51
|
Evans PR, Gerber KJ, Dammer EB, Duong DM, Goswami D, Lustberg DJ, Zou J, Yang JJ, Dudek SM, Griffin PR, Seyfried NT, Hepler JR. Interactome Analysis Reveals Regulator of G Protein Signaling 14 (RGS14) is a Novel Calcium/Calmodulin (Ca 2+/CaM) and CaM Kinase II (CaMKII) Binding Partner. J Proteome Res 2018. [PMID: 29518331 DOI: 10.1021/acs.jproteome.8b00027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regulator of G Protein Signaling 14 (RGS14) is a complex scaffolding protein that integrates G protein and MAPK signaling pathways. In the adult mouse brain, RGS14 is predominantly expressed in hippocampal CA2 neurons where it naturally inhibits synaptic plasticity and hippocampus-dependent learning and memory. However, the signaling proteins that RGS14 natively engages to regulate plasticity are unknown. Here, we show that RGS14 exists in a high-molecular-weight protein complex in brain. To identify RGS14 neuronal interacting partners, endogenous RGS14 immunoprecipitated from mouse brain was subjected to mass spectrometry and proteomic analysis. We find that RGS14 interacts with key postsynaptic proteins that regulate plasticity. Gene ontology analysis reveals the most enriched RGS14 interactors have functional roles in actin-binding, calmodulin(CaM)-binding, and CaM-dependent protein kinase (CaMK) activity. We validate these findings using biochemical assays that identify interactions with two previously unknown binding partners. We report that RGS14 directly interacts with Ca2+/CaM and is phosphorylated by CaMKII in vitro. Lastly, we detect that RGS14 associates with CaMKII and CaM in hippocampal CA2 neurons. Taken together, these findings demonstrate that RGS14 is a novel CaM effector and CaMKII phosphorylation substrate thereby providing new insight into mechanisms by which RGS14 controls plasticity in CA2 neurons.
Collapse
Affiliation(s)
| | | | | | | | - Devrishi Goswami
- Department of Molecular Medicine , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Daniel J Lustberg
- Neurobiology Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , North Carolina 27709 , United States
| | - Juan Zou
- Department of Chemistry, Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , Georgia 30303 , United States
| | - Jenny J Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , Georgia 30303 , United States
| | - Serena M Dudek
- Neurobiology Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , North Carolina 27709 , United States
| | - Patrick R Griffin
- Department of Molecular Medicine , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | | | | |
Collapse
|
52
|
Lømo T. Discovering long-term potentiation (LTP) - recollections and reflections on what came after. Acta Physiol (Oxf) 2018; 222. [PMID: 28719040 DOI: 10.1111/apha.12921] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/17/2017] [Accepted: 07/11/2017] [Indexed: 01/31/2023]
Abstract
Chance events led me to a lifelong career in scientific research. They paved the way for being the first to see long-term potentiation of synaptic efficiency (LTP) in Per Andersen's laboratory in Oslo in 1966. Here I describe my way to this discovery and the experiments with Tim Bliss in 1968-1969 that led to Bliss and Lømo, 1973. Surprisingly, we later failed to reproduce these results. I discuss possible reasons for this failure, which made us both leave LTP research, in my case for good, in Tim's case for several years. After 30 years of work in a different field, I renewed my interest in the hippocampus and LTP in the early 2000s and published, for the first time, results that I had obtained 40 years earlier. Here I present my take on how interest in and research on LTP evolved after the early years. This includes a discussion of the functions of hippocampus as seen in those early days, the case of patient H.M., Donald Hebb's place in the story, the search for 'memory molecules' such as PKMζ, and the primary site for LTP expression (pre- and/or post-synaptic?). Throughout, I reflect on my life in science, how science is done and what drives it. The reflections are quite personal and I admit to mixed feelings about broadcasting them.
Collapse
Affiliation(s)
- T. Lømo
- Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
| |
Collapse
|
53
|
Affiliation(s)
- Katalin Tóth
- Quebec Mental Health Institute, Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
54
|
Prieto GA, Cotman CW. Cytokines and cytokine networks target neurons to modulate long-term potentiation. Cytokine Growth Factor Rev 2017; 34:27-33. [PMID: 28377062 PMCID: PMC5491344 DOI: 10.1016/j.cytogfr.2017.03.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022]
Abstract
Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines.
Collapse
Affiliation(s)
- G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA.
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
55
|
Petrovic MM, Viana da Silva S, Clement JP, Vyklicky L, Mulle C, González-González IM, Henley JM. Metabotropic action of postsynaptic kainate receptors triggers hippocampal long-term potentiation. Nat Neurosci 2017; 20:529-539. [PMID: 28192396 DOI: 10.1038/nn.4505] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/13/2017] [Indexed: 11/08/2022]
Abstract
Long-term potentiation (LTP) in the rat hippocampus is the most extensively studied cellular model for learning and memory. Induction of classical LTP involves an NMDA-receptor- and calcium-dependent increase in functional synaptic AMPA receptors, mediated by enhanced recycling of internalized AMPA receptors back to the postsynaptic membrane. Here we report a physiologically relevant NMDA-receptor-independent mechanism that drives increased AMPA receptor recycling and LTP. This pathway requires the metabotropic action of kainate receptors and activation of G protein, protein kinase C and phospholipase C. Like classical LTP, kainate-receptor-dependent LTP recruits recycling endosomes to spines, enhances synaptic recycling of AMPA receptors to increase their surface expression and elicits structural changes in spines, including increased growth and maturation. These data reveal a new and, to our knowledge, previously unsuspected role for postsynaptic kainate receptors in the induction of functional and structural plasticity in the hippocampus.
Collapse
Affiliation(s)
- Milos M Petrovic
- School of Biochemistry, University of Bristol, Bristol, UK
- Institute of Physiology, Academy of Sciences, Prague, Czech Republic
- Insitute of Medical Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Silvia Viana da Silva
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Ladislav Vyklicky
- Institute of Physiology, Academy of Sciences, Prague, Czech Republic
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | | | | |
Collapse
|
56
|
Todorova V, Blokland A. Mitochondria and Synaptic Plasticity in the Mature and Aging Nervous System. Curr Neuropharmacol 2017; 15:166-173. [PMID: 27075203 PMCID: PMC5327446 DOI: 10.2174/1570159x14666160414111821] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/23/2016] [Accepted: 04/11/2016] [Indexed: 01/11/2023] Open
Abstract
Synaptic plasticity in the adult brain is believed to represent the cellular mechanisms of learning and memory. Mitochondria are involved in the regulation of the complex processes of synaptic plasticity. This paper reviews the current knowledge on the regulatory roles of mitochondria in the function and plasticity of synapses and the implications of mitochondrial dysfunctions in synaptic transmission. First, the importance of mitochondrial distribution and motility for maintenance and strengthening of dendritic spines, but also for new spines/synapses formation is presented. Secondly, the major mitochondrial functions as energy supplier and calcium buffer organelles are considered as possible explanation for their essential and regulatory roles in neuronal plasticity processes. Thirdly, the effects of synaptic potentiation on mitochondrial gene expression are discussed. And finally, the relation between age-related alterations in synaptic plasticity and mitochondrial dysfunctions is considered. It appears that memory loss and neurodegeneration during aging are related to mitochondrial (dys)function. Although, it is clear that mitochondria are essential for synaptic plasticity, further studies are indicated to scrutinize the intracellular and molecular processes that regulate the functions of mitochondria in synaptic plasticity.
