Open
Abstract
Phagocytes are specialized cells of the immune system, designed to engulf and destroy harmful microorganisms inside the newly formed phagosome. The latter is an intracellular organelle that is transformed into a toxic environment within minutes and disappears once the pathogen is destroyed. Reactive oxygen species and reactive nitrogen species are produced inside the phagosome. Intracellular granules or lysosomes of the phagocyte fuse with the phagosome and liberate their destructive enzymes. This process of phagocytosis efficiently protects against most infections; however, some microorganisms avoid their destruction and cause severe damage. To understand such failure of phagosomal killing, we need to learn more about the actual destruction process in the phagosome. This paper summarizes methods to investigate the biochemistry of the phagosome and discusses some of their limitations. In accordance with the nature of the phagosome, the issue of localization and temporal dynamics is emphasized, and recent developments are highlighted.
Collapse
Affiliation(s)
- Oliver Nüsse
- Département de Biologie, Université Paris-Sud, Bâtiment 443, rue des Adeles, 91405 Orsay, France.
| |
Collapse
|
83
|
|
84
|
Nordenfelt P, Tapper H. Phagosome dynamics during phagocytosis by neutrophils. J Leukoc Biol 2011; 90:271-84. [PMID: 21504950 DOI: 10.1189/jlb.0810457] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The neutrophil is a key player in immunity, and its activities are essential for the resolution of infections. Neutrophil-pathogen interactions usually trigger a large arsenal of antimicrobial measures that leads to the highly efficient killing of pathogens. In neutrophils, the phagocytic process, including the formation and maturation of the phagosome, is in many respects very different from that in other phagocytes. Although the complex mechanisms that coordinate the membrane traffic, oxidative burst, and release of granule contents required for the microbicidal activities of neutrophils are not completely understood, it is evident that they are unique and differ from those in macrophages. Neutrophils exhibit more rapid rates of phagocytosis and higher intensity of oxidative respiratory response than do macrophages. The phagosome maturation pathway in macrophages, which is linked to the endocytic pathway, is replaced in neutrophils by the rapid delivery of preformed granules to nonacidic phagosomes. This review describes the plasticity and dynamics of the phagocytic process with a special focus on neutrophil phagosome maturation.
Collapse
Affiliation(s)
- Pontus Nordenfelt
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden.
| | | |
Collapse
|
85
|
Banerjee S, Stampler J, Furtmüller PG, Obinger C. Conformational and thermal stability of mature dimeric human myeloperoxidase and a recombinant monomeric form from CHO cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:375-87. [PMID: 20933108 DOI: 10.1016/j.bbapap.2010.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/23/2010] [Accepted: 09/29/2010] [Indexed: 11/29/2022]
Abstract
Myeloperoxidase (MPO) is a lysosomal heme enzyme present in the azurophilic granules of human neutrophils and monocytes. It is a critical element of the human innate immune system by exerting antimicrobial effects. It is a disulfide bridged dimer with each monomer containing a light and a heavy polypeptide and its biosynthesis and intracellular transport includes several posttranslational processing steps. By contrast, MPO recombinantly produced in Chinese hamster ovary cell lines is monomeric, partially unprocessed and contains a N-terminal propeptide (proMPO). It mirrors a second form of MPO constitutively secreted from normal bone marrow myeloid precursors. In order to clarify the impact of posttranslational modifications on the structural integrity and enzymology of these two forms of human myeloperoxidase, we have undertaken an investigation on the conformational and thermal stability of leukocyte MPO and recombinant proMPO by using complementary biophysical techniques including UV-Vis, circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry. Mature leucocyte MPO exhibits a peculiar high chemical and thermal stability under oxidizing conditions but is significantly destabilized by addition of dithiothreitol. Unfolding of secondary and tertiary structure occurs concomitantly with denaturation of the heme cavity, reflecting the role of three MPO-typical heme to protein linkages and of six intra-chain disulfides for structural integrity by bridging N- and C-terminal regions of the protein. Recombinant monomeric proMPO follows a similar unfolding pattern but has a lower conformational and thermal stability. Spectroscopic and thermodynamic data of unfolding are discussed with respect to the known three-dimensional structure of leukocyte MPO as well as to known physiological roles.