Collapse
Affiliation(s)
- Vyara Todorova
- Institute II for Anatomy, Medical Faculty, University of Cologne, Cologne, Germany
| | | |
Collapse
|
57
|
Minge D, Senkov O, Kaushik R, Herde MK, Tikhobrazova O, Wulff AB, Mironov A, van Kuppevelt TH, Oosterhof A, Kochlamazashvili G, Dityatev A, Henneberger C. Heparan Sulfates Support Pyramidal Cell Excitability, Synaptic Plasticity, and Context Discrimination. Cereb Cortex 2017; 27:903-918. [PMID: 28119345 PMCID: PMC5390399 DOI: 10.1093/cercor/bhx003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/04/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023] Open
Abstract
Heparan sulfate (HS) proteoglycans represent a major component of the extracellular matrix and are critical for brain development. However, their function in the mature brain remains to be characterized. Here, acute enzymatic digestion of HS side chains was used to uncover how HSs support hippocampal function in vitro and in vivo. We found that long-term potentiation (LTP) of synaptic transmission at CA3-CA1 Schaffer collateral synapses was impaired after removal of highly sulfated HSs with heparinase 1. This reduction was associated with decreased Ca2+ influx during LTP induction, which was the consequence of a reduced excitability of CA1 pyramidal neurons. At the subcellular level, heparinase treatment resulted in reorganization of the distal axon initial segment, as detected by a reduction in ankyrin G expression. In vivo, digestion of HSs impaired context discrimination in a fear conditioning paradigm and oscillatory network activity in the low theta band after fear conditioning. Thus, HSs maintain neuronal excitability and, as a consequence, support synaptic plasticity and learning.
Collapse
Affiliation(s)
- Daniel Minge
- Institute of Cellular Neurosciences, University of Bonn Medical School, 53105 Bonn, Germany
| | - Oleg Senkov
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Rahul Kaushik
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Michel K. Herde
- Institute of Cellular Neurosciences, University of Bonn Medical School, 53105 Bonn, Germany
| | - Olga Tikhobrazova
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Neurotechnology, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Andreas B. Wulff
- Institute of Cellular Neurosciences, University of Bonn Medical School, 53105 Bonn, Germany
| | - Andrey Mironov
- Department of Neurotechnology, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Central Research Laboratory, Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia
| | - Toin H. van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arie Oosterhof
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gaga Kochlamazashvili
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Neurotechnology, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, 39120 Magdeburg, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, 53105 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
- Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
58
|
|
59
|
Nie J, Yang X. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation. Cell Mol Neurobiol 2017; 37:5-16. [PMID: 26910247 PMCID: PMC11482112 DOI: 10.1007/s10571-016-0348-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.
Collapse
Affiliation(s)
- Jingjing Nie
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China
| | - Xiaosu Yang
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China.
| |
Collapse
|
60
|
Nicoll RA. A Brief History of Long-Term Potentiation. Neuron 2017; 93:281-290. [DOI: 10.1016/j.neuron.2016.12.015] [Citation(s) in RCA: 547] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
|
61
|
Lozeron P, Poujois A, Richard A, Masmoudi S, Meppiel E, Woimant F, Kubis N. Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia. Front Neural Circuits 2016; 10:90. [PMID: 27891079 PMCID: PMC5102895 DOI: 10.3389/fncir.2016.00090] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/24/2016] [Indexed: 11/13/2022] Open
Abstract
Dystonias represent a heterogeneous group of movement disorders responsible for sustained muscle contraction, abnormal postures, and muscle twists. It can affect focal or segmental body parts or be generalized. Primary dystonia is the most common form of dystonia but it can also be secondary to metabolic or structural dysfunction, the consequence of a drug's side-effect or of genetic origin. The pathophysiology is still not elucidated. Based on lesion studies, dystonia has been regarded as a pure motor dysfunction of the basal ganglia loop. However, basal ganglia lesions do not consistently produce dystonia and lesions outside basal ganglia can lead to dystonia; mild sensory abnormalities have been reported in the dystonic limb and imaging studies have shown involvement of multiple other brain regions including the cerebellum and the cerebral motor, premotor and sensorimotor cortices. Transcranial magnetic stimulation (TMS) is a non-invasive technique of brain stimulation with a magnetic field applied over the cortex allowing investigation of cortical excitability. Hyperexcitability of contralateral motor cortex has been suggested to be the trigger of focal dystonia. High or low frequency repetitive TMS (rTMS) can induce excitatory or inhibitory lasting effects beyond the time of stimulation and protocols have been developed having either a positive or a negative effect on cortical excitability and associated with prevention of cell death, γ-aminobutyric acid (GABA) interneurons mediated inhibition and brain-derived neurotrophic factor modulation. rTMS studies as a therapeutic strategy of dystonia have been conducted to modulate the cerebral areas involved in the disease. Especially, when applied on the contralateral (pre)-motor cortex or supplementary motor area of brains of small cohorts of dystonic patients, rTMS has shown a beneficial transient clinical effect in association with restrained motor cortex excitability. TMS is currently a valuable tool to improve our understanding of the pathophysiology of dystonia but large controlled studies using sham stimulation are still necessary to delineate the place of rTMS in the therapeutic strategy of dystonia. In this review, we will focus successively on the use of TMS as a tool to better understand pathophysiology, and the use of rTMS as a therapeutic strategy.
Collapse
Affiliation(s)
- Pierre Lozeron
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; INSERM UMR965Paris, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| | - Aurélia Poujois
- Service de Neurologie, AP-HP, Hôpital LariboisièreParis, France; Centre de Référence National de la Maladie de Wilson, Hôpital LariboisièreParis, France
| | - Alexandra Richard
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| | - Sana Masmoudi
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière Paris, France
| | - Elodie Meppiel
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| | - France Woimant
- Service de Neurologie, AP-HP, Hôpital LariboisièreParis, France; Centre de Référence National de la Maladie de Wilson, Hôpital LariboisièreParis, France
| | - Nathalie Kubis
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; INSERM UMR965Paris, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| |
Collapse
|
62
|
Kouvaros S, Papatheodoropoulos C. Theta burst stimulation-induced LTP: Differences and similarities between the dorsal and ventral CA1 hippocampal synapses. Hippocampus 2016; 26:1542-1559. [DOI: 10.1002/hipo.22655] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Stylianos Kouvaros
- Laboratory of Physiology, Department of Medicine; School of Health Sciences, University of Patras; Rion Greece
| | - Costas Papatheodoropoulos
- Laboratory of Physiology, Department of Medicine; School of Health Sciences, University of Patras; Rion Greece
| |
Collapse
|
63
|
Compans B, Choquet D, Hosy E. Review on the role of AMPA receptor nano-organization and dynamic in the properties of synaptic transmission. NEUROPHOTONICS 2016; 3:041811. [PMID: 27981061 PMCID: PMC5109202 DOI: 10.1117/1.nph.3.4.041811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Receptor trafficking and its regulation have appeared in the last two decades to be a major controller of basal synaptic transmission and its activity-dependent plasticity. More recently, considerable advances in super-resolution microscopy have begun deciphering the subdiffraction organization of synaptic elements and their functional roles. In particular, the dynamic nanoscale organization of neurotransmitter receptors in the postsynaptic membrane has recently been suggested to play a major role in various aspects of synapstic function. We here review the recent advances in our understanding of alpha-amino-3-hydroxy-5-méthyl-4-isoxazolepropionic acid subtype glutamate receptors subsynaptic organization and their role in short- and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Benjamin Compans
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
- University of Bordeaux, Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, France
| | - Eric Hosy
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| |
Collapse
|
64
|
Beckhauser TF, Francis-Oliveira J, De Pasquale R. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity. J Exp Neurosci 2016; 10:23-48. [PMID: 27625575 PMCID: PMC5012454 DOI: 10.4137/jen.s39887] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/09/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022] Open
Abstract
In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated.
Collapse
Affiliation(s)
- Thiago Fernando Beckhauser
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - José Francis-Oliveira
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - Roberto De Pasquale
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| |
Collapse
|
65
|
Abstract
Long-term potentiation (LTP) is a widely studied form of activity-dependent synaptic plasticity. Hippocampal LTP evoked in the dentate and CA1 areas requires calcium influx through N-methyl-D-aspartate (NMDA) receptor-channel complexes, a process triggered during high-frequency stimulation by conjunctive presy naptic glutamate release and postsynaptic depolarization. It has been suggested that alterations in GABAergic recurrent and/or feedforward inhibitory synaptic transmission may accompany LTP induction in these hippocampal areas. To this end, possible LTP-related modifications in functional inhibition are ad dressed in the context of both paired-pulse depression and the excitatory postsynaptic potential-spike (E-S) relationship. Consideration is also given as to how GABAergic processes may contribute mechanistically to the induction of NMDA receptor-dependent LTP. It is concluded that although GABAergic disinhibition may contribute to the induction of LTP, it is not yet clear whether or not the induction of LTP has a lasting impact on inhibitory processes. NEUROSCIENTIST 3:226-236, 1997
Collapse
Affiliation(s)
- Laura M. Schultz
- Program in Neuroscience Department of Psychology Princeton
University Princeton, New Jersey
| |
Collapse
|
66
|
Abstract
Long-lasting, activity-dependent changes in the efficacy of synaptic transmission are considered to be of fundamental importance for the storage of information and for the development of neural circuitry. The leading experimental model for such a change has been long-term potentiation (LTP), a long-lasting increase in synaptic strength. Intensive experimental analysis of LTP in the hippocampus has resulted in a detailed description of the initial steps responsible for its generation. Recently, a form of long-term depression (LTD) in the hippocampus has been described and examined. It shares several mechanistic features with LTP and appears to be able to reverse LTP. The intracellular second messenger systems that are required to generate and maintain LTP and LTD have been difficult to identify definitively. Leading candidates include diffusible intercellular messengers as well as protein kinases and protein phosphatases, the activities of which may converge at the level of specific phosphoproteins. In addition to delineating the cellular mechanisms under lying LTP and LTD, investigators also are beginning to clarify the roles they play in real learning and memory. The Neuroscientist 1:35-42, 1995
Collapse
Affiliation(s)
- Robert C. Malenka
- Center for Neurobiology and Psychiatry Departments of
Psychiatry and Physiology University of California San Francisco, California
| |
Collapse
|
67
|
Fauth M, Tetzlaff C. Opposing Effects of Neuronal Activity on Structural Plasticity. Front Neuroanat 2016; 10:75. [PMID: 27445713 PMCID: PMC4923203 DOI: 10.3389/fnana.2016.00075] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
The connectivity of the brain is continuously adjusted to new environmental influences by several activity-dependent adaptive processes. The most investigated adaptive mechanism is activity-dependent functional or synaptic plasticity regulating the transmission efficacy of existing synapses. Another important but less prominently discussed adaptive process is structural plasticity, which changes the connectivity by the formation and deletion of synapses. In this review, we show, based on experimental evidence, that structural plasticity can be classified similar to synaptic plasticity into two categories: (i) Hebbian structural plasticity, which leads to an increase (decrease) of the number of synapses during phases of high (low) neuronal activity and (ii) homeostatic structural plasticity, which balances these changes by removing and adding synapses. Furthermore, based on experimental and theoretical insights, we argue that each type of structural plasticity fulfills a different function. While Hebbian structural changes enhance memory lifetime, storage capacity, and memory robustness, homeostatic structural plasticity self-organizes the connectivity of the neural network to assure stability. However, the link between functional synaptic and structural plasticity as well as the detailed interactions between Hebbian and homeostatic structural plasticity are more complex. This implies even richer dynamics requiring further experimental and theoretical investigations.
Collapse
Affiliation(s)
- Michael Fauth
- Department of Computational Neuroscience, Third Institute of Physics - Biophysics, Georg-August UniversityGöttingen, Germany; Bernstein Center for Computational NeuroscienceGöttingen, Germany
| | - Christian Tetzlaff
- Bernstein Center for Computational NeuroscienceGöttingen, Germany; Max Planck Institute for Dynamics and Self-OrganizationGöttingen, Germany
| |
Collapse
|
68
|
The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat Commun 2016; 7:11613. [PMID: 27194588 PMCID: PMC4874034 DOI: 10.1038/ncomms11613] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/13/2016] [Indexed: 02/07/2023] Open
Abstract
Hippocampal long-term potentiation (LTP) represents the cellular response of excitatory synapses to specific patterns of high neuronal activity and is required for learning and memory. Here we identify a mechanism that requires the calcium-binding protein Copine-6 to translate the initial calcium signals into changes in spine structure. We show that Copine-6 is recruited from the cytosol of dendrites to postsynaptic spine membranes by calcium transients that precede LTP. Cpne6 knockout mice are deficient in hippocampal LTP, learning and memory. Hippocampal neurons from Cpne6 knockouts lack spine structural plasticity as do wild-type neurons that express a Copine-6 calcium mutant. The function of Copine-6 is based on its binding, activating and recruiting the Rho GTPase Rac1 to cell membranes. Consistent with this function, the LTP deficit of Cpne6 knockout mice is rescued by the actin stabilizer jasplakinolide. These data show that Copine-6 links activity-triggered calcium signals to spine structural plasticity necessary for learning and memory.
Collapse
|
69
|
Hidalgo C, Arias-Cavieres A. Calcium, Reactive Oxygen Species, and Synaptic Plasticity. Physiology (Bethesda) 2016; 31:201-15. [DOI: 10.1152/physiol.00038.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this review article, we address how activity-dependent Ca2+ signaling is crucial for hippocampal synaptic/structural plasticity and discuss how changes in neuronal oxidative state affect Ca2+ signaling and synaptic plasticity. We also analyze current evidence indicating that oxidative stress and abnormal Ca2+ signaling contribute to age-related synaptic plasticity deterioration.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; and
- Center of Molecular Studies of the Cell and Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandra Arias-Cavieres
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; and
| |
Collapse
|
70
|
Jones BL, Smith SM. Calcium-Sensing Receptor: A Key Target for Extracellular Calcium Signaling in Neurons. Front Physiol 2016; 7:116. [PMID: 27065884 PMCID: PMC4811949 DOI: 10.3389/fphys.2016.00116] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
Though both clinicians and scientists have long recognized the influence of extracellular calcium on the function of muscle and nervous tissue, recent insights reveal that the mechanisms allowing changes in extracellular calcium to alter cellular excitability have been incompletely understood. For many years the effects of calcium on neuronal signaling were explained only in terms of calcium entry through voltage-gated calcium channels and biophysical charge screening. More recently however, it has been recognized that the calcium-sensing receptor is prevalent in the nervous system and regulates synaptic transmission and neuronal activity via multiple signaling pathways. Here we review the multiplicity of mechanisms by which changes in extracellular calcium alter neuronal signaling and propose that multiple mechanisms are required to describe the full range of experimental observations.
Collapse
Affiliation(s)
- Brian L. Jones
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science UniversityPortland, OR, USA
| | - Stephen M. Smith
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science UniversityPortland, OR, USA
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care SystemPortland, OR, USA
| |
Collapse
|
71
|
Affiliation(s)
- Terje Lømo
- Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway;
| |
Collapse
|
72
|
Jeanneret V, Yepes M. The Plasminogen Activation System Promotes Dendritic Spine Recovery and Improvement in Neurological Function After an Ischemic Stroke. Transl Stroke Res 2016. [PMID: 26846991 DOI: 10.1007/s12975-016-0454-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Advances in neurocritical care and interventional neuroradiology have led to a significant decrease in acute ischemic stroke (AIS) mortality. In contrast, due to the lack of an effective therapeutic strategy to promote neuronal recovery among AIS survivors, cerebral ischemia is still a leading cause of disability in the world. Ischemic stroke has a harmful impact on synaptic structure and function, and plasticity-mediated synaptic recovery is associated with neurological improvement following an AIS. Dendritic spines (DSs) are specialized dendritic protrusions that receive most of the excitatory input in the brain. The deleterious effect of cerebral ischemia on DSs morphology and function has been associated with impaired synaptic transmission and neurological deterioration. However, these changes are reversible if cerebral blood flow is restored on time, and this recovery has been associated with neurological improvement following an AIS. Tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) are two serine proteases that, besides catalyzing the conversion of plasminogen into plasmin in the intravascular and pericellular environment, respectively, are also efficient inductors of synaptic plasticity. Accordingly, recent evidence indicates that both, tPA and uPA, protect DSs from the metabolic stress associated with the ischemic injury, and promote their morphological and functional recovery during the recovery phase from an AIS. Here, we will review data indicating that plasticity-induced changes in DSs and the associated post-synaptic density play a pivotal role in the recovery process from AIS, making special emphasis on the role of tPA and uPA in this process.