Collapse
Affiliation(s)
- Srijib Banerjee
- Division of Biochemistry, Department of Chemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | |
Collapse
|
86
|
Giotis ES, Muthaiyan A, Natesan S, Wilkinson BJ, Blair IS, McDowell DA. Transcriptome analysis of alkali shock and alkali adaptation in Listeria monocytogenes 10403S. Foodborne Pathog Dis 2010; 7:1147-57. [PMID: 20677981 PMCID: PMC3132107 DOI: 10.1089/fpd.2009.0501] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alkali stress is an important means of inactivating undesirable pathogens in a wide range of situations. Unfortunately, Listeria monocytogenes can launch an alkaline tolerance response, significantly increasing persistence of the pathogen in such environments. This study compared transcriptome patterns of alkali and non-alkali-stressed L. monocytogenes 10403S cells, to elucidate the mechanisms by which Listeria adapts and/or grows during short- or long-term alkali stress. Transcription profiles associated with alkali shock (AS) were obtained by DNA microarray analysis of midexponential cells suspended in pH 9 media for 15, 30, or 60 min. Transcription profiles associated with alkali adaptation (AA) were obtained similarly from cells grown to midexponential phase at pH 9. Comparison of AS and AA transcription profiles with control cell profiles identified a high number of differentially regulated open-reading frames in all tested conditions. Rapid (15 min) changes in expression included upregulation of genes encoding for multiple metabolic pathways (including those associated with Na+/H+ antiporters), ATP-binding cassette transporters of functional compatible solutes, motility, and virulence-associated genes as well as the σ(B) controlled stress resistance network. Slower (30 min and more) responses to AS and adaptation during growth in alkaline conditions (AA) involved a different pattern of changes in mRNA concentrations, and genes involved in proton export.
Collapse
Affiliation(s)
- Efstathios S. Giotis
- Food Microbiology Research Group, School of Health Sciences, University of Ulster, Northern Ireland, United Kingdom
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, Illinois
| | - Arunachalam Muthaiyan
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, Illinois
| | - Senthil Natesan
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Brian J. Wilkinson
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, Illinois
| | - Ian S. Blair
- Food Microbiology Research Group, School of Health Sciences, University of Ulster, Northern Ireland, United Kingdom
| | - David A. McDowell
- Food Microbiology Research Group, School of Health Sciences, University of Ulster, Northern Ireland, United Kingdom
| |
Collapse
|
87
|
Burguete MI, Galindo F, Izquierdo MA, O'Connor JE, Herrera G, Luis SV, Vigara L. Synthesis and Evaluation of Pseudopeptidic Fluorescence pH Probes for Acidic Cellular Organelles: In Vivo Monitoring of Bacterial Phagocytosis by Multiparametric Flow Cytometry. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000854] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
88
|
Human myeloperoxidase in innate and acquired immunity. Arch Biochem Biophys 2010; 500:92-106. [DOI: 10.1016/j.abb.2010.04.008] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 12/12/2022]
|
89
|
Calprotectin (S100A8/S100A9) and myeloperoxidase: co-regulators of formation of reactive oxygen species. Toxins (Basel) 2010; 2:95-115. [PMID: 22069549 PMCID: PMC3206613 DOI: 10.3390/toxins2010095] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Accepted: 01/18/2010] [Indexed: 12/15/2022] Open
Abstract
Inflammatory mediators trigger polymorphonuclear neutrophils (PMN) to produce reactive oxygen species (ROS: O2-, H2O2, ∙OH). Mediated by myeloperoxidase in PMN, HOCl is formed, detectable in a chemiluminescence (CL) assay. We have shown that the abundant cytosolic PMN protein calprotectin (S100A8/A9) similarly elicits CL in response to H2O2 in a cell-free system. Myeloperoxidase and calprotectin worked synergistically. Calprotectin-induced CL increased, whereas myeloperoxidase-triggered CL decreased with pH > 7.5. Myeloperoxidase needed NaCl for CL, calprotectin did not. 4-hydroxybenzoic acid, binding ∙OH, almost abrogated calprotectin CL, but moderately increased myeloperoxidase activity. The combination of native calprotectin, or recombinant S100A8/A9 proteins, with NaOCl markedly enhanced CL. NaOCl may be the synergistic link between myeloperoxidase and calprotectin. Surprisingly- and unexplained- at higher concentration of S100A9 the stimulation vanished, suggesting a switch from pro-oxidant to anti-oxidant function. We propose that the ∙OH is predominant in ROS production by calprotectin, a function not described before.