Collapse
Affiliation(s)
- Valerie Jeanneret
- Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Suite 505J, Atlanta, GA, 30322, USA
| | - Manuel Yepes
- Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Suite 505J, Atlanta, GA, 30322, USA. .,Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
73
|
Chai AP, Ma WP, Wang LP, Cao J, Xu L, Yang YX, Mao RR. Chronic constant light-induced hippocampal late-phase long-term potentiation impairment in vitro is attenuated by antagonist of D1/D5 receptors. Brain Res 2015; 1622:72-80. [DOI: 10.1016/j.brainres.2015.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/05/2015] [Accepted: 06/17/2015] [Indexed: 12/25/2022]
|
74
|
Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N. Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. eLife 2015; 4:e06414. [PMID: 26247712 PMCID: PMC4576155 DOI: 10.7554/elife.06414] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic integration of synaptic inputs mediates rapid neural computation as well as longer-lasting plasticity. Several channel types can mediate dendritically initiated spikes (dSpikes), which may impact information processing and storage across multiple timescales; however, the roles of different channels in the rapid vs long-term effects of dSpikes are unknown. We show here that dSpikes mediated by Nav channels (blocked by a low concentration of TTX) are required for long-term potentiation (LTP) in the distal apical dendrites of hippocampal pyramidal neurons. Furthermore, imaging, simulations, and buffering experiments all support a model whereby fast Nav channel-mediated dSpikes (Na-dSpikes) contribute to LTP induction by promoting large, transient, localized increases in intracellular calcium concentration near the calcium-conducting pores of NMDAR and L-type Cav channels. Thus, in addition to contributing to rapid neural processing, Na-dSpikes are likely to contribute to memory formation via their role in long-lasting synaptic plasticity.
Collapse
Affiliation(s)
- Yujin Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Ching-Lung Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Mark S Cembrowski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
75
|
Birnbaum JH, Bali J, Rajendran L, Nitsch RM, Tackenberg C. Calcium flux-independent NMDA receptor activity is required for Aβ oligomer-induced synaptic loss. Cell Death Dis 2015; 6:e1791. [PMID: 26086964 PMCID: PMC4669839 DOI: 10.1038/cddis.2015.160] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 12/20/2022]
Abstract
Synaptic loss is one of the major features of Alzheimer's disease (AD) and correlates with the degree of dementia. N-methyl-d-aspartate receptors (NMDARs) have been shown to mediate downstream effects of the β-amyloid peptide (Aβ) in AD models. NMDARs can trigger intracellular cascades via Ca2+ entry, however, also Ca2+-independent (metabotropic) functions of NMDARs have been described. We aimed to determine whether ionotropic or metabotropic NMDAR signaling is required for the induction of synaptic loss by Aβ. We show that endogenous Aβ as well as exogenously added synthetic Aβ oligomers induced dendritic spine loss and reductions in pre- and postsynaptic protein levels in hippocampal slice cultures. Synaptic alterations were mitigated by blocking glutamate binding to NMDARs using NMDAR antagonist APV, but not by preventing ion flux with Ca2+ chelator BAPTA or open-channel blockers MK-801 or memantine. Aβ increased the activity of p38 MAPK, a kinase involved in long-term depression and inhibition of p38 MAPK abolished the loss of dendritic spines. Aβ-induced increase of p38 MAPK activity was prevented by APV but not by BAPTA, MK-801 or memantine treatment highlighting the role of glutamate binding to NMDARs but not Ca2+ flux for synaptic degeneration by Aβ. We further show that treatment with the G protein inhibitor pertussis toxin (PTX) did not prevent dendritic spine loss in the presence of Aβ oligomers. Our data suggest that Aβ induces the activation of p38 MAPK and subsequent synaptic loss through Ca2+ flux- and G protein-independent mechanisms.
Collapse
Affiliation(s)
- J H Birnbaum
- 1] Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland [2] Graduate Program of the Zurich Neuroscience Center, University of Zurich, Schlieren, Switzerland
| | - J Bali
- 1] Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland [2] Systems and Cell Biology of Neurodegeneration, University of Zurich, Schlieren, Switzerland
| | - L Rajendran
- 1] Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland [2] Systems and Cell Biology of Neurodegeneration, University of Zurich, Schlieren, Switzerland
| | - R M Nitsch
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - C Tackenberg
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
76
|
Delattre V, Keller D, Perich M, Markram H, Muller EB. Network-timing-dependent plasticity. Front Cell Neurosci 2015; 9:220. [PMID: 26106298 PMCID: PMC4460533 DOI: 10.3389/fncel.2015.00220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/22/2015] [Indexed: 11/13/2022] Open
Abstract
Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD), with STDP-induced long-term potentiation (LTP) and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding.
Collapse
Affiliation(s)
- Vincent Delattre
- Laboratory of Neural Microcircuitry, Brain and Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Daniel Keller
- Center for Brain Simulation, École Polytechnique Fédérale de Lausanne Geneva, Switzerland
| | - Matthew Perich
- Center for Brain Simulation, École Polytechnique Fédérale de Lausanne Geneva, Switzerland ; Department of Biomedical Engineering, Northwestern University, Evanston IL, USA
| | - Henry Markram
- Laboratory of Neural Microcircuitry, Brain and Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Center for Brain Simulation, École Polytechnique Fédérale de Lausanne Geneva, Switzerland
| | - Eilif B Muller
- Center for Brain Simulation, École Polytechnique Fédérale de Lausanne Geneva, Switzerland
| |
Collapse
|
77
|
Nguyen HB, Bagot RC, Diorio J, Wong TP, Meaney MJ. Maternal care differentially affects neuronal excitability and synaptic plasticity in the dorsal and ventral hippocampus. Neuropsychopharmacology 2015; 40:1590-9. [PMID: 25598429 PMCID: PMC4915255 DOI: 10.1038/npp.2015.19] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/08/2015] [Accepted: 01/13/2015] [Indexed: 01/10/2023]
Abstract
Variations in early life maternal care modulate hippocampal development to program distinct emotional-cognitive phenotypes that persist into adulthood. Adult rat offspring that received low compared with high levels of maternal licking and grooming (low LG offspring) in early postnatal life show reduced long term potentiation (LTP) and impaired hippocampal-dependent memory, suggesting a 'detrimental' maternal effect on neural development. However, these studies focused uniquely on the dorsal hippocampus. Emerging evidence suggests a distinct role of the ventral hippocampus in mediating aggression, anxiety, and fear-memory formation, which are enhanced in low LG offspring. We report that variations in maternal care in the rat associate with opposing effects on hippocampal function in the dorsal and ventral hippocampus. Reduced pup licking associated with suppressed LTP formation in the dorsal hippocampus, but enhanced ventral hippocampal LTP. Ventral hippocampal neurons in low LG offspring fired action potentials at lower threshold voltages that were of larger amplitude and faster rise rate in comparison with those in high LG offspring. Furthermore, recordings of excitatory postsynaptic potential-to-spike coupling (E-S coupling) revealed an increase in excitability of ventral hippocampal CA1 neurons in low LG offspring. These effects do not associate with changes in miniature excitatory postsynaptic currents or paired-pulse facilitation, suggesting a specific effect of maternal care on intrinsic excitability. These findings suggest region-specific influences of maternal care in shaping neural development and synaptic plasticity.
Collapse
Affiliation(s)
- Huy-Binh Nguyen
- Neuroscience Division, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Rosemary C Bagot
- Neuroscience Division, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Quebec, Canada,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Josie Diorio
- Neuroscience Division, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Quebec, Canada,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, Quebec, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Quebec, Canada,Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada,Neuroscience Division, Douglas Mental Health University Institute, McGill University, 6875 LaSalle, Montreal, Quebec H4H 1R4, Canada, Tel: +1 514 761 6131 ext. 2929, Fax: +1 514 762 3034, E-mail: or
| | - Michael J Meaney
- Neuroscience Division, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Quebec, Canada,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, Quebec, Canada,The Agency for Science, Technology and Research, Singapore Institute for Clinical Sciences, Singapore, Singapore,Neuroscience Division, Douglas Mental Health University Institute, McGill University, 6875 LaSalle, Montreal, Quebec H4H 1R4, Canada, Tel: +1 514 761 6131 ext. 2929, Fax: +1 514 762 3034, E-mail: or
| |
Collapse
|
78
|
Evans PR, Dudek SM, Hepler JR. Regulator of G Protein Signaling 14: A Molecular Brake on Synaptic Plasticity Linked to Learning and Memory. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:169-206. [PMID: 26123307 DOI: 10.1016/bs.pmbts.2015.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The regulators of G protein signaling (RGS) proteins are a diverse family of proteins that function as central components of G protein and other signaling pathways. In the brain, regulator of G protein signaling 14 (RGS14) is enriched in neurons in the hippocampus where the mRNA and protein are highly expressed. This brain region plays a major role in processing learning and forming new memories. RGS14 is an unusual RGS protein that acts as a multifunctional scaffolding protein to integrate signaling events and pathways essential for synaptic plasticity, including conventional and unconventional G protein signaling, mitogen-activated protein kinase, and, possibly, calcium signaling pathways. Within the hippocampus of primates and rodents, RGS14 is predominantly found in the enigmatic CA2 subfield. Principal neurons within the CA2 subfield differ from neighboring hippocampal regions in that they lack a capacity for long-term potentiation (LTP) of synaptic transmission, which is widely viewed as the cellular substrate of learning and memory formation. RGS14 was recently identified as a natural suppressor of LTP in hippocampal CA2 neurons as well as forms of learning and memory that depend on the hippocampus. Although CA2 has only recently been studied, compelling recent evidence implicates area CA2 as a critical component of hippocampus circuitry with functional roles in mediating certain types of learning and memory. This review will highlight the known functions of RGS14 in cell signaling and hippocampus physiology, and discuss potential roles for RGS14 in human cognition and disease.
Collapse
Affiliation(s)
- Paul R Evans
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia, USA
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia, USA.
| |
Collapse
|
79
|
Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Mol Psychiatry 2015; 20:490-9. [PMID: 24863146 PMCID: PMC4562468 DOI: 10.1038/mp.2014.47] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/07/2014] [Accepted: 04/16/2014] [Indexed: 01/31/2023]
Abstract
The vasopressin 1b receptor (Avpr1b) is critical for social memory and social aggression in rodents, yet little is known about its specific roles in these behaviors. Some clues to Avpr1b function can be gained from its profile of expression in the brain, which is largely limited to the pyramidal neurons of the CA2 region of the hippocampus, and from experiments showing that inactivation of the gene or antagonism of the receptor leads to a reduction in social aggression. Here we show that partial replacement of the Avpr1b through lentiviral delivery into the dorsal CA2 region restored the probability of socially motivated attack behavior in total Avpr1b knockout mice, without altering anxiety-like behaviors. To further explore the role of the Avpr1b in this hippocampal region, we examined the effects of Avpr1b agonists on pyramidal neurons in mouse and rat hippocampal slices. We found that selective Avpr1b agonists induced significant potentiation of excitatory synaptic responses in CA2, but not in CA1 or in slices from Avpr1b knockout mice. In a way that is mechanistically very similar to synaptic potentiation induced by oxytocin, Avpr1b agonist-induced potentiation of CA2 synapses relies on NMDA (N-methyl-D-aspartic acid) receptor activation, calcium and calcium/calmodulin-dependent protein kinase II activity, but not on cAMP-dependent protein kinase activity or presynaptic mechanisms. Our data indicate that the hippocampal CA2 is important for attacking in response to a male intruder and that the Avpr1b, likely through its role in regulating CA2 synaptic plasticity, is a necessary mediator.
Collapse
|
80
|
Volianskis A, France G, Jensen MS, Bortolotto ZA, Jane DE, Collingridge GL. Long-term potentiation and the role of N-methyl-D-aspartate receptors. Brain Res 2015; 1621:5-16. [PMID: 25619552 PMCID: PMC4563944 DOI: 10.1016/j.brainres.2015.01.016] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 10/31/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are known for their role in the induction of long-term potentiation (LTP). Here we start by reviewing the early evidence for their role in LTP at CA1 synapses in the hippocampus. We then discuss more recent evidence that NMDAR dependent synaptic plasticity at these synapses can be separated into mechanistically distinct components. An initial phase of the synaptic potentiation, which is generally termed short-term potentiation (STP), decays in an activity-dependent manner and comprises two components that differ in their kinetics and NMDAR subtype dependence. The faster component involves activation of GluN2A and GluN2B subunits whereas the slower component involves activation of GluN2B and GluN2D subunits. The stable phase of potentiation, commonly referred to as LTP, requires activation of primarily triheteromeric NMDARs containing both GluN2A and GluN2B subunits. In new work, we compare STP with a rebound potentiation (RP) that is induced by NMDA application and conclude that they are different phenomena. We also report that NMDAR dependent long-term depression (NMDAR-LTD) is sensitive to a glycine site NMDAR antagonist. We conclude that NMDARs are not synonymous for either LTP or memory. Whilst important for the induction of LTP at many synapses in the CNS, not all forms of LTP require the activation of NMDARs. Furthermore, NMDARs mediate the induction of other forms of synaptic plasticity and are important for synaptic transmission. It is, therefore, not possible to equate NMDARs with LTP though they are intimately linked. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Arturas Volianskis
- Center for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, United Kingdom.
| | - Grace France
- Center for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, United Kingdom
| | | | - Zuner A Bortolotto
- Center for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, United Kingdom
| | - David E Jane
- Center for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, United Kingdom
| | - Graham L Collingridge
- Center for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, United Kingdom.
| |
Collapse
|
81
|
Ashhad S, Johnston D, Narayanan R. Activation of InsP₃ receptors is sufficient for inducing graded intrinsic plasticity in rat hippocampal pyramidal neurons. J Neurophysiol 2014; 113:2002-13. [PMID: 25552640 DOI: 10.1152/jn.00833.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/29/2014] [Indexed: 11/22/2022] Open
Abstract
The synaptic plasticity literature has focused on establishing necessity and sufficiency as two essential and distinct features in causally relating a signaling molecule to plasticity induction, an approach that has been surprisingly lacking in the intrinsic plasticity literature. In this study, we complemented the recently established necessity of inositol trisphosphate (InsP3) receptors (InsP3R) in a form of intrinsic plasticity by asking if InsP3R activation was sufficient to induce intrinsic plasticity in hippocampal neurons. Specifically, incorporation of d-myo-InsP3 in the recording pipette reduced input resistance, maximal impedance amplitude, and temporal summation but increased resonance frequency, resonance strength, sag ratio, and impedance phase lead. Strikingly, the magnitude of plasticity in all these measurements was dependent on InsP3 concentration, emphasizing the graded dependence of such plasticity on InsP3R activation. Mechanistically, we found that this InsP3-induced plasticity depended on hyperpolarization-activated cyclic nucleotide-gated channels. Moreover, this calcium-dependent form of plasticity was critically reliant on the release of calcium through InsP3Rs, the influx of calcium through N-methyl-d-aspartate receptors and voltage-gated calcium channels, and on the protein kinase A pathway. Our results delineate a causal role for InsP3Rs in graded adaptation of neuronal response dynamics, revealing novel regulatory roles for the endoplasmic reticulum in neural coding and homeostasis.