Collapse
|
90
|
El Chemaly A, Okochi Y, Sasaki M, Arnaudeau S, Okamura Y, Demaurex N. VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification. ACTA ACUST UNITED AC 2009; 207:129-39. [PMID: 20026664 PMCID: PMC2812533 DOI: 10.1084/jem.20091837] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neutrophils kill microbes with reactive oxygen species generated by the NADPH oxidase, an enzyme which moves electrons across membranes. Voltage-gated proton channels (voltage-sensing domain only protein [VSOP]/Hv1) are required for high-level superoxide production by phagocytes, but the mechanism of this effect is not established. We show that neutrophils from VSOP/Hv1−/− mice lack proton currents but have normal electron currents, indicating that these cells have a fully functional oxidase that cannot conduct protons. VSOP/Hv1−/− neutrophils had a more acidic cytosol, were more depolarized, and produced less superoxide and hydrogen peroxide than neutrophils from wild-type mice. Hydrogen peroxide production was rescued by providing an artificial conductance with gramicidin. Loss of VSOP/Hv1 also aborted calcium responses to chemoattractants, increased neutrophil spreading, and decreased neutrophil migration. The migration defect was restored by the addition of a calcium ionophore. Our findings indicate that proton channels extrude the acid and compensate the charge generated by the oxidase, thereby sustaining calcium entry signals that control the adhesion and motility of neutrophils. Loss of proton channels thus aborts superoxide production and causes a severe signaling defect in neutrophils.
Collapse
Affiliation(s)
- Antoun El Chemaly
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
91
|
Jann NJ, Schmaler M, Kristian SA, Radek KA, Gallo RL, Nizet V, Peschel A, Landmann R. Neutrophil antimicrobial defense against Staphylococcus aureus is mediated by phagolysosomal but not extracellular trap-associated cathelicidin. J Leukoc Biol 2009; 86:1159-69. [PMID: 19638500 PMCID: PMC3192022 DOI: 10.1189/jlb.0209053] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 01/17/2023] Open
Abstract
Neutrophils kill invading pathogens by AMPs, including cathelicidins, ROS, and NETs. The human pathogen Staphylococcus aureus exhibits enhanced resistance to neutrophil AMPs, including the murine cathelicidin CRAMP, in part, as a result of alanylation of teichoic acids by the dlt operon. In this study, we took advantage of the hypersusceptible phenotype of S. aureus DeltadltA against cationic AMPs to study the impact of the murine cathelicidin CRAMP on staphylococcal killing and to identify its key site of action in murine neutrophils. We demonstrate that CRAMP remained intracellular during PMN exudation from blood and was secreted upon PMA stimulation. We show first evidence that CRAMP was recruited to phagolysosomes in infected neutrophils and exhibited intracellular activity against S. aureus. Later in infection, neutrophils produced NETs, and immunofluorescence revealed association of CRAMP with S. aureus in NETs, which similarly killed S. aureus wt and DeltadltA, indicating that CRAMP activity was reduced when associated with NETs. Indeed, the presence of DNA reduced the antimicrobial activity of CRAMP, and CRAMP localization in response to S. aureus was independent of the NADPH oxidase, whereas killing was partially dependent on a functional NADPH oxidase. Our study indicates that neutrophils use CRAMP in a timed and locally coordinated manner in defense against S. aureus.