Collapse
Affiliation(s)
- Sufyan Ashhad
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; and
| | - Daniel Johnston
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; and
| |
Collapse
|
82
|
Short-lived diabetes in the young-adult ZDF rat does not exacerbate neuronal Ca(2+) biomarkers of aging. Brain Res 2014; 1621:214-21. [PMID: 25451110 DOI: 10.1016/j.brainres.2014.10.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 12/31/2022]
Abstract
Results from clinical studies provide evidence that cognitive changes relatively late in life may be traced to antecedent conditions including diabetes, obesity, a sedentary lifestyle, and an atherogenic diet. As such, several traits of Type 2 diabetes (T2DM) could be considered pathogenic factors of aging, contributing to age-dependent cognitive decline and our susceptibility to Alzheimer's disease. It appears that both the duration of metabolic condition and the age of the individual, together can contribute to the potential impact on peripheral as well as brain health. Because of robust evidence that in animal models of aging, Ca(2+) dysregulation alters neuronal health, synaptic plasticity, and learning and memory processes, we tested the hypothesis that peripheral metabolic dysregulation could exacerbate Ca(2+) dysfunction in hippocampal CA1 neurons. Using intracellular/ extracellular electrophysiological and Ca(2+) imaging techniques, we show that Ca(2+)levels at rest or during synaptic stimulation, the Ca(2+)-dependent afterhyperpolarization, baseline field potentials, and short-term synaptic plasticity were not significantly altered in young-adult male Zucker diabetic fatty rats compare to their lean counterparts. Our observations suggest that early phases of T2DM characterized by high levels of glucose and insulin may be too transient to alter hippocampal CA1 physiology in this animal model of diabetes. These results are supported by clinical data showing that longer T2DM duration can have greater negative impact on cognitive functions. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
|
83
|
Paula-Lima AC, Adasme T, Hidalgo C. Contribution of Ca2+ release channels to hippocampal synaptic plasticity and spatial memory: potential redox modulation. Antioxid Redox Signal 2014; 21:892-914. [PMID: 24410659 DOI: 10.1089/ars.2013.5796] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Memory is an essential human cognitive function. Consequently, to unravel the cellular and molecular mechanisms responsible for the synaptic plasticity events underlying memory formation, storage and loss represents a major challenge of present-day neuroscience. RECENT ADVANCES This review article first describes the wide-ranging functions played by intracellular Ca2+ signals in the activity-dependent synaptic plasticity processes underlying hippocampal spatial memory, and next, it focuses on how the endoplasmic reticulum Ca2+ release channels, the ryanodine receptors, and the inositol 1,4,5-trisphosphate receptors contribute to these processes. We present a detailed examination of recent evidence supporting the key role played by Ca2+ release channels in synaptic plasticity, including structural plasticity, and the formation/consolidation of spatial memory in the hippocampus. CRITICAL ISSUES Changes in cellular oxidative state particularly affect the function of Ca2+ release channels and alter hippocampal synaptic plasticity and the associated memory processes. Emphasis is placed in this review on how defective Ca2+ release, presumably due to increased levels of reactive oxygen species, may cause the hippocampal functional defects that are associated to aging and Alzheimer's disease (AD). FUTURE DIRECTIONS Additional studies should examine the precise molecular mechanisms by which Ca2+ release channels contribute to hippocampal synaptic plasticity and spatial memory formation/consolidation. Future studies should test whether redox-modified Ca2+ release channels contribute toward generating the intracellular Ca2+ signals required for sustained synaptic plasticity and hippocampal spatial memory, and whether loss of redox balance and oxidative stress, by altering Ca2+ release channel function, presumably contribute to the abnormal memory processes that occur during aging and AD.
Collapse
Affiliation(s)
- Andrea C Paula-Lima
- 1 Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile , Santiago, Chile
| | | | | |
Collapse
|
84
|
Sánchez-Aguilera A, Sánchez-Alonso JL, Vicente-Torres MA, Colino A. A novel short-term plasticity of intrinsic excitability in the hippocampal CA1 pyramidal cells. J Physiol 2014; 592:2845-64. [PMID: 24756640 DOI: 10.1113/jphysiol.2014.273185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Changes in neuronal activity often trigger compensatory mechanisms aimed at regulating network activity homeostatically. Here we have identified and characterized a novel form of compensatory short-term plasticity of membrane excitability, which develops early after the eye-opening period in rats (P16-19 days) but not before that developmental stage (P9-12 days old). Holding the membrane potential of CA1 neurons right below the firing threshold from 15 s to several minutes induced a potentiation of the repolarizing phase of the action potentials that contributed to a decrease in the firing rate of CA1 pyramidal neurons in vitro. Furthermore, the mechanism for inducing this plasticity required the action of intracellular Ca(2+) entering through T-type Ca(2+) channels. This increase in Ca(2+) subsequently activated the Ca(2+) sensor K(+) channel interacting protein 3, which led to the increase of an A-type K(+) current. These results suggest that Ca(2+) modulation of somatic A-current represents a new form of homeostatic regulation that provides CA1 pyramidal neurons with the ability to preserve their firing abilities in response to membrane potential variations on a scale from tens of seconds to several minutes.
Collapse
Affiliation(s)
- A Sánchez-Aguilera
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain
| | - J L Sánchez-Alonso
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain
| | - M A Vicente-Torres
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain
| | - A Colino
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain
| |
Collapse
|
85
|
Hou GQ, Pan X, Liao CS, Wang SH, Li DF. SK channels modulate the excitability and firing precision of projection neurons in the robust nucleus of the arcopallium in adult male zebra finches. Neurosci Bull 2014; 28:271-81. [PMID: 22622827 DOI: 10.1007/s12264-012-1241-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Motor control is encoded by neuronal activity. Small conductance Ca(2+)-activated K(+) channels (SK channels) maintain the regularity and precision of firing by contributing to the afterhyperpolarization (AHP) of the action potential in mammals. However, it is not clear how SK channels regulate the output of the vocal motor system in songbirds. The premotor robust nucleus of the arcopallium (RA) in the zebra finch is responsible for the output of song information. The temporal pattern of spike bursts in RA projection neurons is associated with the timing of the acoustic features of birdsong. METHODS The firing properties of RA projection neurons were analyzed using patch clamp whole-cell and cell-attached recording techniques. RESULTS SK channel blockade by apamin decreased the AHP amplitude and increased the evoked firing rate in RA projection neurons. It also caused reductions in the regularity and precision of firing. RA projection neurons displayed regular spontaneous action potentials, while apamin caused irregular spontaneous firing but had no effect on the firing rate. In the absence of synaptic inputs, RA projection neurons still had spontaneous firing, and apamin had an evident effect on the firing rate, but caused no significant change in the firing regularity, compared with apamin application in the presence of synaptic inputs. CONCLUSION SK channels contribute to the maintenance of firing regularity in RA projection neurons which requires synaptic activity, and consequently ensures the precision of song encoding.
Collapse
Affiliation(s)
- Guo-Qiang Hou
- School of Life Science, South China Normal University, Key Laboratory of Ecology and Environmental Science in Higher Education of Guangdong Province, Guangzhou 510631, China
| | | | | | | | | |
Collapse
|
86
|
The role of the N-methyl-d-aspartate receptor in the proliferation of adult hippocampal neural stem and precursor cells. SCIENCE CHINA-LIFE SCIENCES 2014; 57:403-11. [DOI: 10.1007/s11427-014-4637-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 12/29/2022]
|
87
|
Caruso V, Lagerström MC, Olszewski PK, Fredriksson R, Schiöth HB. Synaptic changes induced by melanocortin signalling. Nat Rev Neurosci 2014; 15:98-110. [PMID: 24588018 DOI: 10.1038/nrn3657] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The melanocortin system has a well-established role in the regulation of energy homeostasis, but there is growing evidence of its involvement in memory, nociception, mood disorders and addiction. In this Review, we focus on the role of the melanocortin 4 receptor and provide an integrative view of the molecular mechanisms that lead to melanocortin-induced changes in synaptic plasticity within these diverse physiological systems. We also highlight the importance of melanocortin peptides and receptors in chronic pain syndromes, memory impairments, depression and drug abuse, and the possibility of targeting them for therapeutic purposes.
Collapse
|
88
|
Wallace J. Calcium dysregulation, and lithium treatment to forestall Alzheimer's disease – a merging of hypotheses. Cell Calcium 2014; 55:175-81. [DOI: 10.1016/j.ceca.2014.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/20/2014] [Accepted: 02/05/2014] [Indexed: 12/20/2022]
|
89
|
Abstract
The study of synaptic plasticity and specifically LTP and LTD is one of the most active areas of research in neuroscience. In the last 25 years we have come a long way in our understanding of the mechanisms underlying synaptic plasticity. In 1988, AMPA and NMDA receptors were not even molecularly identified and we only had a simple model of the minimal requirements for the induction of plasticity. It is now clear that the modulation of the AMPA receptor function and membrane trafficking is critical for many forms of synaptic plasticity and a large number of proteins have been identified that regulate this complex process. Here we review the progress over the last two and a half decades and discuss the future challenges in the field.