Collapse
Affiliation(s)
- Naja J. Jann
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Departments of
| | - Mathias Schmaler
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Departments of
| | - Sascha A. Kristian
- Pediatrics and
- Medicine, University of California, San Diego, La Jolla, California, USA; and
| | - Katherine A. Radek
- Medicine, University of California, San Diego, La Jolla, California, USA; and
| | - Richard L. Gallo
- Medicine, University of California, San Diego, La Jolla, California, USA; and
| | | | - Andreas Peschel
- Department of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Regine Landmann
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Departments of
| |
Collapse
|
92
|
Nordenfelt P, Bauer S, Lönnbro P, Tapper H. Phagocytosis of Streptococcus pyogenes by all-trans retinoic acid-differentiated HL-60 cells: roles of azurophilic granules and NADPH oxidase. PLoS One 2009; 4:e7363. [PMID: 19806211 PMCID: PMC2752193 DOI: 10.1371/journal.pone.0007363] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 09/14/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND New experimental approaches to the study of the neutrophil phagosome and bacterial killing prompted a reassessment of the usefulness of all-trans retinoic acid (ATRA)-differentiated HL-60 cells as a neutrophil model. HL-60 cells are special in that they possess azurophilic granules while lacking the specific granules with their associated oxidase components. The resulting inability to mount an effective intracellular respiratory burst makes these cells more dependent on other mechanisms when killing internalized bacteria. METHODOLOGY/PRINCIPAL FINDINGS In this work phagocytosis and phagosome-related responses of ATRA-differentiated HL-60 cells were compared to those earlier described in human neutrophils. We show that intracellular survival of wild-type S. pyogenes bacteria in HL-60 cells is accompanied by inhibition of azurophilic granule-phagosome fusion. A mutant S. pyogenes bacterium, deficient in M-protein expression, is, on the other hand, rapidly killed in phagosomes that avidly fuse with azurophilic granules. CONCLUSIONS/SIGNIFICANCE The current data extend our previous findings by showing that a system lacking in oxidase involvement also indicates a link between inhibition of azurophilic granule fusion and the intraphagosomal fate of S. pyogenes bacteria. We propose that differentiated HL-60 cells can be a useful tool to study certain aspects of neutrophil phagosome maturation, such as azurophilic granule fusion.
Collapse
Affiliation(s)
- Pontus Nordenfelt
- Section for Clinical and Experimental Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Susanne Bauer
- Section for Clinical and Experimental Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Per Lönnbro
- Section for Clinical and Experimental Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Hans Tapper
- Section for Clinical and Experimental Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
93
|
Kielland A, Blom T, Nandakumar KS, Holmdahl R, Blomhoff R, Carlsen H. In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012. Free Radic Biol Med 2009; 47:760-6. [PMID: 19539751 DOI: 10.1016/j.freeradbiomed.2009.06.013] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
Production of reactive oxygen and nitrogen species (ROS/RNS) is an important part of the inflammatory response, but prolonged elevated levels of ROS/RNS as under chronic inflammation can contribute to the development of disease. Monitoring ROS/RNS in living animals is challenging due to the rapid turnover of ROS/RNS and the limited sensitivity and specificity of ROS/RNS probes. We have explored the use of the chemiluminescent probe L-012 for noninvasive imaging of ROS/RNS production during inflammation in living mice. Various inflammatory conditions were induced, and L-012-dependent luminescence was recorded with an ultrasensitive CCD camera. Strong luminescent signals were observed from different regions of the body corresponding to inflammation. The signal was reduced by administration of the SOD mimetic tempol, the NADPH oxidase inhibitor apocynin, and the inhibitor of nitric oxide synthesis L-NAME, signifying the requirement for the presence of ROS/RNS. Additionally, the L-012 signal was abolished in mice with a mutation in the Ncf1 gene, encoding a protein in the NADPH oxidase complex 2, which generates ROS/RNS during inflammation. In conclusion, L-012 is well distributed in the mouse body and mediates a strong ROS/RNS-dependent luminescent signal in vivo and is useful for monitoring the development and regulation of inflammation in living organisms.
Collapse
Affiliation(s)
- Anders Kielland
- Department of Nutrition, Institute of Basic Medical Sciences, The Medical Faculty, University of Oslo, P.O. Box 1046 Blindern, 0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
Macrophages and neutrophils are essential elements of host cellular defense systems that function, at least in part, by generating respiration-driven oxidative toxins in response to external stimuli. In both cells, encapsulation by phagocytosis provides a mechanism to direct the toxins against the microbes. The toxic chemicals formed by these two phagocytic cells differ markedly, as do the enzymatic catalysts that generate them. Nitrite ion is microbicidal under certain conditions, is generated by activated macrophages, and is present at elevated concentration levels at infection sites. In this review, we consider potential roles that nitrite might play in cellular disinfection by these phagocytes within the context of available experimental information. Although the suggested roles are plausible, based upon the chemical and biochemical reactivity of NO2(-), studies to date provide little support for their implementation within phagosomes.