Collapse
|
90
|
da Costa NM. Diversity of thalamorecipient spine morphology in cat visual cortex and its implication for synaptic plasticity. J Comp Neurol 2013. [PMID: 23184851 DOI: 10.1002/cne.23272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A feature of spine synapses is the existence of a neck connecting the synapse on the spine head to the dendritic shaft. As with a cable, spine neck resistance (R(neck)) increases with increasing neck length and is inversely proportional to the cross-sectional area of the neck. A synaptic current entering a spine with a high R(neck) will lead to greater local depolarization in the spine head than would a similar input applied to a spine with a lower R(neck). This could make spines with high R(neck) more sensitive to plastic changes since voltage sensitive conductances, such as N-methyl-D-aspartic acid (NMDA) channels can be more easily activated. This hypothesis was tested using serial section electron microscopic reconstructions of thalamocortical spine synapses and spine necks located on spiny stellate cells and corticothalamic cells from area 17 of cats. Thalamic axons and corticothalamic neurons were labeled by injections of the tracer biotinylated dextran amine (BDA) in the dorsal lateral geniculate nucleus (dLGN) of anesthetized cats and spiny stellates were filled intracellularly in vivo with horseradish peroxidase. Twenty-eight labeled spines that formed synapses with dLGN boutons were collected from three spiny stellate and four corticothalamic cells and reconstructed in 3D from serial electron micrographs. Spine length, spine diameter, and the area of the postsynaptic density were measured from the 3D reconstructions and R(neck) of the spine was estimated. No correlation was found between the postsynaptic density size and the estimated spine R(neck). This suggests that forms of plasticity that lead to larger synapses are independent of spine neck resistance.
Collapse
Affiliation(s)
- Nuno Maçarico da Costa
- Institute for Neuroinformatics, University of Zürich and ETH Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
91
|
Schmunk G, Gargus JJ. Channelopathy pathogenesis in autism spectrum disorders. Front Genet 2013; 4:222. [PMID: 24204377 PMCID: PMC3817418 DOI: 10.3389/fgene.2013.00222] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/09/2013] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a syndrome that affects normal brain development and is characterized by impaired social interaction as well as verbal and non-verbal communication and by repetitive, stereotypic behavior. ASD is a complex disorder arising from a combination of multiple genetic and environmental factors that are independent from racial, ethnic and socioeconomical status. The high heritability of ASD suggests a strong genetic basis for the disorder. Furthermore, a mounting body of evidence implies a role of various ion channel gene defects (channelopathies) in the pathogenesis of autism. Indeed, recent genome-wide association, and whole exome- and whole-genome resequencing studies linked polymorphisms and rare variants in calcium, sodium and potassium channels and their subunits with susceptibility to ASD, much as they do with bipolar disorder, schizophrenia and other neuropsychiatric disorders. Moreover, animal models with these genetic variations recapitulate endophenotypes considered to be correlates of autistic behavior seen in patients. An ion flux across the membrane regulates a variety of cell functions, from generation of action potentials to gene expression and cell morphology, thus it is not surprising that channelopathies have profound effects on brain functions. In the present work, we summarize existing evidence for the role of ion channel gene defects in the pathogenesis of autism with a focus on calcium signaling and its downstream effects.
Collapse
Affiliation(s)
- Galina Schmunk
- Department of Physiology and Biophysics, University of California Irvine, CA, USA ; UCI Center for Autism Research and Treatment, School of Medicine, University of California Irvine, CA, USA
| | | |
Collapse
|
92
|
Artola A. Diabetes mellitus- and ageing-induced changes in the capacity for long-term depression and long-term potentiation inductions: Toward a unified mechanism. Eur J Pharmacol 2013; 719:161-169. [DOI: 10.1016/j.ejphar.2013.04.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/21/2013] [Accepted: 04/03/2013] [Indexed: 12/01/2022]
|
93
|
Bliss T. The NMDA receptor 30 years on. Neuropharmacology 2013; 74:2-3. [DOI: 10.1016/j.neuropharm.2013.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
94
|
Babayan AH, Kramár EA. Rapid effects of oestrogen on synaptic plasticity: interactions with actin and its signalling proteins. J Neuroendocrinol 2013; 25:1163-72. [PMID: 24112361 PMCID: PMC3989941 DOI: 10.1111/jne.12108] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 01/02/2023]
Abstract
Oestrogen rapidly enhances fast excitatory postsynaptic potentials, facilitates long-term potentiation (LTP) and increases spine numbers. Each effect likely contributes to the influence of the steroid on cognition and memory. In the present review, we first describe a model for the substrates of LTP that includes an outline of the synaptic events occurring during induction, expression and consolidation. Briefly, critical signalling pathways involving the small GTPases RhoA and Rac/Cdc42 are activated by theta burst-induced calcium influx and initiate actin filament assembly via phosphorylation (inactivation) of cofilin. Reorganisation of the actin cytoskeleton changes spine and synapse morphology, resulting in increased concentrations of AMPA receptors at stimulated contacts. We then use the synaptic model to develop a specific hypothesis about how oestrogen affects both baseline transmission and plasticity. Brief infusions of 17β-oestradiol (E2 ) reversibly stimulate the RhoA, cofilin phosphorylation and actin polymerisation cascade of the LTP machinery; blocking this eliminates the effects of the steroid on transmission. We accordingly propose that E2 induces a weak form of LTP and thereby increases synaptic responses, a hypothesis that also accounts for how it markedly enhances theta burst induced potentiation. Although the effects of E2 on the cytoskeleton could be a result of the direct activation of small GTPases by oestrogen receptors on the synaptic membrane, the hormone also activates tropomyosin-related kinase B receptors for brain-derived neurotrophic factor, a neurotrophin that engages the RhoA-cofilin sequence and promotes LTP. The latter observations raise the possibility that E2 produces its effects on synaptic physiology via transactivation of neighbouring receptors that have prominent roles in the management of spine actin, synaptic physiology and plasticity.
Collapse
Affiliation(s)
- A H Babayan
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | | |
Collapse
|
95
|
Brager DH, Lewis AS, Chetkovich DM, Johnston D. Short- and long-term plasticity in CA1 neurons from mice lacking h-channel auxiliary subunit TRIP8b. J Neurophysiol 2013; 110:2350-7. [PMID: 23966674 PMCID: PMC3841871 DOI: 10.1152/jn.00218.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/17/2013] [Indexed: 01/11/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated nonselective cation channels (HCN or h-channels) are important regulators of neuronal physiology contributing to passive membrane properties, such as resting membrane potential and input resistance (R(N)), and to intrinsic oscillatory activity and synaptic integration. The correct membrane targeting of h-channels is regulated in part by the auxiliary h-channel protein TRIP8b. The genetic deletion of TRIP8b results in a loss of functional h-channels, which affects the postsynaptic integrative properties of neurons. We investigated the impact of TRIP8b deletion on long-term potentiation (LTP) at the two major excitatory inputs to CA1 pyramidal neurons: Schaffer collateral (SC) and perforant path (PP). We found that SC LTP was not significantly different between neurons from wild-type and TRIP8b-knockout mice. There was, however, significantly more short-term potentiation in knockout neurons. We also found that the persistent increase in h-current (I(h)) that normally occurs after LTP induction was absent in knockout neurons. The lack of I(h) plasticity was not restricted to activity-dependent induction, because the depletion of intracellular calcium stores also failed to produce the expected increase in I(h). Interestingly, pairing of SC and PP inputs resulted in a form of LTP in knockout neurons that did not occur in wild-type neurons. These results suggest that the physiological impact of TRIP8b deletion is not restricted to the integrative properties of neurons but also includes both synaptic and intrinsic plasticity.
Collapse
Affiliation(s)
- Darrin H Brager
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas
| | | | | | | |
Collapse
|
96
|
Gould TJ, Leach PT. Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning. Neurobiol Learn Mem 2013; 107:108-32. [PMID: 23973448 DOI: 10.1016/j.nlm.2013.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 12/27/2022]
Abstract
Addiction is a chronic disorder marked by long-lasting maladaptive changes in behavior and in reward system function. However, the factors that contribute to the behavioral and biological changes that occur with addiction are complex and go beyond reward. Addiction involves changes in cognitive control and the development of disruptive drug-stimuli associations that can drive behavior. A reason for the strong influence drugs of abuse can exert on cognition may be the striking overlap between the neurobiological substrates of addiction and of learning and memory, especially areas involved in declarative memory. Declarative memories are critically involved in the formation of autobiographical memories, and the ability of drugs of abuse to alter these memories could be particularly detrimental. A key structure in this memory system is the hippocampus, which is critically involved in binding multimodal stimuli together to form complex long-term memories. While all drugs of abuse can alter hippocampal function, this review focuses on nicotine. Addiction to tobacco products is insidious, with the majority of smokers wanting to quit; yet the majority of those that attempt to quit fail. Nicotine addiction is associated with the presence of drug-context and drug-cue associations that trigger drug seeking behavior and altered cognition during periods of abstinence, which contributes to relapse. This suggests that understanding the effects of nicotine on learning and memory will advance understanding and potentially facilitate treating nicotine addiction. The following sections examine: (1) how the effects of nicotine on hippocampus-dependent learning change as nicotine administration transitions from acute to chronic and then to withdrawal from chronic treatment and the potential impact of these changes on addiction, (2) how nicotine usurps the cellular mechanisms of synaptic plasticity, (3) the physiological changes in the hippocampus that may contribute to nicotine withdrawal deficits in learning, and (4) the role of genetics and developmental stage (i.e., adolescence) in these effects.
Collapse
Affiliation(s)
- Thomas J Gould
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| | - Prescott T Leach
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| |
Collapse
|
97
|
Chung C. NMDA receptor as a newly identified member of the metabotropic glutamate receptor family: clinical implications for neurodegenerative diseases. Mol Cells 2013; 36:99-104. [PMID: 23740429 PMCID: PMC3887951 DOI: 10.1007/s10059-013-0113-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022] Open
Abstract
Recent reports have proposed a novel function for the N-methyl-D-aspartate (NMDA) receptor (NMDAR), a well-known excitatory, ionotropic receptor. A series of observations employing pharmacological techniques has proposed that upon ligand binding, this ionotropic receptor can actually function via signaling cascades independent of traditional ionotropic action. Moreover, the "metabotropic" action of NMDARs is suggested to mediate a form of synaptic plasticity, namely long-term synaptic depression (LTD), which shares cellular mechanisms with the synaptic deficits observed in Alzheimer's disease. Given that a growing body of clinical and preclinical evidence strongly recommends NMDAR antagonists for their therapeutic potentials and advantages in a variety of diseases, further investigation into their molecular and cellular mechanisms is required to better understand the "metabotropic" action of NMDARs.
Collapse
Affiliation(s)
- ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
98
|
Anisuzzaman ASM, Uwada J, Masuoka T, Yoshiki H, Nishio M, Ikegaya Y, Takahashi N, Matsuki N, Fujibayashi Y, Yonekura Y, Momiyama T, Muramatsu I. Novel contribution of cell surface and intracellular M1-muscarinic acetylcholine receptors to synaptic plasticity in hippocampus. J Neurochem 2013; 126:360-71. [DOI: 10.1111/jnc.12306] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/30/2013] [Accepted: 05/14/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Abu Syed Md Anisuzzaman
- Division of Pharmacology; Department of Biochemistry and Bioinformative Sciences; School of Medicine; University of Fukui; Eiheiji Japan
| | - Junsuke Uwada
- Division of Pharmacology; Department of Biochemistry and Bioinformative Sciences; School of Medicine; University of Fukui; Eiheiji Japan
- Organization for Life Science Advancement Programs; University of Fukui; Eiheiji Japan
| | - Takayoshi Masuoka
- Department of Pharmacology; School of Medicine; Kanazawa Medical University; Uchinada Japan
| | - Hatsumi Yoshiki
- Division of Pharmacology; Department of Biochemistry and Bioinformative Sciences; School of Medicine; University of Fukui; Eiheiji Japan
| | - Matomo Nishio
- Department of Pharmacology; School of Medicine; Kanazawa Medical University; Uchinada Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo Bunkyo-ku Japan
| | - Naoya Takahashi
- Laboratory of Chemical Pharmacology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo Bunkyo-ku Japan
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo Bunkyo-ku Japan
| | | | | | - Toshihiko Momiyama
- Department of Pharmacology; Jikei University School of Medicine; Minato-ku Japan
| | - Ikunobu Muramatsu
- Division of Pharmacology; Department of Biochemistry and Bioinformative Sciences; School of Medicine; University of Fukui; Eiheiji Japan
- Organization for Life Science Advancement Programs; University of Fukui; Eiheiji Japan
- Child Development Research Center; Graduate School of Medicine; University of Fukui; Eiheiji Japan
| |
Collapse
|
99
|
Bar-Ilan L, Gidon A, Segev I. The role of dendritic inhibition in shaping the plasticity of excitatory synapses. Front Neural Circuits 2013; 6:118. [PMID: 23565076 PMCID: PMC3615258 DOI: 10.3389/fncir.2012.00118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/19/2012] [Indexed: 11/17/2022] Open
Abstract
Using computational tools we explored the impact of local synaptic inhibition on the plasticity of excitatory synapses in dendrites. The latter critically depends on the intracellular concentration of calcium, which in turn, depends on membrane potential and thus on inhibitory activity in particular dendritic compartments. We systematically characterized the dependence of excitatory synaptic plasticity on dendritic morphology, loci and strength, as well as on the spatial distribution of inhibitory synapses and on the level of excitatory activity. Plasticity of excitatory synapses may attain three states: “protected” (unchanged), potentiated (long-term potentiation; LTP), or depressed (long-term depression; LTD). The transition between these three plasticity states could be finely tuned by synaptic inhibition with high spatial resolution. Strategic placement of inhibition could give rise to the co-existence of all three states over short dendritic branches. We compared the plasticity effect of the innervation patterns typical of different inhibitory subclasses—Chandelier, Basket, Martinotti, and Double Bouquet—in a detailed model of a layer 5 pyramidal cell. Our study suggests that dendritic inhibition plays a key role in shaping and fine-tuning excitatory synaptic plasticity in dendrites.
Collapse
Affiliation(s)
- Lital Bar-Ilan
- Department of Neurobiology, The Hebrew University of Jerusalem Israel
| | | | | |
Collapse
|
100
|
Wallace J. Treatment of trauma with lithium to forestall the development of posttraumatic stress disorder by pharmacological induction of a mild transient amnesia. Med Hypotheses 2013; 80:711-5. [PMID: 23490200 DOI: 10.1016/j.mehy.2013.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/04/2013] [Accepted: 02/16/2013] [Indexed: 11/15/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a severe anxiety disorder that develops after exposure to trauma. Symptoms include persistent reexperiencing, persistent avoidance, persistent numbing, and persistent hyperarousal. Subsequent to trauma exposure, the onset of symptoms of an acute stress reaction can typically develop over varying amounts of time from days to months. Current pharmacotherapies for PTSD are available after symptoms manifest, and primarily consist of selective serotonin reuptake inhibitor (SSRI) antidepressants. There are currently no FDA approved pharmacological interventions available for the treatment of acutely traumatized individuals to forestall the development of PTSD after trauma and prior to the onset of symptoms. A prominent model of PTSD developed by Roger Pitman attributes the pathogenesis of PTSD to over-consolidated traumatic memories that are mediated by endogenous stress hormones released with trauma and after trauma. The molecular processes of memory consolidation in neurons are mediated by intracellular signaling pathways. One secondary messenger signaling pathway with a putative role in long-term potentiation (LTP) is the inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) secondary messenger system. Lithium, a treatment for bipolar disorder, and a pharmacotherapy that is associated with inducing transient impairments in cognition, memory, and learning, is an inhibitor of inositol monophosphatase (IMP), an enzyme in the IP3 and DAG secondary messenger pathway. I am advancing the hypothesis that the administration of lithium for a brief interval to traumatized individuals at risk for PTSD within the time period after trauma and prior to the onset of symptoms could potentially forestall the development of PTSD by disrupting LTP. I am proposing that this treatment will reduce the incidence of PTSD and reduce the severity of symptoms in those who eventually develop PTSD.
Collapse
Affiliation(s)
- James Wallace
- The Aging and Dementia Research Center, New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA.
| |
Collapse
|