Collapse
Affiliation(s)
- Jonathan L. Cape
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| | - James K. Hurst
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| |
Collapse
|
95
|
VanderVen BC, Yates RM, Russell DG. Intraphagosomal Measurement of the Magnitude and Duration of the Oxidative Burst. Traffic 2009. [DOI: 10.1111/j.1600-0854.2008.00877.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
96
|
Abstract
Generation of an oxidative burst within the phagosomes of neutrophils, dendritic cells and macrophages is an essential component of the innate immune system. To examine the kinetics of the oxidative burst in the macrophage phagosome, we developed two new assays using beads coated with oxidation-sensitive fluorochromes.These assays permitted quantification and temporal resolution of the oxidative burst within the phagosome. The macrophage phagosomal oxidative burst is short lived,with oxidation of bead-associated substrates reaching maximal activity within 30 min following phagocytosis.Additionally, the extent and rate of macrophage phagosomal substrate oxidation were subject to immunomodulation by activation with lipopolysaccharide and/or interferon-gamma.
Collapse
Affiliation(s)
- Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | | | | |
Collapse
|
97
|
Yang M, Ma C, Liu S, Sun J, Shao Q, Gao W, Zhang Y, Li Z, Xie Q, Dong Z, Qu X. Hypoxia skews dendritic cells to a T helper type 2-stimulating phenotype and promotes tumour cell migration by dendritic cell-derived osteopontin. Immunology 2008; 128:e237-49. [PMID: 19740309 DOI: 10.1111/j.1365-2567.2008.02954.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It is well recognized that tissue microenvironments are involved in regulating the development and function of dendritic cells (DC). Oxygen supply, which varies in different tissues, has been accepted as an important microenvironmental factor in regulating the biological functions of several immune cells and as being involved in tumour progression and metastasis. However, little is known about the effect of hypoxia on the biological functions of DC and the effect of these hypoxia-conditioned DC on tumour metastasis. In this study, we analysed the transcriptional profiles of human monocyte-derived immature DC (imDC) and mature DC (mDC) cultured under normoxia and hypoxia by microarray, and found a body of potential targets regulating the functions of DC during hypoxia. In addition, the phagocytic ability of hypoxic imDC markedly decreased compared with that of normoxic imDC. Importantly, hypoxic DC poorly induced the proliferation of allogeneic T cells, but polarized allogeneic CD4(+) naive T cells into a T helper type 2 (Th2) response. Moreover, hypoxic DC secreted large amounts of osteopontin, which were responsible for the enhanced migration of tumour cells. Therefore, our study provides new insights into the biological functions of DC under hypoxic conditions and one of mechanisms underlying tumour immune escape during hypoxia.
Collapse
Affiliation(s)
- Meixiang Yang
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Giotis ES, Julotok M, Wilkinson BJ, Blair IS, McDowell DA. Role of sigma B factor in the alkaline tolerance response of Listeria monocytogenes 10403S and cross-protection against subsequent ethanol and osmotic stress. J Food Prot 2008; 71:1481-5. [PMID: 18680951 DOI: 10.4315/0362-028x-71.7.1481] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many of the considerable abilities of Listeria monocytogenes to persist and grow in a wide range of adverse environmental conditions are thought to be at least partly under the control of the alternative sigma factor (sigmaB), encoded by the sigB gene. However, little is known about the role of this master regulon in the impressive ability of Listeria to persist and grow under conditions of alkaline pH. In this study, Northern blot analysis of parent Listeria mRNA revealed that alkali adaptation (pH 9.5 for 1 h) significantly increased the expression of sigB-derived mRNA. The study included a comparison of the relative survival of mid-exponential populations of adapted and nonadapted parent type (sigmaB expressing) and mutant (not sigmaB expressing, deltasigB) Listeria strains during subsequent alkaline (pH 12.0), osmotic (25% NaCl, wt/vol), or ethanol (16.5%) stress. Alkali-adapted parent strains were more resistant to pH 12.0 than were adapted deltasigB type strains, but both alkali-adapted parent and deltasigB strains were more resistant to pH 12.0 than were nonadapted strains. Alkali-adapted parent strains were more resistant to osmotic stress than were adapted deltasigB type strains. No significant differences in viability were observed between alkali-adapted parent and deltasigB strains after ethanol stress, suggesting that cross-protection against osmotic stress is mediated by sigmaB whereas cross-protection against ethanol is sigmaB independent. Overall, alkali-induced cross-protection against osmotic and ethanol challenges may have serious implications for food safety and human health because such stress conditions are routinely used as part of food preservation and surface cleaning processes.
Collapse
Affiliation(s)
- Efstathios S Giotis
- Food Microbiology Research Unit, University of Ulster, Northern Ireland BT37 0QB, United Kingdom.
| | | | | | | | | |
Collapse
|
99
|
Giotis ES, Muthaiyan A, Blair IS, Wilkinson BJ, McDowell DA. Genomic and proteomic analysis of the Alkali-Tolerance Response (AlTR) in Listeria monocytogenes 10403S. BMC Microbiol 2008; 8:102. [PMID: 18577215 PMCID: PMC2443805 DOI: 10.1186/1471-2180-8-102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 06/24/2008] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Information regarding the Alkali-Tolerance Response (AlTR) in Listeria monocytogenes is very limited. Treatment of alkali-adapted cells with the protein synthesis inhibitor chloramphenicol has revealed that the AlTR is at least partially protein-dependent. In order to gain a more comprehensive perspective on the physiology and regulation of the AlTR, we compared differential gene expression and protein content of cells adapted at pH 9.5 and un-adapted cells (pH 7.0) using complementary DNA (cDNA) microarray and two-dimensional (2D) gel electrophoresis, (combined with mass spectrometry) respectively. RESULTS In this study, L. monocytogenes was shown to exhibit a significant AlTR following a 1-h exposure to mild alkali (pH 9.5), which is capable of protecting cells from subsequent lethal alkali stress (pH 12.0). Adaptive intracellular gene expression involved genes that are associated with virulence, the general stress response, cell division, and changes in cell wall structure and included many genes with unknown functions. The observed variability between results of cDNA arrays and 2D gel electrophoresis may be accounted for by posttranslational modifications. Interestingly, several alkali induced genes/proteins can provide a cross protective overlap to other types of stresses. CONCLUSION Alkali pH provides therefore L. monocytogenes with nonspecific multiple-stress resistance that may be vital for survival in the human gastrointestinal tract as well as within food processing systems where alkali conditions prevail. This study showed strong evidence that the AlTR in L. monocytogenes functions as to minimize excess alkalisation and energy expenditures while mobilizing available carbon sources.
Collapse
Affiliation(s)
- Efstathios S Giotis
- Food Microbiology Research Group, University of Ulster, Northern Ireland, UK
| | | | - Ian S Blair
- Food Microbiology Research Group, University of Ulster, Northern Ireland, UK
| | | | - David A McDowell
- Food Microbiology Research Group, University of Ulster, Northern Ireland, UK
| |
Collapse
|
100
|
Role of Nox2 in elimination of microorganisms. Semin Immunopathol 2008; 30:237-53. [PMID: 18574584 DOI: 10.1007/s00281-008-0126-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 05/23/2008] [Indexed: 12/16/2022]
Abstract
NADPH oxidase of the phagocytic cells (Nox2) transfers electrons from cytosolic NADPH to molecular oxygen in the extracellular or intraphagosomal space. The produced superoxide anion (O*2) provides the source for formation of all toxic oxygen derivatives, but continuous O*2 generation depends on adequate charge compensation. The vital role of Nox2 in efficient elimination of microorganisms is clearly indicated by human pathology as insufficient activity of the enzyme results in severe, recurrent bacterial infections, the typical symptoms of chronic granulomatous disease. The goals of this contribution are to provide critical review of the Nox2-dependent cellular processes that potentially contribute to bacterial killing and degradation and to indicate possible targets of pharmacological interventions.
Collapse
|